
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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1 Introduction

Consider a linear algebraic system Ax = b, where A ∈ RN,N is a nonsingular
matrix (generally unsymmetric) and b ∈ RN . Krylov subspace methods for
solving such systems start with an initial approximation x0, compute the initial
residual r0 = b− Ax0 and then determine a sequence of approximate solutions
x1, . . . , xn such that xn belongs to the linear manifold determined by x0 and
the n-th Krylov subspace

xn ∈ x0 +Kn(A, r0), Kn(A, r0) ≡ span{r0, Ar0, . . . , An−1r0} . (1)

The n-th residual then belongs to the manifold given by r0 and the shifted
Krylov subspace (also called Krylov residual subspace)

rn ≡ b−Axn ∈ r0 +AKn(A, r0) . (2)

The choice of xn is based on some particular additional condition. In this paper
we focus on the minimal residual principle

‖rn‖ = min
u∈x0+Kn(A,r0)

‖b−Au‖ , (3)

which can be equivalently formulated as the orthogonal projection principle

rn ⊥ AKn(A, r0) . (4)

Since A is assumed to be nonsingular, both (3) and (4) determine the unique se-
quence of approximate solutions x1, . . . , xn, see [26]. Mathematically (in exact
arithmetic), there are several different methods and many of their algorith-
mic variants for generating this sequence. Computationally (in finite precision
arithmetic), however, different algorithms for computing the samemathematical
sequence may produce different results.

We will call the Krylov subspace methods (1) generating mathematically
the sequence x1, . . . , xn uniquely determined by the minimal residual principle
(3) (or by the equivalent orthogonal projection principle (4)) minimal residual
Krylov subspace methods (MR methods).

The minimal residual principle (3) represents a least squares problem, and
thus MR methods are often described as a sequence of least squares problems
of increasing dimension [26]. Therefore we consider in Section 2 an overdeter-
mined least squares problem Bu ≈ c, and we present several basic identities
and bounds for the residual r = c − By. In Section 3 we apply these results
to MR methods for the problem Ax = b, and formulate several theoretical con-
sequences about their convergence. Section 4 describes the main examples of
the MR methods, in particular various forms of the GMRES method [26]. In
Section 5 we discuss numerical properties of the important implementations,
identify possible numerical weaknesses and illustrate our findings by numerical
experiments.

We denote by σi(·) the i-th largest singular value and by σmin(·) the smallest
singular value of a given matrix. By κ(·) we denote the ratio of the largest to the
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smallest singular value (condition number). We use ‖ · ‖ to denote the 2-norm,
ei to denote the i-th vector of the standard Euclidean basis, and I to denote
the identity matrix.

2 Basic relations for the least squares residual

As the MR methods can be expressed as sequences of least squares problems,
it will prove useful to collect some fundamental relations for the least squares
residual. We will recall some known results, prove several new results and put
the ones known previously in a new context.

Consider an overdetermined linear approximation problem

Bu ≈ c, B ∈ RN,n, c ∈ RN , n < N, rank(B) = n. (5)

We denote by y the least squares (LS) solution of (5), and by r = c − By the
corresponding LS residual,

‖r‖ = ‖c−By‖ = min
u

‖c−Bu‖ . (6)

For later convenience we introduce (similarly as in [22]) a real scaling parameter
γ > 0 and consider a scaled version of (5),

Bz ≈ cγ, B ∈ RN,n, c ∈ RN , n < N, rank(B) = n. (7)

Note that if the right hand side c is replaced in (5) and (6) by the scaled vector
cγ, the LS solution and the LS residual scale trivially to z = yγ and rγ.

We start with a general identity relating r to the matrix [cγ, B].

Theorem 2.1. Suppose that [c, B] ∈ RN,n+1 has full column rank and r '= 0 is
the residual of the least squares problem (5)–(6). Let γ > 0 be a real parameter.
Then

eT1 [cγ, B]† =
rT

γ‖r‖2
and γ‖r‖ =

1

{eT1 ([cγ, B]T [cγ, B])−1e1}
1

2

(8)

where X† denotes the Moore-Penrose generalized inverse of a matrix X.

Proof. For any matrixX the Moore-Penrose pseudoinverseX† satisfiesXX†X =
X (see, e.g., [5]), which using the symmetry of XX† gives XT = XTXX†. Sub-
stituting X = [cγ, B], we receive the following simple identities:

γrT = [1,−γyT ] [cγ, B]T = [1,−γyT ] [cγ, B]T [cγ, B][cγ, B]†

= γrT [cγ, B][cγ, B]† .

Since r is orthogonal to the columns ofB, γrT [cγ, B] = γ2(rT c) eT1 = γ2‖r‖2 eT1 ,
which proves the first part of the theorem. The second part follows from the
identity ‖eT1 [cγ, B]†‖2 = eT1 ([cγ, B]T [cγ, B])−1e1 , which can be verified by a
straightforward calculation.
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The first equality in (8) was essentially proven (though neither the statement
nor the proof were formulated explicitly in the form presented here) in [28,
relations (2.5), (2.6), (3.7) and (3.8)]. Later it was presented (with γ = 1)
in [16, Lemma 7.1] (see also other references given there).

It is important to notice that for an arbitrary nonsingular matrixM ∈ Rn,n,

‖r‖ = ‖c−By‖ = ‖c− (BM)(M−1y)‖ = min
u

‖c− (BM)u‖ .

As a consequence of this simple observation, (8) will hold when B is replaced by
BM . A particularly useful choice is M = R−1, where R is the upper triangular
factor of a QR-factorization of B.

Theorem 2.1. Using the assumptions and the notation of Theorem 2.1, and a
QR-factorization B = QR of the matrix B,

eT1 [cγ, Q]† =
rT

γ‖r‖2
and γ‖r‖ =

1

{eT1 ([cγ, Q]T [cγ, Q])−1e1}
1

2

. (9)

It may look a bit surprising that the first rows of the matrices [cγ, B]† and
[cγ, Q]† are identical. A second look reveals that this fact is simple and natural:

Consider a full column rank matrix X = [cγ, B] ∈ RN,n+1. Then the rows
of X† are linear combinations of the rows of XT (the transposed columns of
X), and X†X = I. The last relation can be interpreted geometrically as an
orthogonal relation between the rows of X† and the columns of X . Denote by
s = eT1 X

† the first row of X†. Then s is orthogonal to all but the first column
of X , i.e., it is orthogonal to the columns of the matrix B. Because s represents
a linear combination of cT and the transposed columns of B, it must be equal
to a scalar multiple of the transposed residual rT = (c − By)T for the least
squares problem (5)–(6). The identity (ζrT ) (cγ) = 1 then immediately gives
ζ = γ−1‖r‖−2.

The orthogonality idea clearly applies with no change when B is replaced
by any matrix BM , where M ∈ Rn,n is nonsingular. The geometrical interpre-
tation of the generalized inverse is simple, but revealing.

The following theorem relates the norm of the LS residual (6) to the singular
values of the matrices B, [cγ, B] and [cγ, Q].

Theorem 2.2. Suppose that [c, B] ∈ RN,n+1 has full column rank and r '= 0
is the residual of the least squares problem (5)–(6). Let B = QR be a QR-
factorization of the matrix B and γ > 0 be a real parameter. Then

‖r‖ =
σmin([cγ, B])

γ

n
∏

j=1

σj([cγ, B])

σj(B)
(10)

=
1

γ
σmin([cγ, Q])σ1([cγ, Q]). (11)
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Furthermore,

κ([cγ, Q]) =
α+

(

α2 − 4γ2‖r‖2
)1/2

2γ ‖r‖
, ‖r‖ =

α

γ

κ([cγ, Q])

κ([cγ, Q])2 + 1
, (12)

where α ≡ 1 + γ2‖c‖2.

Proof. Using the orthogonality of the columns of the matrix Q, the right hand
side c and the residual r are related by the identity

c = Qh+ r, h ≡ QT c, ‖c‖2 = ‖h‖2 + ‖r‖2 .

Now consider an orthogonal matrix U ∈ Rn,n, UTU = I, such that Uh = ‖h‖e1.
Then

[cγ, Q]T [cγ, Q] =

[

1 0
0 UT

] [

γ2‖c‖2 γ‖h‖eT1
γ‖h‖e1 I

] [

1 0
0 U

]

, (13)

[cγ, B]T [cγ, B] =

[

1 0
0 RT

]

[cγ, Q]T [cγ, Q]

[

1 0
0 R

]

. (14)

Identity (13) shows that all but two of the eigenvalues of [cγ, Q]T [cγ, Q] are equal
to one. The two remaining eigenvalues are easily determined as the eigenvalues
of the left principal two-by-two block,

σ2
1([cγ, Q]) =

α+ (α2 − 4γ2‖r‖2)1/2

2
, σ2

min([cγ, Q]) =
α− (α2 − 4γ2‖r‖2)1/2

2
,

where α ≡ 1 + γ2‖c‖2 (notice that α2 − 4γ2‖r‖2 ≥ (1 − γ2‖c‖)2 ≥ 0). Using

κ([cγ, Q]) = σ1([cγ, Q])/σmin([cγ, Q]),

(12) is obtained by a simple algebraic manipulation.
Evaluating the determinants on both sides of (13) yields

det([cγ, Q]T [cγ, Q]) = σ2
1([cγ, Q])σ2

min([cγ, Q]) = γ2‖r‖2,

which shows (11). Similarly, transformation (14) yields

det([cγ, B]T [cγ, B]) =
n+1
∏

j=1

σ2
j ([cγ, B])

= det([cγ, Q]T [cγ, Q]) det(RTR) = γ2‖r‖2
n
∏

j=1

σ2
j (B),

which proves (10).
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The relations (12) generalize results presented in [19, Section 5.5.2]. The identity
(10) was (with γ = 1) first shown by Van Huffel and Vandewalle [29, Theorem
6.9], and it also appeared (with a different proof) in [20].

Van Huffel and Vandewalle [29, Theorem 6.10] gave the following lower and
upper bounds for ‖r‖ (with γ = 1) in terms of σmin([cγ, B]) (see also [20]). Let

δ(γ) ≡ σmin([cγ, B])/σmin(B). (15)

Then

σmin([cγ, B])

γ
≤ ‖r‖ ≤

σmin([cγ, B])

γ

{

1− δ(γ)2 +
γ2‖c‖2

σ2
min(B)

}
1

2

. (16)

Bounds for ‖r‖ in terms of the minimal singular values of B and [cγ, B] and
as little additional information as possible were studied in detail in [20]. In
particular, when B has full column rank and

c '⊥ {left singular vector subspace of B corresponding to σmin(B)}, (17)

then the following bounds were given in [20]:

σmin([cγ, B]) {γ−2+ ‖y‖2}
1

2 ≤ ‖r‖

≤ σmin([cγ, B])

{

γ−2+
‖y‖2

1− δ(γ)2

}
1

2

. (18)

Though (16) can be derived from (18) (and not vice versa, see [20]), the upper
bound in (18) is not always tighter than the upper bound in (16). When δ(γ) ≈ 1
and ‖r‖ ≈ ‖c‖, it is possible for the upper bound in (16) to be smaller than that
in (18). But in this case the upper bound in (16) becomes trivial. For details
see [20].

For δ(γ) = 1 the upper bound in (18) does not exist. It was shown in [22]
that if (17) holds, then δ(γ) < 1 for all γ > 0. As explained in [22], the role
of the assumption (17) is truly fundamental. If it does not hold, both theory
and computation in errors-in-variables modeling is enormously complicated by
the possible case δ(γ) = 1. Fortunately nearly all practical problems will satisfy
(17). Nevertheless, it is instructive to consider possible cases where (17) does
not hold, so that δ(γ) = 1 is possible.

The lower bound in (16) shows that we can make σmin([cγ, B]) arbitrarily
small by taking γ small, and thus ensure δ(γ) < 1 in (15). How small must γ
be to ensure this? The next theorem answers a variant of this question. Given
σmin(B) and ‖c‖, it shows that there is a γ0 such that γ < γ0 ensures δ(γ) < 1
but γ = γ0 does not.

Theorem 2.3. Suppose that [c, B] ∈ RN,n+1 has full column rank, y is the
solution and r '= 0 is the residual of the least squares problem (5)–(6). Let
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γ > 0 be a real parameter and δ(γ) ≡ σmin([cγ, B])/σmin(B). Define γ0 ≡
σmin(B)/‖c‖. Then

δ(γ) < 1 for all γ < γ0. (19)

Moreover,
y = 0 (r = c) if and only if δ(γ0) = 1. (20)

Proof. Note that when γ < γ0, then ‖cγ‖ < σmin(B). Therefore σmin([cγ, B]) <
σmin(B), i.e. δ(γ) < 1.

Now assume that the least squares problem (5)–(6) has the trivial solution
y = 0 (r = c). Then BT c = 0, which yields

[cγ, B]T [cγ, B] =

[

‖c‖2γ2 0
0 BTB

]

.

Thus, σmin([cγ, B]) = min {‖c‖γ, σmin(B)}, δ(γ) = min {‖c‖γ/σmin(B), 1} ,
and δ(γ0) = 1. Conversely, (16) gives with γ = γ0,

δ(γ0) ‖c‖ ≤ ‖r‖ ≤ δ(γ0) ‖c‖ {2− δ(γ0)
2}1/2, (21)

which for δ(γ0) = 1 reduces to ‖c‖ ≤ ‖r‖ ≤ ‖c‖, i.e. ‖r‖ = ‖c‖, which completes
the proof.

We see that γ0 ≡ σmin(B)/‖c‖ represents an important number. For γ < γ0
the value of δ(γ) is always strictly less than one, and δ(γ0) = 1 if and only if
the least squares problem (5)–(6) has the trivial solution y = 0. Moreover, (21)
shows that ‖r‖ is significantly smaller than ‖c‖ if and only if δ(γ0) is significantly
smaller than one. As an application, we will show in Section 3 how these results
characterize stagnation or near-stagnation of MR methods.

One consequence of Theorem 2.3 can be stated as follows: Consider a rectan-
gular matrix (here B) having full column rank, and an additional column (here
cγ). If the norm of the additional column is smaller than the smallest singular
value of the matrix (here if γ < γ0), then appending the column necessarily de-
creases the smallest singular value. If the norm of the appended column is equal
to the smallest singular value of the matrix (here if γ = γ0), then appending the
column to the matrix does not change the smallest singular value if and only
if the appended column is orthogonal to all the columns of the original matrix.
This is a somewhat specialized result because of the fixed norm of the added
column. The general condition under which adding a column to a matrix does
not alter the smallest singular value was given in [22]; Theorem 2.3 can also be
derived from this.

Theorem 2.3 and the consequence stated above must be understood in their
proper context. It was pointed out in [22], that nearly all practical problems
will satisfy (17), that any problem Bu ≈ c can be reduced to a core problem
satisfying (17), and that for many formulations it only makes sense to consider
problems satisfying (17). Also if the problem satisfies (17) then δ(γ) < 1 for all
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γ > 0, and in this case (19) and (20) are irrelevant. On the other hand, (21)
seems to be a generally useful result. Thus γ0 ≡ σmin(B)/‖c‖ is a significant
quantity, as can be seen from the interesting but rarely practical properties
(19) and (20), and the interesting and compact bounds (21). Note also that
in many practical problems of interest, γ0 ≡ σmin(B)/‖c‖ will be a very small
number. In particular, this suggests that for a general least squares problem
the above ‘column addition’ result will be of minor practical use. It is, however,
important theoretically because it offers a new insight into the stagnation or
near stagnation of the MR methods.

Finally, consider (similarly as in Corollary 2.1) a QR-factorization B = QR.
Replacing B by BR−1 = Q and y by Ry (notice that ‖Ry‖ = ‖By‖) gives the
analogies of (16) and (18),

σmin([cγ, Q])

γ
≤ ‖r‖ ≤

σmin([cγ, Q])

γ
{1− σ2

min([cγ, Q]) + γ2‖c‖2}
1

2 , (22)

σmin([cγ, Q]) {γ−2+ ‖By‖2}
1

2 ≤ ‖r‖

≤ σmin([cγ, Q]) {γ−2+
‖By‖2

1− σmin([cγ, Q])2
}

1

2 .(23)

Theorem 2.3 can be reformulated in a similar way. It is interesting to note that
the bounds (22) do not give additional information. Indeed, since σ1([cγ, Q]) ≥
1, the lower bound in (22) follows immediately from (11). And since {1 −
σ2
min([cγ, Q]) + γ2‖c‖2}1/2 = σ1([cγ, Q]), the upper bound is a weak reformula-

tion of (11) only.
In the following section we apply these results to the minimal residual Krylov

subspace methods.

3 Characteristics of the basis and the size of the

MR residual

Let ρ0 ≡ ‖r0‖, v1 ≡ r0/ρ0, w1 ≡ Av1/‖Av1‖. Consider two sequences of
orthonormal vectors, v1, v2, . . . and w1, w2, . . ., such that for each iterative step
n,

Kn(A, r0) = span{v1, . . . , vn}, Vn ≡ [v1, . . . , vn], V T
n Vn = I, (24)

AKn(A, r0) = span{w1, . . . , wn}, Wn ≡ [w1, . . . , wn], WT
n Wn = I. (25)

Then the minimal residual principle (3) can be formulated as

‖rn‖ = min
u∈Rn

‖r0 −AVnu‖ (26)

= min
u∈Rn

‖r0 −Wnu‖ . (27)

The MR residual at step n is therefore the LS residual for the LS problems
AVnu ≈ v1ρ0 and Wnu ≈ v1ρ0.
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The application of the results presented in Section 2 to (26) and (27) is
straightforward: For the n-th step of an MR method we consider c ≡ r0 = v1ρ0,
B ≡ AVn , Q ≡ Wn and r ≡ rn . The scaling parameter γ > 0 offers some
flexibility. While it seems natural to use γ ≡ ‖r0‖−1 = ρ−1

0 , other values of γ
also prove useful, cf. [21] and our discussion below.

With γ ≡ ‖r0‖−1 = ρ−1
0 , Theorem 2.2, relations (11) and (12), give the

following identities for the relative residual norm ‖rn‖/ρ0:

‖rn‖/ρ0 = σmin([v1, Wn]) σ1([v1, Wn]) (28)

=
2 κ([v1, Wn])

κ([v1, Wn])2 + 1
. (29)

Identities (28) and (29) show that the conditioning of the basis [v1, Wn] of the
Krylov subspace Kn+1(A, r0) is fully determined (except for an unimportant
multiplicative factor) by the convergence of the MR methods and vice versa. In
other words,

‖rn‖ = ρ0 if and only if κ([v1, Wn]) = 1, (30)

and the relative residual norm ‖rn‖/ρ0 is small if and only if [v1, Wn] is ill-
conditioned.

The previous statement can also be mathematically expressed by inequali-
ties. Dividing both the numerator and the denominator in (29) by κ([v1,Wn])
gives in a simple way the bounds

κ([v1,Wn])
−1 ≤ ‖rn‖/ρ0 ≤ 2 κ([v1,Wn])

−1. (31)

The upper bound in (31) was published by Walker and Zhou [34, Lemma 3.1].
Relations between the size of the residuals of the MR methods and the condi-

tion number of matrices [v1,Wn] and [r0,Wn] were studied in [19, Section 5.5.2].
We will generalize the result [19, (5.48)] and develop an elegant tool for quan-
tification of the influence of the scaling parameter γ.

Theorem 3.1. Let r0, rn and Wn be as in (27), ρ0 ≡ ‖r0‖, v1 ≡ r0/ρ0 and
γ > 0. Then

κ([r0γ,Wn]) ≥ κ([v1,Wn]) +
γ (ρ0 − γ−1)2

2‖rn‖
. (32)

Proof. Using (12) with the particular choices c ≡ r0, Q ≡ Wn, γ > 0, and
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c ≡ r0, Q ≡ Wn, γ ≡ ρ−1
0 = ‖r0‖−1 gives

κ([r0γ,Wn]) − κ([v1,Wn])

=
1 + γ2ρ20 + [(1 + γ2ρ20)

2 − 4γ2‖rn‖2]1/2

2γ‖rn‖
−

2 + [4− 4ρ−2
0 ‖rn‖2]1/2

2ρ−1
0 ‖rn‖

=
γ−1 + γρ20 + [(γ−1 + γρ20)

2 − 4‖rn‖2]1/2 − 2ρ0 − [4ρ20 − 4‖rn‖2]1/2

2‖rn‖

=
γ (ρ0 − γ−1)2

2‖rn‖
+

[(γ−1 + γρ20)
2 − 4‖rn‖2]1/2 − [4ρ20 − 4‖rn‖2]1/2

2‖rn‖

≥
γ (ρ0 − γ−1)2

2‖rn‖
.

Clearly, κ([r0γ,Wn]) is minimal for γ = ρ−1
0 , and the minimum is equal to

κ([v1,Wn]) (see also [8]) . If γ '= ρ−1
0 , then with the residual norm ‖rn‖ de-

creasing towards zero the condition number κ([r0γ,Wn]) grows much faster than
κ([v1,Wn]). The results considering the matrix [r0γ,Wn] will be particularly
useful for our discussion of MR implementations based on the orthogonal pro-
jection principle (4) in Section 5.

With c ≡ r0, r ≡ rn, y ≡ yn, and B ≡ AVn, (18) gives the following bounds
for the residual norm in terms of σmin([r0γ, AVn]):

σmin([r0γ, AVn]) {γ−2+ ‖yn‖2}
1

2 ≤ ‖rn‖

≤ σmin([r0γ, AVn])

{

γ−2+
‖yn‖2

1− δn(γ)2

}
1

2

,(33)

where δn(γ) ≡ σmin([r0γ, AVn])/σmin(AVn). As mentioned in Section 2, the
upper bound in (33) becomes for δn(γ) ≈ 1 intriguing, and for δn(γ) = 1 it is
not defined.

The convergence of the MRmethods and the situation δn(γ) = 1 or δn(γ) ≈ 1

are related by Theorem 2.3. Define γ(n)
0 ≡ σmin(AVn)/ρ0. Then δn(γ) < 1 for

all γ < γ(n)
0 and

‖rn‖ = ρ0 if and only if δn(γ
(n)
0 ) = 1. (34)

Moreover, (21) gives

δn(γ
(n)
0 ) ≤ ‖rn‖/ρ0 ≤

√
2 δn(γ

(n)
0 ), (35)

which shows that the rate of convergence of the MR methods is determined by

the size of δn(γ
(n)
0 ). Summarizing, the MR methods stagnate in steps 1 through

n if and only if δn(γ
(n)
0 ) = 1, and they nearly stagnate in steps 1 through n
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if and only if δn(γ
(n)
0 ) ≈ 1. However, this specific link between convergence

of the MR methods and the value of δn(γ) can be made for γ = γ(n)
0 only.

In particular, when δn(γ1) = 1 for some γ1 > γ(n)
0 , the MR methods do not

necessarily stagnate or nearly stagnate. They may exhibit very fast convergence
while δn(γ1) ≈ 1 and very slow convergence while δn(γ1) + 1 (for more details
see [21]).

Using the matrix [r0γ, AVn] instead of [r0γ,Wn] may seem unwise because
it necessarily brings into play the potentially ill-conditioned matrix AVn (in
comparison to Wn having orthonormal columns). However, as shown in [22,
21], bounds using the matrix [r0γ, AVn] are very useful for the analysis of the
modified Gram-Schmidt implementation of the GMRES method. Notice that
the bounds (33) are not based on singular values only. Using ‖yn‖, the norm of
the MR approximate solution, makes (33) amazingly tight [22]. The parameter
γ offers flexibility required for the analysis of the GMRES method [21].

It is also possible to consider other bases of the Krylov subspaces or Krylov
residual subspaces which lead to other matrices, identities and bounds. For
example, Ipsen [16, 17] used the matrix Kn+1 = [r0, Ar0, . . . , Anr0], got the
identity

‖rn‖ = 1/‖eT1 K†
n+1‖ (36)

(cf. Theorem 2.1) and developed the bound ‖rn‖/ρ0 ≥ 1/(‖Kn+1‖ ‖K†
n+1‖).

However, any bound based directly on the matrix Kn+1 necessarily suffers from
the potential ill-conditioning of the matrix [Ar0, . . . , Anr0]. Consider the QR-
decomposition [Ar0, . . . , Anr0] = WnRn. In light of the results presented above,
see, in particular, (9), (28) and (29), the upper triangular factor Rn containing
all the potential ill-conditioning of the matrix [Ar0, . . . , Anr0] is mathematically
in no relation whatsoever to the residual rn and to the convergence of any
MR method measured by the residual norm. Except for some (rather special)
examples, bounds based on the matrix Kn+1 are therefore necessarily much
weaker than the bounds based on the matrices [r0γ,Wn] and [r0γ, AVn].

4 Implementations of the MR methods

Numerous residual norm minimizing Krylov subspace methods have been pro-
posed in the last decades [18, 30, 35, 1, 11, 26]. Resulting from different ap-
proaches, they generate (under different assumptions) approximate solutions
satisfying (3) and (4). Though they are, under some particular assumptions,
mathematically equivalent, they differ in various algorithmic aspects, and, con-
sequently, in their numerical behavior.

We will concentrate on two main approaches which explicitly compute the
basis vectors v1, v2, . . . , vn respectively v1, w1, . . . , wn−1 defined in (24) and (25).
In the first approach, the approximate solution xn is expressed as

xn = x0 + Vn yn
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for some yn, and the residual norm is bounded in terms of σmin([v1ρ0γ, AVn])
via (33). In the second approach the approximate solution is expressed as

xn = x0 + [v1,Wn−1] tn

for some tn, and for the residual norm we have the identities (28)–(29). At
first sight the second approach seems more attractive because it gives a cleaner
relation between the residual norm (which is minimized at every step) and the
conditioning of the computed basis. Its implementation is also simpler. On the
other hand, the fact that the approximate solution is in this approach deter-
mined via the basis vectors v1, w1, . . . , wn−1 which are not mutually orthogonal
raises some suspicions about potential numerical problems. In this section we
recall implementations of both approaches resulting in different variants of the
GMRES algorithm. In Section 5 we will discuss their numerical properties.

A variety of MRmethods that do not explicitly compute the vectors v1, v2, . . . , vn
or v1, w1, . . . , wn−1 have been proposed. For example, the method by Khabaza [18]
uses the vectors r0, Ar0, . . . , An−1r0; Orthomin [30], Orthodir [35], General-
ized Conjugate Gradient (GCG) [1, 2] and Generalized Conjugate Residual
(GCR) [10, 11] compute an ATA-orthogonal basis of Kn(A, r0). These methods
played an important role in the development of the field. In comparison to the
approaches discussed in this paper they are, however, less numerically stable.
Therefore we will not consider them below.

4.1 Minimal residual principle: Classical GMRES

Consider an initial approximation x0 and the initial residual r0 = b−Ax0, ρ0 ≡
‖r0‖. In their classical paper [26], Saad and Schultz used the orthonormal
basis (24) (Arnoldi basis). As noted in [33], this basis can be mathematically
expressed as the Q-factor of a recursive columnwise QR-factorization

[r0, AVn] = Vn+1 [e1ρ0, Hn+1,n], Vn+1 ≡ [v1, . . . , vn+1], V
T
n+1Vn+1 = In+1.

(37)
Here Hn+1,n is an (n + 1)-by-n upper Hessenberg matrix with elements hi,j ,
hj+1,j '= 0, j = 1, 2, . . . , n− 1. If at any stage hn+1,n = 0, the algorithm would
stop with [r0, AVn] = Vn [e1ρ0, Hn,n]. Using the substitution

xn = x0 + Vn yn (38)

and (37), the minimal residual principle (3) gives the least squares problem for
the vector of coefficients yn:

‖rn‖ ≡ ‖b−Axn‖ = min
y∈Rn

‖r0 −AVn y‖ = min
y∈Rn

‖Vn+1 (e1ρ0 −Hn+1,n y)‖(39)

= min
y∈Rn

‖e1ρ0 −Hn+1,n y‖. (40)

To solve (39) we apply orthogonal rotations J1, J2, . . . , Jn sequentially toHn+1,n

to bring it to the upper triangular form Tn:

Jn · · ·J2J1 Hn+1,n =

[

Tn

0

]

.
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The vectors yn and ‖rn‖ then satisfy
[

Tn yn
‖rn‖

]

= JT
1 JT

2 · · ·JT
n e1ρ0. (41)

The value of the (nonincreasing) residual norm is available without determining
yn and it can be easily updated at each iteration, while yn+1 and xn+1 will
usually differ in every element from yn and xn respectively. We refer to this
algorithm as GMRES or classical GMRES.

Several variants for computing the basis vectors v1, . . . , vn were proposed.
Saad and Schultz [26] considered the modified Gram-Schmidt process. Walker [32,
33] presented classical GMRES based on Householder transformations. Iterated
classical and iterated modified Gram-Schmidt versions were studied in [9].

A variety of parallel implementations [6, 3, 12, 23, 7, 27] use various tech-
niques to increase the parallel efficiency of the basically sequential basis-generating
process. Parallel aspects are out of the scope of this paper.

4.2 Orthogonal projection principle: Simpler GMRES

We now consider an implementation of GMRES derived from the orthogonal
projection principle (4). The approach proposed by Walker and Zhou [34], called
simpler GMRES, uses the orthonormal basis (25). This basis is computed by a
recursive columnwise QR-factorization of the matrix [Ar0γ, AWn−1]. Based on
Theorem 3.1 we set γ = ρ−1

0 , and we will use this value of the scaling parameter
γ throughout the rest of this paper. Then

A[v1,Wn−1] = [Av1, AWn−1] = WnSn, Wn ≡ [w1, . . . , wn], WT
n Wn = In,

(42)
where Sn is an n-by-n upper triangular matrix with elements si,j , sj,j '= 0.
If at any stage sn,n = 0, the algorithm would stop with [Av1, AWn−1] =
Wn−1[Sn−1, ŝn]. Using the substitution

xn = x0 + [v1,Wn−1] tn , (43)

the vector tn ∈ Rn solves the least squares problem

‖rn‖ ≡ ‖b−Axn‖ = min
t∈Rn

‖r0 −A[v1,Wn−1] t‖ (44)

= min
t∈Rn

‖r0 −WnSn t‖ . (45)

Solving the least squares problem (44)–(45) in a numerically stable way rep-
resents a more subtle task then solving (39)–(40). The main difference is in
handling the right hand side vector r0. In (39)–(40), r0 is expressed in terms
of the vectors v1, v2, . . . , vn simply as r0 = v1ρ0. In finite precision arithmetic,
until the linear independence of the vectors v1, v2, . . . , vn is lost, this expres-
sion is maximally accurate. On the other hand, application of the orthogonal
projection principle (4) directly to (44)–(45) gives the upper triangular system

Sn tn = WT
n r0. (46)
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As demonstrated in [25], computing the vector of coefficients tn from (46) leads
to numerical difficulties. Numerically more stable implementations are described
next.

Consider first the implementation of simpler GMRES using the modified
Gram-Schmidt process for generating the basis vectors w1, . . . , wn. A properly
implemented algorithm for solving the least squares problem (44)–(45) applies
the orthogonalization process also to the right hand side r0, see [4, pp. 64-65].
Then, using the recursive columnwise modified Gram-Schmidt QR-factorization
of the extended matrix [Av1, AWn−1, r0],

[Av1, AWn−1, r0] = Wn [Sn, zn] + [0,
rn
‖rn‖

]

[

0
‖rn‖

]

, (47)

the vector tn solves the upper triangular system

Sn tn = zn. (48)

The j-th component of zn ≡ (ζ1, . . . , ζn)T is determined by

ζj = wT
j (I − wj−1w

T
j−1) · · · (I − w1w

T
1 ) r0 = wT

j rj−1 , (49)

where we use

rj = (I − wjw
T
j ) · · · (I − w1w

T
1 ) r0 = rj−1 − (wT

j rj−1) wj−1 . (50)

A complete algorithm of the modified Gram–Schmidt implementation of simpler
GMRES is given in the Appendix.

Now we consider the implementation of simpler GMRES based on House-
holder reflections. It transforms the matrix [Av1, AWn−1] into upper triangular
form,

Pn · · ·P2P1 [Av1, AWn−1] =

[

Sn

0

]

, (51)

where Pj , j = 1, . . . , n, are elementary Householder matrices (for details see [9,
p. 312]). Then the transformed right hand side is determined as

zn = [Pn · · ·P1 r0]{1:n}

where [·]{1:n} denotes the first n elements of a vector. The vector of coeffi-
cients tn is determined from (48). A complete algorithm of the Householder
implementation of simpler GMRES is given in the Appendix.

Related to simpler GMRES are stabilized Orthodir [31], and the recentATA-
variant of GMRES [25]. Both compute an ATA-orthogonal basis of Kn(A, r0),
and thus each step of these methods requires about twice as much storage and
also slightly more arithmetic operations than simpler GMRES. They are also
numerically less stable than simpler GMRES. On the other hand, they allow
easier parallel implementations, because they feature step by step updates of
both the approximate solution and the residual vectors.
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5 Numerical stability

In this section we analyze and compare the numerical stability of classical and
simpler GMRES. As mentioned in Section 4, different orthogonalization tech-
niques for computing the columns of Vn or Wn can be applied. Here we focus
on implementations based on Householder transformations [32, 33] and on the
modified Gram-Schmidt process [26].

For distinction, we denote quantities computed in finite precision arithmetic
(with the machine precision ε) by bars. We assume the standard model of float-
ing point arithmetic, see, e.g. [15, (2.4)]. In our bounds we present only those
terms which are linear in ε and do not account for the terms proportional to
higher powers of ε. By pk(n,m,N), k = 1, 2, . . . , we denote low degree poly-
nomials in the number of iteration steps n, the maximum number of nonzeros
per row in the system matrix m and the dimension of the system N . They are
introduced in a number of places in the text; some of them depend only on one
or two variables. In all cases pk(n,m,N) ≤ ckN5/2, where ck > 0 is a con-
stant independent of n,m and N . This bound is, in general, very pessimistic;
it accounts for the worst possible case. For details see [9, 14, 24].

5.1 Classical GMRES

In the classical GMRES implementation the computed approximate solution x̄n

satisfies

x̄n = x0 + V̄nȳn + gn, (52)

‖gn‖ ≤ ε‖x0‖+ p1(n) ε‖V̄n‖‖ȳn‖.

It was shown in [9, 14] that the computed matrix V̄n = [v̄1, v̄2, . . . , v̄n] satisfies
the recurrence

[r̄0, AV̄n] = V̂n+1 [ρ̄0e1, H̄n+1,n] + [fn, Fn] , (53)

‖fn‖ ≤ p2(m,N) ε‖A‖‖x0‖+ p3(N) ε‖b‖,
‖Fn‖ ≤ p4(n,m,N) ε‖A‖‖V̄n‖,

where the matrix V̂n+1 has exactly orthogonal columns (V̂ T
n+1V̂n+1 = In+1).

The vector ȳn is a computed solution of the finite precision analogue of the
transformed least squares problem (40), and r̄0 satisfies

‖r̄0 − (b −Ax0)‖ ≤ p5(m,N) ε‖A‖‖x0‖+ p6(N) ε‖b‖ . (54)

For details we refer to [9] and also to [24, pp. 25–26].
Our goal is not to give a complete rounding error analysis of GMRES (for

the Householder implementation of classical GMRES this was published in [9],
and the modified Gram-Schmidt implementation of classical GMRES has been
analyzed in [14, 24] and [21]). We wish to explain that there is a potential
weakness of simpler GMRES which may negatively affect its computational
behavior in comparison with classical GMRES. For this purpose we can simplify
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our description of the GMRES convergence. This allows us to avoid tedious
details which would make reading of this section difficult. We will describe
the convergence of classical GMRES by the norm of the least squares residual
associated with the matrix AV̄n and the computed initial residual r̄0:

‖r̂n‖ ≡ ‖r̄0 −AV̄nŷn‖ = min
y

‖r̄0 −AV̄ny‖. (55)

The analysis in [14, Section 3] as well as numerical experiments confirm that for
classical GMRES ‖r̂n‖ is close to the norm of the actually computed GMRES
residual ‖b−Ax̄n‖.

It follows immediately from (16) that the residual norm (55) can be bounded
in terms of the minimal singular values of matrices [r̄0, AV̄n] and AV̄n as

σmin([r̄0, AV̄n]) ≤ ‖r̂n‖ ≤ σmin([r̄0, AV̄n])

{

1−
σ2
min([r̄0, AV̄n])

σ2
min(AV̄n)

+
‖r̄0‖2

σ2
min(AV̄n)

}1/2

.

(56)
We see that convergence of the residual r̂n is closely related to ill-conditioning
of the matrix [r̄0, AV̄n], i.e. decreasing ‖r̂n‖ leads to ill-conditioning of [r̄0, AV̄n].
Moreover, it follows from (53) and from classical perturbation theory, see e.g. [13,
p. 449], that the minimum singular values of the matrices [r̄0, AV̄n] and [ρ̄0e1, H̄n+1,n]
are close to each other,

∣

∣σmin([ρ̄0e1, H̄n+1,n])− σmin([r̄0, AV̄n])
∣

∣ ≤ ‖[fn, Fn]‖ . (57)

Consequently, decreasing ‖r̂n‖ leads to ill-conditioning of the matrix [ρ̄0e1, H̄n+1,n].
The vector ȳn from (52) is a computed solution of the least squares problem

min
y

‖e1ρ̄0 − H̄n+1,ny‖. (58)

Using (53), the extremal singular values of H̄n+1,n can be bounded by

‖H̄n+1,n‖ ≤ ‖AV̄n‖+ ‖Fn‖ ≤ ‖A‖‖V̄n‖+ ‖Fn‖, (59)

σmin(H̄n+1,n) ≥ σmin(AV̄n)− ‖Fn‖ ≥ σmin(A)σmin(V̄n)− ‖Fn‖. (60)

When ‖r̂n‖ (and ‖b−Ax̄n‖) decreases, σmin([r̄0, AV̄n]) and σmin([ρ̄0e1, H̄n+1,n])
also decrease. However, while the columns of V̄n (the Arnoldi vectors) keep their
linear independence (while σmin(V̄n) ≈ 1), the condition number of the computed
upper Hessenberg matrix H̄n+1,n is essentially bounded by the condition number
of A. Consequently, until the linear independence of the Arnoldi vectors begins
to deteriorate, the solution ȳn of the transformed least squares problem and the
GMRES solution x̄n are affected by rounding errors in a minimal possible way.
This distinguishes classical GMRES from the other MR methods, in particular
from simpler GMRES. Finite precision analysis of the QR-factorization of the
matrix H̄n+1,n via Givens rotations and of forming the GMRES solution can be
found in [9] or [24, (4.6)–(4.12)].

It is important to note that not the orthogonality but the linear independence
of the columns of V̄n (measured by its extremal singular values) plays a decisive
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role in the relations (59) and (60). If we use Householder reflections in the
Arnoldi process, the loss of orthogonality among the computed columns of V̄n,
and the extremal singular values of V̄n are bounded independent of the system
parameters,

1− p7(n,N) ε ≤ σn(V̄n) ≤ ‖V̄n‖ ≤ 1 + p7(n,N) ε. (61)

Moreover, it was shown in [9] that the Householder implementation of classical
GMRES is backward stable. Assuming that a conjecture similar to (61) holds,
the same result can also be shown for the iterated classical or modified Gram-
Schmidt implementations, see [9].

In practical computations cheaper orthogonalization techniques like the mod-
ified Gram-Schmidt algorithm are used. It is well known that the orthogonality
among the columns of V̄n computed via the modified Gram-Schmidt process
will gradually deteriorate. However, from [14, (1.7) and Corollary 2.4] it follows
that

‖V̂n − V̄n‖ ≤ p8(n,m,N) εκ([v̄1, AV̄n−1]) (62)

and the minimal singular value and the norm of V̄n are bounded by

1−
p9(n,m,N) εκ(A)

‖r̂n−1‖/ρ̄0
≤ σn(V̄n) ≤ ‖V̄n‖ ≤ 1 +

p9(n,m,N) εκ(A)

‖r̂n−1‖/ρ̄0
. (63)

The columns of V̄n will thus begin to loose their linear independence only after
the relative residual norm is reduced close to the level εκ(A). Up to that point
the modified Gram-Schmidt implementation of classical GMRES behaves about
as well as the Householder implementation.

It was shown in [20, 21] that there is a tight relation between the normwise
backward error ‖b − Axn‖/(‖A‖‖xn‖ + ‖b‖) associated with the approximate
solution xn and the condition number of the matrix [r0, AVn]. Finite precision
analogy of this statement will prove normwise backward stability of the modified
Gram-Schmidt implementation of classical GMRES. A formal proof will be given
elsewhere.

5.2 Simpler GMRES

In simpler GMRES the approximate solution x̄n computed in finite precision
arithmetic satisfies

x̄n = x0 + [v̄1, W̄n−1] t̄n + gn, (64)

‖gn‖ ≤ ε‖x0‖+ p1(n) ε‖[v̄1, W̄n−1]‖.

Analogously to (53) for every iteration step n there exists a matrix Ŵn with
exactly orthonormal columns (ŴT

n Ŵn = I) such that

A[v̄1, W̄n−1] = ŴnS̄n + Fn, (65)

‖Fn‖ ≤ p4(n,m,N) ε‖A‖‖[v̄1, W̄n−1]‖.
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The vector of coefficients t̄n is computed by solving the upper triangular system
with the matrix S̄n. From (65) the extremal singular values of the matrix S̄n

are bounded by

‖S̄n‖ ≤ ‖A[v̄1, W̄n−1]‖+ ‖Fn‖ ≤ ‖A‖‖[v̄1, W̄n−1]‖+ ‖Fn‖, (66)

σmin(S̄n) ≥ σmin(A[v̄1, W̄n−1])− ‖Fn‖
≥ σmin(A)σmin([v̄1, W̄n−1])− ‖Fn‖. (67)

The minimal singular value of the matrix [v̄1, W̄n−1] can further be related to
the minimal singular value of the matrix [r̄0/‖r̄0‖, Ŵn−1], where Ŵn−1 comes
from the recurrence (65),

σn([v̄1, W̄n−1]) ≥ σn([r̄0/‖r̄0‖, Ŵn−1])−‖[v̄1− r̄0/‖r̄0‖, W̄n−1−Ŵn−1]‖. (68)

For the condition number κ([r̄0/‖r̄0‖, Ŵn−1]) it follows from (29), that

κ([r̄0/‖r̄0‖, Ŵn−1]) =
‖r̄0‖+

(

‖r̄0‖2 − ‖r̂n−1‖2
)1/2

‖r̂n−1‖
, (69)

where r̂n−1 ≡ (I − Ŵn−1ŴT
n−1) r̄0 is the least squares residual associated with

the matrix Ŵn−1, ‖r̂n−1‖ = miny ‖r̄0 − Ŵn−1y‖. The identity (69) proves
that convergence of the residual norm ‖r̂n−1‖ and ill-conditioning of the matrix
[r̄0/‖r̄0‖, Ŵn−1] are closely related.

Summarizing, small ‖W̄n−1−Ŵn−1‖means κ([v̄1, W̄n−1]) ≈ κ([r̄0/‖r̄0‖, Ŵn−1])
(it can be shown that ‖v̄1 − r̄0/‖r̄0‖‖ ≤ (N +4)ε, see [9]). Using (66) and (67),
we conclude that decreasing ‖r̂n−1‖ may lead to ill-conditioning of the upper tri-
angular matrix S̄n, and thus to a potentially large error in computing the vector
t̄n, independent of the (well-)conditioning of the matrix A. This important fact
may negatively affect the numerical accuracy of the approximate solution x̄n in
simpler GMRES in comparison to classical GMRES.

Until S̄n becomes pathologically ill-conditioned, ‖r̂n‖ is (similarly to Sub-
section 5.1) close to ‖b−Ax̄n‖. After that the behavior of ‖r̂n‖ and ‖b−Ax̄n‖
may be significantly different.

We have seen that the relation between the condition number of the ma-
trix S̄n and the condition number of the matrix [r̄0/‖r̄0‖, Ŵn−1] (the decrease
of ‖r̂n‖) is strongly affected by the size of the term ‖W̄n−1 − Ŵn−1‖. In the
Householder implementation the computed matrix W̄n−1 is, up to a small mul-
tiple of the machine precision, close to the matrix Ŵn−1 with exactly orthogonal
columns,

‖W̄n−1 − Ŵn−1‖ ≤ p7(n,N) ε. (70)

It follows from (70) that the condition number κ([v̄1, W̄n−1]) is, up to terms
proportional to the machine precision, equal to κ([r̄0/‖r̄0‖, Ŵn−1]). In practice
one frequently observes that after ‖b−Ax̄n‖/‖r̄0‖ reaches some particular point
the norm of the computed vector t̄n starts to increase dramatically (the com-
puted results become irrelevant due to rounding errors) and the residual norm
‖b−Ax̄n‖ diverges.
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For the modified Gram-Schmidt implementation we have

‖W̄n−1 − Ŵn−1‖ ≤ p8(n,m,N) εκ(A[v̄1, W̄n−1]). (71)

Because κ(A[v̄1, Ŵn−1]) is potentially much worse than κ([v̄1, AV̂n−1]), the linear
independence of the columns of W̄n often begins to deteriorate much sooner
than the linear independence of the columns of V̄n in classical GMRES. Until
that point the modified Gram-Schmidt and Householder implementations of
simpler GMRES behave similarly. In subsequent iterations, surprisingly, the
behavior of the modified Gram-Schmidt implementation of simpler GMRES
may be better than the behavior of the Householder implementation. For the
Householder implementation of simpler GMRES the true residual b−Ax̄n often
diverges. This has been linked to the tight relation between κ([r̄0/‖r̄0‖, Ŵn−1])
and κ([v̄1, W̄n−1]), and, consequently, to the relation between the decrease of
‖r̂n‖ and the simultaneous increase of κ(S̄n). For the modified Gram-Schmidt
implementation, after reaching a certain point no such relations hold. The norm
of t̄n does not diverge and the norm of the true residual remains (and often
slightly oscillates) on or below the level corresponding to the turning point for
the Householder implementation.

5.3 Numerical experiments

The different behavior of classical and simpler GMRES implementations is
demonstrated by numerical examples with the matrix FS1836 from the Harwell-
Boeing collection, N = 183, κ(A) = 1.5× 1011, ‖A‖ = 1.2× 109. Experiments
were performed using MATLAB 5.2, ε = 1.1 × 10−16. Householder and mod-
ified Gram-Schmidt orthogonalizations have been considered for both classical
and simpler GMRES. In all experiments we used x = (1, . . . , 1)T , b = Ax and
x0 = 0 (‖r̄0‖ = ‖b‖).

Figures 1 and 2 illustrate characteristics of the transformed least squares
problem (58) for the Householder and the modified Gram-Schmidt implemen-
tations of classical GMRES. In both figures horizontal dotted lines represent
‖A‖ and the minimal singular value σmin(A). The dashed lines show ‖H̄n+1,n‖,
the norm of the computed upper Hessenberg matrix (it almost coincides with
‖A‖), and the minimal singular value σmin(H̄n+1,n). The solid line stands for
σmin(V̄n), the minimal singular value of the matrix of computed Arnoldi vec-
tors, and the dots depict ‖ȳn‖, the norm of the computed solution vector of
(58). We see that until the linear independence of the columns of V̄n in the
modified Gram-Schmidt implementation begins to deteriorate, Figures 1 and 2
are almost identical. There is no substantial growth in ‖ȳn‖ even after the linear
independence of the computed Arnoldi vectors is completely lost (cf. Figure 2).

Similar quantities are illustrated in Figures 3 and 4 for the Householder and
the modified Gram-Schmidt implementations of simpler GMRES. The dashed
lines here represent ‖S̄n‖, the norm of the computed upper triangular matrix,
and its minimal singular value σmin(S̄n). The dots denote ‖t̄n‖, the norm of
the computed solution of the upper triangular system with the matrix S̄n.
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Householder implementation of classical GMRES
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Figure 1: Householder implementation of classical GMRES: ‖A‖ and σmin(A)
(dotted lines), ‖H̄n+1,n‖ and σmin(H̄n+1,n) (dashed lines), σmin(V̄n) (solid line)
and ‖ȳn‖ (dots).
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Figure 2: Modified Gram-Schmidt implementation of classical GMRES: ‖A‖ and
σmin(A) (dotted lines), ‖H̄n+1,n‖ and σmin(H̄n+1,n) (dashed lines), σmin(V̄n)
(solid line) and ‖ȳn‖ (dots).
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We see that the condition number of the matrix H̄n+1,n is in Figure 1 (the
Householder implementation of classical GMRES) approximately bounded by
the condition number of A, and for Figure 2 (the modified Gram-Schmidt im-
plementation of classical GMRES) the same is true until σmin(V̄n) begins to
deteriorate. In contrast, in both implementations of simpler GMRES, the min-
imal singular value of S̄n decreases very soon far below σmin(A). Consequently,
the accuracy of the computed vector t̄n deteriorates, and for the Householder
implementation ‖t̄n‖ diverges. Also note the difference between σmin(V̄n) and
σmin(W̄n) in Figures 2 and 4.

In Figure 5 we compare the convergence characteristics for the Householder
implementations of both classical GMRES (‖b−Ax̄n‖/‖b‖ is represented by the
solid line, ‖r̂n‖/‖b‖ by dots) and simpler GMRES (‖b−Ax̄n‖/‖b‖ is represented
by the dashed line, ‖r̂n‖/‖b‖ by the dotted line). Figure 5 illustrates our theo-
retical considerations and shows that the true residual norm of the Householder
implementation of simpler GMRES may after some initial reduction diverge.
Figure 6 uses similar notation for the illustration of the modified Gram-Schmidt
implementations. The residual norm of simpler GMRES again exhibits worse
behavior than the residual norm corresponding to classical GMRES.

6 Conclusions

Minimal residual Krylov subspace methods can be formulated and implemented
using different bases and different orthogonalization processes. This paper shows
that the choice of the basis is fundamental for getting revealing theoretical re-
sults about convergence of the methods. It is also important for getting a nu-
merically stable implementation. The choice of the computed basis may strongly
affect the numerical behavior of the implementation. It is explained that using
the best orthogonalization technique in building the basis does not compensate
for the possible loss of accuracy in a given method which is related to the choice
of the basis. In particular, it is shown that the classical GMRES based on the
Arnoldi process starting from the normalized initial residual (as proposed by
Saad and Schultz) has numerical advantages over the simpler GMRES based on
the shifted Arnoldi process.

Acknowledgment. The authors are indebted to Chris Paige for his comments
which improved the formulation and interpretation of several results.
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Figure 3: Householder implementation of simpler GMRES: ‖A‖ and σmin(A)
(dotted lines), ‖S̄n‖ and σmin(S̄n) (dashed lines), σmin(W̄n) (solid line) and
‖t̄n‖ (dots).
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Figure 4: Modified Gram-Schmidt implementation of simpler GMRES: ‖A‖ and
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Figure 5: Householder implementation of classical and simpler GMRES: Nor-
malized true residual norm ‖b−Ax̄n‖/‖b‖ (solid line – classical GMRES, dashed
line – simpler GMRES), and ‖r̂n‖/‖b‖ (dots – classical GMRES, dotted line –
simpler GMRES).
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Figure 6: Modified Gram-Schmidt implementation of classical and simpler GM-
RES: Normalized true residual norm ‖b− Ax̄n‖/‖b‖ (solid line – classical GM-
RES, dashed line – simpler GMRES), and ‖r̂n‖/‖b‖ (dots – classical GMRES,
dotted line – simpler GMRES).
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7 Appendix

Here we present the implementations of simpler GMRES used throughout the
paper.

Modified Gram-Schmidt implementation of simpler GMRES:

x0, r0 = b−Ax0, v1 = r0/‖r0‖, w0 = v1

n = 1, 2, . . .

wn = Awn−1

j = 1, 2, . . . , n− 1

wn ← wn − ρj,nwj , ρj,n = (wn, wj)

wn ← wn/ρn,n, ρn,n = ‖wn‖

Sn =







Sn−1 ρ1,n
...

0 ρn,n






, S1 = (ρ1,1)

rn = rn−1 − ζnwn, ζn = (rn−1, wn)

Solve Sn tn = (ζ1, . . . , ζn)T

xn = x0 + [v1, w1, . . . , wn−1] tn

Householder implementation of simpler GMRES:

x0, r0 = b−Ax0, v1 = r0/‖r0‖, (ζ1, . . . , ζN )T = r0, w0 = v1

n = 1, 2, . . .

Compute Pn such that Pn Awn−1 = (ρ1,n, . . . , ρn,n, 0, . . . , 0)T

Sn =







Sn−1 ρ1,n
...

0 ρn,n






, S1 = (ρ1,1)

(ζ1, . . . , ζN )T ← Pn (ζ1, . . . , ζN )

Solve Sn tn = (ζ1, . . . , ζn)T

rn = rn−1 − ζnwn

wn = P1 . . . Pn en

xn = x0 + [v1, w1, . . . , wn−1] tn
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