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1 Introduction

The numerical solution of electromagnetic problems has
numerous applications in electrical engineering, see e.g.
[12,16,20,30], and the design and analysis of numerical
methods has attracted attention in recent years. An im-
portant class of problems are the quasi-static problems
and, particularly in power engineering, the eddy-current
approximation which is obtained by neglecting the dis-
placement current in the Maxwell-equations. The prob-
lem is to find time harmonic electric and magnetic fields,
i.e.

E(x, t) = Re(eiωtE(x)), H(x, t) = Re(eiωt H(x)) ,

which are the solution of a transmission problem for the
eddy current approximation of the Maxwell-equations in
Ω+∪Ω−, where by Ω− ⊂ R3, we denote a bounded, con-
nected domain with smooth boundary Γ occupied by a
lossy, highly conductive medium, and by Ω+ = R3 \Ω−

its exterior which is assumed to be non-conductive. The
eddy current model reads

curlE = −iωµH, (1.1)

curlH = κE+ J0. (1.2)

Here J0 is an impressed current density, where suppJ0

is a bounded subset of Ω+. As usual ω ∈ R+ is the an-
gular frequency. κ and µ = µ0µr are positive and real
valued L∞-integrable scalar fields on R3, where κ is the
conductivity and µ is the permeability, µ0 = 4π 10−7 V s

Am
is a constant (the permeability of free space), µr is di-
mensionless.

If, in addition, one is dealing with a highly conductive
body and the so-called penetration depth

δ =

√
2

ωµκ

is small enough, one can approximately describe the be-
haviour of the fields at the conductor’s boundary by
impedance boundary conditions (IBCs),

n×E = η n× (n×H) on Γ , (1.3)

which allows one to deal with an exterior problem instead
of a transmission problem ([3,7,16,20,27,30]). Here

η = (1 + i)

√
ωµ

2κ
(1.4)

is the so-called surface impedance and n is the unit nor-
mal vector field on Γ pointing into Ω+. Note that µ and
κ in (1.4), which can be discontinuous at Γ , are the limits
from Ω−. For simplicity we assume them to be constant
on Γ from this point on, but our proofs can be extended
to the more general case easily.

The exterior impedance boundary value problem for
the full Maxwell-equations and the eddy current model
has been proposed by integral equation methods for ex-
ample in [4,8,12]. These integral equations are vector
valued.

It is a well known peculiarity of the eddy current
model that it can be solved in the magnetic field H
only (e.g. [9]), and the electric field can be obtained by

(1.2) inside the conductor and in its exterior by solving
a second boundary value problem in the variable E. It is
worth mentioning that this second BVP has no unique
solution unless the electrostatic part of the field is fixed,
e.g. by fixing its divergence and the total charge in the
system.

The advantage of modelling in H only is that in the
non-conductive region the eddy current problem can be
reduced to a scalar one (see, e.g., [10]) — and thus by
using impedance boundary conditions the whole prob-
lem becomes scalar. Recently, this idea has been used by
Mayergoyz [22] in a finite element context. Here, we anal-
yse this reformulation and show how it can be reduced
to a scalar, strongly elliptic pseudo-differential equation
of order 1 on the surface of the conductor. We present
a Galerkin boundary element method for its numerical
solution and show that the Ohmic losses converge with
order h

5
2 where h is the mesh width on the boundary. A

numerical example is given in the last section.

Remark 1.1. In the derivation of the IBC (1.3) it is es-
sential that the curvature of Γ is bounded ([27,30]). We
shall therefore assume in the following that Γ is smooth.

Remark 1.2. The IBC is a first order approximation to
the eddy current model if δk & 1, i.e. the error is O

(
δ k

)
,

where k = max(|k1|, |k2|) with k1, k2 being the princi-
pal curvatures of Γ . Furthermore, for the validity of the
IBC the wavelength in free space and the distance to
a source must be large compared to δ. With respect to
these quantities the IBC is a second order approximation
[23].

2 Elimination of the electric field

The electric field can be eliminated from the eddy cur-
rent model. Here we present the derivation in [22] for
completeness: Let χ : R2 → Γ ⊂ R3 be a local paramet-
ric representation (chart) of the C∞-manifold Γ ; this
chart induces coordinates (τ1, τ2) ∈ R2 in Γ . The exte-
rior unit normal vector field n induces a third coordinate
n. The vectors a1, a2,n tangent to the τ1, τ2, n coordi-
nate lines respectively, are assumed to be orthonormal.
By h1, h2, we denote the associate tangential metric co-
efficients. Then (1.3) takes the form

Eτ1 = −ηHτ2 , Eτ2 = ηHτ1 (2.1)

where Eτα = E · aα is the projection of E onto aα. The
normal component of (1.1), restricted to Γ , reads

1

h1h2

( ∂

∂τ1
(h2 Eτ2)−

∂

∂τ2
(h1 Eτ1)

)
= −iωµ0Hn . (2.2)

Combining (2.1) and (2.2) gives

0 = η
1

h1h2

( ∂

∂τ1
(h2 Hτ1) +

∂

∂τ2
(h1 Hτ2)

)
+ iωµ0Hn ,

a boundary condition equivalent to (1.3), which in vector
notation is

divΓ Ht + αHn = 0 on Γ , (2.3)
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where Ht = −n×(n×H) is the projection of H into the
tangent plane at Γ , Hn = H ·n is its normal component,
and divΓ is the surface divergence (see, e.g., [11]), and

α := iωµ0/η .

Note that we have by ω, µ,κ > 0

α =
iωµ0

η
=

iωµ0

√
2

(1 + i)
√

ωµ
κ

= (1 + i)

√
ω2µ2

0 κ

2ωµ
= (1 + i)

√
ωµκ

2µ2
r

= (1 + i)
1

µrδ
=: (1 + i)β , where 0 < β ∈ R .

Assuming that in Ω+ the field H can be split into
a (known) exciting field H0 and an unknown secondary
field Hs, we find for (1.1)–(1.3) the formulation

divHs = 0 in Ω+ , (2.4a)

curlHs = 0 in Ω+ , (2.4b)

divΓ Hst + αHsn = g on Γ (2.4c)

and the condition at infinity

Hs(x) = O
(
|x|−2

)
as |x| →∞ , (2.4d)

where

g := − divΓ H0t − αH0n .

Condition (2.4d) is a consequence of Hs being a har-
monic vector field with zero value at infinity (see [21]).

Remark 2.1. The exciting field can be computed by the
Biot-Savart law:

H0(x) = curl
1

4π

∫

Ω0

J0(y)
1

|x− y| dy ,

where Ω0 is the support of the impressed currents J0.

3 Scalar potential formulation

As mentioned before an advantage of (2.3) is that (2.4)
can be reduced to a scalar problem, as will be shown.
By (2.4b) and the assumption of Ω− being simply con-
nected, we have in Ω+ that

Hs = −grad φ, H = H0 − grad φ . (3.1)

Inserting into (2.4), we get the BVP:

∆φ = 0 in Ω+ , (3.2a)

Bφ := −∆Γ φ− α
∂φ

∂n
= g on Γ , (3.2b)

φ = O(|x|−1) as |x| →∞ (3.2c)

where ∆Γ = divΓ gradΓ denotes the surface Laplacian,
i.e., the Laplace-Beltrami operator on Γ .

Problem (3.2) is a nonstandard problem, since the
principal part of the PDE lives on the boundary Γ . In
particular, the boundary operator is not subordinate to
the Laplacian in Ω+.

Proposition 3.1. Any solution φ of (3.2) gives, via (3.1),
a solution of (2.4).

For a variational formulation of problem (3.2), we
introduce the space V+ as closure of

D(Ω+) =

{φ ∈ C∞(Ω+) : φ has bounded support in Ω+}
with respect to the norm |‖φ‖| defined by

|‖φ‖|2 := ‖ gradφ‖2L2(Ω+)

+
∥∥∥

φ
√
1 + |x|2

∥∥∥
2

L2(Ω+)
+ ‖φ‖2H1(Γ ) . (3.3)

Evidently, V+ is a Hilbert-space with respect to the inner
product corresponding to (3.3):

(φ,ψ) :=

∫

Ω+

gradφ · gradψ dx+

∫

Ω+

φψ

1 + |x|2 dx

+

∫

Γ

gradΓ φ · gradΓ ψ ds+

∫

Γ

φψ ds .

In the following we will write 〈· , ·〉 indexed by Ω or Γ
for the usual real, symmetric L2 scalar product (not the
Hermitian one) on Ω and Γ respectively for space-saving
reasons. All restrictions to the boundary have to be un-
derstood in the sense of traces.

The weak form of (3.2) reads: find φ ∈ V+, that
〈
gradΓ φ, gradΓ φ̃

〉

Γ

+ α
〈
grad φ, grad φ̃

〉

Ω+
=

〈
g, φ̃

〉

Γ
(3.4)

for all φ̃ ∈ V+, using that (3.2a) and φ ∈ V+ =⇒

0 =

∫

Ω+

ψ∆φ dx =

−
∫

Ω+

gradφ · gradψ dx−
∫

Γ

ψ
∂φ

∂n
ds

(recall that n points into Ω+).

Proposition 3.2. Denote by a(φ, φ̃) the sesquilinear form
on the LHS of (3.4). Then, for every φ ∈ V+ the G̊arding
inequality

Re a(φ,φ) ≥ C(Ω+)
(
|‖φ‖|2 − ‖φ‖2L2(Γ )

)

holds.

Proof. For every φ ∈ V+, we have

‖ gradφ‖2L2(Ω+) ≥ C(Ω+)
∥∥∥

φ√
1 + |x|2

∥∥∥
2

L2(Ω+)

(see e.g. [24]). Hence, since α = (1 + i)β, β > 0, we get

Re a(φ,φ) = β ‖ grad φ‖2L2(Ω+) + ‖ gradΓ φ‖2L2(Γ )

≥ C(Ω+)
(
|‖φ‖|2 − ‖φ‖2L2(Γ )

)
.

/0
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Proposition 3.3. For g ≡ 0 on Γ , (3.4) admits only the
trivial solution.

Proof. We have in (3.4) that Re a(φ,φ) = 0, hence we
get φ ≡ const. in Ω+. If φ ∈ V+, |‖φ‖| < ∞, hence
φ ≡ 0. /0

In the following we denote by Hs(Ω), Hs
loc(R

3) and
Hs(Γ ), s ≥ 0, the usual Sobolev spaces on Ω, R3 and
Γ respectively. For s < 0, Hs(Γ ) denotes the space of
continuous, linear functionals onH−s(Γ ), i.e. H−s(Γ ) =
(Hs(Γ ))∗ (see, e.g., [19]).

Theorem 3.1. For every g ∈ (H1(Γ ))∗, problem (3.4)
admits a unique solution φ ∈ V+ ∩ C∞(Ω+). If g ∈
C∞(Γ ), we even have φ ∈ C∞(Ω+).

Proof. We have for every φ ∈ V+

Re a(φ,φ) ≥ C(Ω+)((φ,φ) − k(φ,φ))

where k(φ, φ̃) :=
∫
Γ
φ φ̃ ds is a compact form on H1(Γ ).

By the boundedness of Γ and Rellich’s Lemma, it is also
compact on V+. Thus uniqueness implies existence. By
Proposition 3.3, there exists for every g ∈ (H1(Γ ))∗ a
unique solution φ ∈ V+ of (3.4) and we have the a-priori
estimate

|‖φ‖| ≤ C(Ω+,β) ‖g‖H−1(Γ ) .
/0

Remark 3.1. The above arguments could be extended to
the case where (3.2a) is replaced by

P (D)φ = f in Ω+ ,

where P (D) is any second order, strongly elliptic dif-
ferential operator with constant coefficients and f ∈
L2
comp(R

3), say. Since it is not of interest in the con-
sidered problem, we shall not elaborate on it here.

Remark 3.2. The existence also holds for Lipschitz do-
mains, but the impedance boundary condition only de-
scribes physical phenomena for smooth domains [6,27].

4 Boundary integral equation

We reduce the problem (3.2) to an integral equation on
Γ . We satisfy (3.2a) and (3.2c) by a single layer potential

φ(x) = (S σ)(x) :=
1

4π

∫

y∈Γ

1

|x− y| σ(y) dsy , x /∈ Γ

(4.1)

for some unknown density σ on Γ . Inserting (4.1) in
(3.2b), we get

−∆Γ V σ − α
∂

∂n
(V σ) = g , (4.2)

where V σ := (S σ)|Γ is the single layer operator on the
boundary Γ . This is an integrodifferential equation on Γ
for the density σ. The jump relations for (S σ)(x) imply

Aσ := −∆Γ V σ + α
(
1
2
I −K ′

)
σ = g on Γ (4.3)

where

(K ′σ)(x) :=

∫

y∈Γ

∂

∂nx

( 1

4π |x− y|

)
σ(y) dsy (4.4)

is the adjoint operator to the classical double layer po-
tential (apart from a factor 1

2 ). Since Γ is smooth, the
integrand in (4.4) is weakly singular if σ ∈ C0(Γ ).

Let us give a variational formulation of (4.2). Inte-
grating parts on Γ , we get:
Find σ ∈ H

1
2 (Γ ) such that

a(σ, σ̃) :=
〈
gradΓ V σ, gradΓ σ̃

〉

Γ

+ α
〈(

1
2
I −K ′

)
σ, σ̃

〉

Γ
=

〈
g, σ̃

〉

Γ
(4.5)

for all σ̃ ∈ H
1
2 (Γ ).

Proposition 4.1. The sesquilinear form a(·, ·) in (4.5)
is continuous on H

1
2 (Γ ) and satisfies a G̊arding inequal-

ity, i.e. there is c > 0 and a compact form k(·, ·) on

H
1
2 (Γ )×H

1
2 (Γ ) such that

∀σ ∈ H
1
2 (Γ ) : Re a(σ,σ) ≥ c ‖σ‖2

H
1
2 (Γ )

− k(σ,σ) . (4.6)

Proof.

i) Continuity
It is known (e.g. [13]) that for Γ ∈ C∞, V : Hs(Γ ) →
Hs+1(Γ ) for any s ∈ R, and K ′ : Hs(Γ ) → Hs(Γ )
for all s ∈ R, since K ′ has a weakly singular kernel if
Γ is smooth. Therefore, for σ, σ̃ ∈ H

1
2 (Γ ) by duality

∣∣∣
〈
gradΓ V σ, gradΓ σ̃

〉

Γ

∣∣∣

≤ ‖gradΓ V σ‖
H

1
2 (Γ )

‖gradΓ σ̃‖
H−

1
2 (Γ )

≤ C ‖Vσ‖
H

3
2 (Γ )

‖σ̃‖
H

1
2 (Γ )

≤ C ‖σ‖
H

1
2 (Γ )

‖σ̃‖
H

1
2 (Γ )

since gradΓ : Hs(Γ ) → Hs−1(Γ ) and V : Hs(Γ ) →
Hs+1(Γ ) continuously for all s ∈ R.

ii) G̊arding’s inequality
The single layer operator V is a strongly elliptic pseudo-
differential operator of order −1 on H−

1
2 (Γ ), and

∀q ∈ H−
1
2 (Γ ) :

〈
V q, q

〉
Γ
≥ C (Γ ) ‖q‖2

H−

1
2 (Γ )

.

Consider the operator

A0 = −∆Γ V .

Clearly,A0 : Hs(Γ ) → Hs−1(Γ ) continuously andA0

is, as composition of the pseudo-differential operator
V and the Laplace-Beltrami operator −∆Γ , itself a
pseudo-differential operator of order +1 on Γ . By the
calculus of pseudo-differential operators (e.g. [31]), its
principal symbol is given by

σ0(A0) = σ0(−∆Γ )σ0(V) = |ξ|2 |ξ|−1 = |ξ|
which is positive for ξ 5= 0, hence A0 is strongly ellip-
tic on H

1
2 (Γ ): there is c > 0 and a compact operator

T0 on H
1
2 (Γ ) → H

1
2 (Γ ) such that

Re
〈
(A0 + T0)σ,σ

〉
Γ
≥ c‖σ‖2

H
1
2 (Γ )

∀σ ∈ H
1
2 (Γ ) .
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Setting T = T0 + α(12 I +K ′), we get

Re
〈
(A+ T )σ,σ

〉
Γ
= Re

〈
(A0 + T0)σ,σ

〉
Γ

≥ c‖σ‖2
H

1
2 (Γ )

∀σ ∈ H
1
2 (Γ ) .

The assertion follows with

k(σ, σ̃) :=
〈
Tσ, σ̃

〉
Γ
.

Hence A in (4.3) is a strongly elliptic pseudo-diffe-
rential operator of order +1 on Γ and (4.6) implies
that it is Fredholm. /0

Proposition 4.2. The homogeneous problem Aσ = 0
admits only σ = 0.

Proof. Assume not. Then φ(x) = (S σ)(x), x ∈ Ω−∪Ω+

satisfies (3.2a) inΩ+∪Ω− and also (3.2c). Further, it also
satisfies (3.2b) with g = 0 and the jump relation [φ] =
0, where we will denote by [u] the (downward counted)
jump in the function u as it crosses Γ in positive normal
direction.

Since the PDE problem with g = 0 admits only the zero
solution in Ω+, we have for φ+ = φ|Ω+ that φ+|Γ = 0.
By [φ] = 0 the function φ− = φ|Ω− satisfies φ−|Γ = 0.
Thus, in Ω− we have

∆φ− = 0 in Ω−, φ−|Γ = 0 ,

which implies φ− = 0 in Ω− by the uniqueness of the
Dirichlet problem, hence φ ≡ 0 in Ω+∪Ω−. Since φ(x) =
(S σ)(x), this implies that σ ≡ 0, since by the represen-
tation formula

φ(x) =
1

4π

∫

y∈Γ

[∂φ
∂n

] 1

|x− y| dsy ,

σ = [ ∂φ∂n ] = 0 on Γ , a contradiction. /0

Theorem 4.1. For every g ∈ H−
1
2 (Γ ), the variational

problem (4.5) admits a unique solution σ ∈ H
1
2 (Γ ) and

its potential φ(x) = (S σ)(x) is the unique solution of
the problem (3.2).

Proof. The existence and uniqueness follow from (4.6)
and Proposition 4.2 in the usual way. The potential (S σ)
is, by construction, a solution of (3.2a,b,c). By the conti-
nuity of S, σ ∈ H

1
2 (Γ ) =⇒ φ ∈ H2

loc(R
3) (see, e.g., [13],

Theorem 1 (i)), whence φ|Γ ∈ H
3
2 (Γ ) and φ ∈ V+. Since

H−
1
2 (Γ ) ⊂ (H1(Γ ))∗, g ∈ (H1(Γ ))∗ and by Theorem

3.1 the PDE problem (3.2) has a solution φ̃ ∈ V+. By

the uniqueness of this solution, φ̃ = φ. /0

5 Regularity

The BVP is not elliptic in the classical sense, since the
boundary operator Bφ = −∆Γ φ− α ∂φ

∂n is not subordi-
nate to the differential operator ∆ in Ω+ ∪ Ω−. Thus,
standard elliptic regularity theory does not apply. Never-
theless, the reformulation of (3.2) as a pseudo-differential
equation (4.3) on Γ and the strong ellipticity of A allow
us to prove

Theorem 5.1. Assume Γ ∈ C∞ and g ∈ H−
1
2
+s(Γ ),

s ≥ 0 in (3.2b). Then the solution φ of (3.4) satisfies

φ ∈ H2+s
loc (R3), φ|Γ ∈ H

3
2
+s(Γ ).

Proof. If g ∈ H−
1
2
+s(Γ ), strong ellipticity and continu-

ity of A in (4.3) imply that σ ∈ H
1
2
+s(Γ ), hence we

get

φ = (S σ) ∈ H2+s
loc (R3) ,

by the mapping properties of the single layer potential
[13]. /0

Remark 5.1. Since ∆φ = 0 in Ω+, we have of course
φ ∈ C∞(Ω+). The essential point of Theorem 5.1 is the
regularity of φ up to Γ .

6 Galerkin discretization

Let {Th}h be a quasi-uniform, shape-regular family of
triangulations on Γ consisting of triangular and/or quadri-
lateral curvilinear boundary elements.

Remark 6.1. Here and in what follows, we shall assume
exact element mappings — i.e. there is no surface dis-
cretization, unless stated explicitly otherwise.

By Sp
h, we shall denote the space of continuous, piecewise

polynomial functions in local coordinates on Γ of total
(separate) degree p, p ≥ 1. Then, for any ε > 0,

Sp
h ⊂ H

3
2
−ε(Γ ), dim Sp

h = O
(
p2|Th|

)

where |Th| = # of elements in Th. The space Sp
h has the

approximation property

min
v∈Sp

h

‖σ − v‖Hs(Γ ) ≤ C hmin(p+1,k)−s‖σ‖Hk(Γ ) (6.1)

for σ ∈ Hk(Γ ), where C is independent of h and σ, and
0 ≤ s ≤ 1, k ≥ s.

The Galerkin-BEM for the problem (4.5) reads:
Find σN ∈ Sp

h such that

a(σN , σ̃) =
〈
g, σ̃

〉
Γ

∀σ̃ ∈ Sp
h . (6.2)

By the G̊arding inequality and the injectivity of A we
have from Theorem 5.1 and (6.1):

Proposition 6.1. For h sufficiently small, (6.2) admits
a unique solution σN ∈ Sp

h and

‖σ − σN‖
H

1
2 (Γ )

≤ C inf
v∈Sp

h

‖σ − v‖
H

1
2 (Γ )

.

If, in particular, g ∈ H−
1
2
+s(Γ ), s ≥ 0, as h → 0:

‖σ − σN‖
H

1
2 (Γ )

≤ C hmin(p+ 1
2
,s)‖g‖

H−
1
2
+s(Γ )

. (6.3)

For the calculation of losses, we shall be also inter-
ested in H−

1
2 (Γ )-error estimates. Here we have

Proposition 6.2. If g ∈ H−
1
2
+s(Γ ), s ≥ 1, then

‖σ − σN‖
H−

1
2 (Γ )

≤ C hmin(p+ 3
2
,s+1)‖g‖

H−
1
2
+s(Γ )

. (6.4)
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Proof. We use the usual duality argument: Let eN =
σ − σN . Then

‖eN‖
H−

1
2 (Γ )

= sup
ξ∈H

1
2 (Γ )

〈eN , ξ〉
‖ξ‖

H
1
2 (Γ )

.

For ξ ∈ H
1
2 (Γ ) let φξ ∈ H

1
2 (Γ ) solve

A∗φξ = ξ .

Since ξ ∈ H
1
2 (Γ ) and the adjoint

A∗ : Hs(Γ ) −→ Hs−1(Γ )

is an isomorphism, we have

‖φξ‖
H

3
2 (Γ )

≤ C ‖ξ‖
H

1
2 (Γ )

.

Using the Galerkin orthogonality, we write

〈eN , ξ〉Γ = 〈A−1 AeN , ξ〉Γ = 〈AeN , A∗−1 ξ〉Γ
= 〈AeN ,φξ〉Γ = a(eN ,φξ − η)

for any η ∈ Sp
h. By the continuity of a(·, ·) and (6.1)

|〈eN , ξ〉Γ | ≤ C ‖eN‖
H

1
2
‖φξ − η‖

H
1
2

≤ C h ‖eN‖
H

1
2
‖φξ‖

H
3
2

≤ C h ‖eN‖
H

1
2
‖ξ‖

H
1
2
.

Hence it follows that

‖eN‖
H−

1
2 (Γ )

≤ C h ‖eN‖
H

1
2 (Γ )

and using (6.3) we obtain (6.4). /0

Proposition 6.2 gives immediately a result on the con-
vergence of the Ohmic losses, i.e. the quantities

P =
Re η

2

∫

Γ

|Ht|2 ds

=
Re η

2

∫

Γ

|H0t − gradΓ V σ|2 ds . (6.5)

Let PN be as in (6.5) with σ replaced by σN . Then

2

Re η
|P − PN | =

∣∣∣
∫

Γ

|Ht|2 − |HN
t |2 ds

∣∣∣

=
∣∣∣
∫

Γ

Re
(
|Ht|2 − |HN

t |2 − 2 i Im(Ht ·HN
t )

)
ds
∣∣∣

=
∣∣∣
∫

Γ

Re
((

Hst −HN
st

)
·
(
Ht +HN

t

))
ds
∣∣∣

≤
∫

Γ

∣∣∣(gradΓ V(σ − σN )) ·
(
Ht +HN

t

)∣∣∣ ds

≤ ‖ gradΓ V(σ − σN )‖
H−

1
2 (Γ )

‖Ht +HN
t ‖

H
1
2 (Γ )

≤ C
(
‖Ht‖

H
1
2 (Γ )

+ ‖HN
t ‖

H
1
2 (Γ )

)
‖σ − σN‖

H
−

1
2 (Γ )

.

By the boundedness of σN inH
1
2 (Γ ) and the stability

of the Galerkin scheme (6.2),

‖Ht‖
H

1
2 (Γ )

+ ‖HN
t ‖

H
1
2 (Γ )

≤ C

with C independent of N and (6.4) gives

Proposition 6.3. If g ∈ H−
1
2
+s(Γ ), the Ohmic losses

converge, as h → 0, like

|P − PN | ≤ C hmin(p+ 3
2
,s+1)‖g‖

H
−

1
2
+s(Γ )

.

In particular, if p = 1 and g is smooth, the Ohmic losses

converge as O
(
h

5
2

)
.

7 Numerical Results

By defining the integral operator

(Kσ)(x) := −p.v.

∫

Γ

σ(y)
x− y

4π |x− y|3 dsy

we rewrite the sesquilinear form (4.5) for computational
purposes:

a(σ, σ̃) =
〈
gradΓ V σ, gradΓ σ̃

〉

Γ

+α
〈(

1
2
I −K ′

)
σ, σ̃

〉

Γ

=
〈
Kσ, gradΓ σ̃

〉

Γ

+α
〈(

1
2
I − n ·K

)
σ, σ̃

〉

Γ

Here we have pulled the surface gradient under the sin-
gle layer operator and utilized the fact that the normal
component ofKσ does not contribute to the scalar prod-
uct integral. On the RHS we do an integration by parts,
which yields
〈
g, σ̃

〉

Γ
= −

〈
divΓ H0t + αH0n, σ̃

〉

Γ

=
〈
H0, gradΓ σ̃

〉

Γ
− α

〈
H0n, σ̃

〉

Γ
.

For a computational realisation of the presented me-
thod we apply triangular boundary elements with piece-
wise quadratic geometry representation and a piecewise
linear ansatz for the unknown density and the test-functions.
That is for every element Kj ∈ Th we have a map which
allows one to pull functions defined on Γ back to a refer-
ence element, in our case to the unit simplex R2 ⊃ U =
{u : 0 < u1 < 1, 0 < u2 < u1} (see figure 6.1)1:

χj : U → Γ ⊂ R
3 ,

χj(u) =
6∑

i=1

Ni(u)xji ,

with u = (u1, u2)T ∈ U and xj1 ,xj2 ,xj3 being the ver-
tices of element Kj and xj4 ,xj5 ,xj6 the mid points of
the element edges. The Ni are either 2nd order polyno-
mial or bilinear functions in u. With u3 := 1 − u1 − u2

they read

N1(u) = u1 (2 u1 − 1) N4(u) = 4 u1 u2

N2(u) = u2 (2 u2 − 1) N5(u) = 4 u2 u3

N3(u) = u3 (2 u3 − 1) N6(u) = 4 u3 u1 .

1 All graphical output displaying the approximated unit
sphere is generated by CADfix, FEGS Ltd., www.fegs.co.uk
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4

6

2

5

5

4

13

1

6

3

2

χj

U

u1

u2
Kj

Fig. 6.1. Left: χj maps the unit
simplex onto element Kj . Right:
Mesh No. 4 with 288 elements

Fig. 7.1. From left to the right: real and imaginary part of the magnetic field at the surface and the real part of the current
density at the surface. The imaginary part of the current density qualitatively looks like the real part, but has a maximum
magnitude 730.0

Furthermore, we use σN ,σ ∈ S1
h,

σN (x) =
N∑

j=1

ϕj(x)σNj ,

with ϕj being the so called hat functions, which form a
basis of S1

h, with the property ϕj(xi) = δji for all nodes
xi of a given triangulation Th and ϕi|Kj

◦χj being linear
for all Kj ∈ Th. N = |N (T )| = # of vertices of Th.

The discrete Galerkin form then reads

N∑

j=1

aNij σNj = gNi , i = 1..N , (7.1)

where

aNij :=

∫

suppϕi

((
gradΓ ϕi − αϕi n

)
·Kϕj +

α

2
ϕi ϕj

)
ds

gNi :=

∫

suppϕi

(
gradΓ ϕi − αϕi n

)
·H0 ds .

Note that the numerical integration of the singular
elements must be carried out with care because the tan-
gential part of KσN shows logarithmic singularities at
the element boundaries (see, e.g., [29]). At first glance
for smooth surfaces Γ this problem might appear to be
only apparent due to the fact that the singularities will
cancel by integrating over the whole surface. However, it
is quite obvious that every numerical quadrature scheme
necessitates a subdivision of Γ , and thus a numerical in-
tegration over a single element must deal with this singu-
larity. This is the reason why standard quadrature is not

applicable here. An adequate quadrature scheme can be
found in [14] and [25]. There the double surface integrals
of the Galerkin form are considered as integrals over four
dimensional domains and the singularities are cancelled
by domain transformations introducing relative coordi-
nates. Using this integration method our implementation
shows the validity of the presented method.

The linear equation system (7.1) has been solved by
a GMRES solver. The calculation of the magnetic field
strength on the boundary Γ

HN (x) = (12 n−K)σN +H0 ,

is a post processing step. Here we adopt a method pre-
sented in [15] for the integration of the singular elements
that changes the strongly singular integrals into a sum
of regular integrals.

From the magnetic field H the current density J can
easily be obtained via (1.3) and Ohm’s law

J = κE .

Remark 7.1. It is obvious that the surface approxima-
tion by piecewise quadratic interpolation is neither C∞

nor C1. The theory in the previous sections ignores the
surface approximation as well as the effects of numerical
quadrature. Nevertheless, the following numerical exam-
ple shows the predicted convergence rate.

Numerical example. As a test problem we consider
an approximated sphere of radius 1m (see figure 6.1)
in a constant exciting field H0 = 1A/m ez and ω =
2 π 50 s−1 with material parameters typical for steel, i.e.
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Table 7.1. Hierarchy of grids

mesh No. unknowns (|Nh|) elements (|Th|)

1 6 8
2 18 32
3 66 128
4 146 288
5 258 512
6 402 800
7 578 1152
8 1026 2048
9 2118 4232

κ = 0.666 · 107 S/m and µr = 200. Thus we have a pen-
etration depth δ = 1.95mm and the eddy current model
with an IBC is a reasonable assumption (in the sense
that there is a physical meaning). For this case the con-
stant in the sesquilinear form yields β = 2.56m−1 and
both terms of the form do contribute numerically. Nu-
merical values of all physical quantities are represented
in SI-units.

We generated a family of meshes to verify the pre-
dicted convergence of the total power loss (see table 7.1).

Our numerical experiments show good agreement with
the analytical solution of this problem which can be
found in many textbooks, e.g. [32]. For a plot of the sur-
face density see figure 7.2. The corresponding magnetic
field and current density at the surface are shown in 7.1.
Moreover figure 7.3 confirms the predicted convergence
rate of the total power loss, which is O

(
h

5
2

)
.

For the sake of completeness we present the two lim-
iting cases for the constant α = (1 + i)β:

i) β → ∞
This is the perfect conductor limit as κ → ∞.
Here only the compact part of the sesquilinear form is
left. The PDE problem changes to a standard exterior
Neumann problem, which is well posed. See figure
7.4 for a plot of the magnetic field and the surface
density σ for this case. The IBC (1.3) degenerates to
the perfect conductor boundary condition

n×E = 0

Fig. 7.2. The real part of the surface density σ. The imagi-
nary part looks the same but max(σN) = 0.594.

10
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10
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10
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10
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10
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10
1

#Nodes

O(h
5/2

)!bound

P error         

Fig. 7.3. Relative error of the total power loss depending on
the number of unknowns

which is often used in scattering problems.

ii) β → 0
This can be designated as the magnetostatic limit
if µ → ∞, while ω,κ remain bounded. Since here
the compact part is missing the problem becomes ill
posed. There exist nontrivial solutions of the homo-
geneous problem with a constant potential on Γ and
one observes a very high condition number of the
stiffness matrix.
The solution of the problem becomes unique by im-
posing
∫

Γ

H ds = 0

for example. Due to the symmetry of our numerical
example this can simply be done by enforcing an-
tisymmetry of the unknown surface density σ. The
solution is shown in figure 7.5.

Fig. 7.4. The magnetic field if κ → ∞
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Fig. 7.5. The magnetic field if µ → ∞

In both cases the Poynting vector becomes tangent to Γ
and there is no power loss in the body.
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