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Abstract

We capitalize upon the known relationship between pairs of orthogonal and minimal
residual methods (or, biorthogonal and quasi-minimal residual methods) in order to es-
timate how much smaller the residuals or quasi-residuals of the minimizing methods can
be compared to the those of the corresponding Galerkin or Petrov-Galerkin method. Ex-
amples of such pairs are the conjugate gradient (CG) and the conjugate residual (CR)
methods, the full orthogonalization method (FOM) and the generalized minimal resid-
ual (GMRes) method, the CGNE and CGNR versions of applying CG to the normal
equations, as well as the biconjugate gradient (BiCG) and the quasi-minimal residual
(QMR) methods. Also the pairs consisting of the (bi)conjugate gradient squared (CGS)
and the transpose-free QMR (TFQMR) methods can be added to this list if the residuals
at half-steps are included, and further examples can be created easily.

The analysis is more generally applicable to the minimal residual (MR) and quasi-
minimal residual (QMR) smoothing processes, which are known to provide the transition

from the results of the first method of such a pair to those of the second one. By an inter-
pretation of these smoothing processes in coordinate space we deepen the understanding
of some of the underlying relationships and introduce a unifying framework for minimal

residual and quasi-minimal residual smoothing. This framework includes the general no-
tion of QMR-type methods.
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1 Introduction

The convergence of an iterative method for solving linear systems Ax = b

is normally monitored by checking the 2-norm of the residual vectors rn :≡
b−Axn, because the error vectors xn−x (where x denotes the exact solution)
are not available. Therefore, a method sells well, if the residual norm history
shows a quick decline, although this does not necessarily mean that the error
norms also decline as quickly. We will restrict ourselves here to Krylov space
solvers, where, by definition, xn is of the form

xn − x0 ∈ Kn :≡ Kn(A, r0) :≡ span (r0,Ar0, . . . ,A
n−1r0) (1)

and, hence,
rn − r0 ∈ AKn = span (Ar0,A

2r0, . . . ,A
nr0). (2)

Methods of this class that are optimal in the sense of producing residuals of
minimal norm are the conjugate residual (CR) method for Hermitian positive
definite (Hpd) matrices [23], the minimal residual (MinRes) algorithm of Paige
and Saunders [17], which applies also to indefinite Hermitian matrices, and the
generalized minimal residual (GMRes) algorithm of Saad and Schultz [19] for
arbitrary nonsingular square matrices. Another, mathematically nearly equiv-
alent form of the latter method is the generalized conjugate residual (GCR)
algorithm; in exact arithmetic it produces the same iterates unless it breaks
down.

These residual minimizing methods are in competition with closely related
Krylov space solvers that satisfy a Galerkin condition and feature orthogonal
residuals, namely the conjugate gradient (CG) method of Hestenes and Stiefel
[15] for Hpd matrices and the full orthogonalization method (FOM) (also called
Arnoldi method) for arbitrary nonsingular square matrices, whose iterates xn

may not be defined for certain n, however.
A further option for non-Hermitian systems is the biconjugate gradient

(BiCG) method of Lanczos [16] and Fletcher [6]. The related quasi-minimal
residual (QMR) method of Freund and Nachtigal [10] modifies BiCG in the
same way as MinRes is obtained from CG: minimization is enforced on the
coordinate vector of the residuals with respect to the normalized Lanczos basis.
(Additionally, in the original version of QMR, the look-ahead Lanczos process
is applied for generating this basis in order to overcome the breakdowns of the
Lanczos algorithm [12, 14, 9].) Since the Lanczos basis is not orthogonal, the
norm of the QMR residuals is, in general, not minimal. However, the norm of
the coordinate vectors still is. These are often referred to as quasi-residuals.

Most of the mentioned methods can be implemented in various ways. But
since finite precision effects are not considered here, the details of the imple-
mentation do not matter. That is why we refer here to ‘methods’ and not to
‘algorithms’. For example, our results on CR residuals also hold for MinRes
residuals, and those for GMRes residuals are valid for GCR residuals.

The transition from CG to CR, and the one from FOM to GMRes, can be
simulated by a smoothing process proposed by Schönauer [21], which is called
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minimal residual (MR) smoothing [29]. For FOM and GMRes (and thus, a
fortiori for CG and CR) this was shown by Weiss [26, 27]. In the Appendix
we establish such a result also for the transition from CGNE to CGNR, the
two well-known versions of applying CG to the normal equations. This result
is mentioned, but not explicitly proven in Weiss [28]. For BiCG and QMR
the process has to be adapted suitably, as shown by Zhou and Walker [29, 25].
They call this variation quasi-minimal residual (QMR) smoothing. It can be
understood as applying the minimal residual smoothing process to the coor-
dinates of the BiCG residuals with respect to the Lanczos basis, that is, to
the quasi-residuals. As pointed out by Zhou and Walker, QMR smoothing also
mimics the transition from the (bi)conjugate gradient squared (CGS) method
of Sonneveld [22] to the transpose-free QMR (TFQMR) method of Freund [7]
if iterates and residuals at half-steps are included. And similarly, one obtains
the QMRCGStab method of Chan et al. [2] from Van der Vorst’s BiCGStab
[24]. TFQMR and QMRCGStab are readily seen to be examples for the class
of QMR-type methods described in Section 3. These have generally the prop-
erty that their iterates and residuals can be found by QMR smoothing. The
MR and QMR smoothing processes can be applied to any Krylov space solver,
and they can therefore serve as a general framework for the above mentioned
transitions. We will review the main results about these smoothing process in
Sections 2 and 3 and give a simple account of the basic relationships.

The interest in these smoothing processes arose because the BiCG and CGS
methods often show an erratic convergence behavior: the residual norm fluctu-
ates heavily. In contrast, after MR smoothing the residuals decline monotonously,
and QMR smoothing normally produces a nearly monotonic residual norm his-
tory. The QMR method generates approximations x̃n that coincide (in exact
arithmetic) with those obtained by QMR smoothing from the BiCG iterates
xn. Therefore, its residuals also decline nearly monotonously.

The fundamental question to be posed is whether this transition from an
orthogonal residual method (or, more generally, from any primary iterative
method) to the corresponding minimal residual method (or, in general, to the
corresponding smoothed method) enables us to find the solution of Ax = b

faster. If we could measure convergence in terms of the 2-norms of the errors
xn − x, the answer would be hard; if we measure it as usual in terms of the
2-norm of the residuals, we will clearly gain something, but it is not so clear
how much.

A qualitative answer was given by Cullum and Greenbaum [3, 4] by capi-
talizing upon a known relationship between the residual norms of the primary
method and the residual or quasi-residual norms of the smoothed method. In
particular, this relationship enabled them to explain the so-called peak-plateau
connection: at places where the residual norm history of FOM or BiCG has a
peak, the smoothed methods, GMRes and QMR, exhibit a plateau where the
residual norm remains more or less constant. In Section 4 we will use essen-
tially the same relation to derive upper and lower bounds for the norms of the
smoothed residuals or quasi-residuals.

The mentioned relationship between the residual norms of the primary and
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the smoothed methods was established in the thesis of Weiss [26, 27]. Indepen-
dently, Brown [1] proved it around the same time for FOM and GMRes. It
also appeared in Zhou and Walker’s common framework for residual smoothing
methods [29, 25], and, as mentioned above, in Cullum and Greenbaum [3, 4]. It
must be pointed out, however, that another relationship from which the above
mentioned follows easily, appeared already in Paige and Saunder’s derivation of
MinRes [17] and, in a more general setting, in Freund’s analysis of TFQMR [7].
A different interpretation of these relations in terms of singular values of upper
Hessenberg matrices was given by Sadok [20]. Recently, Eiermann and Ernst [5]
presented for the relationship between orthogonal and minimal residual methods
a new, geometric framework , in which angles between subspaces play a crucial
role. This abstract framework includes projection methods that are not Krylov
space solvers, a generality we do not aim at here. Eiermann and Ernst make
also use of the fact that methods based on oblique projections can be viewed as
orthogonal or minimal residual methods with respect to a problem-dependent,
only a posteriori available inner product—another aspect we do not touch. We
will present in Section 2 a different, less general, but simpler geometric inter-
pretation; its main point is that in each smoothing step, all the action occurs
in a two-dimensional plane.

2 Orthogonal and minimal residual methods; MR

smoothing

Given a real or complex nonsingular square linear system Ax = b, a Krylov
space solver is an iterative method generating approximate solutions xn and
corresponding residuals rn :≡ b−Axn (or, at least, as in GMRes, the norm of
the latter) so that (1) holds and xn → x in a finite or infinite number of steps
under certain assumptions on A. A basis or, more generally, a generating set
{yn}mn=0 for Km+1 can be built up by a recursion of the form

yn+1 := (Ayn − yn ηn,n − yn−1 ηn−1,n − · · ·− y0 η0,n) /ηn+1,n (3)

(0 ≤ n < m), where y0 :≡ r0/ρ0 with suitable ρ0, for example, ρ0 := ‖r0‖. If
we let

Ym :≡
[
y0 y1 · · · ym−1

]
,

then, for n < m, these recursions can be summarized in

AYm = Ym+1Hm , (4)

where Hm :≡ {ηk,l} is an (m+1)×m extended, irreducible Hessenberg matrix.
In particular, one can choose the coefficients in (3) so that an orthogonal or even
orthonormal basis results, a version referred to as the Arnoldi process. In this
section we assume that this choice has been made. Alternatives to the recursion
(3) exist, but this is not of importance here since we are not concerned with
roundoff errors.
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We can always express xn − x0 and rn − r0 in terms of the generating set
and a coefficient vector kn according to

xn = x0 +Ynkn , rn = r0 −AYnkn . (5)

Then global minimization of the 2-norm of the residual (under the condition
(2)) means to minimize the following functional Φ̃n of kn:

Φ̃n(kn) :≡ 1
2‖rn‖

2 = 1
2‖r0 −AYnkn‖2 . (6)

We will denote the resulting optimal nth iterate and residual by x̃n and r̃n,
respectively. In view of

∇Φ̃n(kn) = Y!
nA

!(r0 −AYkn) = −Y!
nA

!rn , (7)

minimization of Φ̃n yields the Galerkin condition

r̃!nAYn = o! or r̃n ⊥ AKn , (8)

which implies that the residuals must be A-orthogonal or so-called conjugate.
(The star denotes the Hermitian transpose, and o is the zero vector of appro-
priate size.) This situation applies to the CR and GMRes methods, though, of
course, the algorithmic realizations of these methods are quite different for each
one and from what might be indicated by the above formulas.

When A is Hermitian positive definite (Hpd), minimization of the A-norm
of the error according to

Φn(kn) :≡ 1
2‖xn − x‖2

A
= 1

2‖x0 − x+Ynkn‖2A (9)

(where x :≡ A−1b) yields in view of

∇Φn(kn) = Y!
nA(x0 − x+Ynkn) = Y!

nA(xn − x) = −Y!
nrn (10)

likewise the Galerkin condition

r!nYn = o! or rn ⊥ Kn , (11)

which implies that the residuals need to be orthogonal. This is the setting of the
classical CG method. Here, clearly, the minimization property does not gener-
alize to matrices that are not Hpd, but for such matrices one may nevertheless
use the Galerkin condition (11), which implies the mutual orthogonality of the
residuals, as the basis of a more generally applicable algorithm. For example,
FOM is an algorithm that fits into this pattern, but like others it may break
down.

We will refer to the methods based on (11) as orthogonal residual methods
and to those based on (6) or (8) as minimal residual methods, although there
is a danger of mixing up the latter general class with MinRes, which is a
particular algorithm. While for the former x̃n is guaranteed to exist for all n,
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the approximation xn (and thus also the residual rn) of an orthogonal residual
method may not exist for some n.

According to (1), (2), (8), and (11) the orthogonal residual rn (if it exists)
and the minimizing residuals r̃n and r̃n−1 satisfy the conditions

rn , r̃n ∈ r0 +AKn ⊆ Kn+1 , r̃n−1 ∈ r0 +AKn−1 ⊆ Kn ⊆ Kn+1 (12)

and
rn ⊥ Kn ⊇ AKn−1 , r̃n ⊥ AKn , r̃n−1 ⊥ AKn−1 . (13)

Consequently,
rn , r̃n , r̃n−1 ∈ Kn+1 ,AKn−1 (14)

lie in an at most two-dimensional subspace and are therefore linearly dependent.
Since rn − r0 , r̃n − r0 , r̃n−1 − r0 ∈ AKn the following more precise statement
holds.

Lemma 2.1 The orthogonal residual rn (if it exists) and the minimizing resid-
uals r̃n and r̃n−1, which satisfy (12)–(14), lie in a one-dimensional linear man-
ifold: their differences

rn − r̃n−1 , r̃n − r̃n−1 , rn − r̃n ∈ AKn ,AKn−1 (15)

lie in a one-dimensional subspace.

Now, Krylov spaces have the fundamental property that dimKn+1 = dimKn+
1 unless one of the following equivalent properties hold:

(i) dimKm = dimKn for all m > n,

(ii) rn = o,

(iii) r̃n = o,

(iv) rm = r̃m = o for all m ≥ n

In particular, if r̃n−1 = o, all three vectors in (14) are zero; this case is of no
interest and is therefore excluded from now on. Moreover, r̃n = o if and only if
rn = o.

Since rn ⊥ r̃n−1 ∈ Kn, the difference rn − r̃n−1 is nonzero, and, hence, by
(15), r̃n − r̃n−1 must be a multiple of rn − r̃n−1. In case rn .= o the situation of
Figure 1 applies and it is clear that r̃n .= r̃n−1 too, and thus rn − r̃n−1 is also a
multiple of r̃n .= r̃n−1. (This will follow formally too, in a moment.) If rn = o,
then r̃n = o, and thus the two differences in (15) both equal −r̃n−1.

Consequently, whenever rn exists, there are recursions of the form

r̃n := r̃n−1(1− θn) + rnθn , x̃n := x̃n−1(1− θn) + xnθn , (16)

and
rn := r̃n(1− θ̃n) + r̃n−1θ̃n , xn := x̃n(1− θ̃n) + x̃n−1θ̃n , (17)
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Note that the recurrences for the iterates are consistent with those for the resid-
ual: rn = b − Axn and r̃n = b − Ax̃n. It is easily verified that the two
coefficients θn and θ̃n are related by

θn =
1

1− θ̃n
, θ̃n = 1−

1

θn
. (18)

We show next, that the coefficients can be determined by enforcing the
“missing” orthogonality condition. To make ‖r̃n‖ minimal in (16) we need

r̃n ⊥ (r̃n−1 − rn) , (19)

which implies that (8) holds, as is seen from (13) and the fact that r̃n−1 − rn ∈
AKn has a nonzero component in the direction of Any0 if rn .= o. If rn = o,
then (16) and (19) imply r̃n = o, so that (8) holds too. Therefore, we let

θn :=
〈r̃n−1 − rn, r̃n−1〉
‖r̃n−1 − rn‖2

. (20)

Likewise, to make rn from (17) orthogonal to Kn, we only have to enforce
(
r̃n(1− θ̃n) + r̃n−1θ̃n

)
⊥ r0 , (21)

which means to choose in (17)

θ̃n := −
〈r0, r̃n〉

〈r0, r̃n−1 − r̃n〉
. (22)

Recall that we assumed that xn and, hence, rn exist. If this is not the case,
they can be considered to have infinite length: the orthogonal residual rn can
move in the one-dimensional manifold r̃n−1 + (AKn , AKn−1) to infinity, in

which case r̃n → r̃n−1, θn → +0, and θ̃n → −∞; see Figure 1. Hence, as is well
known, the residual minimizing methods stagnate if and only if the orthogonal
residual methods break down due to a “non-existing”, or rather infinite, xn.
Note that (16) can still be used in this case if we set θn := 0, rnθn := o.

While (17) is an explicit formula showing that the basis transformation from

{rn} to {r̃n} is given by an upper bidiagonal matrix with elements θ̃n and 1− θ̃n
in column n, (17) is a recursive formula for the inverse transformation, whose
matrix is of course the inverse of this bidiagonal matrix, and is therefore upper
triangular, as is also seen by resolving the recursion: if we set θ0 :≡ 1,

r̃n =
n∑

k=0

rkθk

n∏

l=k+1

(1− θl) . (23)

Let us draw some further conclusions from the above formulas. First, from
(16) and (19) we conclude by Pythagoras’ theorem that

‖r̃n‖2 = ‖r̃n−1‖2 − ‖r̃n−1 − rn‖2|θn|2 , (24)
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Figure 1: The relationship between an orthogonal residual method and the cor-
responding minimal residual method is best seen by displaying the 2-dimensional
space Kn+1 ,AKn−1, which contains rn, r̃n, and r̃n−1.

see Figure 1, and likewise, (17) and (21) yield

‖r̃n‖2 = ‖rn‖2 − ‖r̃n−1 − r̃n‖2|θ̃n|2. (25)

Next, we further capitalize upon the fact that r̃n−1 ⊥ rn by (12) and (13).
Firstly, Pythagoras’ theorem yields

‖r̃n−1 − rn‖2 = ‖r̃n−1‖2 + ‖rn‖2 . (26)

Secondly, (20) and (24) simplify:

θn :=
‖r̃n−1‖2

‖r̃n−1‖2 + ‖rn‖2
∈ (0, 1] , (27)

and inserting into (24) and taking the reciprocal yields

1

‖r̃n‖2
=

1

‖r̃n−1‖2
+

1

‖rn‖2
=

n∑

k=0

1

‖rk‖2
(28)

and

‖rn‖2 =
‖r̃n‖2

1− ‖r̃n‖2/‖r̃n−1‖2
(n ≥ 1). (29)

In particular, if rn is finite, then θn .= 0 and r̃n .= r̃n−1 as claimed.
For the angle ϕn shown in Figure 1 holds on the one hand, in view of (27)

and (26),
sin2 ϕn = θn , cos2 ϕn = 1− θn (30)
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and on the other hand,

cosϕn =
‖r̃n‖

‖r̃n−1‖
, sinϕn =

‖r̃n‖
‖rn‖

, tanϕn =
‖r̃n−1‖
‖rn‖

. (31)

In particular, if ρ0 :≡ ‖r0‖,

‖r̃n‖ = ρ0

n∏

k=1

cosϕk , ‖rn‖ =
ρ0

sinϕn

n∏

k=1

cosϕk . (32)

These well-known formulas are, in the context of the CG to CR transition, due
to Paige and Saunders [17], where ϕn is the angle of a Givens rotation required
for updating the LQ decomposition of a triangular matrix. The same formulas
have since come up in a variety of related situations.

Independent of the relation between orthogonal and minimal residual meth-
ods discussed here, Schönauer [21] suggested the recursions (16) with the choice
(20) for θn as a process now called minimal residual (MR) smoothing that can be
applied to the iterates xn and residuals rn of any Krylov space solver and pro-
duces iterates x̃n and residuals r̃n of a new solver for the same Krylov space. Let
us call the former the primary iterates and residuals and the latter the smoothed
ones. Note that (20) does not rely on any orthogonality of the given residuals,
but is chosen to minimize the new residual in the one-dimensional linear man-
ifold spanned by r̃n−1 and rn. In contrast, (27)–(29) assume orthogonality of
the primary residuals.

The fact that MR smoothing of the FOM iterates yields the GMRes it-
erates was established by Weiss [26, 27] as a side-result of his investigation of
Schönauer’s MR smoothing procedure. In the Hermitian positive definite case,
this means that MR smoothing produces CR iterates from CG iterates. The
derivation given above for (16) and (20) is a “turned over” version of a proof
in [13]. Weiss [26] also derived (27)–(29), along with many other relationships.
Brown [1] had a formula equivalent to (29) too, as well as many related results.

The relations (28) and (29) are the basis of the analysis of the peak–plateau
connection; see Brown [1], Cullum [3], Walker [25], Zhou and Walker [29] and,
in particular, Cullum and Greenbaum [4]. We will return to it in Section 4 and
see that it is even easier to understand from our Figure 1.

If the primary residuals are not orthogonal, it is difficult to relate the norms
of the primary and the smoothed residuals. However, we will discuss next
a variation of the above, in which we can at least relate the norms of their
coordinate vectors with respect to the Krylov space basis.

3 QMR smoothing and a related framework for

QMR-type methods

Zhou and Walker [29] introduced quasi-minimal residual (QMR) smoothing as
a variation of MR smoothing with the property that it generates the iterates
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and residuals of the QMR method of Freund and Nachtigal [10] if applied to the
BiCG iterates and residuals, but which, like MR smoothing, is also generally
applicable to the output of an iterative method. If applied to an orthogonal
residual method, MR and QMR smoothing are equivalent. We introduce here
the QMR smoothing as a process that is equivalent to applying MR smoothing in
the coordinate space, or, more exactly, to the coordinate vectors of the primary
residuals with respect to the Krylov space basis generated by these residuals.
We will see that this implies that we can relate the norms of the coordinate
vectors of the primary and smoothed residuals with respect to this basis.

We also define a general framework for QMR-type methods, and will con-
clude that QMR smoothing generates the same iterates and residuals as these
methods.

We generalize the situation considered in the previous section by allowing
the usage of different bases {vn} and {yn} for the iterates and the residuals.
This will allow us to cover also the transitions from CGS to TFQMR and from
BiCGStab to QMRCGStab, or, more generally, to produce the results of any
QMR-type methods (defined later) by smoothing.

We let Vm :≡
[
v0 v1 · · · vm−1

]
and replace (5) by

xn = x0 +Vnkn , rn = r0 −AVnkn (33)

and (4) by
AVm = Ym+1Lm , (34)

where Lm is in general still an (m + 1) × m extended, irreducible Hessenberg
matrix, though in well-known examples it is just lower bidiagonal. To describe
the generation of both bases we need then at least another relation, such as
Ym = VmUm with an upper triangular matrix Um, but this relation does not
play a role here. Inserting (33) and its analog for the smoothed quantities,

x̃n = x0 +Vnk̃n , r̃n = r0 −AVnk̃n , (35)

into the smoothing formula (16) leads to an analogue formula for the coefficient
vectors:

k̃n :=

[
k̃n−1

0

]
(1− θn) + knθn . (36)

(In the case where the set {yj}n−1
j=0 is not linearly independent, (36) still implies

that (16) is valid; so, we may suppose that (36) holds.)
On the other hand, by a standard argument, inserting (34) into the right-

hand side formulas in (33) and (35) leads in view of r0 = y0ρ0 to

rn = Yn+1(e1ρ0 −Hnkn) = Yn+1qn , where qn :≡ e1ρ0 −Hnkn ,

r̃n = Yn+1(e1ρ0 −Hnk̃n) = Yn+1q̃n , where q̃n :≡ e1ρ0 −Hnk̃n ,
(37)

with e1 :≡
[
1 0 0 · · ·

]T ∈ R
n+1 and q̃0 :≡ q0 :≡ [ρ0] ∈ R

1. We call qn

the primary quasi-residual and q̃n the smoothed quasi-residual. They are the

9



coordinate vectors of the residuals with respect to our Krylov space basis {vn}.
They can be related by multiplying (36) by Hn and subtracting the result from
e1ρ0:

q̃n :=

[
q̃n−1

0

]
(1− θn) + qnθn . (38)

Assume now that a total of m steps are executed with the primary method, and
let us extend the quasi-residual vectors qn and q̃n by m − n zero components
and call the extended vectors q̃◦

n and q◦
n, respectively. They all lie in C

m+1,
and, clearly, in the 2-norm holds ‖q◦

n‖ = ‖qn‖ and ‖q̃◦
n‖ = ‖q̃n‖. In particular,

q◦
0 = q̃◦

0 = e◦1ρ0. Moreover, by (38),

q̃◦
n := q̃◦

n−1(1− θn) + q◦
nθn , (39)

which is just a special case of the smoothing process (16). In other words, in the
coordinate space, the smoothed quasi-residuals q̃◦

n can be generated by smoothing
the primary quasi-residuals q◦

n.
We further define k◦

n, k̃
◦
n ∈ C

m by extending kn, k̃n ∈ C
n with m − n − 1

zeros, and we let e◦n be the nth standard basis vector in m-space and set

En :≡ span {e◦1, . . . , e◦n} .

Then we have according to the definition of q◦
n and q̃◦

n, and since Lm is an
extended Hessenberg matrix,

q◦
n = e◦1ρ0 − Lmk◦

n ∈;q◦
0 + LmEn ⊆ En+1 ,

q̃◦
n = e◦1ρ0 − Lmk̃◦

n ∈ q◦
0 + LmEn ⊆ En+1 .

(40)

So far we have made no assumption on the primary residuals and the smooth-
ing coefficients θn. From now on we assume that for all n ≤ m we have ‖yn‖ = 1
and

rn = ynρn , that is, qn = en+1ρn , q◦
n = e◦n+1ρn (41)

with ρn :≡ ‖rn‖ ≥ 0, which implies that kn = L−1
n e1ρ0, where Ln is the upper

n× n submatrix of Ln. Moreover, we assume that θn is chosen so that in (38)
q̃n is as short as possible or, equivalently, in (39) q̃◦

n has minimal length.
As before, we let the basis (or, more generally, the generating set) of Km+1

be given by the normalized primary residuals rn/ρn and choose θn so that
analogously to (19)

q̃◦
n ⊥ (q̃◦

n−1 − q◦
n) = q̃◦

n−1 − e◦n+1ρn . (42)

By induction we can show that q̃◦
n ⊥ LmEn, so that in analogy to (13)

q◦
n ⊥ En ⊇ LmEn−1 , q̃◦

n ⊥ LmEn , q̃◦
n−1 ⊥ LmEn−1 . (43)

In fact, the first statement is immediate from the choice (41), and the last
is the induction assumption. Hence, both terms on the right side of (39) are
orthogonal to LmEn−1, and their sum lies in view of (40) in q◦

0+LmEn ⊆ En+1.

10
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Figure 2: The relationship between the coordinates of the residuals of a primary
method and those of the corresponding coordinates after QMR smoothing is best
seen by displaying the 2-dimensional space En+1 ,LmEn−1, which contains q◦

n,
q̃◦
n, and q̃◦

n−1.

Making the sum orthogonal to q̃◦
n−1 − q◦

n ∈ LmEn , LmEn−1, as required in
(42), suffices to attain q̃◦

n ⊥ LmEn.
From (40) and (43) we conclude that, in summary,

q◦
n , q̃

◦
n , q̃

◦
n−1 ∈ En+1 , LmEn−1 , (44)

and that, in view of q◦
n − q◦

0 , q̃
◦
n − q◦

0 , q̃
◦
n−1 − q◦

0 ∈ LmEn,

q◦
n − q̃◦

n−1 , q̃
◦
n − q̃◦

n−1 , q
◦
n − q̃◦

n ∈ LmEn , LmEn−1 . (45)

Hence, the following analog of Lemma 2.1 is valid:

Lemma 3.1 If the assumptions (41) and (42) hold, the extended primary quasi-
residual q◦

n (if it exists) and the extended smoothed quasi-residuals q̃◦
n and q̃◦

n−1,
which according to (39) all lie in a one-dimensional linear manifold, satisfy (40)
and (43)–(45). In particular, this manifold is given by q◦

n + (LmEn ,LmEn−1).

Consequently, Figure 1 essentially still holds if we replace rn, r̃n, and r̃n−1 by
qn, q̃n, and q̃n−1, respectively, and the spaceAKn,AKn−1 by LmEn,LmEn−1;
see Figure 2.

By (38) and (41) we have

q̃n :=

[
q̃n−1

0

]
(1− θn) + en+1ρnθn (46)
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[or, q̃◦
n := q̃◦

n−1(1 − θn) + e◦n+1ρnθn], where clearly the two vectors on the
right-hand side are orthogonal, so that by Pythagoras’ theorem

‖q̃n‖2 = ‖q̃n−1‖2|1− θn|2 + ρ2nθ
2
n with ρn :≡ ‖rn‖ . (47)

This orthogonality is a consequence of the primary quasi-residuals being orthog-
onal to each other and implies that the analogs of (27)–(29) hold:

θn :=
‖q̃n−1‖2

‖q̃n−1‖2 + ‖qn‖2
∈ (0, 1] , (48)

1

‖q̃n‖2
=

1

‖q̃n−1‖2
+

1

‖qn‖2
=

n∑

k=0

1

‖qk‖2
, (49)

and

‖qn‖2 =
‖q̃n‖2

1− ‖q̃n‖2/‖q̃n−1‖2
(n ≥ 1). (50)

Everywhere we could insert ‖qn‖2 = ρ2n. Note that once the norm ρn of the
primary residual has been computed, θn can be obtained from (48) without
spending an inner product. This θn can then be inserted into the smoothing
formulas (16) and (43) in order to generate x̃n, r̃n, and q̃n.

Actually, there is no need to update q̃n. It suffices to compute

ξn :≡
1

‖q̃n‖2
, (51)

for which we get from (49) and (48):

ξn := ξn−1 +
1

ρ2n
, θn :=

1

1 + ξn−1 ρ2n
=

1

ξn ρ2n
. (52)

The smoothing process based on (52) and (16) is due to Zhou and Walker
[29] and is called quasi-minimal residual smoothing or, briefly, QMR smoothing.

There is an alternative way to construct the same smoothed iterates and
residuals, which does only require to know the basis {yn} and the matrix Lm,
but not the lengths ρn of the primary residuals. In fact, the condition q̃◦

n ⊥
LmEn means that k̃n solves the least squares problem

‖q̃n‖2 = ‖e1ρ0 − Lnk̃n‖2 = min! (53)

This is no surprise since we applied MR smoothing to the orthogonal primary
coordinates qn to find q̃n, and in this situation local minimization implies global
minimization. The least squares problem can be solved in every step by updat-
ing the QR decomposition of Ln, exactly as done in the GMRes, QMR, and

TFQMR methods. Inserting k̃n into (35) allow us then to determine the corre-
sponding iterates x̃n (and, optionally, the residuals r̃n). It may also be possible
to find efficient recursions for updating x̃n, as they exist for MinRes, QMR,
and TFQMR.

12



In view of the analogy to the QMR method, we call such a method that
minimizes ‖q̃n‖ a QMR-type method. TFQMR and QMRCGStab belong to
this class because they make use of the representation (34), where the even
numbered y2k are normalized residual vectors of CGS and BiCGStab, respec-
tively, while the odd numbered y2k+1 are intermediate quantities that can be
considered as residual vectors at half steps. The choice of the vectors vn is not
important here. Consequently, the transitions from CGS to TFQMR and from
BiCGStab to QMRCGStab can be understood as QMR smoothing. Given
the generality of (34) it would be easy to introduce further methods that fit into
this pattern.

If the columns of Ym are orthogonal, then, for n < m, QMR smoothing
is equivalent to MR smoothing since the coordinate map is isometric in the
2-norm:

‖qn‖ = ‖rn‖ = ρn , ‖q̃n‖ = ‖r̃n‖ . (54)

However, if the columns of Ym are not necessarily orthogonal to each other,
as, e.g., in the biconjugate gradient (BiCG) method, then the two smoothing
processes differ also in exact arithmetic. In the case of BiCG, QMR smoothing
transforms the (primary) BiCG iterates and residuals into the iterates and
residuals of the quasi-minimal residual (QMR) method since in its version based
on three-term recurrences, where Vm = Ym, the latter solves in coordinate
space exactly the same least-square problem (53) as MinRes and GMRes do.

4 Bounds for the norms of the smoothed resid-

uals or quasi-residuals

The two equivalent relations (28) and (29) are the basis of the so-called peak-
plateau connection between the residual norms of primary and smoothed meth-
ods, as has been clarified by Cullum and Greenbaum [4], following earlier work
of Brown [1], Cullum [3], Walker [25], and others. For generality, we will start
here from the corresponding relations (49) and (50) for the quasi-residual norms,
from which we can in fact immediately conclude that

‖qn‖ 2 ‖q̃n−1‖ ⇐⇒ ‖q̃n‖ ≈ ‖qn‖ ⇐⇒ ‖q̃n‖ 2 ‖q̃n−1‖ (55)

and

‖qn‖ 6 ‖q̃n−1‖ ⇐⇒ ‖q̃n‖ ≈ ‖q̃n−1‖ ⇐⇒ ‖qn‖ 6 ‖q̃n‖ . (56)

In words: if ‖qn‖ decreases fast, then ‖q̃n‖ is not much smaller than ‖qn‖,
while if ‖qn‖ is much larger than ‖q̃n−1‖ (as, e.g., when the primary residual
norm history has a peak), then ‖q̃n‖ essentially stagnates, that is, the smoothed
residual norm history has a plateau.

Since ‖q◦
n‖ = ‖qn‖ and ‖q̃◦

n‖ = ‖q̃n‖, the connections (55) and (56) also
hold for the extended vectors q◦

n, q̃
◦
n, and q̃◦

n−1 shown in Figure 2. In fact,
these connections are seen to be an immediate consequences of this figure, in
particular of the fact that the angle between q◦

n and q̃◦
n−1 is a right one.
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This relation between peaks of CG or FOM and plateaux of CR or GMRes
is by now well-known. This effect appears even more often and more pronounced
when we compare the residual norms of BiCG and those of QMR. For the first
four methods, the underlying equations hold both for the residual norms and
the quasi-residual norms (since they are equal). In contrast, for BiCG and
QMR they only apply to the quasi-residual norms, but in a vaguer sense they
remain valid for the residual norms. Of course, the non-orthogonal basis of the
Krylov space introduces some distortion, which could be expressed in terms of
its condition number, but the closer to orthogonal the primary residuals are,
the better the relations hold approximately also for the residuals.

Using only the two equivalent relations (49) and (50) we will now derive
bounds that give a quantitative answer to the vague statement of the peak-
plateaux behavior and also answer the question of how much we can gain by
applying a smoothed method (like CR, GMRes, or QMR) instead of a primary
method (like CG, FOM, or BiCG) if convergence is measured in terms of the
residual norm or the quasi-residual norm. We formulate all estimates in terms
of quasi-residual norms, but keep in mind that they hold for the residual norms
if the primary residuals are orthogonal.

First, (49) implies

1

‖q̃n‖2
=

n∑

k=0

1

‖qk‖2
≤

n∑

k=0

1

min0≤j≤n ‖qj‖2
=

n+ 1

min0≤j≤n ‖qj‖2

and
1

‖q̃n‖2
=

n∑

k=0

1

‖qk‖2
≥

1

min0≤j≤n ‖qj‖2
.

This simple estimate yields a first lower bounds for the quasi-residual norm,
which we state together with a trivial upper bound reflecting the minimality
property of q̃n.

Theorem 4.1 The norms of the primary and the smoothed quasi-residuals (qn

and q̃n, respectively) satisfy

1√
n+ 1

min
0≤j≤n

‖qj‖ ≤ ‖q̃n‖ ≤ min
0≤j≤n

‖qj‖ . (57)

Equality holds at left if and only if ‖qk‖ = min0≤j≤n ‖qj‖, k = 0, . . . , n, that
is, if and only if ‖qk‖ = ‖q0‖, k = 0, . . . , n.

Consequently, if CG or FOM stagnates initially for n steps, the quasi-residual
norms of CR and GMRes decrease roughly by a factor

√
n.

Theorem 4.1 can be generalized to provide a lower bound for the smoothed
quasi-residual in a later phase:

Theorem 4.2 Let 1 ≤ χ ≤ m+ 1 be such that

‖q̃m‖2 =
1

χ
‖qm‖2. (58)
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Then, for n > m,

1√
n−m+ χ

min
m≤j≤n

‖qj‖ ≤ ‖q̃n‖ ≤
1
√
χ

‖qm‖. (59)

Note that according to (57) χ defined by (58) satisfies 1 ≤ χ ≤ m + 1; so
this inclusion is not an extra assumption.

Proof. By (49) and by definition of χ,

1

‖q̃n‖2
=

1

‖q̃m‖2
+

n∑

k=m+1

1

‖qk‖2
=

χ

‖qm‖2
+

n∑

k=m+1

1

‖qk‖2

≤
χ

minm≤j≤n ‖qj‖2
+

n∑

k=m+1

1

minm≤j≤n ‖qj‖2
,

so that in view of ‖q̃n‖ ≤ ‖q̃m‖ and (58)

χ

‖qm‖2
≤

1

‖q̃n‖2
≤

n−m+ χ

minm≤j≤n ‖qj‖2
.

Taking the square root of the reciprocal yields the claimed result. !

Another useful variation of this result is obtained when we assume that the
primary method converges with at least a certain geometric rate.

Theorem 4.3 Let 1 ≤ χ ≤ m+ 1 be such that (58) holds and assume that for
some γ > 0 and some n > m

‖qk‖ ≤ ‖qm‖ γk−m (m < k ≤ n) . (60)

Then

‖q̃n‖ ≤ ‖qm‖
γn−m

√
χγ2(n−m) + 1−γ2(n−m)

1−γ2

. (61)

If γ < 1, the reciprocal of the square root in (61) approaches
√
1− γ2 as n → ∞:

‖q̃n‖ ≤ ‖qm‖γn−m
√
1− γ2

(
1 +O(γ2(n−m))

)
as n → ∞ . (62)

The results also hold when in the inequalities (60)–(62) ≤ is replaced by ≥.

Proof. By (49) and by definition of χ,

1

‖q̃n‖2
=

1

‖q̃m‖2
+

n∑

k=m+1

1

‖qk‖2
≥

χ

‖qm‖2
+

n∑

k=m+1

γ−2(k−m)

‖qm‖2
.

Consequently,

1

‖q̃n‖2
≥

1

‖qm‖2

(
χ+ γ−2(n−m) 1− γ2(n−m)

1− γ2

)
.
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Taking the square root of the reciprocal yields the claimed result. If the in-
equality signs are changed, the derivation persists. !

Since the previous theorem holds with inequalities of both types, the fol-
lowing corollary on a primary sequence that converges exactly geometrically is
immediate.

Corollary 4.4 Let 1 ≤ χ ≤ m+ 1 be given by (58), and assume that for some
γ > 0 and some n > m

‖qk‖ = ‖qm‖ γk−m (m < k ≤ n) . (63)

Then

‖q̃n‖ = ‖qn‖
1

√
χγ2(n−m) + 1−γ2(n−m)

1−γ2

, (64)

and thus, if γ < 1,

‖q̃n‖ = ‖qn‖
√
1− γ2

(
1 +O(γ2(n−m))

)
as n → ∞. (65)

This corollary describes the interesting but somewhat unlikely case of exactly
geometrically decreasing residuals. Other special cases could also be treated
analytically. Such results may be used for providing upper and lower bounds
for more general cases, as can be seen from the following simple inclusion result.

Theorem 4.5 Let three sequences of primary (quasi-)residuals, {qn}, {q
n
},

and {qn} satisfying

‖q
n
‖ ≤ ‖qn‖ ≤ ‖qn‖ (0 ≤ n ≤ m) (66)

be given. Then the corresponding sequences of smoothed (quasi-)residuals {q̃n},
{q̃

n
}, and {q̃n} satisfy analogously

‖q̃
n
‖ ≤ ‖q̃n‖ ≤ ‖q̃n‖ (0 ≤ n ≤ m). (67)

Proof. This result is an immediate consequence of (49). !

Let us illustrate the results of Theorems 4.1–4.5 and Corollary 4.4 by some
figures reflecting the behavior of artificial, but archetypical examples. Consider
first the primary quasi-residuals (or residuals if orthogonal)

‖qk‖ =






2k , k = 1, . . . , 10 ,
220−k , k = 10, . . . , 30 ,
2−10 , k = 30, . . . , 40 ,
230−k , k = 40, . . . , 50 .

(68)

Their quasi-residual norm history and that of the corresponding smoothed quasi-
residuals is given in Figure 3. It is obvious that the smoothed quasi-residuals are
considerably better when the primary quasi-residuals do not improve or have
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Figure 3: The (quasi-)residual norm history of example (68) (solid line) and the
corresponding smoothed (quasi-)residual norm history (dot-dashed).

not yet caught up with previous losses, but that there is very little gain where
the primary quasi-residual norms decrease fast.

In Figure 4 we consider two slowly, namely logarithmically converging quasi-
residual norm histories,

‖qn‖ :≡
1

n+ 1
, ‖q

n
‖ :≡

1

2(n+ 1)
= 1

2 ‖qn‖ (69)

shown as solid lines. According to formula (49) the corresponding smoothed
quasi-residuals satisfy, respectively,

‖q̃n‖ =

√
6

(n+ 1)(n+ 2)(2n+ 3)
, ‖q̃

n
‖ = 1

2 ‖q̃n‖ . (70)

They are shown as dot-dashed lines. Clearly, both pairs of curves have a constant
vertical distance of log 2. By Theorem 4.5, whenever the norms of quasi-residual
or orthogonal residuals are limited to the band between the pair of solid lines,
the corresponding smoothed (quasi-)residuals are limited to the band between
the dot-dashed lines.

In Figure 5 we illustrate additionally Theorems 4.1 and 4.2 for the first
example, ‖qn‖ :≡ ‖qn‖ = 1

n+1 , shown as upper solid line. The lower solid line
is the corresponding lower bound in (57), while the upper bound is given by the
upper border of the figure. The smoothed quasi-residual norms ‖q̃n‖ :≡ ‖q̃n‖
of (70) are shown as dot-dashed line. If we apply Theorem 4.2 with m = 50,
the upper bound of (59) yields the horizontal dashed line, and the lower bound
leads to the lower dashed curve.
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Figure 4: The (quasi-)residual norm histories of the logarithmically converging
examples (69) (solid lines) and the corresponding smoothed (quasi-)residual
norm histories (dot-dashed lines) given by (70).
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Figure 5: The (quasi-)residual norm history of ‖qn‖ :≡ 1
n+1 (upper solid

line) and the corresponding smoothed (quasi-)residual norm history (dot-dashed
line). The lower solid line shows the lower bound in (57), and the upper and
lower dashed lines mark the upper and lower bounds in (59) with m = 50.
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Figure 6: The (quasi-)residual norm histories of the geometrically converging
examples (71) (solid line) and the corresponding smoothed (quasi-)residual norm
histories (dot-dashed) given by (72).

Note that in Figures 4 and 5 the vertical scale is rather large for residual
norms. Since the convergence is so slow, smoothing does speed up the quasi-
residual norm convergence here. However, logarithmic convergence is unusual
for Krylov space methods. Typically, they converge linearly or superlinearly.
Therefore, we next consider in Figure 4 the two geometric sequences

‖qn‖ :≡ γn
i (i = 1, 2) , γ1 :≡ 3

4 , γ2 :≡ 3
5 , (71)

and the corresponding two smoothed sequences given by (64) with m = 0 and
χ = 1:

‖q̃n‖ = ‖qn‖
1

√
γ2n
i +

1−γ2n
i

1−γ2
i

= ‖qn‖

√
1− γ2

i

1− γ2n+2
i

. (72)

Now, the improvement due to smoothing is very limited and does not merit any
additional cost.

In Figure 7 we illustrate again the bounds from the Theorems 4.1 and 4.2 for
the slower converging of these two examples, in a manner analogous to that of
Figure 5. Here, the trivial lower bound (57) (lower solid line) for the smoothed
quasi-residuals turns out to be too optimistic, and even the improved lower
bound from (59) with m = 25 (lower dashed line) is only for a small number of
steps much better.
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Figure 7: The (quasi-)residual norm history of ‖qn‖ :≡ γn
1 :≡ (34 )

n (upper solid
line) and the corresponding smoothed (quasi-)residual norm history (dot-dashed
line). The lower solid line shows the lower bound in (57), and the upper and
lower dashed lines illustrate the upper and lower bounds in (59).

5 Conclusions

We have first shown by a simple proof that the iterates and residuals of a mini-
mal residual method can be obtained from those of the corresponding orthogonal
residual method by a three-term smoothing process, called MR smoothing, be-
cause in each step the action is restricted to a two-dimensional subspace. Pairs
of such methods include CG and CR (or MinRes), FOM and GMRes, as well
as CGNE and CGNR. For the first two pairs, the result was given by Weiss
[26, 27]. The last pair is treated in the Appendix. The same process can also be
applied in coordinate space, the coordinates being those of the residuals with
respect to the basis consisting of the normalized residual vectors of a first or, pri-
mary, Krylov space solver. It yields then in general a QMR smoothing process,
which generates the iterates and residuals of what we call a QMR-type method.
The large class of these methods includes QMR, TFQMR, and QMRCGStab;
their iterates and residuals can be found by QMR smoothing applied to BiCG,
CGS, and BiCGStab, respectively, three cases that were treated by Zhou and
Walker [29].

Then, from known relations between the norms of the residuals or their
coordinate vectors (the quasi-residuals) of primary and smoothed methods, we
have derived several estimates for what can be gained in the 2-norm of the
residual or quasi-residual by the transition from the original to the smoothed
method. The results are illustrated by artificial, but archetypical examples,
which allow us to specify bounds for more general cases.
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6 The transition from CGNE to CGNR

There are two well-known standard approaches for solving the normal equations
by the conjugate gradient method: CGNR and CGNE, which correspond to
applying CG (suitably adopted to the special situations) to

A!Ax = A!b or AA!z = b with x ≡: A!z , (73)

respectively; see, for example, [8, 11, 18]. In both methods,

xn − x0 ∈ Kn(A
!A,A!r0) = span (A!r0, (A

!A)A!r0, . . . , (A
!A)n−1A!r0)

(74)
and, hence, with B :≡ AA!,

rn − r0 ∈ AKn(A
!A,A!r0) = AA! Kn(AA!, r0) = BKn(B, r0) . (75)

Recall that CG applied to a Hermitian positive definite (hpd) systemAx = b
yields iterates xn ∈ x0 + Kn(A, r0) that minimize the A-norm of the er-
ror. Therefore, in CGNR, xn minimizes the A!A-norm of the error xn −
(A!A)−1A!b of the first system in (73) subject to the condition (74). As
is well-known, if A is nonsingular, this is the same as minimizing the 2-norm of
the residual of the original system, ‖b − Axn‖, subject to the condition (74).
This, on the other hand, is equivalent to minimizing

‖b−AA!zn‖ = ‖b−Bzn‖ , (76)

that is, the 2-norm of the residual of the second system in (73), subject to

zn − z0 ∈ (A!)−1Kn(A
!A,A!r0) = Kn(AA!, r0) = Kn(B, r0) . (77)

In CGNE, xn minimizes theAA!-norm orB-norm of the error zn−(AA!)−1b
of the second system in (73) subject to the condition (77). As is well-known,
this is the same as minimizing the 2-norm of the error of the original system,
‖xn −A−1b‖, subject to the condition (74). But this fact will not be needed
here.

We summarize these partly well-known results:

Theorem 6.1 The two algorithms CGNR and CGNE for applying the CG
method to the two normal equations (73) that can be associated with a non-
singular system Ax = b have, in exact arithmetic, the following properties:

In CGNR, xn = A!zn minimizes the 2-norm of the residual of the original
system, ‖b−Axn‖, subject to the condition (74), and zn minimizes the 2-norm
of the residual of

Bz = b , where B = AA! , (78)

that is, ‖b−Bzn‖, subject to (77). In other words, it is equivalent to applying
the CR method to (78).

In CGNE, xn = A!zn minimizes the 2-norm of the error of the original
system, ‖xn −A−1b‖, subject to the condition (74), and zn minimizes the B-
norm of the error of (78), that is, ‖zn −B−1b‖B, subject to (77).
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Corollary 6.2 The iterates x̃n of CGNR can be computed from the iterates
xn = A!zn of CGNE by applying MR or QMR smoothing.

Proof. If we consider CGNE and CGNR as methods for solving the hpd
system (78), then CGNE is CG and CGNR is CR. The relevant residuals rn
and r̃n that are needed in (20) or (27) and in (51) (recall that (54) holds here),
are just the ordinary residuals of the original system since b−Bzn = b−Axn.
!
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