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Abstract

In this paper we analyze the null-space projection (constraint) indefinite precondi-
tioner applied to the solution of large-scale saddle point problems. Nonsymmetric
Krylov subspace solvers are considered and it is shown that the behavior of short-
term recurrence methods can be related to the behavior of preconditioned conjugate
gradient method (PCG). Theoretical properties of PCG are studied in detail and
simple procedures for correcting possible misconvergence are proposed. The nu-
merical behavior of the scheme on a real application problem is discussed and the
maximum attainable accuracy of the approximate solution computed in finite pre-
cision arithmetic is estimated.
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1. Introduction. We consider the symmetric indefinite system of linear equa-
tions

w o)=L )

where the n X n matrix block A is symmetric positive definite and the n x m block
B has full column rank. We denote by M the coefficient matrix and for the system
(1.1) we also use the notation Mt = b with ¢t = [z;y] and b = [f; g].

Systems of the form (1.1) arise in many application problems such as mixed
or mixed—hybrid finite element discretization of partial differential equations and
quadratic or nonlinear programming with equality constraints; see [25, 24, 23, 18,
7, 17] and their references. In the partial differential equation context, we are partic-
ularly interested in the case in which A (B) corresponds to a zero (one) order operator,
such as in mixed formulations of elliptic problems.

Due to the high sparsity of the coefficient matrix, the linear system (1.1) may
be efficiently solved using iterative schemes. In order to improve the efficiency of
standard iterative solvers some preconditioning technique is commonly employed, such
as simple diagonal scaling, incomplete factorization of the system matrix or its inverse,
up to problem dependent preconditioning [27, 1, 26, 2, 22]. Block matrices such as
that in (1.1) naturally lead to the implementation of ad-hoc algebraic preconditioning
strategies that aim to exploit the block structure of the original system; see for instance
[23, 10, 3]. Especially attractive is positive definite preconditioning, where symmetric
solvers are regularly applicable [25, 29].

In our paper we concentrate on the use of the symmetric but indefinite precondi-
tioner

(1.2) P:{BIT lﬂ

This choice has be shown to be particularly effective on problems associated with
constrained nonlinear programming [23, 17, 18]. More precisely, it can be shown that
this preconditioner projects the problem onto the kernel of the constraint operator,
and that the constraint equation is exactly satisfied [24, 18].

Due to the indefiniteness of the preconditioning matrix P, the preconditioned
system is naturally nonsymmetric so that nonsymmetric solvers must be applied.
Although this fact could be considered as a practical drawback, experience on real
problems has demonstrated good performance of this approach [23, 17, 4, 18]. The
computationally expensive generalized minimum residual (GMRES) method [28] can
be applied on the preconditioned system; in practice, however, simplified versions of
short—term recurrence methods such as nonsymmetric biconjugate gradient (Bi-CG)
or quasi-minimum residual (QMR) [5] methods can also be used.

A thorough analysis of the preconditioner P for a class of magnetostatic problems
has been performed in [23], where optimality with respect to the mesh parameter has
been shown. In this paper, we instead concentrate on algebraic properties of the pre-
conditioned iteration process and on the connection between short—term recurrence
methods and the preconditioned Conjugate Gradient (CG) approach. This analysis is
motivated by the theoretical as well as numerical results in [18, 11], where CG and the
conjugate residual method were successfully applied to the indefinite system (1.1) pre-
conditioned by the indefinite preconditioner (1.2) for ¢ = 0. We show the equivalence
between CG and simplified BiCG when right—preconditioning is applied; the conver-
gence analysis of preconditioned CG leads to the development of safeguard strategies
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to avoid possible misconvergence of the indefinite CG iteration. We also show that
round—off may considerably influence the performance of the applied method, and
we provide theoretical results on the behavior of the approximate solution in finite
precision arithmetic. As a general result, we derive that the motivation for applying
a diagonal pre—scaling of the block matrix A is threefold: (i) together with indefinite
preconditioning it leads to independence of the problem size of the iterative solver
[23]; (i7) it ensures convergence of the CG method and (ii7) it preserves numerical
stability of the scheme in finite precision arithmetic.

Finally, we note that general convergence results are given for the residual norm
minimizing GMRES method, though a long—term recurrence approach. Nevertheless,
GMRES represents a reference method, at least for theoretical purposes, for quasi—
optimal cheaper schemes such as BiCG.

The outline of the paper is as follows. In section 2 we study some theoreti-
cal properties of a general (nonsymmetric) Krylov subspace method applied to the
preconditioned system and the setting for the subsequent sections is described. In sec-
tion 3 several possible solution methods are discussed and related to previous works.
The residual norm minimizing GMRES is studied in detail in section 4 and the re-
lated results are compared in subsequent sections with those of short—term recurrence
methods. The analysis of the case g = 0 starts in section 5. In the subsequent section
it is shown that the (theoretical) rate of convergence of the preconditioned GMRES
method, up to a small factor, depends only on the spectral distribution of the precon-
ditioned matrix, making this computationally expensive method interesting from a
theoretical point of view. The equivalence between simplified BiCG and CG is shown
in section 7, so that in the subsequent sections the CG method is analyzed in detail.
More precisely, in section 8 we prove that for the preconditioned CG method the
M-norm of the error decreases monotonically, whereas the residual norm can show
completely different convergence history and it may even diverge unless special mea-
sures (correction or suitable scaling) are used to avoid this difficulty. In section 10
it is shown that not only the theoretical rate of convergence (measured by the eas-
ily computable residual norm) but also the maximum attainable accuracy level of
the approximate solution computed in finite precision arithmetic depends heavily on
the scaling of the matrix block A. The use of the CG method applied to the suitably
scaled symmetric indefinite system (1.1) together with indefinite preconditioning (1.2)
and g = 0 is thus theoretically well-justified. Numerical experiments also on a real
application problem confirm the described theoretical results. In section 11 we draw
our conclusions.

The notation used in this paper is as follows. Matlab notation is always used
when possible. Vectors corresponding to the large system will be usually split as
v =[wM; 0] with () € R* and v(? € R™, unless different letters are given to the
two block vectors. Given z € R™, 27 denotes the transpose vector; the 2-norm and the
H-norm of z are defined as ||z||? = 27z = Y"1, 27 and ||z||} = 27 Hz, respectively.
The norm induced by the vector 2—norm is used for matrices. Py indicates the set of
polynomials of degree at most k. Finally, N'(X) and span{X} indicate the null and
range spaces of the matrix X, respectively.

2. Indefinite preconditioning. Given a starting approximation ¢y and the as-
sociated residual ro = b — Mtg, the indefinite preconditioner P may be applied either
from the right, yielding the system

(2.1) MPli=ry, t=P 4,
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or from the left, so that the system to be solved becomes
(2.2) P~ 'Mt =P ry,

(left—right preconditioning will not be considered in this paper, although it does not
entail major consequences in the analysis). When standard nonsymmetric systems are
preconditioned, the difference between the two approaches in (2.1) and (2.2) is that
the former monitors the convergence of the true residual and preconditioned solution,
whereas the latter monitors the preconditioned residual and the approximate solution
to the original problem. We will see that for our particular problem there may be a
close connection between the true residual and the preconditioned residual from the
right and left preconditioned method, respectively, and their corresponding approxi-
mate solutions may even coincide for certain methods when carefully implemented.

The eigenvalues of P~ M and M P~ are equal, therefore general spectral results
can be given in terms of any of the two formulations. We first recall the following result
[23, 18, 17]. Here and in the following, I = B(BTB)~'BT denotes the orthogonal
projector onto span{B}.

PROPOSITION 2.1. Let X\ be an eigenvalue of MP~'. Then either A =1 or X is
a nonzero eigenvalue of (I —II)A(I —1II).

Due to the positive definiteness of A, the eigenvalues of M P~! are thus all real
and positive. Moreover, the eigenvalue A = 1 will be isolated if A is scaled so that
the nonzero eigenvalues of (I — II)A(I — II) are all smaller or larger than one. Un-
fortunately, the matrix M P~ is not diagonalizable and the standard analysis on the
convergence rate of residual minimizing methods ([13]) cannot be directly applied.

The inverse of the preconditioner P can be written as

o I-T B(BTB)~!
(23) P = |: (BTB)—IBT _(BTB)—I :| ’
so that
. [ AJ-Mm+0 (A-I)B(BTB)"!
(2.4) MP!= { 0 | } .

For brevity, we shall also use the notation

(2.5) MP! = { G s ]

0 I

with obvious meaning of G and S. Due to the symmetry of the matrices M and P,
the coefficient matrix in the left preconditioned system is partitioned as

1 —I\NT GT 0
PM=(MP ") _[ST I}'
When solving the right preconditioned system with a Krylov subspace method*, the
subspace Ki(MP~1,rg) is computed, while left preconditioning computes the sub-
space K (P *M, P~ 'ry). Vectors belonging to Krylov subspaces can be written in
terms of polynomials; therefore, if v € Kji1(M,rp), then v = ¢(M)ry for some
polynomial ¢ € Py, [27].

*Given a matrix H and a vector v, a Krylov subspace of at most dimension k is the space spanned
by {v, Hv, ..., H*=1y} and is denoted by K (H,v).

3



We next show that vectors in Ky (MP~1,7) and in K1 (P~ M, P~1ry) can
in fact be written in terms of polynomials in the matrix G defined in (2.5). These
results will be used in the next sections to describe the residual behavior of selected
Krylov subspace methods.

LEMMA 2.2. A vector v € K1 (MP™1,ro) can be written as

_ &) + 1 (G)Sry
(2.6) v = Qﬁk(MP 1)7‘0 _ ¢k( )TO ;[Jk@l)( ) Ty , ¢k e P,
or(L)rg
where the polynomial 1 is of degree at most k — 1 and is defined as
o) A=l
(2.7 v = { i Sl
) ())\_f EO Y #£1.

Proof. By explicitly writing the polynomial we see that the vector v satisfies
0@ = G (MPrg) |1 @ = g (1)r$?.

Moreover, since (M P~ 1)krgly., = Gkr(()l) + Gk’lsr((f) + Gk’ZSr((f) +---+ Sr(()2), we
obtain for the polynomial ¢y () = 7" i AY,

b (MP™'r0) |1n = aorl” + a1 (Gr{” + 7)) + o (G2r) + GSr? + srl?)
+ay (@) + G2l + QS + Sri) + -
= or(G)rlY + b1 (G)Sr?.

The polynomial 1 is defined as
V1N =1+ 1T+ N+ 1T +A+X)ag+ -+ 1+ A +---+ My,

For A = 1, ¢¥p—1(1) = a1 + 200 + -+ + kay, = ¢}, (1). For X # 1 we can write
(L4 A+ 4+ A1) = (1= A (1 = X\)7! so that

Grea (V) = (L= N7 (1= Nar + (L= X)as + - + (1 - A)ay)
= (1= 071 (6(1) = 6(N).

More comments on the role of ¢ and 1;_; will be given in the next sections.

We next show that a similar relation for the Krylov subspace generated with
the left preconditioned matrix can be obtained. We also observe that a polynomial
description of an element w € Ky 1 (P 1M, P ry) could be also obtained directly
from the previous result as w = P~ 1¢, (M P~ 1)ry, yielding however a less insightful
relation, at least for general ro (cf. section 5 for the case ro = [r(()l);O]).

LEMMA 2.3. A vector w € K1 (P~ M, %) with 7o = P~ry can be written as

b (PPt = o(G7)ip
(28) w=¢p(P " M)P 'ro= ST 1 (G + ()2 | o1, € Py

with Y1 as in (2.7).

Although left and right preconditioning in general generate different spaces in
which an approximate solution is computed, the first block of the approximate solution
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to the original problem (1.1) always belongs to the same space, regardless of the side

the preconditioner is employed. This is shown in the following proposition.
PROPOSITION 2.4. Let ty, = [zk;yk] be the approzimate solution to (1.1) either in

Ki(MP~ 1) or in Ki(P~*M,P 'ry). Then xj = ¢(GT)F(()1) for some ¢ € Py_q,

“lpy = [F[()l);ﬁ()z)]. (The polynomial may not be the same for the two

where 7o = P
spaces)

Proof. We first show that ¢ belongs to Ky(P 1M, P~ry) for both right and left
preconditioning. For left preconditioning, the result follows from Lemma 2.3.

Let Vi be a basis of K(MP™!,ry) with
(29) MPfle = Vi1 Hy,

and Hj, € RE+DXk ypper Hessenberg. It can be shown that Qi = P~'Vj is a basis
of Ki,(P~*M,P~'ry). Let t, = Viz, € Ki(MP~',7y) be an approximate solution to
the right preconditioned system M P~'f = ry. Then the approximate solution ¢ to
the unpreconditioned system Mt = rg is computed as t; = Pl =P Wiz, = Qrzr
so that ty € Kp(P~1M, P~ 1ry).

Using (2.9), we obtain P"'MQj = Qg+1Hy, so that the basis Q) = | ,(Cl);Q,(f)]

satisfies
T (1) (1)
ERIFAREIE
Qy, Qi

and in particular, GTQECI) = QECIJZlHk. Therefore, span{Qg)} = Kk(GT,qil)), where

qgl) is the first vector of the matrix Qg). Recalling from tj, = Q2 that xp, = Qg)zk,

the result follows. O
The proposition above shows that the convergence to the first block of the solution
may depend only on the properties of the matrix G.

3. Solution methods. The preconditioned coefficient matrix is nonsymmetric,
therefore nonsymmetric solvers seem to be required. Preconditioned GMRES deter-
mines an approximate solution in the generated Krylov subspace so as to minimize
its residual 2-norm. This optimality condition is obtained by explicitly constructing
an orthogonal basis of the computed Krylov subspace [27]. Due to the high com-
putational cost per iteration, GMRES in its original implementation is discarded in
practical situations. Quasi-optimal methods are preferred: these give up optimality
by omitting the generation of the full orthogonal basis (e.g. restarted GMRES, BiCG,
BiCGSTAB).

Classical Lanczos—type approaches such as BiCG employ short—term recurrences
to generate the subspace by imposing a bi-orthogonality condition between the ba-
sis elements of two distinct subspaces. The computational cost grows only linearly
with the number of iterations, while quasi-monotonic behavior of the residual norm
may be obtained by employing a smoothing procedure [5, 30]. Given the starting
residual 79 and an auxiliary vector 7o, the two Krylov subspaces Ky(M P~ ry) and
Kp((MP~1)T 7)) are constructed if right preconditioning is used; the two spaces
are usually called right and left Krylov subspaces. Analogously, if left precondi-
tioning is considered, the right and left generated spaces are Ky(P~'M, P~'rg) and
Kp((P~'M)T,#). By comparing the two preconditioning approaches, it is clear that
right preconditioning with 7y = P~!ry exactly corresponds to reversing the role of
right and left spaces in the left preconditioning with 7y = r9. This consideration,
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together with the result of Proposition 2.4, shows that left and right preconditionings
of the indefinite problem provide similar information, at least for the first block of
the approximate solution vector. We will see that care must be taken in the approxi-
mation of the second block when right or left preconditioning is applied. We should
remark, however, that often the second block vector refers to terms that do not have
physical meaning and therefore are discarded in real applications.

Because of the symmetry of P and M, a lot of redundant information is generated
when constructing the right and left spaces. This is clearly seen when choosing 7y =
P~'py as auxiliary vector in right preconditioning. Indeed, in this case,

(MP~NT)efy = (P M)*#y = P~ (M P~")¥rg, VE >0,

so that vectors in the left space Ky((MP~1)T ) can be simply obtained by premul-
tiplying by P! vectors in the right space Ky(M P~ rg).

This is a special case of the more general J — symmetry property. A matrix H is
called J-symmetric if there exists a nonsingular matrix J such that H”.J = JH, that
is H is (real) symmetric with respect to J. It was shown in [15] and later developed
in [6] that J-symmetry can be exploited so as to decrease the computational cost
of nonsymmetric Lanczos processes. In summary, when the coefficient matrix is J-
symmetric, the auxiliary Lanczos recurrence that is used to generate the left space is
obtained at low cost from the computed right basis vectors. For right preconditioning,
H = MP~' and J = P!, while for left preconditioning, H = P~'M and J = P;
We refer to [6] for implementation issues concerning J-symmetry. J-symmetry of
the preconditioned matrix was used in [23, 24] to enhance the efficiency of iterative
solvers on real application problems.

It already appears from the results given so far that if nonsymmetric short-term
recurrence methods are applied, the analysis and the experimental results will sub-
stantially differ depending on the choice of the auxiliary vector. In this paper we
shall focus on the special choice 7y = P~!rq for right preconditioning and 7y = rq for
left preconditioning, which lead to convenient computational savings as shown above.
Moreover, we shall see that these choices of auxiliary vector 7y also entail fundamental
theoretical considerations.

4. General convergence results. General convergence results are not easily
derived due to the nontrivial Jordan structure of the coefficient matrix M P~!. This
however, turns out to be unnecessary, since the block form introduced in (2.4) allows
us to write the residual norm in terms of polynomials in G. From these, upper bounds
for the residual norm can be readily obtained. More insightful relations can be written
when the right-hand side of the system (1.1) is of the form [f; 0], that is when g = 0.
We anticipate that setting g = 0 is not restrictive, since the starting approximate
solution can be chosen so as to fall in such framework. We shall focus on the general
case in this section, while the rest of the paper will be devoted to the analysis for
g=0.

For a diagonalizable coefficient matrix C' € R"*", a bound on the GMRES resid-
ual norm can be given as ([13])

I M < lrolls2(Q) min  max |¢(A)],
¢>(0):kl i=1,...,n

where A1, ..., \, are the eigenvalues of C' and k2(Q) := ||Q||||@ ]| is the condition
number of its eigenvector basis Q. Although MP~! does not have a full system
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of eigenvectors, using the notation and the result of Lemma 2.2, a bound on the
convergence of the GMRES residual can be written in terms of polynomials in the
matrix G = A(I —II) +II. Indeed, the right preconditioned GMRES residual satisfies

[l MEES| 2 = min {|(MP ™ )ro]|*
¢(0)=1

min (|lo(@)rs” +w(@) s 1P + [0V PIrg 1) .

¢(0)=1

(4.1)

where the polynomial ¢ is of degree at most k — 1 and is defined through ¢ as in (2.7).
The presence of ¢ in (4.1) shows that ¢ is chosen so as to have small derivative at
the unit value, which seems to suggest that ¢ will grow only slowly in the neighborhood
of one.
Analogously, using (2.8) with 7o = P~!r, left preconditioning gives

I M2 = min (|(P~ M) |2
k

#(0)=1

(12) min ([l6(GT)7" 2 + 1STH(GR + (L 1)

#(0)=1

5. The case g = 0. This section serves as introduction to the following sections,
where we shall focus on the case in which the original problem satisfies ¢ = 0. We note
that even though g # 0, the starting approximate solution o can be chosen so that the
starting residual has the form ro = [so; 0], yielding in practice an equivalent setting
as if g were equal to the zero vector. For this reason, we shall assume throughout this
and the following sections that ¢ = 0 and ¢ty = 0, so that 7o = [f;0].

We start by analyzing right preconditioning, which provides the most unexpected
results in practical circumstances. We will show that for ¢ = 0 the convergence
analysis of GMRES can be carried out by only employing the upper left block matrix
G in (2.4). Moreover, we show that simplified BiCG behaves very differently than
expected, and that its convergence is strictly related to that of preconditioned CG on
the indefinite problem.

In our analysis we will take advantage of some basic properties of matrices P~!
and M P~! when applied to a vector [v;0]. Namely, it follows that

o ()= (o). e (5)-(%)

Actually, there is a connection to the solution of the linear least squares problem
associated with the matrix B and the right-hand side vector v: while the vector
(I — v is the least squares residual, the vector (BT B)"!B”v is the least squares
solution.

If left preconditioning is used, then the condition ¢ = 0 may not lead to significant
changes in the generation of the Krylov subspace basis. Indeed, the vector generating
the Krylov subspace in such case is 7o = [(I—H)r(()l); (BTB)*lBTr(()l)] which in general
will not have zero blocks. We shall see later on that this fact does not represent a
serious difficulty for Lanczos—type methods.

6. The GMRES method. By writing the GMRES residual as r{MRES =
dr(MP~Y)ry, where ¢ is the optimal GMRES residual polynomial, the optimality
of the residual can be expressed only in terms of the matrix G see also [23].
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COROLLARY 6.1. With the notation of Proposition 2.2 and for ro = [so;0], the
right preconditioned GMRES residual satisfies

GMRES :
lIre = min [[$(G)so]|-
ke
#(0)=1

Assuming G = A(I — II) 4+ 1T diagonalizable, we obtain

(6.1) [P MBS < lrol[w2(Z) min  max [¢(A)]
€l i=1,--,n
$(0)=1
where A1, ..., A, are the eigenvalues of G and Z is its eigenvector matrix [23]. Conse-

quently, although the system matrix M P~! is non—diagonalizable, the rate of conver-
gence of preconditioned GMRES depends only on the eigenvalue distribution of the
block A(I —II) + IT and on the conditioning of its eigenvector basis. In the following
proposition, we show that the matrix A(I —II) 41T does have a full set of eigenvectors
and give a bound for its condition number. This result first appeared in [23] under
stricter conditions.

PROPOSITION 6.2. Let Z = [Z1, Z5] be a nonsingular eigenvector matriz of (A(I—
) + II) with (A(I —1I) + II)Z; = Z1L and (AL —II) + I)Zy, = Z» with L =
diag(li;), li; € R and €;; # 1. Then Zy can be written as Zy = [Z)1 3, Z2,2] with
span{Zy o} =span{Il}, and Z, > can be chosen so that

k2(2) < (121, Za 2]l + 1)%.

Proof. Since all the eigenvalues of (A(I — II) + II) are real, Z can be taken to be
real. Left multiplying both sides of (A(I — II) + I1)Zs = Z> by (I — II), we obtain
(I —IMA(I —I)Zy = (I —)Zy. Let [ug,...,ux] = (I — I)Z5. Then for each
j=1,...,k it must be either u; = 0 or u; is an eigenvector of (I —II)A corresponding
to the unit eigenvalue. Then we can write Zy = [Z12,Z2,2] with (I —II)Z1 5, =0
and span{Z; » }=span{Il}; moreover, since Z; » is an eigenbasis corresponding to the
eigenvalue one, we can take Z; » to have orthogonal columns, so that ||Z7 »|| = 1. Set
7 = [Z1,Z5,2] and let [Y7,Y5] be such that [ZA,Z:[’Q]_I = [V1,Y5]T. It can be shown
that Y7 is an orthogonal basis of eigenvectors of (I —II)A(I —II) corresponding to all
its nonzero eigenvalues. Therefore, ||Y1]| = 1 and [Y3, Z1 2] is an orthogonal basis of
R”. Explicitly writing the condition [V, Y5]7[Z, Z1 5] = I, it can also be verified that
Y2 = —le(ZATZLQ) + ZLQ so that

I -Z77,
I

i, ¥50 = 3,21 |

}H < (1+]2)).

Using k2(Z) = ||[Z, Z1.2)|| - I[Y1, Y2]||, the bound for k2(Z) follows. O

Note that k2(Z) only depends on the norm of a section of the eigenvector matrix.
Since eigenvector norms can be chosen arbitrarily, it follows that x2(Z) will not be
much larger than one. More precisely, the result in Proposition 6.2 shows that k2(Z)
does not depend on the problem dimension. This fact is of great importance when
solving systems arising in the discretization of differential equations by means of finite
element methods [23].



Using standard results on Chebyshev polynomials to bound the polynomial min—
max problem [13], we also obtain

k
Ry, (VA1)
llroll ~ — VE+1

where kK = Apaz/Amin stands for the ratio of extremal eigenvalues of the generally
nonsymmetric matrix A(I —II)+1II (and so it is not its condition number!) and where
7y is a constant that bounds ks (Z).

An analogous result is well known to hold for the M -—norm of the relative PCG
error, with v = 1 and when M and P are positive definite.

When using left preconditioning, fewer simplifications take place. Using Propo-
sition 2.3 the following relation for the left preconditioned GMRES residual can be
simply obtained. The minimization problem (6.3) follows from (5.1) with

—1| #(G)so | _ (I —1Io(G)s
(6.2) P |: 0 0 :| - [ (BTB)ilBT(]ﬁ(G?)So

COROLLARY 6.3. The left preconditioned GMRES residual norm with ro = [sq; 0]
can be written as

[ MEES |2 = min [|¢(P~" M)P~ro||?
#(0)=1

(6:3) = min (|7 = M(G)sol* +[I(B"B) " BT ¢(G)soll”) .
#(0)=1

More directly, from (6.2) we also obtain

™S < P min (|6(G)soll
k

$(0)=1
< 1P Hlllrolls2(2) min  max [p(\;)],

where A;’s are the eigenvalues of G with corresponding eigenvector matrix Z. The
norm of P~! is bounded as (cf. e.g. [25])

2
.1
1+ 40,m(B)2 — 1 }

1P < max{

where i (B) is the smallest singular value of B.

7. Other nonsymmetric solvers. In this section we briefly discuss nonsym-
metric solvers that employ short—term recurrences and which can be used for solving
our preconditioned system for g = 0.

Motivated by the considerations in section 3, we consider the implementation
of simplified Bi-CG as short—term recurrence approach. We next show that for ro =
[s0; 0] and provided that 7y = P~ 1ry, simplified Bi-CG is equivalent to the CG method
applied to the system Mt = b with preconditioner P.

We start by recalling the classical right preconditioned BiCG recurrence: given
ro, 7o and setting pg = ro and pg = 7o, for £ =0,1,... we have
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~L.symmetric Bi-CG(MP~1) PCG(M)
o= (%)
Yo
o) _ (%0 g _ (50
)=(%) n=s-ito=(5)
-
k=0

k=0,1,...

T
Yo

o
N——

A _ (re,P7 )
= (MP_1< k> P_1<Sk>) Ok = (;k,MkaS
0) 0
Tr4+1 Ty N U

(20 ) = (%) s () T
(Skgl>:(sok>—dkMP1 (Z: Tk4+1 :rk—akMpk
: ((8%1)’?1(8’?1)) (ris1, P~ i)
By = B, = Lanb e

Sk ) Sk (re,P=1ry)
((0>’P <0>)

P (lejill> =P (SkOH) + pu P (ij) Pre1 = P lrppr + Brpi

Fic. 7.1. Equivalence of right preconditioned BiCG and PCG for ro = [s0;0] and 7o = P 1lrg.

ag = (Fr, %)/ (Pr, MP~'py)
te+1 =tk + arpr

Tht1 =1 — ap M P 'py Fr1 = 7 — ag P71 Mpy,
Br = (Fhg1,Ths1)/ (Fr, 1)
Pkl = Tky1 + BrDr Dk1 = Try1 + Brbr

Using J-symmetry (with J = P~!) and by setting 7o = P~'ry we obtain 7 =
P~1r, for all subsequent k > 0, and analogously for . Therefore, the iterates 7y, Py
can be computed explicitly from rj,p, and the auxiliary “tilde” recurrence can be
omitted. The resulting algorithm is nothing but the usual implementation of the CG
method preconditioned with the indefinite matrix P [8]. In Figure 7.1 we report the
obtained J—symmetric BiCG recurrence versus the Preconditioned CG recurrence for
the choice 1o = [so; 0]. If we look at the formulae of both algorithms in the figure, it is
clear that &j, = «ay, and Bk = B and both algorithms are equivalent for t; = [z1; yr],
and if ry = [s1;0], pr = P~ '[ug;vi]. This condition can be easily proved. Indeed, if
To = [80;0] and due to (5.1), the vector po = P~trg = [p(()l);p(()2)] satisfies BTp(()l) =0
which gives Mpg = [Apt()l) +Bp(()2); 0]. Using induction, one can show for all j = 0,1, ...

(1)

the properties BTpg.1+)1 =0 and Mpjt = [Aij + Bpg-i)l;O], which imply that r;,

can be written in the form ;41 = [s;41;0].

Equivalence can be also shown in the case of left preconditioning. Indeed, the P-
symmetric BiCG applied to the preconditioned system with coefficient matrix P~ M
and auxiliary vector 7o = 7¢, is equivalent to Preconditioned CG: more precisely, the
quantities t; and pj, coincide, while the left preconditioned BiCG residual corresponds
to the preconditioned residual iterates P~ !ry,.

10



We note that simplified QMR can be also viewed (at least in exact arithmetic) as
simplified Bi-CG method with the QMR residual smoothing procedure applied on its
top; cf. for instance [14, 30].

8. Preconditioned CG. In light of the considerations of the previous section,
we see that simplified BiCG for g = 0 reduces to standard preconditioned CG applied
on (1.1) with preconditioner P. Clearly, the indefiniteness of both M and P does
not make the algorithm robust, and breakdown may occur, as observed in [18, 19];
however, in [18] safeguard strategies were suggested to overcome possible breakdown,
which the authors encountered at convergence stage. In this section we give a closer
look at the behavior of CG on the indefinite system (1.1) and give explicit formula
describing the possible (mis)convergence of the method.

Given the linear system Mt = b, initial guess ty with ro = b — Mty and the
preconditioner P, the preconditioned CG algorithm (PCG) generates iterates t; with
residuals 1, = b — Mt and preconditioned residuals z, = P~ 'r,, k = 0,1,... such
that the error e, = t — t;, satisfies

er € eo+ {20, -+, 2k} egsz :ekTMPflMej =0 j=0,...,k

If P and M were positive definite then the M—norm of e; would be minimized over
eo + {20, -, 2r}. The error e; can then be written in the form e = ¢y (P~'M)eo,
where ¢y, is the CG polynomial of degree k such that ¢5(0) = 1. The residual vector
1y, satisfies ry = My (P~ M)ey and

re L {z0,--, 2k}

We have already shown that since ro = [so; 0], then all subsequent r; have second
block component equal to zero, that is r; = [s;;0], j = 0,1,...,k. In particular,
this implies that the approximate solution [xy; y] satisfies BTz = 0 or, equivalently,

BTeg) = 0. The preconditioned residuals z;, j = 0,1,...,k then satisfy the relation
Mz; = [(I —1II)s;;0], so that the A/—orthogonality of the error e = [eg);eg)] gives

0=ef Mz = (M (I-M)s; j=0,... k.

Therefore, the condition on the error is only imposed on the first block component.
The presence of (I — IT) shows that only the component of the error in the kernel of
B is forced to be orthogonal to the previous residuals, and the error is minimized (in
the indefinite M—-norm) only in a subspace of the kernel space of B. Moreover, since

BTeg) =0for k=0,..., then
(8.1) ef Mep = (ef)T4el” >0 velV #0

so that ||ex||ar is always non—negative. Next result follows from the properties of the
preconditioned residual in the PCG method.
PROPOSITION 8.1. Let eg = [e[()l); 6(()2)] be the starting error of PCG. Then

6 (P~ Meollar = min 6(P~* M)eollar = min [|6((I =AU —I))ep” .

#(0)=1 #(0)=1
Proof. We have to prove for every polynomial ¢ that

(P~ M)eollar = [|6(( — A — T0))el | a-
11



Since BTe(") = BTz = 0, we have that Mey = [Ae(") + Bel?;0] and therefore
P~'Meg = [(I — ) Ael"; %] Tt also follows that ¢(P~1M)ey = [o((T — ) A)ell): 4.
Since e(()l) =(I- H)egl), and using a similar approach as in (8.1) we obtain

[6(P* M)eoll3; = [l6((I — ) A(I — I))el" |3

a

Since e(()l) =(I- H)e(()l), the M-norm of the error e, = ¢ (P~'M)eq is minimized
only over the set of nonzero eigenvalues of (I —IT) A(I —II). We thus have the following
bound

: 1 (1) .
(8.2) min [|o(P~"Meollmr < lleg "4 min  max [$(3)]
#(0)=1 #(0)=1

where [a, A] is the smallest interval containing the nonzero eigenvalues of (I —II) A(I —
IT). Using once more standard Chebyshev polynomial results, we see that the M-norm
of the error decreases asymptotically at least as the optimal Chebyshev polynomial
on [a, f]. On the other hand, the residual norm of PCG (both the preconditioned
residual and the true residual) does not obey the corresponding asymptotic rule and
the convergence curve may differ dramatically. This is due to the fact that the quantity
llex||ar may be zero for nonzero ey, with eg) =0 and e,(f) # 0 (cf. (8.1)), showing
that || - ||a is not a definite norm. We next show that this is the reason why the
energy norm (the M-norm) fails to describe the convergence of the PCG residual on
this problem. The residual r, = b — Mt;, satisfies

T = Mp(P™'M)eg = or(Ad _OH) +Mso

Let A(I —II) + IT = ZAZ ! be the eigenvalue factorization of A(I —IT) + II. Then

Irell = [lox (A(I — II) + I)so|
(8.3) < k2(2) [Isoll [lok ()] < k2(Z) ||s0ll max{pmaz, |dx(1)]}

where ¢pqz = maxyepa,) [¢r(A)| and ¢ is the optimal PCG polynomial in [a, 3].
While ¢a. decreases as expected, |¢r(1)] might not decrease (if it does at all) at
the same rate if 1 & [a, 5]. Therefore, the rate at which the bound of ||r|| decreases
depends on the value of the PCG polynomial ¢ at A = 1. A similar dependence was
already observed for GMRES. However, it is more crucial for PCG, since the optimal
polynomial ¢y, is minimized in [«, 8], which might not contain the value 1, whereas in
GMRES it does contain it. Assuming, however, that 1 € [a, §] and using the standard
result on Chebyshev polynomials in (8.3) (see e.g. [13]), the following estimate holds
for the relative residual norm of PCG

el VE -1\
&4 wwéh(ﬁ+ﬂ’

where v is a constant close to one that bounds k2(Z) (see Proposition 6.2), and &
stands for the ratio of extremal nonzero eigenvalues of the symmetric positive semi-
definite matrix (I —II) A(I —II), which can be bounded further by x(A). At first sight,
this result may sound unexpected. Nevertheless, the convergence of PCG becomes
natural when recalling the equivalence between indefinite preconditioning and the
null-space method (cf. [24]).
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We shall see in the next section that the problem can be scaled so that the
condition 1 € [a, 8] is satisfied and the bound (8.4) holds.

The typical situation when 1 ¢ [a, 8] is the occurrence of breakdown before the
residual has dropped below the required (sufficiently small) tolerance. Nevertheless,
there is a remedy how to avoid the unsuccessful termination of the PCG method. Since

the first part of the error eg) converges to zero, in exact arithmetic the computation

terminates with the breakdown (rg, P~1r;) = (e, Mey,) = 0 which results in e,(cl) =0.

Then using s = Aeg) + Begf) = Begf) we can correct the approximate solution (see
[19]) as

(8.5) (Zj) - (;’;) + (Z;’:;) = (Zj’;) + ((BTB)OlBTSk> .

In particular, this shows that checking the residual norm may be misleading, and may
lead to pessimistic expectation on the obtained approximation. In the lack of better
knowledge of estimates on the error norm (cf. for instance [9]), it is clearly desirable
that this correction step be avoided and that the method terminate successfully on
both components of the error. This is discussed in the next section.

o L =100

S,
T
S,
T

=1

S,

residual norms i r, Il
A-norm of errors Il x = x, Il ,

S,
T
S,
T

I I I I I 107 I
0 10 20 30 40 50 60 0 10 20 30 40 50 60
iteration number iteration number

F1G. 9.1. Residual norm (left) and error M-norm (right) history of PCG for various values of T.

9. Conjugate gradients and diagonal scaling. In the previous section we
have shown that while the M —norm of the PCG error must necessarily decrease, the
2—norm of the residual may not decrease at the same rate as the iteration proceeds,
or may not converge at all. The rate of convergence, when measured by the norm
of residual, strongly depends on the value of the PCG polynomial at the eigenvalue
1, which may be outside the interval that contains the nonzero eigenvalues of (I —
IT)A(I—II). This problem, however, can be easily overcome by pre—scaling the original
coefficient matrix as described below.

If A is symmetric positive definite and D =diag(A), then the eigenvalues of the
matrix D=2 AD™= are either all ones or are contained in a nontrivial interval [a, 4]
strictly including the unit value!. However, this fact does not necessarily imply that

TThis can be shown in a number of ways. Martin Gutknecht proposed the following: The n x n
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also the spectral interval of the projected matrix (I — I1)D~2 AD~3(I — II) includes
the unit value, although this is usually the case. Standard theory only ensures that
the nonzero eigenvalues of (I—II)D~z AD~2 (I —1II) are contained in a subset of [a, ],
which may or may not include the unit value. Nevertheless, this problem can be solved
by means of a simple scalar scaling of A as follows. Let v € R™ be any nonzero vector
with unit norm such that v = (I — II)v and let y = v Av > 0. Then the smallest
interval containing the nonzero eigenvalues of the matrix F, = (I —1II)(x 1 A4)(I —1I)
includes the unit value. Indeed, let A,in, Amqae be the nonzero smallest and largest
eigenvalues of F), respectively. Then

:I:TFXa:
Amar = Max

> UTFX’U =1
0#£z I'x

and, using standard variational arguments (see e.g. [8]),

T
' Fyx
ANmin = min TX < UTFX’U =1.
0#z lspan{B} I T
In terms of the quantities in the original problem, the theory above is recovered
by simply rescaling the saddle point problem as

Di*MDy%i=Dy*b i=Dy%t D, =diag(xI,x ‘1),
and then using the corresponding indefinite preconditioner. It should be also men-
tioned that scaling with D, does not affect the contraint matrix B.

As a general implementation rule, we suggest to first scale A by its diagonal,
which in several applications makes the preconditioned problem independent of the
mesh parameter, and then employ the additional scaling matrix D, to ensure that
the preconditioned CG method converges at the expected convergence rate.

In the following examples we show the behavior of PCG with respect to the
location of the interval [a, 5]. We emphasize that analogous results could be obtained
by using simplified BiCG with right preconditioning.

We consider the following setting: n = 25,s = 5,

A = tridiag(1,4,1) e R™*"® B =rand(n,s) f=rand(n,1), ¢=0.

The nonzero eigenvalues of (I —II) A(I —1II) are in the interval [, 5] = [2.1268, 5.8275].
We consider two diagonal scalings of A that provide matrices D=3 AD~% whose spec-
tral interval is shifted. Since the diagonal of A is constant, this simply amounts to
considering matrices of the form D = 7I. We shall denote by [a., 8;] the correspond-
ing eigenvalue interval. Clearly, 7 = 1 gives the original matrix, while 7 > 1 shifts
[ar, B7] towards zero. The value 7 = 4 is optimal in the sense that it corresponds to
the choice D =diag(A). No scaling with , as described in section 9, is carried out.
In Figure 9.1 (Left) the exact residual norm history of PCG for 7 = 1,4,100
is reported, while Figure 9.1 (Right) shows the corresponding M—norm of the error.
Both residual and error (M )—norms fall to machine precision level with the prescribed
asymptotic convergence behavior for 7 = 4. For 7 = 1, [ay, f1] = [2.1268, 5.8275] and

1 1
matric D™ 2 AD™ 2 has trace n. Since the trace is the sum of its (positive) eigenvalues, then either
all eigenvalues are equal to 1, or there exist at least one eigenvalue less than 1 and one eigenvalue
which is greater than 1, that is 1 €]a, B.
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the residual norm does not decrease at the same rate as the M —norm of the error, since
the residual polynomial might not be small at the unit value. This is clearly observed
in the figures. It should be mentioned, however, that we do not expect the residual
to grow unboundlessly because of the constraint ¢(0) =1 (cf. e.g. Proposition 8.1).
Mitigating effects on the residual norm (cf. Figure 9.1 (Left)) no longer take place
for 7 = 100, since a; < fBr < 1 and ¢(1) may be substantially larger than one.
Surprisingly, complete failure of the method is reported for 7 = 100, where at least
the A—norm of the error should converge to zero, in exact arithmetic. In fact, finite
precision arithmetic computation is responsible for this failure. The behavior of PCG
on the indefinite problem in finite precision arithmetic is discussed in section 10.

We next show the same kind of behavior on a real application problem. We
consider the potential fluid flow problem in a rectangular domain with homogeneous
Neumann conditions and Dirichlet conditions imposed on a part of the boundary
[20, 22]. General prismatic discretization of the domain is used and a mixed—hybrid
finite element formulation is considered [16, 20]. The lowest order Raviart-Thomas
finite element approximation to the problem leads to the symmetric indefinite system
of the form (1.1) of total dimension 868. The positive definite block A represents a
discrete form of the tensor in the Darcy law describing the physical properties (hy-
draulic permeability) of the porous medium in the domain. The off-diagonal block B
describes the geometry of the domain and the fulfillment of Neumann boundary con-
ditions. The dependence of the spectrum of M on the discretization parameter (mesh
size) was analyzed in [21] and the rate of convergence of unpreconditioned MINRES
method applied to the indefinite system (1.1) was estimated. The eigenvalues of the
matrix (I — II)A(I — II) are contained in [4-1073,8 - 102]. In Figure 9.2 we report
the convergence history of preconditioned CG and GMRES on the unscaled (left plot)
and scaled (right plot) problems. Scaling with xy was not necessary on this problem.
The reported residual is the true residual given by the current approximate solution.
In Figure 9.2 (Left), the GMRES residual norm converges towards its maximum ac-
curacy with the expected asymptotic slope. The spectral distribution explains the
divergence of the CG residual, while the M-—norm of the CG error converges to its
final accuracy after few iterations. The connection between the behavior of the error
and the residual of PCG in finite precision arithmetic is discussed in detail in the next
section.

Figure 9.2 (Right) confirms that scaling optimally cures the problem, and maxi-
mum accuracy is obtained with both methods.

10. Behavior in finite precision arithmetic. We have experimentally ob-
served in the previous section that round—off may take large part in the finite precision
behavior of PCG on the indefinite problem. In this section we discuss the maximum
attainable accuracy of the preconditioned CG scheme, measured in terms of the A—
norm of the error x — Tj, where Zj is the first part of the approximate solution
computed in finite precision arithmetic. Computed quantities will be identified by
upper bar.

It is well known that there is a limitation in the accuracy of the approximate so-
lution computed via the CG recurrence. Namely, the residual norm obtained directly
from the computed iterates ty as ||b — Mty|| cannot decrease below a certain level,
which is called the maximum attainable accuracy of the scheme. Using the theory of
Greenbaum and after slight modification of Theorem 1 given in [12] we can formulate
the following proposition.

ProPOSITION 10.1. Assuming that the initial residual ro is computed exactly,
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the gap between the true residual b — Mty and the recursively computed residual 7,
can be bounded as

(10,06~ 38 =l < R (] + 6+ 2000+ 0)'72) e =5

where p stands for the maximum number of nonzeros per row in the matriz M, and
€ denotes the machine precision.

If we assume that the method converges, we can expect that even the norm of the
recursively computed residual 75, will decrease far below the machine precision level.
Consequently, from the bound for the gap we receive the bound for the maximum
attainable accuracy level (measured by the true residual norm) which depends on the
largest error norm during the whole process of convergence. It was shown by Green-
baum ([12]) that the growth in the norm does not occur for the error or residual norm
minimizing methods (with respect to any positive—definite norm). Unfortunately,
since in our case the “M-norm” of the error is minimized, and M is indefinite and
does not induce a norm, these results cannot be applied directly to our scheme. The
right—hand side of (10.1) can be further bounded in terms of the residual norm using
ellt — ;|| < el|lM~Y|||7;]] + O(e?), therefore the bound on ||(b — M) — 7 || depends
in general on the maximum residual norm during the iteration steps 7 = 0,..., k. We
assume, however, that our problem is well-scaled and that the norm of the computed
residual ||7g|| converges far below machine precision. Under these assumptions, con-
vergence is usually monotonic or nearly monotonic. Thus the maximum attainable
accuracy, measured by the true residual norm, can be assumed to be at the level
p(k, u,n + m)ex(M)||7o||, which is the level one gets for the standard CG algorithm
(see [12]). Here, the term p(k,u,n + m) stands for a low degree polynomial in k, p
and n + m and it does not play an important role in our considerations. The fact
that the numerical behavior of this scheme depends heavily on the size of computed
residuals is already known and it was analyzed in [11], where iterative refinement
techniques and other residual update strategies were proposed in order to reduce the
errors caused by large residuals. For the A—norm of the error x — Zj, the following
bound holds in our case.
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PRrROPOSITION 10.2. The A-norm of the error x — Zj, can be bounded as
Iz = Zklla < Mz — 2|l + ysll(1 = AT = 1) (z — )|

where 71 = |AII'?, 75 = (L + (k(4))"/?) and 73 = [|A7]/>.
Proof. Since Ilz = 0, the A—norm of the error é, = = — T, can be written as

(10.2) ||ex]|4 = (TLAéy, ey, + (I — ) Aéy, (I —)éy)
= (Aék,Hék) + (([ — H)A(I - H)ék, ék) + ((I — H)AHék, ék).

Using some manipulation we get

l12kl% < A8[lITTex]| + (7 — AT — elllexl + |(7 — IT) ATley | [|ex||
< AN lexllal ex ]| + 1(7 — )AL — Megl 1A exlla
+{IT = T [ A T | [|A™ 12 2] a

and the result follows. O

The first term on the right—hand side should be zero in exact arithmetic and it
describes the departure of the computed iterate Zj from the null-space of BT. The
second term will converge to zero in exact arithmetic (see Proposition 8.1). By using a
small modification of the proof in Proposition 10.2 we can get from (10.2) the following
statement.

COROLLARY 10.3. The A-norm of the error x — Xy, can be bounded as

(10.3) |z = Zilla < nl(@ —zp)l| + s/l (T = ID)(f — AZx — By)|l-

The bound on ||z — Zg||a consists of two parts the first of which is related to the
departure of Z;, from the null-space of BT; the second part is related to the projection
of the residual f — AZy — By onto N'(BT). We next give some computable bounds for
the A—norm of the error in terms of the bound in Proposition 10.1. In exact arithmetic
the second part of the residual ry = [sg; 0] should be zero. For the computed vector
Tr = [E,(cl); Ef)] this is no longer the case and we have

_ _ (1)
(10.4) (b= M) — 7 = | - A7~ B0 S
B (x — k) — 5,

From Proposition 10.1 it also follows that the residual §,(Cl) is a good approximation

to the true one f — AZ, — By, provided we are above the limiting accuracy level
given by the bound (10.1). This implies that the second term in the right-hand side

of (10.3) is close to the computable quantity ||(I — H)EI(:) ||. For the first term in (10.3)
we can write

(10.5) Iz — z) || < 61l1BT (z — 24,
where 01 = (oin(B))~!. It immediately follows from (10.4) that
(10.6) IBT(z — z1) — 5| < | (b — M) — 7|

and, again, provided that the residuals are above the level of maximum attainable
accuracy, the second part of the updated residual 5122) is a good approximation to the
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quantity BT (z—z). So we can use (10.5) to obtain the bound in terms of ||§§f) || which
is also easily computable. The A—norm of the error z — Zj, is thus well-approximated
(from above) by the maximum between the quantities ;01 ||§§3) || and ~s||(I — H)Eg) [].
In the case when the recursively computed residual 7, converges ultimately below
the machine precision level, then ||(I — H)EI(:)H and ||§,(€2)|| also converge below the
machine precision level and the quantities B (z — #) in (10.6) and f — A%y, — By, in
Corollary 10.3 can be bounded using Proposition 10.1. As a consequence, we obtain
a bound on the level of maximum attainable accuracy of the method, measured by
|| —Zk||a. On the other hand, if the system is badly scaled so that its unit eigenvalue
is at the exterior of the spectral interval of (I — II)A(I — II), then the quantities
vs|[(I — H)Eg)H and 7161||§,(€2)|| may remain at a much higher level. This leads to
low accuracy of the computed Z; which is reflected in large ||z — Zg|la. We can
summarize the considerations above by saying that a proper scaling not only ensures
the convergence of the residual norm in exact arithmetic, but also allows us to obtain
a satisfactory level of maximum attainable accuracy of the computed approximate
solution Zy.

We have already noticed at the end of section 8 that, in the general case, yj
may not converge to the solution y at all, so one can hardly expect some accuracy
in the computed approximate solution ¢, unless the correction step (8.5) is used.
Nevertheless, assuming that the problem is well scaled, y; does converge and fur-
ther considerations based on Proposition 10.1 can be made and the accuracy of the
computed second block §; can be estimated. Indeed, we have

(10.7) 1B(y = yw)ll < If — Az — Byl + [[A(z — z)l.

Considering (10.7) and using the inequality [|A(z — Zx)|| < || A[|*?||z — Zx||4 Wwe get
the bound on ||y — ||

(10.8) lly — yell < 01 (IIf — Az — Byel| + nllz — Zlla) -

Considering the inequality from (10.4)
(10.9) 17 = Az = Byi) = 571 < 10 = M) = 7|

and assuming further that ||7|| is beyond the level of machine precision, the first
term in (10.8) can be bounded using Proposition 10.1. Together with the bounds on
| — Zg||a, this gives us the level of maximum attainable accuracy of the scheme,
measured by |ly — Jk||. In the case the residual 7 is above its level of maximum
attainable accuracy, the norm ||y — || is well approximated by the maximum between
the quantities 6, [5\"[], (v2 — 1)61[|(I — )5\" || and ~,62||5\7]|.

In the following we report numerical experiments on the finite arithmetic behavior
of the computed quantities generated during the CG recurrence. We consider the
same 30 x 30 example as before and solve the system scaled by 7, for = = 100, 4, 1.
In Figure 10.1 the true residual norm of PCG for 7 =1 is reported (solid line). Since
the method does not converge to the high accuracy level on the original problem,
the solid line coincides fully with the norm of the updated residual vector ||7;||. The
norm of the departure from A (BT), measured by ||TIz;|| (dotted line), remains close
to the level of machine precision and is well-approximated by the term 7151||§§f)||
(not reported in the plot).

It is immediately clear from Figure 10.1 that the error ||z — Zg||a (dashed line)
is determined by the second term of the bound (10.3) in Corollary 10.3. Due to the
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F1G. 10.1. Behavior in finite precision arithmetic. Original problem.

poor convergence of the residual norm, the quantity ||(I —II)(f — AZ) — Bg)|| (dash—
dotted line) coincides with ||(I — H)Eg) ||. Tt is clear that in the case 7 = 1 this term
determines the level of accuracy of the computed approximate solution Zy.

Figure 10.2 shows the same quantities as Figure 10.1 for 7 = 100. For 7 = 100,
the problem becomes even more badly scaled and the residual norm (either of the
true or updated residual - their difference is almost invisible) does not converge at
all. Moreover, the departure from N(BT) is no longer close to the level of machine
precision and actually reaches the level of ||z — Z||a. This indicates that for very
irregular residual behavior (or, in other words, very badly scaled problems) the first
term in (10.3) may play an important role.

Figure 10.3 illustrates the behavior of PCG on the problem with optimal scaling
7 = 4. Both norms of the true and updated residual converge almost monotonically;
while the true residual norm remains stagnating at machine precision level, the quan-
tity ||7x|| (solid line) converges even far beyond this level. Consequently the terms
[|[I1Z|| and ||(I — II)(f — AZy — Byg)|| remain close to machine precision leading to a
very accurate (whole) approximate solution #j.

11. Conclusions. Indefinite preconditioning has recently shown to be particu-
larly attractive for solving saddle point problems arising from constrained nonlinear
programming. Short—term recurrence nonsymmetric methods are applicable, at a
cost comparable to that of symmetric solvers. However, numerical experience indi-
cated that convergence was not always guaranteed (cf. [18, 19] for the indefinite CG
method).

In this paper we have shown that there is a tight connection between short-term
recurrence methods such as BiCG and the indefinite CG method used in [18]. More
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F1G. 10.2. Behavior in finite precision arithmetic. Diagonal scaling D = 71 with 7 = 100.

precisely, they are equivalent for a special choice of auxiliary vector, with which BiCG
simplifies. Moreover, we have proved that the convergence of preconditioned CG
strongly depends on the location of the unit eigenvalue with respect to the rest of the
spectrum, so that if 1 is not an extreme eigenvalue, then convergence of preconditioned
CG on the indefinite problem is guaranteed. We have shown that this condition is not
restrictive, as it can be easily satisfied by scaling the original matrix. Scaling turns
out to be fundamental also for the stability of the method.

In spite of its indefiniteness, we have thus shown that the scaled problem can
be efficiently solved using CG with indefinite preconditioning at the same asymptotic

convergence rate as that given by preconditioned CG on a positive definite problem
(cf. (8.4)).

Finally, it is interesting to note that numerical experiments related to the work
in [23] showed that similar considerations with respect to the behavior of PCG seem
to also hold for the problem

with C' positive semidefinite, N'(B) # ) and C'+ BT B positive definite, which includes
a wider class of problems than that treated in this paper.
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