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Abstract

A procedure for computing distance-redshift statistics in inhomogeneous uni-
verses is described. Interpreting the generalized Dyer-Roeder equation as a stochas-
tic differential equation permits a treatment of the shearing forces as Brownian
movement and yields a straightforward Monte-Carlo simulation. Shear distribu-
tions taken from N-body simulations give a redshift dependent diffusion coefficient
which is used to produce a C0 analytical model approximating the Weyl term in
Sachs’ equations.
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1 Introduction

Computing curvature of geodesics and shear of nearby light rays due to inhomogeneous
sources of matter is a long standing problem. The expansion of matter on large scales can
be more than 3000 km/sec. at the current epoch, whereas the light propagation velocity
is c, 100 times faster. To resolve effects out to roughly the observable horizon, say z ∼ 5,
of inhomogeneities whose mass is less than galaxy size would then require simulations
of volumes whose sides are order of 5 Gpc., which is infeasible with current computer
technology. In the following we ask for a simpler result: if a simulation can resolve
inhomogeneities at roughly a galaxy mass scale, can we take a representative volume
whose size is still much larger than a cluster correlation length and use the statistics of
the shearing force in this volume to model increments for the evolution of shear σ at a
larger scale? For example, the simplest physically reasonable model for the evolution of
σ should be a Markov process continuous in the redshift z.
We start with the generalized Dyer-Roeder (1972, 1973) equation for the angular diameter
distance D(z) as a function of redshift z. Our principle idea is to treat σ(z) and possibly
smoothness, α̃(z), as continuous (C0) stochastic parameters. For in that case, D(z) has
well defined and continuous second derivatives:

(1 + z)(1 + Ωz)
d2D

dz2
+ (

7

2
Ωz +

Ω

2
+ 3)

dD

dz
+ (

3

2
α̃(z)Ω+

|σ(z)|2
(1 + z)5

)D = 0. (1)

The shear component is computed by integrating over the Weyl term, F , in Sachs’ equa-
tions (see Schneider, Ehlers and Falco (hereafter SEF), section 3.4.2, 1992). We argue
that at any length much larger than a typical cluster scale, the parameter F can be
approximated by a Gaussian model whose real and imaginary parts can be treated in-
dependently. The variance of a unitless form decreases roughly like a2, where a is the
Friedmann expansion factor. Large scale behavior then has a shearing force which be-
haves like Brownian motion having a variable diffusion coefficient (in z).
We write the shear as in SEF,

σ(z) = −1

2

∫ z

0

(
D(ξ)

D(z)
)2(1 + ξ)−3(1 + Ωξ)−

1

2T (ξ)dξ (2)

where T is proportional to the Weyl term in Sachs’ equations. This is

T (ξ) = −2(
c

H0
)2F (3)

= −2
1

H2
0

(1 + ξ)2
d2Φ

dz2
. (4)

Here, z = x1 + ix2 is the complex 2-plane orthogonal to the local congruence of the light
ray, and Φ(x1, x2, x3) is the local gravitational potential. The real and imaginary parts of
the shearing force are

Φzz ≡
d2Φ

dz2
= (Φ11 − Φ22)− 2iΦ12. (5)

Thus,

σ(z) = − 1

H2
0

∫ z

0

(
D(ξ)

D(z)
)2(1 + ξ)−1(1 + Ωξ)−

1

2Φzz(ξ)dξ. (6)

1



Our main point is to treat the shearing force, Φzz, as a continuous complex random variable
in z about which we can extract information from N-body simulations. It is helpful to
put (6) into a unitless form. Using the mean mass density ρ = Ωρc = Ω(3H2

0/(8πG)), and
defining a local number density n(&x) in unitless coordinates, we get

σ(z) = −3Ω

8π

∫ z

0

(
D(ξ)

D(z)
)2(1 + ξ)2(1 + Ωξ)−

1

2Rdξ. (7)

The function R(ξ) = R[1]− iR[2] is Φzz in unitless 3-D coordinates, &x, and whose real and
(negative of) imaginary parts are

R[1] =

∫

d3y n(y) [(
1

|x− y|)11 − (
1

|x− y|)22]

R[2] = 2

∫

d3y n(y) [(
1

|x− y|
)12]. (8)

Our first objective is to find sampling statistics for these two components. We extract
our statistics from an N-body simulation at each red-shift epoch and resolve the shearing
forces in a cube containing L3 cells. The samples of interest will be measured in pixels
(0 ≤ a, b ≤ L − 1) in the 2-dimensional plane orthogonal to the ray direction (say x3).
Box-size, L, was chosen to large enough to be able to neglect the tails (we picked L = 128)
to an accuracy of the N-body simulation that fills the L3 cells. Mean square errors in
force calculations of the adaptive P 3M code, Couchman (1991), are less than 2 percent.
In the lattice of cells, R has the components

R[1]
a,b,c =

L−1
∑

p=0

L−1
∑

q=0

L−1
∑

r=0

N [1]
(a,p),(b,q),(c,r)

p2 − q2

(p2 + q2 + r2 + ε2)
5

2

R[2]
a,b,c =

L−1
∑

p=0

L−1
∑

q=0

L−1
∑

r=0

N [2]
(a,p),(b,q),(c,r)

2pq

(p2 + q2 + r2 + ε2)
5

2

, (9)

and ε is a softening parameter. The appropriately symmetrized number densities covering
each octant are, each index modulo L due to the periodic boundary conditions,

N [1]
(a,p),(b,q),(c,r) =

1

〈n〉( na+p,b+q,c+r + na−p,b+q,c+r + na+p,b−q,c+r + na+p,b+q,c−r +

na−p,b−q,c+r + na−p,b+q,c−r + na+p,b−q,c−r + na−p,b−q,c−r )

N [2]
(a,p),(b,q),(c,r) =

1

〈n〉( na+p,b+q,c+r − na−p,b+q,c+r − na+p,b−q,c+r + na+p,b+q,c−r +

na−p,b−q,c+r − na−p,b+q,c−r − na+p,b−q,c−r + na−p,b−q,c−r ). (10)

The mean number density per lattice volume 〈n〉 was unity in our simulations. In unitless
coordinates 〈n〉 = L−3

∑L−1
a,b,c=0 na,b,c = 1.

2



2 Choice of increments

We wish to construct a model (say Q) for R(ξ). But first some notation: column means,
〈.〉‖, are defined by

〈Z〉‖(&x2) =
1

∆x3

∫ x3+∆x3/2

x3−∆x3/2

dx3Z(&x2, x3) (11)

(12)

for any quantity Z(x). In the discrete case, where 0 ≤ p, q,≤ L − 1 number the x1, x2

pixels of the two dimensional sample, this is

(〈Z〉‖)p,q =
1

L

L−1
∑

r=0

Zp,q,r. (13)

Within this plane, orthogonal to the ray direction x3, the sample means are defined by

〈Y 〉⊥ =
1

L2

L−1
∑

p,q=0

Yp,q, (14)

for some random variable Y whose domain is in this plane. If the universe is on-average
homogeneous and isotropic, we should have an expectation value for our model

〈Q(ξ)〉⊥ = 0.

Furthermore, the distribution of Q should be symmetric about this mean. Two choices
are evident with respect to relatively small changes ∆z = zi − zi−1 at redshift zi. The
first is by deflection planes,
2-D projection model (for example, Blandford and Narayan (1986), Schneider and
Weiss (1986a, 1986b), and Jain et al. (1999))

Q =
4

3
∆zδ(ξ − zi)S(ξ) (15)

where ∆z is the redshift depth of the representative volume at redshift zi. Complex
random variable S = S [1] − iS [2] is the shearing force (Ψzz, equations (5) and (20))
in unitless coordinates of a deflecting plane where Ψ is a 2-potential computed from
the surface density Σ of column sums of cell densities (20). The real and (negative of)
imaginary parts are respectively,

S [1]
ab =

1

〈Σ〉

L−1
∑

p,q=0

p2 − q2

(p2 + q2 + ε2)2
(Σa+p,b+q + Σa+p,b−q + Σa−p,b+q + Σa−p,b−q), (16)

S [2]
ab =

1

〈Σ〉

L−1
∑

p,q=0

2pq

(p2 + q2)2 + ε2
(Σa+p,b+q − Σa+p,b−q − Σa−p,b+q + Σa−p,b−q), (17)
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where again, all indices are modulo L. In our simulations, the mean column density
is 〈Σ〉⊥ = L. The surface density per a, b pixel is Σab =

∑L−1
c=0 nabc as in (10). This

is an impulse approximation wherein the shear is piecewise constant in each interval
zi+1 < z < zi. Hence, D(z) is only C1 continuous in that case. As we see below, for that
situation in the limit of very small step-sizes ∆z, if the variance of the shearing force is
bounded, the shear vanishes. Our proposed model is more flexible and mathematically
sound since it leads to a smoother D(z) ∈ C2. It is a
Continuous model for σ

Q = A(ξ) + B(ξ)dw(ξ)
dξ

(18)

where w(ξ) is a complex Brownian motion (e.g. see Doob (1953)). If only theA term were
present and is sufficiently singular, this is the deflecting planes model. Random variable
A must satisfy 〈A〉⊥ = 0 if the space is on-average isotropic and homogeneous. For the
same reason, B must be stochastically independent of dw(ξ). When A = 0, σ will be
a continuous Markov process. We compute B(ξ) in what follows. A more sophisticated
theory might include such a symmetrically distributed, zero-centered random variable A,
but such an inclusion poses problems with continuity in (1).
For a large fixed step-size, ∆z, these two models agree if the localized mass distribution
approximation at x3 = 0,

∆x3〈Φij〉‖ =

∫ ∆x3/2

−∆x3/2

Φij(&x2, x3)dx3

≈ c2

2
Ψij(&x2), (19)

holds, and the distributions of both are Gaussian (sampled over the &x2 points, i.e. pixels).
In the z = x1 + ix2 plane, &x2 = (x1, x2) are the coordinates orthogonal to the congruence
in direction x3. The 2-potential is

Ψ(&x2) = (constant in &x2) +
4G

c2

∫

d2yΣ(&y2) log |&x2 − &y2|. (20)

(e.g. Seitz and Schneider, 1994). Here, Σ(&x2) = ∆x3〈ρ(&x)〉‖ is the column projected
surface density,

∫

∆x3
ρdx3, for a spatial depth of ∆x3. When ∆x3 is large and the mass

is very localized, equation (19) is easy to show from the identity
∫∞
−∞ ds/(t2 + s2)5/2 =

4/(3t4). In a more general setting, this has been shown for properly softened potentials
by Couchman et al. (1998). Here we confirm this, but only for ε ≥ 3.
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3 Changing step-sizes

Let us now see what happens by comparing the two models were the step-size ∆z made
smaller to reduce truncation errors in computing σ. For the deflecting planes model,
we make the following assumptions. Sampling in the z plane, the on-average isotropic
assumption says 〈S〉⊥ = 0. Additionally, we assume

〈|S|2〉⊥ ≤ K1, (21)

that is, the variance around this zero mean is bounded. This boundedness is clearly true
in our simulations and is physically reasonable. Since 〈S〉⊥ = 0, then 〈σ〉⊥ = 0, but the
variance of σ is

〈|σ(z)|2〉⊥ = (
3

8π
)2

%z/∆z&
∑

i=0

%z/∆z&
∑

j=0

(D(zi)/D(z))2(D(zj)/D(z))2(1 + zi)
2(1 + zj)

2 ×

(1 + Ωzi)
− 1

2 (1 + Ωzj)
− 1

2 (∆z)2〈S̄(zi)S(zj)〉⊥

≤ (
3

8π
)2(1 + z)4K1

%z/∆z&
∑

i=0

(∆z)2

≤ (
3

8π
)2(1 + z)4K1z∆z

→ 0 as ∆z → 0. (22)

Here we have used the independence of the increments dictated by the Markov nature
of the evolution, (〈S̄(zi)S(zj)〉⊥ = 0, if i ,= j), the bound (21), and the α̃ = 0 focusing
theorem |D(z′)/D(z)| < 1 when z′ < z. A process σ with zero mean and with vanishing
absolute variance is zero. Thus σ → 0 as the step size ∆z → 0. Whereas it is true that
the step-size ∆z approaching zero loses physical meaning in the deflecting screens model,
mathematically it means the numerical integration procedure is unstable: it diverges to
zero as the step-size decreases. Integrating over a point process leads to inconsistent
results.
To examine what happens in the continuous σ model (18), first recall that the on-average
isotropic assumption requires 〈A〉⊥ = 0. If B and dw are independent, by equation (25)
the second term will also have zero mean. For simplicity, we assume the two components
of (18) are independent, 〈A(z)B(z)〉⊥ = 〈A(z)〉⊥〈B(z)〉⊥ = 0, although this isn’t really
necessary to claim σ does not vanish in this model. Putting bounds on the variances of
these components,

〈|A|2〉⊥ ≤ K2

〈|B|2〉⊥ ≤ K3. (23)

(24)

Again, these bounds are physically reasonable, and for K3 also true in simulation, where
we made the smoothness simplification A = 0. A little Brownian motion calculus is

5



appropriate here. The increments of a complex Brownian motion dw = 1√
2
(dw1 + idw2)

(w1 and w2 are independent) satisfy

〈dw(s)〉⊥ = 0

〈dw̄(s)dw(t)〉⊥ = ds dt δ(s− t), (25)

(for example, see Kloeden and Platten (1992), Milstein (1995), Petersen (1998)). Since
the increments dw are Gaussian, their distribution is completely determined by these two
conditions. For finite steps ∆z, we have

〈∆w(zi)〉⊥ =

∫ zi+∆z

s=zi

〈dw(s)〉⊥ = 0

〈∆w̄(zi)∆w(zj)〉⊥ =

∫ zi+∆z

s=zi

∫ zj+∆z

t=zj

〈dw̄(s)dw(t)〉⊥

= ∆z δij . (26)

Repeating the same sort of bound as equation (22), we get

〈|σ(z)|2〉⊥ = (
3

8π
)2

%z/∆z&
∑

i=0

%z/∆z&
∑

j=0

(D(zi)/D(z))2(D(zj)/D(z))2(1 + zi)
2(1 + zj)

2 ×

(1 + Ωzi)
− 1

2 (1 + Ωzj)
− 1

2 ×
(

〈Ā(zi)A(zj)〉⊥(∆z)2 + 〈B̄(zi)B(zj)〉⊥〈∆w̄(zi)∆w(zj)〉⊥
)

≤ (
3

8π
)2(1 + z)4z(K2∆z +K3) (27)

where only the first, the K2 (the |A|2) term, shrinks. These are well known results for
point processes, see for example Feller (1974). The conditions can be relaxed somewhat.
It is not necessary that variable A and the B-motion w(z) be independent to show the
resulting σ will not vanish as ∆z → 0. The -z/∆z. (number of) cross terms will be each
O((∆z)3/2), thus adding an O((∆z)1/2) term in the parenthesis on the right hand side of
(27).
We extract the B(z) parameter used in (18) from the variance of the column means of
the shearing force

|B(zi)|2 = ∆z〈|〈R〉‖|2〉⊥, (28)

where the phase of B may be arbitrarily chosen to be zero because the real and imaginary
parts of dw are statistically independent. We find from simulation that B(z) varies as a
constant power (close or equal to 1) of the Friedmann expansion factor a(z) ∝ 1/(1 + z).
See the exponents in Table 1. Explicitly, with respect to the L3 cells of the simulation
this is

|B(zi)|2 =
∆z

L2

L−1
∑

p,q=0

| 1
L

L−1
∑

r=0

[

(R[1])p,q,r − i(R[2])p,q,r
]

|2.

where R is given by (9), and zi is the redshift epoch of the representative volume. If 〈R〉⊥
is equal to 4

3S, see equations (16, 17), and the distributions are Gaussian, then at large

6



fixed step-size, we get the results, if not the philosophy, of the successive deflection planes
model.
The important difference between our Brownian motion model (18) and the deflection
planes model is the continuity of the shear (7) in z which implies that the angular diameter
distance in equation (1) makes sense: D(z) ∈ C2. When the shear from equation (7) is
only piecewise continuous, there is no consistent method of integrating it (1). Indeed,
because the shearing force in that case is a point process, not a continuous one, in the
limit of very small step sizes the shear vanishes - as we have seen in (22).

4 N-body simulation and its statistics

We used an adaptive particle-particle, particle-mesh (AP 3M) code Couchman (1991) to
simulate the evolution of a (128 megaparsec)3 volume through an expansion of 1 ≤ a ≤ 24,
where a is the Friedmann expansion factor. The relation between redshift z and the
Friedmann factor a (where a0 = 24) is

z =
a0
a

− 1.

Beginning at a = 4 (z = 5), coordinate data for 221 particles at 51 successive epochs each
separated by ∆z ≈ 0.128 were saved. From these data, the per-cell shearing forces R
(i.e. Φzz) were computed from equation (9), along with their column averages 〈R〉‖. For
comparison, we computed column densities Σ = L·〈n〉‖, and from these S [1],S [2] evaluated
from equations (16, 17). In both the 2-D deflections model and our C0 shear model, the
convolutions (9) and (16, 17) were done by Fast Fourier Transform (FFT). Simple particle-
in-cell ”charge” assignments (see Hockney and Eastwood (1981)) were used here, although
the N-body simulation itself is of higher order (see Couchman (1991)). Initial data for
the N-body simulation were given by the Zel’dovich prescription with a simple 1/k power
spectrum with cut-off (where RL = 128 mpc is the size of the box at the current epoch),

P (k) = 110 δ2
(

RL

2π

)3

k−1e−(k/0.96)16

δ = 5× 10−5.

First note that, indeed, the real and imaginary parts of 〈R〉‖ are uncorrelated. The
correlation coefficient, (e.g. Kalos and Whitlock (1986), section 2.2), of the column means
〈R[1]〉‖, and 〈R[2]〉‖ is less than 0.7 percent for each of the 51 epochs.
We now demonstrate that for sufficient softening (ε ≥ 2), that the bulk (∆z ∼ 1/10)
increments of shear are Gaussian. According to the central limit theorem, a wide class of
zero-centered, identically and symmetrically distributed random variables will sum to a
normally distributed random variable. This is the case here, where the (locally strongly
correlated) individual shearing forces are decidedly non-Gaussian, but in the bulk, a
sum of their individual contributions will be. Figure 2 shows the histograms of the real
and imaginary parts of 〈Φzz〉‖ at the current epoch, timestep 1166 in our simulation. The
sample is over the L2 = 1282 pixels of the &x2 plane. These are normalized by 3

4 to compare

7



with S, equations (16) and (17). The shearing forces in each of the L3 cells have cusped
distributions. Least squares fits to exponents ν of the ansatz p(r) = N (ν,λ)exp(−λ|r|ν),
where r is either 〈R[1]〉‖ or 〈R[2]〉‖, are shown in Figure 3. By eye, this ansatz gives good
representations for the distributions of these correlated forces.

Figure 1: Correlation coefficient between real and imaginary parts of 〈Φzz〉‖.
Samples are taken in the plane normal to the congruence.

Furthermore, such a parameterization permits a crude assessment of the convergence rate
to normality of their sums. For ν ≥ 1/2, we find that a sum of less than 128 such
(uncorrelated) random variables is normal with a χ2 confidence level greater than 80
percent. When ν < 1/2, however, convergence is seriously degraded. This is confirmed
by Figures 2 and 5: when ε ≥ 2, the 128-sum is Gaussian, but for ε < 2, the resulting
sum is too cusped.

5 Integration procedure

Equation (1), with expression (2) for σ, is non-linear as expected from Sachs’ equations
on which it is based. However, since the shearing force is small, an obvious linearization
procedure is to use the shear-free function D0(z) = (2/5)(1− (1+ z)−5/2) (Ω = 1 here) in
equation (2); see equation 4.47a in SEF. A procedure for integrating the non-linear case
is discussed in section 5.2.

8



Figure 2: Histograms of real/imaginary parts of 〈Φzz〉‖ comparing different soft-
enings ε = 1, 2, 3. Smooth dashed lines are Gaussian distributions based on the
variance. Note that as ε increases, the distributions become more normal.

5.1 Linearized version

A second order weak-sense (i.e. it gets all the moments of ∆σ right to O((∆z)2) accuracy)
integration procedure for (2) based on our estimate for the increment Rdz = B(ξ)dw(ξ)
is then

σ(z) = − 3Ω

8π(D0(z))2

∫ z

0

(D0(ξ))2(1 + ξ)2(1 + Ωξ)−
1

2B(ξ)dw(ξ)

≈ − 3Ω

16π(D0(z))2

%z/∆z&
∑

i=0

[

(D0(zi))2(1 + zi)2(1 + Ωzi)−
1

2B(zi)

+(D0(zi+1))2(1 + zi+1)2(1 + Ωzi+1)−
1

2B(zi+1)
]

∆wi+1

(29)

which is a trapezoidal rule. The discrete Brownian increment is ∆wi =
√

∆z/2(ui +
ivi), where ui, vi are zero centered, independent, univariant, normally distributed random
numbers: 〈ui〉 = 〈vi〉 = 0, 〈uiuj〉 = 〈vivj〉 = δij, and 〈uivj〉 = 0 for all i, j. One uses the
Box-Muller method for these (e.g. Kalos, (1986)).

9



Figure 3: Fits to exponents (ν) of ri = 〈R[i]〉‖ variables vs. number of time steps
of N-body simulation: p(ri) = N (µ, ν)exp(−µ|ri|ν). Scale µ, although not shown,
varies but is about 2.

5.2 Non-linear version

.
The non-linear version isn’t difficult, either. The best procedure is to use the integral
form (2) directly. Since D depends on the complex Brownian process w, we need to take
care about the interpretation of the integral appearing in the first half of (29).
Namely, since the dw increment is not of bounded variation in interval dz (its autocorre-
lation yields a δ-function, see (25)), one has to be careful. We chose the Itô rule which
assures our result will be a Markov process (e.g. Ikeda and Watanabe (1981)). All that
is involved here is to assure that the integrand in (29) is uncorrelated with the increment
dw. The procedure is simple: we compute an Euler estimate σE for σ,

σE(zi+1) ≈
(

D(zi)

DE(zi+1)

)2

(σ(zi) + φE∆wi+1) (30)

where φ(ξ) = −3Ω
8π (1 + ξ)2(1 + Ωξ)−

1

2B(ξ), φE = (φ(zi) + φ(zi+1))/2, and DE(zi+1) =
D(zi) + D′(zi)∆z is the Euler estimate for D(zi+1). The important thing is that these
Euler estimates use only old data (from step zi) and are thus uncorrelated with ∆wi+1.
Now equation (1) may be integrated for one step by trapezoidal rule using Euler estimates
for (D,D′), and σE . We replace DE in (30) with this new value for D to improve the
result for σ to finish the step.
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Figure 4: Variances of of 〈R[i]〉‖ and S [i] variables vs. simulation time: variances
from the simulations are fit to a power-law behavior in t =step/1166. The
softening parameter values are ε = 1, 2, 4. Small error bars show the variation
around the mean of choosing x3 = X, Y, Z for the congruence direction from
the simulation data. To get the coefficients in Table 1, multiply the step= 1166
(t = 1) intercept by (4/3)2.

6 Results

In Figure 5, we supposed that the individual contributions of each scatterer have a cusped,
but symmetrical distribution. Roughly, these contributions can be fit to distributions of
the type p(ri) = N exp(−µ|ri|ν), where ν ∈ (0.4, 2.1), and ri = R[i]. The normalization is

N = νµ1/ν

2Γ(1/ν) . A sum of a large number of such contributions would be normally distributed

if the distribution satisfies the Lindeberg-Feller condition [13], which they do. Since they
are correlated, however, this analysis is not convincing. Simulation provides the only clear
demonstration (see Figures 2) that summing L = 128 of them is Gaussian. From Table
1, we note that the variances of R components vary approximately as t1.3 ≈ a(z)2. Were
the N-body simulation isotropic, the coefficients of the real and imaginary parts should
have the same magnitude. That they don’t we ascribe to the fact that the simulation is
really only translationly but not rotationally invariant. The representative volume is a
cube, not a cylinder.

11



R[i] = γ0tν table
R ε = 1 ε = 2 ε = 3 ε = 4
var(R[1]) 7.22t1.48 1.90t1.29 1.01t1.27 0.68t1.27

var(R[2]) 2.67t1.39 1.14t1.30 0.59t1.28 0.46t1.28

var(|R|) 3.04t1.30 1.60t1.28 1.14t1.28

Table 1: LSQ fits to variances of real and imaginary parts of R variables. If
var ∝ a(z)2, exponent ν would be 4/3. Here, t =step/1166 is the fraction of
the simulation time.

6.1 Accuracy of the method

.
The linearized version, section 5.1, in fact, seems pretty accurate and is essentially indis-
tinguishable from the non-linear version in Figure 5.2. Indeed, we may use this to get an
analytic estimate for the variance of σ as follows. Our simplest model (31) for B is (see
exponents in Table 1)

B(ξ) =
√
0.128γ0
1 + ξ

(31)

where γ0 = 3.04 (ε = 2 case) - see Table 1. Constant 0.128 is the red-shift depth used
in the N-body simulation from which the variances of 〈Φzz〉‖ were determined. Squaring
equation (7) and taking the expectation value by the rules (25), we get for Ω = 1:

〈|σ(z)|2〉⊥ =
9|γ0|2

64π2

1

(D(z))4

∫ z

0

dξ (D(ξ))4(1 + ξ)

=
18|γ0|2

320π2(D(z))4

∫ X

1

dy y
1

5

(

y − 1

y

)4

. (32)

where X = (1 + z)
5

2 . In the integrand, we’ve used the explicit form for the shear-free
angular diameter distance D(ξ) = 2

5(1 − (1 + ξ)−
5

2 ) which will also be substituted for
D(z) on the right-hand side for the term outside the integral. The integral (32) is trivial,
and the 6 term result is then available to integrate equation (1) using an approximation
which substitutes |σ|2 → 〈|σ|2〉⊥. The resulting deterministic (not stochastic) equation is
easily computed numerically. We used RKF45 (from Watts and Shampine, available from
NETLIB) to do this. From this computation, we can plot the relative error (〈D(z)〉 −
Da(z))/Da(z) vs. step-size ∆z. Da(z) is the analytic estimate using the |σ|2 → 〈|σ|2〉⊥
substitution (32). Additionally, we can get an error estimate for the variance of D by
comparing a very small step-size result to the results for various (larger) step-sizes ∆z.
Figures 7 show the data for these comparisons. We find that the method is globally at
least O(∆z) accurate (i.e. locally second order weak accurate: see Kloeden and Grüne
(1999)).
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Figure 5: Parameter fits to raw Φzz distribution data. The parametrized model
is p(r) = N exp(−µ|r|ν), where N = νµ1/ν/(2Γ(1/ν)) is the normalization, and r is
either Re(Φzz) or Im(Φzz).

6.2 Some final remarks

In this final discussion, we comment on the philosophy of the procedure discussed in this
paper. In essence, the idea follows the central limit theorem - see, for example, the ex-
tended discussion of this theorem in Feller (1974). In its trajectory through what we have
called a representative volume, a light ray sees shearing forces due to the inhomogeneous
scatterers. If the volume is large enough, these forces add up to a net contribution of
(say) m = ∆z

δz scatterers,

Q =
m
∑

i=1

qi

of m correlated forces q. We have argued that if the universe is on-average homogeneous
and isotropic, the transverse average is zero, and the distribution is symmetric:

〈Q〉⊥ = 0.

If the sum of q’s is sufficiently large, e.g. m much larger than a cluster correlation length,
the central limit theorem would suggest that the distribution for Q would be Gaussian.
All the representation (18) says is that we approximate the above sum of correlated forces

13



Figure 6: D(z) histograms at 0 ≤ z ≤ 5, with B = 0.62 · a(z)1 = 0.62t2/3. These
results are from the non-linear integration, section 5.2. Parameter is from
Table 1, and is

√
0.128γ0, where γ0 is from the last row in this table (ε =

2). Value 0.128 is the ∆z stepsize of the N-body simulation. Scales for the
abscissas are respectively: 10−6 for the first (z = 1/2), and 10−5 for z = 1, 2, 3, 4, 5.

by

Q =
B(z)√
∆z

m
∑

i=1

δwi (33)

a sum of complex Gaussian uncorrelated increments ∆w =
∑

δw. This does not
say, however, that the increments δw ∝ q. Indeed, this is a familiar representation of
molecular forces - which are locally correlated, and non-normally distributed. In bulk,
however, the statistics become more/less normal - as shown in Figure 2. From this, the
weighting factor in (33) is proportional to (∆z)−1/2 because the number of scatterers is
proportional to ∆z (see [13], vol. II, sec. VIII.4). B(z) is a z dependent 2 dimensional
diffusion coefficient. The 2-D projection model has all q = 0 except a central one, whose
size must be of order O(m).
Finally, in this paper we have treated only the α̃(z) = 0 situation. If this smoothness
factor (0 ≤ α̃ ≤ 1) could be modeled as a function of the column density sums, Σ (see
Jaroszynski et al. (1990)), we find it will be uncorrelated with the increments of shear.
Our simulations show that both the column means 〈Φzz〉‖ and the projected 2-D forces

14



Figure 7: Relative errors in mean and variance vs. step-size ∆z. Approximation
Da is from section 6.1, variance errors are relative to ∆z = 0.001. In each plot,
errors are means of z = 1, 2, 3, 4, 5 cases, and solid lines are quadratic (α ·∆z2)
and linear (β ·∆z) fits in ∆z, respectively.

Ψzz are uncorrelated with Σ to less than 1 percent.
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Jaroszyński, M., Park, C., Paczyński, B., & Gott, J. R., Ap. J., 1990, 365, 22.

15



Kalos, M. and Whitlock, P. A., 1986, Monte Carlo Methods, Wiley-Interscience publ.,
New York.
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