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Abstract

Time dependent problems in unbounded media arise in many applications such as
acoustic or electromagnetic scattering. Numerical methods can handle complicated ge-

ometries, inhomogeneous media, and nonlinearities. However, they require an artifi-
cial boundary, which truncates the unbounded exterior domain. Therefore an absorbing
boundary condition needs to be applied at the artificial boundary to minimize the amount

of spurious reflection from it. First, the derivation of the exact nonreflecting boundary
condition for the one-dimensional wave equation is briefly reviewed. Next, the two- and

three-dimensional cases are discussed, and the trade-off between exactness and locality
exemplified through a short discussion of local absorbing boundary conditions. Then, the
derivation of the nonreflecting boundary condition for the time wave equation in three

space dimensions (Grote and Keller, 1995) is reviewed. The derivation is outlined without
all the technical details and proofs, but instead by emphasizing the underlying main ideas.

It is also shown how to combine the nonreflecting boundary condition both with the finite
difference and the finite element methods. Finally, the accuracy and convergence prop-
erties of various absorbing and nonreflecting boundary conditions are compared via two

numerical experiments.
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1 Introduction

Unbounded domains are often encountered in scientific and engineering ap-
plications. Examples are radar and sonar technology, wireless communica-
tion, aeroacoustics, fluid dynamics, earthquake simulations, or even quan-
tum chemistry. Typically the phenomenon of interest is local but embedded
in a vast surrounding medium. Although the exterior region is not truly
unbounded, the boundary effects are often negligible, so that one further
simplifies the problem by replacing the vast exterior by an infinite medium.
Clearly the numerical computation of the flow past an airfoil does not require
the simulation of the entire atmosphere.

Mathematical models of natural phenomena usually consist of partial dif-
ferential equations, whose derivation is based on physical conservation laws
(conservation of energy, etc.). Many standard numerical methods, such as
finite differences and finite elements, can approximately solve partial dif-
ferential equations. In fact, they can even handle complicated geometries,
inhomogeneous media, and nonlinearity. However, they typically require an
artificial boundary, which truncates the unbounded exterior domain, to fit
the infinite region on a finite computer. This immediately raises the purely
mathematical question:

Which boundary condition guarantees that the solution to the
initial-boundary value problem inside the artificial boundary co-
incides with the solution of the original problem in the unbounded
region ?

If we exhibit a boundary condition, such that the fictitious boundary appears
perfectly transparent, we shall call it “exact”. Otherwise it will correspond to
an approximate boundary condition1 and generate some spurious reflection,
which travels back and spoils the solution everywhere in the computational
domain. The resulting error in the computer simulation then consists of
two independent error components: the discretization error of the numeri-
cal method used in the interior and the spurious reflection generated at the
fictitious boundary. Unless both error components are reduced systemati-
cally, the numerical solution will not converge to the solution of the original
problem in the unbounded region. Instead, if one fails to reduce the error

1“...also called radiating, absorbing, silent, transmitting, transparent, open, free-space,
and one-way boundary conditions.”, Givoli, 1991
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Figure 1: A typical scattering problem consists of an obstacle, a source term
f , and incoming wave ui, and a scattered wave us. The artificial boundary
B defines the outer boundary of the computational domain Ω.

introduced at the artificial boundary while refining the underlying mesh, the
numerical solution will converge to the solution of a different initial-boundary
value problem with the approximate boundary condition.

1.1 Scattering Problems

In this article, we shall restrict ourselves to time dependent scattering prob-
lems. Typically a scattering problem consists of an obstacle, a source term
f , and possibly an incident wave ui – see Figure 1. Scattering problems
are common in acoustic, electromagnetic, and elastic wave propagation. Our
goal is to calculate numerically the time-dependent wave field us scattered
from the complex, possibly nonlinear, but bounded scatterering region.

In 1974 Smith suggested perhaps the first exact method to restrict the
computation to a finite region [2]. Let the computational domain Ω be
bounded by a convex boundary of n line segments (or planar facets in IR3).
Then the restricition to Ω of the solution in unbounded space consists of a
linear combination of 2n solutions which satisfy all possible combinations of
Dirichlet or Neumann boundary conditions. Unfortunately, this approach
has but little practical value, since a rectangular domain requires 26 = 64

2



independent numerical solutions. This example illustrates a key aspect in
the design of improved absorbing boundary conditions: it is not sufficient to
construct a new boundary condition; in addition, the computational effort
involved must be comparable to that of the numerical method used in the
interior. Otherwise it will quickly be dismissed as prohibitively expensive
and impractical.

In Section 2, the derivation of the exact nonreflecting boundary condi-
tion for the one-dimensional wave equation is reviewed. Next, we consider
the two- and three-dimensional cases in Section 3, and exemplify the trade-off
between exactness and locality through a brief discussion of local absorbing
boundary conditions. In Section 4, we shall review the derivation of the non-
reflecting boundary condition of Grote and Keller [3] for the time dependent
wave equation in three space dimensions. The derivation is outlined without
technical details, but instead by emphasizing the main ideas. We shall then
show how to combine the nonreflecting boundary condition both with the fi-
nite difference and the finite element method. Finally, we shall compare the
accuracy and convergence properties of various absorbing and nonreflecting
boundary conditions via two numerical experiments.

2 The One-dimensional Wave Equation

To illustrate the fundamental ideas underlying the derivation of absorbing
boundary conditions, we begin with a simple one-dimensional problem. In
this special situation many basic notions, in particular the exact boundary
condition, appear in a very simple form. Nonetheless, we hasten to point out
that its appealing simplicity is also misleading: the real challenges in deriving
effective absorbing boundary conditions appear only in higher dimensions.
Indeed a one-dimensional wave can only propagate in two directions, to the
left or to the right. In two or more dimensions, however, waves propagate in
infinitely many directions.

We now consider the one-dimensional wave equation on the positive real
axis,

∂2u

∂t2
−

∂2u

∂x2
= f, x > 0, t > 0. (1)

At the left boundary, x = 0, we require that the solution satisfies

u(0, t) = 0, t > 0. (2)

3



Thus, u(x, t) describes the position of an infinitely (or just very) long vibrat-
ing string, attached at its left end; hence, u = 0 corresponds to the state
at rest. The one-dimensional wave equation (1) describes the propagation
of small perturbations induced by the applied forcing f(x, t). Here we have
normalized the propagation speed to one by rescaling time appropriately.
The initial conditions of the vibrating string are defined by its position and
velocity at t = 0:

u(x, 0) = U0(x),
∂

∂t
u(x, 0) = V0(x), x > 0. (3)

It can be shown that the initial-boundary value problem (1)–(3) is well-posed:
it has a unique solution, which depends continously on U0, V0, and f .

We now make the following assumption, which defines the local character
of the problem: let the forcing vanish outside a bounded region next to the
left boundary, that is let f(x, t) = 0 for x ≥ L and for all time t > 0. Then
the positive real line separates into two distinct regions: the bounded interval
Ω = [0, L] and the interval [L,∞), unbounded yet where the forcing vanishes
identically. Both regions meet at the artificial boundary {x = L}, which
consists only of a single point. Furthermore, we assume that the string is at
rest in the exterior at t = 0: U0(x) = 0 and V0(x) = 0 for x ≥ L. We now
wish to simulate numerically the time dependent behavior of the vibrating
string in the computational domain Ω – by adding nonlinear effects it would
be easy to complicate matters further and prevent any attempt to solve the
problem analytically.

Unfortunately, we cannot apply our favorite numerical scheme in Ω and
simply ignore the new artificial boundary point. On the contrary, we must
pay close attention to the new boundary point at x = L: without a boundary
condition at x = L, the initial value problem (1)–(3) restricted to Ω is not
even well-posed. To derive a boundary condition, we first need to better
understand its role at the artificial boundary. Suppose a wave propagates to
the right inside Ω and reaches the right boundary at x = L. It must not be
reflected, for any spurious reflection will travel back into the computational
domain and spoil the solution everywhere. This spurious reflection, caused
by an inaccurate treatment of the artificial boundary, is not due to finite
precision, unlike discretization errors present in any computation. If we find
a boundary condition, which lets the waves hit the boundary without any
reflection, the solution inside Ω, with that boundary condition imposed at
x = L, coincides with the restriction to Ω of the solution in the unbounded
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Figure 2: The one-dimensional wave equation: inside the computational
domain, Ω = [0, L] the problem can be arbitrarily complicated, but in the
exterior region, x ≥ L, we assume that f(x, t) = 0 for t > 0 and that u and
∂tu vanish at t = 0.

region. Hence such a boundary condition is exact.
Inside the computational domain Ω waves propagate both to the left and

to the right. In the exterior region, however, the absence of any forcing and
the zero initial conditions preclude the appearance of any waves traveling to
the left: there all waves propagate eastward towards infinity – see Figure 2.
To derive the exact boundary condition at x = L we first need to separate
the incoming from the outgoing waves. To do so, we let v and w be defined
by

v =
∂u

∂t
+

∂u

∂x
, w =

∂u

∂t
−

∂u

∂x
. (4)

Since u satisfies the wave equation (1) in x ≥ L, we conclude that

∂v

∂t
−

∂v

∂x
= 0,

∂w

∂t
+

∂w

∂x
= 0.

Thus we can rewrite (1) as the first-order hyperbolic system:

∂

∂t

[

v
w

]

+

[

−1 0
0 1

]

∂

∂x

[

v
w

]

= 0. (5)

Its general solution is

v(x, t) = φ(x+ t), and w(x, t) = ψ(x− t),
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where φ and ψ are arbitrary functions, which are determined by initial and
boundary conditions. Therefore, v is constant on the characteristics x+ t =
c, whereas w remains constant on the characteristics x − t = c. Thus v
corresponds to incoming waves, whereas w corresponds to outgoing waves.
Since there are no incoming waves in x ≥ L, we have

v(L, t) = 0, t > 0. (6)

By applying the definition (4) of v in (6) we thus obtain the exact nonre-
flecting boundary condition for the displacement u(x, t),

(

∂

∂t
+

∂

∂x

)

u = 0, x = L, t > 0. (7)

We shall now test the boundary condition (7) via a numerical experiment.
We consider (1)–(3) with f = 0 and V0 = 0, and assume that U0 vanishes
outside x ≥ 1. Next, we restrict the computational domain to the interval
0 ≤ x ≤ 1 and impose the exact boundary condition (7) at x = 1. Both (1)
and (7) are discretized with second-order finite differences in space and time.
In Figure 3 we observe the time dependent evolution of a small perturbation,
initially located inside Ω. The initial perturbation immediately separates
into two independent waves which propagate in opposite directions. While
the first wave proceeds to the right and leaves the computational domain at
x = 1, the second wave propagating to the left encounters the ’wall’ boundary
at x = 0, changes its sign and direction, and eventually follows the first wave
only to vanish as well at x = 1. Thanks to the exact boundary condition (7),
the fictitious boundary at x = 1 appears perfectly transparent to both waves
as they leave Ω without any spurious reflection. Again we emphasize that
the problem inside Ω can be arbitrarily complicated, since the derivation of
the (exact) nonreflecting boundary condition (7) depends only on properties
in the exterior region.
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Figure 3: Numerical solution of the one-dimensional wave equation in a semi-
infinite interval. The initial perturbation separates into two independent
waves, which propagate in opposite directions (Not shown). Upon arrival at
the left ’wall’ boundary, the initially left moving wave is reflected back (It is
shown at time t = 0.4.). It then follows the first right-moving wave up to the
artificial boundary at x = 1, where both waves leave Ω without any spurious
reflection.

3 Absorbing Boundary Conditions in

Higher Dimensions

In this section we consider a highly complex but local scatterer located on
the infinite two-dimensional plane. Although we shall restrict ourselves to
the two-dimensional case, much of the present discussion carries over im-
mediately to the three-dimensional case. To separate the local phenomenon
of interest from the unbounded surrounding region, we first choose a closed
curve, which circumscribes the scattering problem. Outside this curve, the
(acoustic) medium is homogeneous, isotropic, and source free; thus all waves
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which cross this artificial boundary are purely outgoing. Although the shape
and position of this curve are arbitrary, it should be convex to ensure that
waves which have left the computational domain will never return. The
most commonly used artificial boundary is rectangular, mainly because of
the simple form of the wave equation in Cartesian coordinates.

We now consider the wave equation on the two-dimensional infinite plane,

∂2u

∂t2
−

∂2u

∂x2
−

∂2u

∂y2
= f, t > 0, (8)

with the initial conditions

u(x, y, 0) = U0(x, y),
∂

∂t
u(x, y, 0) = U1(x, y), t = 0.

By scaling time appropriately we have normalized the speed of propagation
to one. Again the phenomenon of interest is very complicated, possibly non-
linear, but local. Next, we truncate the unbounded exterior by an artificial
boundary and restrict the computation to the square Ω = [−L, L] × [−L, L]
– see Figure 1. Outside Ω we assume that neither source terms nor initial
perturbations are present:

U0(x, y) = U1(x, y) = 0, and f(x, y, t) = 0, t > 0, (x, y) ∈ IR2 \ Ω.

Again we seek a boundary condition at (x, y) ∈ B, which ensures that all
waves reach the exterior region unharmed and without generating any un-
physical reflection at the fictitious interface. Because of symmetry we only
need to consider a single edge of the rectangle, here the right edge at x = L.
Hence the exterior region lies to the right and the computational domain Ω
to the left of the artificial boundary {(x, y) ∈ IR2|x = L}. Since the initial
conditions and the forcing vanish identically in the exterior, all waves in the
region x ≥ L are purely outgoing and must propagate eastward. To avoid
any spurious reflection at x = L, the exact boundary condition must anni-
hilate all incoming waves. In the previous section we easily derived such an
exact nonreflecting boundary condition for the one-dimensional wave equa-
tion. Unfortunately, the same approach does not apply in two dimensions. In
contrast to the one-dimensional case, any fixed location (L, y) at the artificial
boundary receives incoming waves from not one but infinitely many angles
of incidence, which propagate in infinitely many directions. The distinction
between incoming and outgoing waves is now “infinitely more complicated”.
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Let û(x, ξ,ω) denote the Fourier transform of the solution u(x, y, t) in
time and in the tangential plane, parallel to the artificial boundary,

û(x, ξ,ω) =

∞
∫

−∞

∞
∫

−∞

u(x, y, t) ei(ωt+ξy) dy dt. (9)

Here we have set the solution u(x, y, t) to zero for all previous time t < 0.
Then u is related to û via the inverse Fourier transform, which resembles (9)
after exchanging u and û. Since u satisfies the wave equation (8) with f = 0
for x ≥ L, its Fourier transform satisfies

∂2

∂x2
û = (ξ2 − ω2) û, x ≥ L. (10)

To derive an exact nonreflecting boundary condition at x = L we need to
relate the normal derivative – here ∂xu – to tangential and time deriva-
tives – here ∂yu and ∂tu. From (10) we conclude that ∂xû is determined by
±
√
ξ2 − ω2 û. The sign in front of the square root discriminates precisely

incoming from outgoing waves; here the correct choice leads to the following
exact boundary condition:

∂

∂x
û = −iω

√

1− (ξ/ω)2 û, x = L. (11)

Although this boundary condition ensures the absoute transparency of the
artificial boundary, this formulation has but little value in practice. Indeed,
we do not seek a boundary condition for û but instead for u. In theory we
can always compute the inverse transform and thus determine ∂xu. However,
unlike a polynomial expression, whose inverse Fourier transform yields a local
differential operator, the inverse transform of the above expression does not
result in a simple differential operator because of the square root. Instead,
we obtain a so-called pseudo-differential operator, which cannot be evaluated
without forward and inverse Fourier transform. As a consequence, the normal
derivative ∂xu at any given point on the boundary (L, y) depends on past
values of u on the entire line x = L, and cannot be computed locally either
in space or time.

“...unfortunately, these [perfectly absorbing] boundary conditions
have to be nonlocal in both space and time”, Engquist & Majda, 1977

9



3.1 Absorbing boundary conditions

To overcome the difficulties associated with the nonlocal nature of the exact
boundary condition (11), we can replace the above pseudo-differential oper-
ator by an approximate differential operator. In doing so we give up on the
absolute transparency of the artificial boundary and accept some spurious
reflection. Such absorbing boundary conditions were proposed by Engquist
and Majda [4] in 1977, and we now briefly recall the fundamental ideas un-
derlying this popular approach.

The Fourier transform of a differential operator always results in a poly-
nomial expression in the frequency domain. For instance the Fourier trans-
form of the differential operator ∂yy yields the polynomial −ξ2. Conversely
every polynomial in Fourier space corresponds to a (local) differential oper-
ator in physical space. Thus, the inverse Fourier transform of a polynomial
in s = ξ/ω, which approximates

√
1− s2, will yield a differential operator,

which can be used as an (approximate) absorbing boundary condition in
physical space.

For s sufficiently small, we approximate
√
1− s2 by the first few terms of

its Taylor expansion:

√
1− s2 = 1−

s2

2
+O(s4), |s| → 0.

We now replace the square root in (11) by the leading term in the Taylor
expansion, that is

√
1− s2 ) 1, and perform the inverse Fourier transform

to obtain

∂û

∂x
) −iω û

⇒
(

∂

∂t
+

∂

∂x

)

u = 0, x = L.

This is the first-order Engquist-Majda boundary condition, which contains
only first derivatives of the solution. It coincides with the exact boundary
condition (7) for the one-dimensional wave equation. Therefore, it remains
exact for solutions of the two-dimensional wave equation, which depend only
on x and t and thus impinge on the artificial boundary with a normal angle
of incidence. Next, we include one additional term of the Taylor expansion
in the approximation,

√
1− s2 ) 1 − s2/2. This yields the second-order
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Figure 4: A traveling plane wave with an angle of incidence θ.

Engquist-Majda boundary condition,

∂û

∂x
) −iω(1− (ξ/ω)2/2) û

⇒
(

∂2

∂t2
+

∂2

∂x ∂t
−

1

2

∂2

∂y2

)

u = 0, x = L. (12)

Equation (12) remains exact at normal incidence, since we can rewrite it in
the equivalent form as

(∂t + ∂x) (∂t + ∂x) u = 0, x = L, (13)

by using (8). The inclusion of even higher order terms of the Taylor expan-
sion to improve the accuracy of the approximation ceases to yield well-posed
boundary conditions. Although this difficulty can be overcome by the use of
rational (Padé) approximations, the high-order derivatives involved in these
boundary conditions greatly complicate their use in any numerical scheme.
As a result, first- and second-order boundary conditions are most commonly
used in practice.

Various other (e.g. Chebychev) approximations of
√
1− s2 were proposed

to design improved local boundary conditions. Eventually, Higdon [5] showed
that all these boundary conditions are particular cases of the following general
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class of boundary operators, where α1, . . . ,αp are arbitrary parameters:

(

cosαp
∂

∂t
+

∂

∂x

)

. . .

(

cosα1
∂

∂t
+

∂

∂x

)

u = 0, x = L. (14)

For instance, the second-order Engquist-Majda boundary condition (13) re-
sults from setting α1 = 0◦ and α2 = 0◦ in (14). This general formulation,
written as the product of first-order differential operators (cosαi ∂t+∂x), pro-
vides a new, more intuitive, interpretation for the effectiveness of absorbing
boundary conditions. Since any such differential operator perfectly annihi-
lates plane waves with angle of incidence ±αi, the artificial boundary will
appear absolutely transparent at the discrete angles of incidence α1, . . . ,αp.
The choice of α1, . . . ,αp is arbitrary and can be adapted to any given situa-
tion.

Nevertheless, all absorbing boundary conditions remain only approxima-
tions to the exact boundary condition (11); therefore, they generate some
spurious reflection at x = L. How large is the amount of reflection for a
specific boundary condition ? Recall that any solution of the (homogeneous)
wave equation can be represented by the superposition of plane waves. In
Figure 4 we observe a plane wave, which impinges on the artificial bound-
ary at x = L with an angle of incidence θ. The linearity of both the wave
equation (8) and the boundary condition (14) imply that any reflected wave
necessarily propagates with the same frequency as the incident wave. Hence
the solution consists of an outgoing wave, whose amplitude we normalize to
one, and an incoming spurious wave with amplitude |r|:

u(x, y, t) = ei(kx+#y−ωt) + rei(−kx+#y−ωt), k,ω ≥ 0, (15)

Here r = r(θ;α1, . . . ,αp) depends on the angle of incidence θ, defined by
tan θ = (/k, and the fixed parameters α1, . . . ,αp. In Figure 5 we compare
the effectiveness of three absorbing boundary conditions by displaying the
amount of reflection |r| versus the angle of incidence θ. The choice α1 = 0◦

corresponds to the first, whereas α1 = 0◦ und α2 = 0◦ corresponds to the
second Engquist-Majda boundary condition. Alternatively, the popular pa-
rameter choice α1 = 0◦ and α2 = 60◦ annihilates incoming waves at normal
incidence and at 60◦ angle of incidence. All other angles of incidence will gen-
erate some spurious reflection, which is very small close to normal incidence
but rapidly increases as grazing incidence is approached.
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Figure 5: Amount of spurious reflection (in percent) caused by the use of the
boundary conditions (14) for a plane wave with angle of incidence θ.

4 Exact nonreflecting boundary conditions

Instead of using an approximate local boundary condition, Ting and Miksis
[6] proposed in 1986 to represent the exact solution in the exterior region
by using Kirchhoff’s formula; this approach was later implemented by Givoli
and Cohen [7]. Kirchhoff’s integral representation translates Huygens’ purely
geometric principle to an analytic formulation: the scattered wave field in
the exterior is a superposition of infinitely many spherical waves, generated
by a continuous source distribution on the artificial boundary B. As a con-
sequence, the solution at any point on B is determined by past values of the
solution on some intermediate surface S inside Ω. Let N be the number of
grid points in one dimension. Then, a standard time-marching scheme typi-
cally requires about N3 operations per time step. In contrast, the evaluation
of the retarded potentials necessary to update the solution at B require N4

operations per time step. Therefore, advancing the solution at B is usually
more expensive than applying the numerical scheme itself inside Ω. More-
over, Kirchhoff’s integral representation of the solution requires storing the
past values of the solution on S for the length of time it takes a wave to
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propagate across the computational domain.
Neither local absorbing boundary conditions nor exact boundary con-

ditions based on Kirchhoff’s integral formula fully satisfy the demand for
increasingly accurate and efficient numerical methods to solve complex time-
dependent scattering problems in unbounded domains. On the one hand,
local absorbing boundary conditions are simple to use but generate spuri-
ous reflection at the artificial boundary, and on the other hand, boundary
conditions based on the space-time integral representation are exact but pro-
hibitively expensive, because of their computational cost and memory re-
quirements.

In the special case when B is a sphere, however, it is possible to derive
an exact nonreflecting boundary condition which is global over the artificial
boundary but local in time [3, 8] – another form of this exact boundary
condition was obtained by Sofronov [9, 10]. This new formulation avoids
any integrals over the past of the solution, and thus requires little extra
computational effort and memory. It was later generalized to electromagnetic
waves [11], and more recently to elastic waves [12, 13]. We shall now present
the main ideas underlying the derivation in [3].

4.1 Derivation of the boundary condition

We consider time dependent scattering from a bounded scattering region in
three-dimensional space. Next, we surround this region by a sphere B of
radius R. Outside B, we assume that the scattered field u(x, t) satisfies the
homogeneous wave equation with constant propagation speed c > 0,

∂2u

∂t2
− c2∆u = 0. (16)

Furthermore, we assume that the initial conditions vanish outside B,

u(x, 0) = 0, ∂tu(x, 0) = 0, |x| ≥ R. (17)

Although identically zero initially, the solution u does not remain zero with
increasing time, as the waves generated inside B radiate into the exterior
unbounded region.

To solve (16) outside B, we first introduce the polar coordinates r, θ,ϕ
and the nm-th spherical harmonic Ynm(θ,ϕ), normalized over the unit sphere,

Ynm(θ,ϕ) =

√

√

√

√

(2n+ 1)(n− |m|)!
4π(n+ |m|)!

P |m|
n (cos θ) eimϕ, (18)
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where P |m|
n is the Legendre function. Here the ϑ coordinate corresponds to

the angle from the z-axis, ϑ ∈ [0, π], whereas the φ coordinate corresponds to
the polar angle in the (x, y)-plane, φ ∈ [0, 2π). If the problem considered is
real, it is advantageous to use the spherical harmonics, given by the real and
imaginary parts of (18). Then everything remains the same except for the
normalization constant in (18), which must be multiplied by

√
2 for m += 0.

Outside B the solution admits the Fourier series representation

u(x, t) =
∞
∑

n=0

n
∑

m=−n

unm(r, t)Ynm(θ,ϕ). (19)

Hence unm(r, t) is given by

unm(r, t) =
∫ 2π

0

∫ π

0
u(r, θ,ϕ, t)Ynm(θ,ϕ)sinθ dθ dϕ. (20)

It follows from (16)–(17) that unm, with |m| ≤ n , satisfies
(

1

c2
∂2

∂t2
−

∂2

∂r2
−

2

r

∂

∂r
+

n(n+ 1)

r2

)

unm = 0, r ≥ R, t > 0, (21)

with the initial conditions

unm(r, 0) = 0, ∂tunm(r, 0) = 0, r ≥ R. (22)

We have now replaced (16)–(17) by the problem of solving (21)–(22) for each
m and n. Our goal is to find a boundary condition at r = R for each (m,n),
so that the solution in 0 ≤ r ≤ R with this condition concides with the
restriction to 0 ≤ r ≤ R of unm for all t ≥ 0.

The case n = 0:
For n = 0, Y00 is constant and the solution u = u00(r, t)Y00 is independent of
ϑ,φ. Thus, u corresponds to a spherically symmetric outgoing wave; more-
over, ru satisfies the one-dimensional wave equation,

∂2

∂t2
(ru)− c2

∂2

∂r2
(ru) = 0, r ≥ R.

As both u and ∂tu vanish outside B at t = 0, we conclude (see Section 2)
that the exact nonreflecting boundary condition for u(r, t) is

(

∂

∂r
+

1

c

∂

∂t

)

[ru] = 0, r = R,

15



or equivalently
∂u

∂r
+

1

c

∂u

∂t
+

u

R
= 0, r = R.

For three-dimensional waves this boundary condition is exact at normal in-
cidence only.

The case n = 1:
We now wish to derive an exact boundary condition for u1m(r, t), which
satisifies (21) with n = 1:

(

1

c2
∂2

∂t2
−

∂2

∂r2
−

2

r

∂

∂r
+

2

r2

)

u1m = 0, r ≥ R. (23)

First, we shall transform u1m to a new variable v, which satisfies the one-
dimensional wave equation. To do so, we recall that if v = v(r, t) satisfies

∂2v

∂t2
− c2

∂2v

∂r2
= 0, (24)

then

u =
∂

∂r

v

r

satisfies (23). Next, we drop the indices on u = u1m(r, t), and invert the
result above. Let

v(r, t) = r
∫ ∞

r
u(s, t) ds. (25)

Then v satisfies (24), and both v and ∂tv vanish outside B at t = 0. Therefore,
the exact boundary condition for v is

(

∂

∂r
+

1

c

∂

∂t

)

v(r, t) = 0, r = R. (26)

We remark that the integral in (25) is finite for every t, because u(r, t) van-
ishes for r ≥ R + c t.

To use (26) in computation, we shall reformulate it and derive an equiva-
lent but more tractable form, which does not involve integrals or high-order
derivatives. To do so, we first calculate

∂v

∂r
=

∫ ∞

r
u(s, t) ds− ru =

v

r
− ru. (27)
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We now use (26) to obtain

1

c

∂v

∂t
= −

∂v

∂r
= −

v

r
+ ru. (28)

Next, we apply ∂r + c−1∂t to (28) and again use (26), which leads to
(

∂

∂r
+

1

c

∂

∂t

)

ru(r, t) =

(

∂

∂r
+

1

c

∂

∂t

) [

1

c

∂

∂t
v +

v

r

]

= −
v

r2
. (29)

We now set r = R and let ψ(t) = v(R, t)/R in (29) to obtain
(

∂

∂r
+

1

c

∂

∂t

)

ru = −
ψ(t)

R
, r = R. (30)

Equation (30) in an exact boundary condition for u, but it still involves the
a priori unknown quantity ψ(t). To determine it we set r = R in (28), which
after division by R yields the ordinary differential equation

1

c

dψ(t)

dt
= −

ψ(t)

R
+ u(R, t), ψ(0) = 0. (31)

We note that ψ(0) = 0 because v(r, t) vanishes for r ≥ R at t = 0 .

The general case n ≥ 0:
The procedure presented in the two previous sections for n = 0 and n = 1
can be extended to the general case for all n. We refrain from repeating here
in detail this derivation [3] and restrict ourselves to a summary of the main
steps involved.

First, we let Gn be the integral operator

Gn[u](r, t) ≡



















ru(r, t) if n = 0

r
∫ ∞

r

(r2 − s2)n−1u(s, t)

(2s)n−1(n− 1)!
ds if n ≥ 1.

(32)

Since the initial data has compact support and since the speed of propagation
is finite, at any fixed time unm(r, t) vanishes for r sufficiently large. Therefore,
the integral in (32) with u replaced by unm exists for each n.

Next, we apply Gn to unm(r, t), and find (see [3] for details) that Gn[unm]
satisfies the one-dimensional wave equation outside B:

∂2

∂t2
Gn[unm]− c2

∂2

∂r2
Gn[unm] = 0, r ≥ R.

17



Moreover, since both Gn[unm] and ∂tGn[unm] vanish outside B at t = 0, we
conclude that

(

∂

∂r
+

1

c

∂

∂t

)

Gn[unm] = 0, r = R. (33)

As Gn[unm](r, t) is not known, (33) cannot be used directly in a numerical
scheme. Therefore we shall reformulate the exact boundary condition (33)
in terms of unm and other known quantities.

In [3] it was shown that

runm(r, t) =
n
∑

j=0

γnj
rj

(

−
∂

∂r

)n−j

Gn[unm](r, t), (34)

where the constants γnj are defined by

γnj =
(n+ j)!

(n− j)! j! 2j
. (35)

We now apply ∂r + c−1 ∂t to (34), set r = R, and use (33) to obtain
(

∂

∂r
+

1

c

∂

∂t

)

[runm(r, t)]r=R = −
1

R

n
∑

j=1

j γnj
Rj cn−j

∂n−j

∂tn−j
Gn[unm](R, t).

(36)

Equation (36) is an exact nonreflecting boundary condition for unm on B,
but it involves time derivatives of Gn[unm] up to order n− 1. We note that
a crucial consequence of applying ∂r + c−1∂t to (34) is the elimination of the
n-th derivative of Gn[unm], the term with j = 0 in (34). To compute the
time derivatives of Gn[unm] up to order n− 1 at r = R, we set r = R in (34)
and again use (33). The result is

1

cn
∂n

∂tn
Gn[unm](R, t) = −

n
∑

j=1

γnj
Rj cn−j

(

∂

∂t

)n−j

Gn[unm](R, t) +Runm(R, t).

(37)

Here we have used the fact that γn0 = 1. Equation (37) is an n-th order
ordinary differential equation for Gn[unm](R, t).

To simplify the notation, we define the n-component vector function
ψnm(t) = {ψj

nm(t)} by

ψj
nm(t) =

γnj
Rj γn1cn−j

(

∂

∂t

)n−j

Gn[unm](R, t), j = 1, . . . , n. (38)
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Here we have used an improved scaling in inverse powers ofR, first suggested
by Thompson and Huan [14]; this new scaling has no effect if R = 1. In
addition, we let dn = {djn} denote the constant n-component vector

djn = γn1j =
n(n + 1)j

2
, j = 1, . . . , n. (39)

With these new variables (36) reduces to
(

∂

∂r
+

1

c

∂

∂t

)

(runm)|r=R = −
1

R
dn ·ψnm(t). (40)

Next, we note that by definition of ψj
nm(t) we have

1

c

d

dt
ψj
nm =

γnj
R γn,j−1

ψj−1
nm =

(n+ j)(n+ 1− j)

2j R
ψj−1

nm , 2 ≤ j ≤ n. (41)

Since unm and ∂tunm vanish identically for r ≥ R at t = 0, so do Gn[unm]
and all its time derivatives up to order n− 1. This implies that ψnm is equal
to zero at t = 0. Therefore, after dividing by R, we can rewrite (37) together
with (41) as the linear first-order ordinary differential equation

1

c

d

dt
ψnm(t) =

1

R
Anψnm(t) + unm(R, t) en, ψnm(0) = 0. (42)

Here en = {ejn}, 1 ≤ j ≤ n, is the constant n-component unit vector

en = [1, 0, . . . , 0]$, (43)

and An = {Aij
n }, 1 ≤ i, j ≤ n, is the constant n× n matrix

Aij
n =











−n(n + 1)/2 if i = 1,
(n + i)(n+ 1− i)/(2i) if i = j + 1,
0 otherwise.

(44)

We multiply the previous boundary condition by Ynm and sum all modes
over n and m. This yields the exact boundary condition at r = R for
u = u(x, y, z, t):

(

∂

∂r
+

1

c

∂

∂t

)

[ru] = −
1

R

∞
∑

n=1

n
∑

m=−n

dn ·ψnm Ynm, r = R, (45)

1

c

d

dt
ψnm(t) =

1

R
Anψnm(t) + (u|r=R , Ynm) en, ψnm(0) = 0. (46)
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Figure 6: The eigenvalues of A10 (left) and A20 (right).

Here the constant vectors en and dn are defined in (39) and (43), whereas
the constant matrices An are defined in (44).

The exact nonreflecting boundary condition on u at B is given by (45).
It involves only first derivatives of u together with the auxilliary functions
ψnm(t). These functions can be computed by solving the linear first-order
ordinary differential equations (46) concurrently with solving the problem for
u in Ω. The boundary condition (45) is local in time, since past values of u
are not required to apply it at time t. The necessary information from the
past is contained implicitly in ψnm(t).

When used in computation, the boundary condition is approximated nu-
merically. This introduces both discretization errors and rounding errors,
which could trigger numerical instability. The stability of the ordinary dif-
ferential equations (46), which are used to compute the auxilliary quantities
ψnm(t), is determined by the eigenvalues of An. In [8] we showed that the
eigenvalues of An strictly lie in the left half of the complex plane and that
the differential equation (46) is asymptotically stable. In fact, as n increases
the maximal real part of the eigenvalues of An moves farther away from the
imaginary axis, as shown in Figure 6. This results in a stronger obliteration
of the past of ψnm(t) for higher Fourier modes on B.
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4.2 Finite Element Formulation

To show how to use the exact nonreflecting boundary condition (45) with
the finite element method, we must derive the variational formulation of the
problem considered. First, we need to specify a problem statement inside the
computational domain Ω, with |x| ≤ R. For simplicity, we set R = 1 and
normalize the speed of propagation outside Ω to one. In Ω, we consider the
following simple model problem, together with the nonreflecting boundary
condition (45) and (46), with c = 1 and R = 1:

∂2u

∂t2
−∇ · (c∇u) = f in Ω× (0, T ) (47)

u(x, 0) = u0(x) x ∈ Ω (48)
∂

∂t
u(x, 0) = u̇0(x) x ∈ Ω (49)

(

∂

∂r
+

∂

∂t

)

[ru] = −
∞
∑

n=1

n
∑

m=−n

dn ·ψnm Ynm on B × (0, T ) (50)

d

dt
ψnm(t) = Anψnm(t) + (u|r=1 , Ynm) en, ψnm(0) = 0. (51)

In (47) we require that c = c(x) > 0. The source term f(x, t, u,∇u) may
be nonlinear. The constant vectors en and dn are defined in (39) and (43),
whereas the constant matrices An are defined in (44).

We shall now derive the finite element formulation for the problem (47)–
(51) in the computational domain Ω. To derive the weak form of the problem,
we denote by V the Sobolev space H1(Ω), which contains square-integrable
functions with square-integrable first derivatives. Next we define the two
inner products

(w, u) =
∫

Ω
wu dΩ, (52)

(w, u)B =
∫

B
wu dB. (53)

We multiply (47)–(49) by a weighting function w ∈ V and integrate over Ω.
Then we use integration by parts in the integrated (47) to get

(w, ü) + (∇w, c∇u)− (w, ∂ru)B = (w, f). (54)

Next, we use (50) to eliminate ∂ru on B from (54). These calculations lead
to the weak form of the problem, which can be stated as follows:
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Find u(t) ∈ V such that for all w ∈ V,

(w, ü) + (∇w, c∇u) + (w, u̇+ u)B = (w, f)

−
∞
∑

n=1

n
∑

m=−n

dn ·ψnm(w, Ynm)B (55)

(w, u(0, .)) = (w, u0) (56)

(w, u̇(0, .)) = (w, u̇0) (57)

ψ̇nm(t) = Anψnm(t) + (u|r=1 , Ynm) en, ψnm(0) = 0. (58)

The finite element method [15] is obtained by approximating the weak
form (55)–(58). The domain Ω is discretized into a finite number of elements,
and each element is associated with a finite number of nodes. Then u and w
are approximated by

uh(x, t) =
∑

A∈η

dA(t)NA(x), (59)

wh(x) =
∑

A∈η

wANA(x). (60)

Here η is the set of nodes, NA is the shape function associated with node
A, and dA(t) and wA are coefficients. We now substitute (59) and (60) into
(55)–(58) with the sum over n truncated at some finite value N , and require
the resulting equation to hold for all values of wA. This yields the finite
element matrix form of the problem for the vector of unknowns z = z(t):

Mz̈ +Cż +Kz = f , t > 0 (61)

ψ̇nm(t) = Anψnm(t) + (u|r=1 , Ynm) en, ψnm(0) = 0 (62)

z(0) = z0 (63)

ż(0) = v0. (64)

The matrices M , K, and C, are defined by

M = [MAB], K = [KAB], C = [CAB], (65)

MAB = (NA, NB), KAB = (∇NA, c∇NB), CAB = (NA, NB)B. (66)

The vectors f , z0, and v0 are defined by

f = {fA}, z0 = {zB0}, v0 = {vB0}, (67)

fA = (NA, f)−
N
∑

n=1

n
∑

m=−n

dn ·ψnm (NA, Ynm)B, (68)

dB0 = (u0, NB), vB0 = (u̇0, NB). (69)
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The quantities z, ż, and z̈ are the displacement, the velocity, and the ac-
celeration vectors, respectively. M is the mass matrix, K is the stiffness
matrix, and C is a damping term due to the absorbing boundary condition.
We note that M is symmetric and positive definite, and that both K and C
are symmetric and positive semi-definite. Thus, we can use a standard time-
marching scheme from the Newmark [16] family, such as the central difference
method, to integrate (61). The solution to (62) is computed concurrently,
for instance using the implicit trapezoidal rule (see Section 4.3). The ma-
trix C is almost empty, since only terms along the boundary contribute to
its nonzero entries. Further implementation details on the combination of
the finite element method with the nonreflecting boundary condition can be
found in [14].

4.3 Finite Difference Formulation

Instead of using the finite element method, we can use a finite difference
method to solve (47)–(51). We shall now describe how to do this, choosing
c(x) = 1 in Ω for simplicity.

We opt for the leap-frog method, which is a standard explicit time-
marching method for the wave equation. The wave equation (47) is dis-
cretized both in time and in space using second-order centered finite differ-
ences. We denote by Uh the numerical grid function. Let Uk be the numerical
solution and fk the source f at some grid point x at time tk = k∆t. Then
the basic step to advance the numerical solution in time is

Uk+1 = 2Uk − Uk−1 + (∆t)2(∆hUk + fk), k = 1, 2, . . . (70)

Here ∆h denotes a finite difference approximation to the Laplacian.
The boundary condition (50) is necessary when we wish to advance the

numerical solution on B using (70). Indeed, the radial part of ∆h requires
values of Uh outside Ω. Let ∆ru = r−2∂r(r2∂ru) denote the radial part of
the Laplacian. Next, let r# denote the (-th grid point in the radial direction.
Hence r#+1 = r# + ∆r, and r#+1/2 = r# + ∆r/2. Then a second-order finite
difference approximation to ∆r is

∆h
rU# =

r2#+1/2 U#+1 − (r2#+1/2 + r2#−1/2)U# + r2#−1/2 U#−1

(r#∆r)2
. (71)

To calculate∆h
rU

h at r# = R, we need U#+1 which lies outside Ω. We eliminate
it by using the finite difference approximation to (50) at r# = R, θi, ϕj, with
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the sum over n truncated at some finite value N . This yields

r#+1 Uk
#+1 − r#−1 Uk

#−1

2∆r
+

r# (U
k+1
# − Uk−1

# )

2∆t

= −
N
∑

n=1

n
∑

m=−n

dn ·ψk
nm Ynm(θi,ϕj). (72)

Thus we have the two equations (70) and (72) for the two unknowns Uk+1
#

and Uk
#+1, which enables us to solve for Uk+1

# on B. We note that to compute
Uk+1 on B, we only need the values of ψnm(t) at t = tk, because both the
differential equation and the boundary condition are discretized in time about
t = tk. The amount of memory needed to store theψnm(t) with n ≤ N , about
(2/3)N3 scalar values, is negligible when compared to the storage required
for u inside Ω.

The numerical solution ψh
nm to the ordinary differential equation (46) is

computed concurrently with Uh. Because the eigenvalues of An lie in the left
half of the complex plane (see Figure 6), we opt for the implicit second-order
trapezoidal rule ([17], p. 199):

(

I −
∆t

2
An

)

ψk+1
nm =

(

I +
∆t

2
An

)

ψk
nm +

∆t

2
(Uk+1 + Uk

∣

∣

∣

r=R
, Ynm) en.

(73)
The inner products (Ynm, Uh|r=R) are computed using Simpson’s fourth order
quadrature rule. Since the trapezoidal rule is unconditionally stable, there
is no restriction on ∆t for stability reasons, besides that imposed by the
leap-frog method. The work required in solving the linear systems (73) is
negligible, because the matrices An are very small and do not change with
time.

The complete algorithm proceeds as follows:

Algorithm:

0. Initialize Uh at t0 and t1, and set ψ0
nm and ψ1

nm to zero.

1. Compute Uk+1 at tk+1 = tk + ∆t at all inner points of Ω using the
difference form of (70).

2. Compute Uk+1 at tk+1 and r = R using (70) and (72).

3. Compute ψk+1
nm at tk+1 using (73), and return to 1.
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Most of the work involved in applying the boundary condition results from
computing the inner products over B on the right side of (73). To compute
these inner products it is not necessary to computeO(N2) inner products over
the entire sphere. Indeed, since the spherical harmonics Ynm(θ,φ) separate
in θ and φ, it is sufficient to compute O(N) inner products with cos(mφ)
and sin(mφ) over the sphere, and then to compute O(N2) one-dimensional
inner products in θ over [0, π]. The same method can be used to calculate
the sums over n and m on the right of (72). In all our computations we
have found N ≤ 25 to be sufficient. If very large values of N were needed,
the work and storage required could be reduced by an order of magnitude
by combining the fast discrete polynomial transform of Driscoll, Healy, and
Rockmore [18] with the recent work of Alpert, Greengard, and Hagstrom [19]
on the approximation of boundary integral kernels – see also Hagstrom [20].

4.4 Modified boundary conditions

In computation, the sum over n in (45) must be truncated at a finite value
N . Then the boundary condition becomes inexact for the modes beyond
the point of truncation. It reduces to (∂r + ∂t)[runm] = 0 at r = R for the
modes unm = (U, Ynm), n > N . This raises the question whether we can
replace this inexact condition by a more accurate one, as we did in [21] for
the reduced wave equation. We shall show how to modify the truncated
boundary condition so that it remains exact for the low modes n ≤ N , but
becomes more accurate for the high modes n > N .

In deriving (36), we appliedB1 = ∂r+∂t to (34). This operator annihilates
any spherically symmetric outgoing wave, such as the leading term of the
large r expansion of ru(x, t), where u is any solution of (16):

ru(r, θ,φ, t) =
∞
∑

j=0

gj(ct− r, θ,φ)

rj
, r ≥ a. (74)

Bayliss and Turkel [22] derived a sequence of local operators, which annihilate
increasingly many leading terms in (74). We shall now derive an equivalent
sequence of operators B#, which look slightly different because we work with
ru instead of u. Then we shall show how to use them to modify the boundary
condition (46).

To derive these operators, we note that for any m ≥ 0
(

∂

∂r
+

1

c

∂

∂t
+

m

r

)

g(ct− r)

rm
= 0. (75)
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We use (74) and (75) with m = 2 to obtain

B2[ru] =

(

∂

∂r
+

1

c

∂

∂t
+

2

r

)(

∂

∂r
+

1

c

∂

∂t

)

[ru] =
∞
∑

j=2

j(j − 1) gj
rj+2

. (76)

Next we use (74) and (75) with m = 3 to get

B3[ru] =

(

∂

∂r
+

1

c

∂

∂t
+

4

r

)(

∂

∂r
+

1

c

∂

∂t
+

2

r

)(

∂

∂r
+

1

c

∂

∂t

)

[ru]

=
∞
∑

j=3

−j(j − 1)(j − 2) gj
rj+3

. (77)

For ( ≥ 1, we define the operator B#

B# =
#−1
∏

j=0

(

∂

∂r
+

1

c

∂

∂t
+

2j

r

)

, (78)

where the rightmost term is j = 0. Upon applying B# to (74), we find that

B#[ru] = O
(

r−2#
)

, r ≥ R. (79)

Instead of applying B1 = ∂r + ∂t to (34), we can apply a higher order
differential operator B# with ( > 1. Thus, when the sum over n is truncated
at a finite value N , the boundary condition on the modes n > N becomes

B#[ru] = 0, r = R. (80)

In view of (79), we expect that using (80) with ( > 1 instead of with ( = 1
will yield a smaller error.

When we apply B2 to (34) and use (33), we get

B2[runm(r, t)] =
n
∑

j=2

j(j − 1) γnj
rj+2 cn−j

∂n−j

∂tn−j
Gn[unm](r, t), r ≥ R.

(81)

Similarly, when we apply B3 to (34) we get

B3[runm(r, t)] = −
n
∑

j=3

j(j − 1)(j − 2) γnj
rj+3 cn−j

∂n−j

∂tn−j
Gn[unm](r, t), r ≥ R.

(82)
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We note that the term j = 1 in (36) vanishes in (81), and that the terms j = 1
and j = 2 vanish in (82). As a consequence, B2[ru] = 0 is an exact boundary
condition for the modes n = 0, 1, and B3[ru] = 0 is an exact boundary
condition for the modes n = 0, 1, 2. Hence, annihilating the leading ( terms
of the large distance expansion (74) naturally imposes the exact boundary
condition on the modes 0 ≤ n ≤ (− 1.

For later reference, we derive the full boundary condition with ( = 2. We
multiply (81) by Ynm, and sum over n and m. Next, we set r = R, and use
(38) to obtain

B2[ru] =
∞
∑

n=2

n
∑

m=−n

d̃n ·ψnm(t)Ynm, r = R. (83)

Here ψnm(t) is the solution of (46), and d̃n replaces dn in (45):

d̃n(j) =
j(j − 1)n(n+ 1)

2
, j = 1, . . . , n. (84)

5 Numerical Examples

We shall now compare the accuracy of various boundary conditions via two
numerical experiments. First, we shall present a detailed study of the ac-
curacy and the convergence properties of different boundary conditions. To
do so, we shall consider a model problem, where a locally supported time-
harmonic source excites the medium inside Ω. Here we shall also demonstrate
the long-time stability of our numerical method. Second, we shall present
computations for a standard test problem: radiation from a piston on a
sphere.

5.1 Model problem

We consider the problem (47)–(51) with c(x) = 1, and both u0 and u̇0

equal to zero. In addition, we set a spherical obstacle Γ of radius 0.5 inside
Ω. As the artificial boundary B is located at R = 1, the computational
domain Ω is the region 0.5 ≤ r ≤ 1. Initially, the medium is at rest; it is
then excited locally by a time-harmonic source distributed within a sphere
of radius rf = 0.15 centered at xf (r = 0.75 and θ = 0). The source strength
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Figure 7: The computational domains Ω for Uh, and 0.5 ≤ r ≤ 5 for Uh
∞,

are shown drawn to scale. The support of f lies in the small sphere inside
Ω, located above the obstacle (shaded area).

is

f(x, t) =

{

α sin(ωt) sin2((1− |x− xf |/rf)π/2) if |x− xf | < rf ,
0 otherwise.

(85)

We choose the scaling constant α = 5× 104 to make the solution O(1). The
source f has its maximal value at xf , and decays with distance from xf .

We shall compare the numerical solution Uh of (47)–(51) with the nu-
merical solution Uh

∞ of (47)–(49) in the infinite domain. To compute Uh
∞ we

consider the larger domain |x| ≤ R∞, with R∞ = 5. Since the propagation
speed c is one, and since the support of f lies inside Ω, the influence of the
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boundary at r = R∞ will not be sensed inside Ω until t = 8. Therefore inside
Ω, Uh

∞ coincides with the numerical solution of the initial-boundary value
problem in the infinite region outside the obstacle Γ for 0 ≤ t ≤ 8. The
setup for this model problem is drawn to scale in Figure 7.

The instantaneous error Eh(t) is defined as

Eh(t) = ‖Uh
∞(., t)− Uh(., t)‖L2(Ω). (86)

We denote by Eh
T the maximal error over the time interval [0, 8],

Eh
T = max

t∈[0,8]
Eh(t). (87)

Since the amplitude of the solution is determined by f , which can be scaled
by any constant, the magnitude of the absolute error Eh(t) is irrelevant.
We shall only use it as a means to compare the performance of the various
boundary conditions in relationship to one another.

5.1.1 Implementation details

The test problem described above is axisymmetric and independent of ϕ.
Therefore, it suffices to compute the solution in the r, θ plane for 0 ≤ θ ≤ π,
with the symmetry condition ∂θu = 0 at θ = 0 and θ = π. The grid in Ω
is evenly spaced with 10, 20, or 40 intervals in 0.5 ≤ r ≤ 1, and 60, 120,
or 240 intervals in 0 ≤ θ ≤ π, respectively. For the computation of Uh

∞, we
simply extend the mesh into the larger domain with the same grid spacing up
to r = R∞. Both Uh and Uh

∞ are computed using the explicit second-order
leap-frog method described in Section 4.3 .

The stability condition for the leap-frog method on an equispaced grid
with spacing h, in three space dimensions, and with c = 1, is ∆t ≤ h/

√
3.

Since we shall use a polar grid, we simply set ∆t equal to the shortest edge
in the mesh divided by

√
3. We keep ∆t fixed throughout the computation.

In Figure 8, the solution Uh
∞ is shown at t = 3.5 for a frequency ω = 2π, just

before the wave front reaches the external boundary r = R∞.
We shall compute Uh by using various boundary conditions at B. The

boundary condition (80) with ( = 1 and ( = 2 is denoted by BT1 and BT2,
respectively, to acknowledge [22]. We denote (45) by NR1(N) and (83) by
NR2(N). We recall that NR1(0) coincides with BT1, and that NR2(0) and
NR2(1) coincide with BT2.
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Figure 8: The solution Uh
∞ at t = 3.5 is shown for ω = 2π.

To implement (83), we first expand B2 as

B2 =
∂2

∂r2
+

∂2

∂t2
+ 2

∂2

∂r∂t
+

2

r

(

∂

∂r
+

∂

∂t

)

. (88)

All the terms but the cross derivatives can be approximated with a second-
order finite difference formula centered at r = R and t = tk. The radial
derivative in the term ∂r∂t is approximated by second-order extrapolation
into Ω, by passing a parabola through rUh at the grid locations r#−2, r#−1,
and r# = R.

5.1.2 Numerical results

We begin with a calculation at the low frequency ω = π/4 on the 20 × 120
grid. In Figure 9 we compare the solutions obtained using BT1, BT2, and
NR1(20), with the “exact” solution Uh

∞. The solution is shown at the north
pole of B, r = 1 and θ = 0, as a function of time. Both BT1 and BT2
yield rather large errors. The solution obtained using NR1(20) cannot be
distinguished from Uh

∞ on the left graph. The error Eh(t) is shown on the
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Figure 9: Results for ω = π/4. Left: The solutions Uh, computed using the
boundary conditions BT1, BT2, and NR1(20), are compared with the exact
solution Uh

∞ on B at θ = 0. Right: The L2 error Eh(t) is shown for the same
three boundary conditions.

right. By using NR1(20) instead of BT1 or BT2, the error is reduced by
almost three orders of magnitude in accuracy. The error in using NR1(20) is
mainly due to the discretization error, and not to the boundary condition.

We shall now verify that the numerical solution Uh computed using
NR1(N) indeed converges to Uh

∞ inside Ω if N is large enough. We set
N = 25, and progressively refine the initial grid 10× 60 by a factor two in r
and in θ. At each refinement, the error drops by a factor four, as is shown in
Figure 10. This shows the second-order convergence to the exact solution Uh

∞

as ∆r,∆t → 0. In that sense the boundary condition is exact, even if trun-
cated and used in a numerical scheme: the error introduced at the boundary
is negligible in comparison to the discretization error of the numerical method
used in the interior of Ω. In contrast, the solutions obtained using BT1 and
BT2 do not improve as we refine the mesh. This clearly indicates that the
error introduced by imposing them at B dominates in the computation. If
one refines the mesh further, it may be necessary to increase the value of N
to ensure that the error due to the boundary condition remains negligible.

Next, we compare the solutions Uh computed with the boundary condi-
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Figure 10: The maximal errors Eh
T in the numerical solutions Uh, computed

with the boundary condition NR1(25) on the three grids 10× 60, 20 × 120,
and 40×240, are shown versus h = ∆r. Left: for ω = π/4. Right: for ω = π.

tions NR1(N) and NR2(N). The grid 20×120 is kept fixed while we increase
the value of N . We recall that NR1(0) is identical to BT1, and that NR2(0)
and NR2(1) are identical to BT2. Figure 11 shows that we obtain an im-
provement of two or three orders in magnitude over BT1 and BT2 if we use
the exact boundary condition. We attribute the small discrepancy between
NR1 and NR2 for large values of N to the less accurate finite difference
approximation used in (88).

Figure 11 also displays the subtle interplay between the error due to
discretization, and the error due to truncating the boundary condition. For
a fixed grid, there is a maximal value for N , below which the error does
not decrease anymore. From that point on, the boundary condition becomes
more accurate than the numerical method, and it is pointless to increase N
without further refining the underlying mesh.

5.1.3 Long time stability

The issue of long time stability has arisen in the numerical implementation of
the exact boundary condition due to Ting and Miksis [6] – see also Section 4.
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Figure 11: The maximal errors Eh
T in the numerical solutions, computed on

the grid 20× 120 using the boundary conditions NR1(N) and NR2(N), are
shown versus N . Left: for ω = π/4. Right: for ω = π.

By using Kirchhoff’s formula for the time-dependent wave equation in three
space dimensions, they derived an exact nonreflecting boundary condition. It
is nonlocal in both space and time, but involves only a fixed amount of past
information. When Givoli and Cohen [7] combined this boundary condition
with a standard nondissipative finite-difference scheme in the interior domain,
the numerical solution exhibited a long time instability. They were able to
eliminate this instability by using the dissipative Lax-Wendroff scheme in the
interior domain. In contrast, the boundary conditions, which were derived
in Section 4 and combined with a nondissipative second-order centered finite
difference stencil inside Ω, never exhibited any unstable behavior. Whether
the explicit Adams method or the trapezoidal rule was used to integrate
the system of ordinary differential equations on the artificial boundary, the
overall numerical scheme was stable in all our test runs.

To demonstrate the long time stability of our numerical method, we pro-
ceed as in [7]. We consider the model problem with the source f a short-time
pulse, that is with the temporal part sin(ωt) of f(x, t) set to zero for t ≥ π/ω.
In Figure 12, the solutions Uh for ω = π/4, using the boundary conditions
BT1, BT2, NR1(20), and NR2(20), are shown on B at θ = 0 for a long time
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Figure 12: Demonstration of long time stability: the solutions Uh, computed
with f(x, t) a short-time pulse using the boundary conditions BT1, BT2,
NR1(20), and NR2(20), are shown on B at θ = 0.

interval. The results indicate that the numerical method using any one of
these boundary conditions is stable.

5.2 Piston on a sphere

Here we consider the radiation from a circular piston on a sphere of radius
0.5. The portion of the sphere from θ = 0◦ to θ = 15◦ is a piston, moving with
radial velocity sinωt. Elsewhere, the sphere is rigid and the solution vanishes.
To avoid the extra numerical complications due to a discontinuous boundary
condition, we let the solution decay smoothly to zero for 15◦ ≤ θ ≤ 30◦. This
problem is challenging because the waves generated at the piston pole θ = 0◦

are attenuated by a geometric spreading loss, as they travel along longitudes
down to the south pole. In the region opposite the piston, the amplitude of
the waves is significantly lower than it is near the piston.

Because this problem is symmetric about the z-axis, the acoustic field is
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Figure 13: Piston on a sphere: the exact solution Uh
∞ is shown at t = 10

inside the large domain, 0.5 ≤ r ≤ 6, with ω = 2π.

independent of φ. Hence the computational domain Ω can be restricted to
the two-dimensional region r0 ≤ r ≤ R, 0 ≤ θ ≤ π, and the computational
effort thus greatly reduced. Again we have truncated the unbounded exterior
by a spherical artificial boundary at r = R. We choose R = 1 and use the
finest mesh 40× 240 inside Ω. For the “exact” solution Uh

∞, shown in Figure
13, we take the outer boundary at R∞ = 6. Thus, the truncation at r = R∞

will not be sensed inside Ω until t = 10.5. In Figure 14, the contour lines for
Uh
∞ and Uh are shown at time t = 10, where Uh is computed using BT2. We

observe that Uh captures the physics of the solution quite well, especially in
the vicinity of the piston. However, behind the sphere a spurious reflection
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Figure 14: Piston on a sphere: the exact solution Uh
∞ (—–) is compared

with the solution Uh (· · ··), computed inside Ω with the absorbing boundary
condition BT2 applied at the artificial boundary.

from B travels towards the obstacle. The contour lines of Uh, calculated
using NR1(20), coincide with those of Uh

∞ and cannot be discerned on this
figure.

Since the spurious reflections introduced by the local boundary operators
appear to be most severe at the south pole, we take a closer look at that
region. On the left of Figure 15, the solutions Uh and Uh

∞ are shown at the
south pole of B, r = 1 and θ = 180◦, as functions of time. The solutions Uh

are computed using BT1, BT2, and NR1(20). On the right of Figure 11, the
same solutions are displayed at time t = 10 along the z-axis, 0.5 ≤ r ≤ 1
and θ = 180◦. The solutions Uh

∞ and Uh, calculated using NR1(20) coincide
almost perfectly. The solutions Uh, calculated using BT1 and BT2, differ
significantly from the exact solution. The spurious reflections they introduce
at the outer boundary, travel back into Ω and spoil the solution right up to
the obstacle.

6 Conclusion

First, we wish to emphasize that this article makes no pretense of providing a
complete presentation, not even a survey, of the rapidly growing literature in
absorbing boundary conditions – see Givoli [1, 23] or more recently Tsynkov
[24] for a review. In particular, we have completely ignored the popular
approach of absorbing layers [25], which made a comeback in the mid-nineties
with the perfectly matched layer (PML) method of Bérenger [26].

The constant demand for increasingly accurate, efficient, and robust nu-
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Figure 15: Piston on a sphere. Left: The solutions Uh, computed using the
boundary conditions BT1, BT2, and NBC(20), are compared with the exact
solution Uh

∞ on B at θ = π. Right: The same four solutions are shown at
t = 10 along the z-axis in the region below the south pole, at θ = π and
0.5 ≤ r ≤ 1.

merical methods, which can handle a wide variety of physical phenomena,
spurs the search for improvements in absorbing boundary conditions. The
frustration is all too obvious, when the gains made in the interior by using so-
phisticated numerical methods, such as high order and adaptive methods, are
annihilitated at the artificial boundary by the use of an inaccurate boundary
condition. The exact nonreflecting boundary condition (45)–(46) has been
found to be very accurate in numerical computations. It involves only first-
order derivatives of the displacement, which makes it robust and easy to use.
The boundary condition fits easily into finite-difference methods and allows
the artificial boundary to be brought as close as desired to the scatterer. It
is easy to implement and requires little extra storage and computer time. It
also fits naturally into the variational formulation; hence it is well-suited for
use with the finite element method. Although the formulation is global over
the artificial boundary, it is explicit and does not require the solution of any
large linear system. It only requires inner products with spherical harmonics
of the displacement on the artificial boundary. Although the artificial bound-
ary must be spherical, the boundary condition is not tied to any coordinate
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system, and the grid used inside Ω can be arbitrary. With the nonreflecting
boundary condition the overall numerical scheme retains its optimal rate of
convergence, as the error introduced at the artificial boundary can always be
reduced below the discretization error due to the numerical method in the
interior computational domain. Therefore the numerical scheme converges
at little extra cost to the true solution in the unbounded region.
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