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1 The symmetry properties of the Wilson fermion
matrix

In the Wilson formulation of the lattice Dirac operator, where the Green’s function of a
single quark with bare mass m is computed by a model based on simple nearest neighbor
coupling on a regular 4-dimensional space-time grid with periodic boundary conditions,
the resulting linear system Wx = b (which in lattice QCD is often written as Mψ = φ)
has a coefficient matrix of the form

W = I− κB , (1)

where κ ∈ R is the so-called hopping parameter andB is a matrix of order 12×l1×l2×l3×l4,
with lµ denoting the number of lattice points in dimension µ. Nowadays, typically lµ = 16,
32, or 64 for all µ, so that the order of the matrix ranges between 12×164 = 786, 432 and
12× 644 ≈ 2× 108. The matrix B is well-known to have useful features [1, 16, 17]: first,
B is formally Γ5-Hermitian or Γ5-selfadjoint, in the sense that1

B! = Γ5BΓ5 , where Γ5 = Γ!
5 = Γ−1

5 (2)

is a real diagonal matrix with elements ±1, which takes the form

Γ5 :≡ diag
[
1 1 · · · 1 −1 −1 · · · −1

]

if equations and unknowns are ordered appropriately; second, since the underlying dis-
cretization is restricted to nearest-neighbor coupling, B is at the same time “odd/even
symmetric” in the sense that

ΣB = −BΣ , (3)

where Σ is a diagonal matrix with +1’s and −1’s. For example, in the two-dimensional
case, a diagonal entry ofΣ is +1 if for the corresponding grid point (i, j) the difference i−j
is even. This actually means that B is a so-called checker board matrix (“Schachbrett-
Matrix” in German, see, e.g., , [50]) with the property that (B)k,l = 0 if k − l is even.
By suitable simultaneous row and column permutations that correspond to a red-black
or even-odd reordering B can be brought into the form

B̃ :≡

[
O B̃1

B̃2 O

]

, (4)

which exhibits that B̃ is weakly 2-cyclic [47]. In general,B is a block checkerboard matrix,
which can also be brought into the form (4).

The first symmetry, (2), implies that the spectrum of B is symmetric about the real
axis, and the second, (3), entails that the spectrum is also symmetric about the origin,
whence the spectrum is actually symmetric about both axes.

For the Wilson fermion matrix W we have due to (2)

W! = Γ5WΓ5 , (5)

1The star denotes the adjoint or conjugate transpose of a matrix.
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and the spectrum is symmetric about the real axis and about the point 1. On the other
hand, (4) implies that W has Young’s Property A, which makes the linear system suitable
for the SOR method [47], in particular since the spectrum is well captured by an ellipse
whose larger axis covers only part of the interval (0, 2), as long as κ remains below a
critical value. SOR can be expected to converge about twice as fast as the complex
Chebyshev iteration [34, 48], which is also an option, but does not take advantage of the
(generalized) odd-even structure (4); see [22] for an analogous, but nonlinear problem
from another application. SOR and the Chebyshev method require some preliminary
knowledge about the spectrum (which may be obtained from a previous application of
the biconjugate gradient method), but require no inner products, which is an important
advantage on parallel computers.

The systems of the form Wx = b that need to be solved are sometimes formally
preconditioned with the matrix

ΣWΣ = I+ κB ,

so that the system matrix becomes

(ΣW)2 = ΣWΣW = I− κ2B2 (6)

and is seen to commute with Σ, hence, is a block checker board matrix of the other type
(with non-zero block diagonal). This implies that the system decouples into two systems
of half the size. Also this matrix and, hence, its two diagonal blocks of roughly half the
size are Γ5-adjoint. However, neither W nor (ΣW)2 have a real spectrum.

In contrast, preconditioning by Γ5 yields a linear system with the matrix Γ5W, for
which in view of (2) and κ ∈ R

(Γ5W)! = (Γ5 − κΓ5B)! = Γ!
5 − κB!Γ!

5 = Γ5 − κΓ5B = Γ5W , (7)

which shows that Γ5W is Hermitian and, thus, has real spectrum.

Since the iterative solution of Wx = b is so time and memory consuming, it is crucial
to use algorithms that are particularly suitable for this special system and capitalize upon
some of the special properties mentioned. We have referred to SOR in connection with
the Property A and the special form of the spectrum ofW. Relation (7) suggests to apply
a solver for Hermitian indefinite systems, such as MinRes, to Γ5Wx = Γ5b. (However,
we need to mention that a recent analysis of Sleijpen, van der Vorst, and Modersitzki [43]
shows that the limiting accuracy of MinRes is far below that of most other methods.)
Boriçi [1] and Frommer et al. [17] have made use of relation (2) for simplifying the
biconjugate gradient (BiCG) method, and we will discuss some not so well known details
below. Experiments with these and other methods have been documented in many papers,
see, for example, [1, 2, 3, 7, 14, 15, 16].
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2 The biconjugate gradient method and some related
methods

The first Lanczos-type method, introduced in 1952 by Lanczos [33] as the “complete algo-
rithm for minimized iterations”, is essentially what we now call the (standard) BiOMin
form [27] of the the biconjugate gradient (BiCG) method [8]. It is fully analogous to the
classical Hestenes-Stiefel version of the conjugate gradient (CG) method for Hermitian
positive definite systems [30], which is also referred to asOMin algorithm for CG. Unlike
CG, which is restricted to Hermitian positive definite systems, BiCG is applicable to
general nonsingular square systems Ax = b . However, in contrast to CG, BiCG may
break down due to division by zero. If it does not, then, in exact arithmetic, BiCG would
converge in at most N steps, if N denotes the order of the system. In finite precision
arithmetic, BiCG is strongly influenced by roundoff errors and thus is not guaranteed to
converge. But, in practice, when applied to very large systems, we anyway need methods
that converge in much fewer than N steps.

Like the classical OMin version of CG, BiOMin is based on a pair of coupled recur-
rences for the residual and the direction polynomials. These recurrences are used to build
up biorthogonal (or, dual) bases for a pair of nested sequences of dual Krylov spaces,

Kn :≡ Kn(A,y0) :≡ span (y0,Ay0, . . . ,A
n−1y0) , (8)

K̃n :≡ Kn(A
!, ỹ0) :≡ span (ỹ0,A

!ỹ0, . . . , (A
!)n−1ỹ0) , (9)

n = 1, 2, . . .. The bases consist of the biorthogonal Lanczos vectors ỹm ∈ K̃m, yn ∈ Kn

satisfying

〈ỹm,yn〉 =
{

0 , m (= n,
δn , m = n.

(10)

At the same time another pair of bases is generated, consisting of the biconjugate direction
vectors ṽm ∈ K̃m, vn ∈ Kn satisfying

〈ṽm,Avn〉 =
{

0 , m (= n,
δ′n , m = n.

(11)

Additionally, approximations xn ∈ x0 +Kn of the solution of Ax = b are computed, and
in BiCG, which is a Petrov–Galerkin method, these satisfy b − Axn ⊥ K̃n. In view of
(10), the (right-hand side) Lanczos vectors yn also satisfy yn ⊥ K̃n, and, in fact, they are
normally scaled so that they coincide with the residuals, that is, yn = rn :≡ b − Axn.
Here is a summary of the resulting standard BiCG algorithm2.

Algorithm 1 (BiOMin form of the BiCG method) For solvingAx = b choose an
initial approximation x0, set v0 := y0 := b − Ax0, and choose ṽ0 := ỹ0 such that

2The overbar denotes complex conjugation. Complex quantities can be avoided when all data
(A,b,x0) are real. We define the (complex) Euclidean inner product by 〈z,y〉 :≡ z!y =

∑
ζk ηk.
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δ0 := 〈ỹ0,y0〉 (= 0 and δ′0 := 〈ỹ0,Av0〉 (= 0. Then, for n = 0, 1, . . . compute

ωn := δn/δ
′
n , (12a)

yn+1 := yn −Avnωn , (12b)

ỹn+1 := ỹn −A!ṽnωn , (12c)

xn+1 := xn + vnωn , (12d)

δn+1 := 〈ỹn+1,yn+1〉, (12e)

ψn := −δn+1/δn , (12f)

vn+1 := yn+1 − vnψn , (12g)

ṽn+1 := ỹn+1 − ṽnψn , (12h)

δ′n+1 := 〈ṽn+1,Avn+1〉. (12i)

If yn+1 ≈ o, the process terminates and xn+1 is the solution; if δn+1 ≈ 0 (and hence
ψn ≈ 0) or δ′n+1 ≈ 0, but yn+1 (≈ o, the algorithm breaks down (“Lanczos and pivot
breakdowns”, respectively).

The recurrence coefficients ωn and ψn−1 are chosen so that the conditions (10) and (11)
are satisfied for m = n− 1. The most important feature of BiCG is that, in exact arith-
metic, the other of these conditions are then satisfied automatically: the corresponding
orthogonality is inherited — at least in exact arithmetic.

By eliminating the direction vectors from the recurrences of Algorithm 1 we obtain the
BiORes form of the BiCG method, where the Lanczos vectors are generated by three-
term recurrences; see, e.g., [27] for this connection, which is based on an LU decomposition
of a tridiagonal matrix:

Algorithm 2 (BiORes form of the BiCG method) To solve Ax = b, choose an
initial approximation x0, set y0 := b −Ax0, and choose ỹ0 such that δ0 := 〈ỹ0,y0〉 (= 0.
Set β−1 := 0. Then, for n = 0, 1, . . . compute

δAn := 〈ỹn,Ayn〉 , (13a)

αn := δAn /δn , (13b)

βn−1 := γn−1δn/δn−1 (if n > 0), (13c)

γn := −αn − βn−1 , (13d)

yn+1 := (Ayn − ynαn − yn−1βn−1)/γn , (13e)

ỹn+1 := (A!ỹn − ỹnαn − ỹn−1βn−1)/γn , (13f)

δn+1 := 〈ỹn+1,yn+1〉 , (13g)

xn+1 := −(yn + xnαn + xn−1βn−1)/γn . (13h)

If γn ≈ 0, the algorithm breaks down (“pivot breakdown”). If yn+1 ≈ o, it terminates
and xn+1 is the solution. If yn+1 (≈ o, but δn+1 ≈ 0, it also breaks down (“Lanczos
breakdown”).
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A serious shortcoming of BiCG and related, so-called Lanczos-type methods for non-
symmetric systems is the possibility of breakdowns. These were probably the main reason
why for decades numerical analysts were very reluctant to apply or even promote this
method. Finally, look-ahead steps were introduced to circumnavigate such breakdowns
[38, 24, 26, 11]. It was also noticed that in practice breakdowns and near-breakdowns
with serious effects are quite rare. Ever since, BiCG and other Lanczos-type methods
have become more and more popular, although look-ahead is rarely implemented.

Another disadvantage is that in contrast to most other Krylov space methods BiCG
requires two matrix-vector products (MVs) per step, but only increases the search space
Kn by one dimension. This disadvantages of BiCG was overcome by Sonneveld [44]
with the introduction of the conjugate gradient squared (CGS) method, which should
rather be called BiCGS and will be referred to here as (Bi)CGS. Sonneveld’s clever idea
was to derive recurrences that produce approximations xn ∈ x0 + K2n whose residuals
rn ∈ K2n+1 correspond to the squares p2n of the residual polynomials p of BiCG (which
are often referred to as the Lanczos polynomials). If we denote by p̂n the polynomials
that are associated with the direction vectors vn of BiCG, then these recurrences involve,
in addition to the iterates xn, the vector sequences

rn :≡ p2n(A)r0 ∈ K2n+1 , sn :≡ pn(A)p̂n(A)r0 ∈ K2n+1 ,

s′n :≡ pn+1(A)p̂n(A)r0 ∈ K2n+2 , r̂n :≡ p̂2n(A)r0 ∈ K2n+1 .

They are easily derived from the BiOMin recurrences (12b)–(12c) and (12g)–(12h), and
they contain the same coefficients ωn := δn/δ′n and ψn := −δn+1/δn. Note that

δn = 〈ỹn,yn〉 = 〈pn(A!)ỹ0, pn(A)r0〉 = 〈ỹ0, p2n(A)r0〉 = 〈ỹ0, rn〉,

δ′n = 〈ṽn,Avn〉 = 〈p̂n(A!)ṽ0,Ap̂n(A)r0〉 = 〈ỹ0, p̂2n(A)Ar0〉 = 〈ỹ0,Ar̂n〉.
(14)

A typical behavior of BiCG is that the residual norms ‖yn‖ fluctuate strongly, in
particular when the problem solved is ill conditioned and, consequently, the convergence
is rather slow. In (Bi)CGS this erratic convergence behavior is even more pronounced.
One way to counteract it is by replacing the residual polynomials p2n of (Bi)CGS by a
more general product pntn, where tn belongs to another polynomial sequence satisfying
a short recurrence. This leads to Lanczos-type product methods (LTPMs). The first
algorithm of this class was BiCGStab, due to van der Vorst [45], where tn is built up
from linear factors: tn+1(ζ) = (1− χn+1ζ)tn(ζ), and where the sequences

rn :≡ pn(A)tn(A)r0 , r̂n :≡ p̂n(A)tn(A)r0 , wn :≡ pn+1(A)tn(A)r0 ,

are constructed in addition to the iterates xn. The coefficient χn+1 is chosen such that

||rn+1|| = min
χ

||wn −Awnχ|| .

For BiCGStab the residual norm history is typically much smoother than for (Bi)CGS,
but a disadvantage of this method is that the zeros 1/χn of the second set {tn} of poly-
nomials are necessarily all real when a real-valued problem is solved in real arithmetic,
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even when the spectrum of the matrix is truly complex. Moreover, they remain fixed
for all subsequent polynomials of the set. The first disadvantage is avoided if the linear
factors are replaced by quadratic factors that are attached every other step; they allow a
two-dimensional residual minimization in every other step, as suggested in BiCGStab2
[25]. The second disadvantage is overcome if the second set is chosen to satisfy a three-
term recurrence or a pair of coupled two-term recurrences (which can be used for a two-
dimensional residual minimization in every step), as suggested by Zhang in his GPBI-CG
algorithm [49] (an equivalent form of which is called BiCG×MR2 in [27]).

3 Simplifications due to symmetries

WhenA is Hermitian, the choice ỹ0 := y0 will produce in the BiORes algorithm identical
left and right vectors, ỹn = yn (∀n), and in the BiOMin algorithm also ṽn = vn (∀n), so
that there is no need to compute the left sequences {ỹn} and {ṽn}. This is easily seen by
induction and by noting that the numbers αn, βn, γn, ψn, and ωn are real, even whenA or
y0 are complex. The resulting simplified algorithms are then exactly the OMin and the
ORes algorithms, respectively, for CG; they may be applied also to indefinite Hermitian
systems, but then they can break down too.

One may raise the question whether there are other situations where BiCG simplifies
in the sense that only one MV is required per step. In 1953, Rutishauser [39] and later
Fletcher [8], both assuming real data, pointed out that in the three-term Lanczos process
(and thus also in BiORes, which just makes use of the special normalization γn :=
−αn − βn−1), the knowledge of a matrix S satisfying

A# = SAS−1 (15)

allows us to make such a reduction: choosing ỹ0 := Sy0 yields ỹn := Syn (n > 0). In
[23] we mentioned this again and made the simple observation that the complex case is
covered too when we choose ỹ0 := Sy0, which then yields ỹn := Syn (n > 0), as is readily
verified. Thus we can delete (13f) if we replace (13a) and (13g) by

δAn := 〈yn,Ayn〉S! , (16)

δn+1 := 〈yn+1,yn+1〉S! , (17)

respectively, where
〈z,y〉S! :≡ 〈z,S#y〉 = z!S#y . (18)

The BiOMin algorithm simplifies in a fully analogous way: we just need additionally

δ′n+1 := 〈vn+1,Avn+1〉S! (19)

in order to delete (12c) and (12h). Rutishauser also pointed out that a matrix S satisfying
(15) always exists, as every matrix is known to be similar to its transposed, but the usual
proof for this makes use of the Jordan canonical form, see, e.g., [32, p. 134]. Of course,
the simplification is only useful, if S is known and if the matrix-vector products Syn are
cheaper than A!ỹn.
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Note that (15) does not include the simple Hermitian case A! = A, but it covers the
complex symmetric case (where S= I), which was treated in detail by Freund [9].

In [10] Freund looked for further situations where the Lanczos process simplifies, and in
particular for classes of matrices where the matrix S is known due to the special structure
of A. For example, for a Toeplitz matrix (15) holds with S the antidiagonal unit matrix J.
More generally, a matrix satisfying (15) with S = J is symmetric about the antidiagonal
and is called persymmetric. In [10] Freund treated the cases

A# = SAS−1 , S = S# , (20)

and
A! = SAS−1 , S = S! . (21)

Clearly, (20) is a special case of (15) (the extra condition S = S# is not needed for the
simplification), but for complex matrices (21) is different. In [13], Freund and Nachtigal
then referred to the two cases (15) and

A! = SAS−1 , (22)

that is, they dropped the symmetry assumption for S in (21), which, however, seems to
be wrong3 In fact, the recipe is to choose4 ỹ0 := Sy0 in BiCG and to aim for ỹn = Syn

(n > 0). Inserting this and (22) in (13f) leads after premultiplication with S−1 to

yn+1 := (Ayn − ynαn − yn−1βn−1)/γn , (23)

which differs from (13e) only in the complex conjugated coefficients. By making addition-
ally use of S! = S, we see that (21) implies that

(SA)! = SA , (24)

that is SA is Hermitian. Consequently,

δn :≡ 〈ỹn,yn〉 = 〈yn,Syn〉 ∈ R , (25)

δAn :≡ 〈ỹn,Ayn〉 = 〈yn,SAyn〉 ∈ R , (26)

so that αn ∈ R, βn−1 ∈ R, and γn ∈ R. Therefore, under the assumption (21) the
BiORes algorithm can indeed be simplified, and the same is true for BiOMin since,
when ṽn := Svn also

δ′n :≡ 〈ṽn,vn〉 = 〈vn,SAvn〉 ∈ R , (27)

so that ψn ∈ R and ωn ∈ R. This can all be recast in a proof by induction showing
that choosing ỹ0 := Sy0 := Sy0 yields ỹn = Syn for n > 0 in BiORes, and likewise,
additionally choosing ṽ0 := Sv0 := Sy0 in BiOMin implies ṽn = Svn for n > 0. In

3We must admit that we made the same mistake in a remark in §6.1 of [27], where we moreover
claimed incorrectly that (21) implies that the spectrum of A is real.

4Note that Freund uses in the complex Lanczos process a formal, bilinear inner product w!y instead
of the usual sesquilinear inner product 〈ỹ,y〉 = ỹ!y; therefore, up to a scalar factor, his left Lanczos
vectors wn and ours are related by ỹn = wn.
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summary, for simplifying BiORes and BiOMin when (21) holds, we redefine δn, δAn , and
δ′n as given in (25), (26), and (27) in order to delete (13f) in BiORes and (12c), (12h)
in BiOMin, as has been proposed by Boriçi [1] and Frommer et al. [17] for the Wilson
fermion computations.

Without the condition, S = S!, that is, assuming (22) alone, does not seem to lead to
such a simplification, even if we turn to the most general versions of the Lanczos process
[27] where γn and γn can be chosen freely (the latter need not be the complex conjugate
of the former).

Software for the so simplified BiCG algorithms (and of the related QMR algorithm
that is not discussed here) is available from

http://www.math.uni-wuppertal.de/org/SciComp/Projects/QCD.html

4 Finite precision effects

Roundoff errors can have strong effects on Lanczos-type methods (including CG). This is
first of all due to the fact that the methods rely essentially on a variation of the Gram-
Schmidt process, which is known to be prone to roundoff effects. Second, particularly in
the nonsymmetric case, the computed recurrence coefficients may turn out to have large
relative error. Third, the residuals are normally updated using recurrences and, hence,
may differ considerably from the true residuals of the approximations xn. We will now
discuss these three types of finite precision effects.

4.1 Loss of orthogonality and loss of linear independence

Recall that, for example, in CG and BiCG a Gram-Schmidt process is applied to make
the residual yn+1 orthogonal to the earlier ones or the earlier left Lanczos vectors, respec-
tively. The Gram-Schmidt process makes vectors shorter due to the subtraction of certain
projections, and thus tiny errors in the coefficients or in the computation of the linear
combinations may ultimately cause large relative errors, and, in particular, a loss of or-
thogonality: yn+1 will not be exactly orthogonal to ỹ0, . . . , ỹn. This loss of orthogonality
is often severe enough to lead to a loss of linear independence.

Special is here that it suffices to enforce the orthogonality to ỹn and ỹn−1 (in the case
of BiCG), because the orthogonality to ỹ0, . . . , ỹn−2 is inherited in exact arithmetic. This
has the advantage that there are only two subtractions, hence the resulting vector yn+1γn
will not be so much shorter than the one we started with, Ayn, but the drawback is that
the loss of orthogonality may be worse since previous errors are inherited too. Hence,
often

〈ỹm,yn〉
‖ỹm‖ ‖yn‖

(≈ 0 if |m− n| large.

For example, the fraction can be easily on the order of 10−1.

This loss of orthogonality is particularly annoying when the tridiagonal matrix Tn

generated in the Lanczos process is used to find approximate eigenvalues of A, because
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it will cause Tn to have multiple copies of some of these eigenvalues. Full reorthogo-
nalization, that is, repeating the Gram-Schmidt process with respect to the full set of
Lanczos vectors (instead of the last two) would help, but the cost forbids this, since it
would be necessary to store all Lanczos vectors. Two strategies have been developed to
cope with this difficulty: either the so-called ghost eigenvalues are identified and removed
as proposed by Cullum and Willoughby [4], or their creation is avoided by reducing the
roundoff errors of the Lanczos vectors, as suggested by Parlett and his group [36, 37, 6, 5].
However, it does not suffice to reduce the roundoff in the three-term Gram-Schmidt pro-
cess (where yn+1 is made orthogonal to ỹn and ỹn−1) by applying modified Gram-Schmidt
or repeated classical Gram-Schmidt (there is little benefit because there are only three
terms). Additionally, yn+1 needs to be reorthogonalized with respect to a selection of
earlier Lanczos vectors. In the symmetric case, where this technique was explored first,
this selective reorthogonalizition can be justified by Paige’s roundoff analysis for the sym-
metric Lanczos process. The nonsymmetric case was later treated by Day [6, 5], who
systematically explored measures for maintaining duality, that is, biorthogonality.

Since selective reorthogonalizition increases the program complexity and the mem-
ory requirements, computational physicists tend to prefer the Cullum and Willoughby
filtering.

We should mention, however, that even if Tn is affected by large roundoff errors
occuring in the Lanczos process, the implications are not completely devastating: groups
of ghost eigenvalues somehow maintain the projection properties of the operator.

For solving linear systems it seems not really worth-while to apply all these tricks.
Moreover, it seems to be impossible to adapt them to LTPMs, which are now considered
to be the most effective solvers. In fact, when linear systems are solved, the loss of
linear independence caused by a loss of orthogonality will just entail a slowdown of the
convergence. In the symmetric case, this mechanism is well understood due to the work
of Greenbaum and Strakoš [18, 21]: in finite precision arithmetic, the Lanczos process
behaves like one for a bigger problem in exact arithmetic.

4.2 Inaccurate recurrence coefficients and near-breakdowns

To some extent, inaccurate recurrence coefficients in CG and BiCG are clearly linked to
the loss of orthogonality just discussed. One effect adds to the other: inaccurate Lanczos
vectors lead to inaccurate coefficients, and vice versa. However, in the non-Hermitian
case, there is the additional danger that the inner products δn and δ′n may be very small
even if the vectors they are formed from are not short. Since an inner product of nearly
orthogonal vectors is inherently prone to large relative roundoff error, these cases are
dangerous: the quantities computed from δn and δ′n will also have large error. This is
then called a near-breakdown, since, when one of these inner products is needed and turns
out to be exactly 0, then the corresponding algorithm breaks down due to a division
by zero (exact breakdown). We refer to the case δn ≈ 0 as Lanczos breakdown, and to
δ′n ≈ 0 as pivot breakdown. In the Hermitian indefinite case (where ỹn = yn) Lanczos
breakdowns cannot occur, but pivot breakdowns still can. In the BiORes version of
BiCG and in the ORes version of CG (when applied to a Hermitian indefinite system),
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the pivot breakdown reappears as γn ≈ 0. Only in the case of a Hermitian positive definite
(Hpd) system, CG cannot break down.

Specifically, in BiORes the recurrence coefficients αn and/or βn−1 are inaccurate if
any of the inner products

δn :≡ 〈ỹn,yn〉 , δn−1 :≡ 〈ỹn−1,yn−1〉 , δAn :≡ 〈ỹn,Ayn〉

has large relative error. Moreover, γn :≡ −αn − βn−1 may be inaccurate if |γn| , |αn|.
Similarly, in BiOMin, ψn−1 and/or ωn are inaccurate if any of the inner products

δn :≡ 〈ỹn,yn〉 , δn−1 :≡ 〈ỹn−1,yn−1〉 , δ′n :≡ 〈ṽn,Avn〉

has large relative error. And likewise, the same types of inaccuracy occur in (Bi)CGS if
any of the inner products

δn :≡ 〈ỹ0, rn〉 , δn−1 :≡ 〈ỹ0, rn−1〉 , δ′n :≡ 〈ỹ0,Ar̂n〉

has large relative error; see (14).

Except for δAn ≈ 0, all of these cases cause near-breakdowns. In particular, a pivot
near-breakdown (γn ≈ 0 in BiORes or δ′n ≈ 0 in BiOMin) causes not only large local
errors in coefficients and vectors, but also very large vectors xn and rn.

Fortunately, in linear system solvers, inaccurate recurrence coefficients only seem to
have a strong effect on the convergence when the coefficients are very inaccurate, as it
may happen when a near-breakdown occurs. As we mentioned before, for computing
approximate eigenvalues the situation is different.

The bad effects of a breakdown or near-breakdown can be avoided by switching to
look-ahead steps when necessary, a technique that was developed in [38] for eigenvalue
computations, in [24, 26, 11, 12] for various versions of BiCG, and in [28] for LTPMs.
Additional contributions and alternative approaches are referred to in [27] and [28], where
also a simplification due to Hochbruck [31] is covered. In particular, divisions by near-
zeros can be avoided by look-ahead, but there are still some open questions regarding the
best strategy for its application.

Further possibilities to improve the accuracy of the recurrence coefficients include,
in addition to those for reducing the loss of orthogonality mentioned in the previous
subsection:

(i) The application of multiple precision arithmetic to compute the above inner prod-
ucts and the sum γn :≡ −αn − βn−1, an option one tries to avoid.

(ii) Alternative choices for the left vectors in BiCG. It is well-known (see Algorithm 3
in Saad [40] and Section 6.2 in [27]) that in BiCG the left vectors ỹn need not be chosen
as Lanczos vectors, but could come from another nested basis for the dual space. In fact,
LPTMs capitalize exactly upon this freedom. However, experiments done independently
by Miroslav Rozložńık (private communication) and the author have not turned out a
convincing choice different from the standard one. Indeed the theory provides little hope
for success in this way.

(iii) Replacing (Bi)CGS by an LTPM with suitably chosen second set of polynomials
tn. However, again there is limited hope for a strong improvement.
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4.3 The gap between updated and true residuals

In most Krylov space methods one has the option to compute the residuals rn :≡ b−Axn

explicitly according to this definition or by updating, that is by using some recursion(s)
like the coupled two-term recursions (12b), (12g) ofBiOMin and the three-term recursion
(13e) of BiORes (recall that in BiCG rn = yn). In some cases, the explicit evaluation
costs an extra matrix-vector product (MV), but normally another one can be avoided
instead. Nevertheless, the folklore is that updating should be used because explicit com-
putation adds to the roundoff in the process of generating the Krylov space, that is,
produces a less accurate basis, and thus often slows down convergence. We therefore
assume here that the residuals are computed by updating, and we let rn denote the nth
residual vector so obtained in finite precision arithmetic. Likewise, xn is now the iterate
computed in finite precision arithmetic, and b−Axn is the true residual obtained in exact
arithmetic from xn. (Actually, in numerical experiments the true residuals are computed
in finite precision arithmetic too, but the error in the evaluation of this expression will
normally be considerably smaller than the true residual itself, and this is all that is needed
in this context.) Clearly, a gap

f :≡ b−Axn − rn (28)

between the true and the updated residuals will occur, and one can expect that it will
somehow grow with n. This has been known for a long time, but only recently this gap
was analyzed for the two most important cases, namely for two-term update formulas

rn+1 := rn −Avnωn ,

xn+1 := xn + vnωn

(29)

(which need to be combined with one for the direction vectors, say, v0 := r0, vn :=
rn + vn−1ψn−1 (n > 0), which has no influence on the gap) like in BiOMin and in the
classical OMin version of CG, and for a pair of three-term recurrences

rn+1 := (Arn − rnαn − rn−1βn−1)/γn ,

xn+1 := −(rn + xnαn + xn−1βn−1)/γn

}
with γn := −(αn + βn−1), (30)

like in BiORes and the corresponding ORes version of CG. (At the start, r0 := b−Ax0,
r−1 := o, x−1 := o, β−1 := 0.)

The relevance of this gap is due to the fact that in most methods the updated residuals
become ultimately orders of magnitude smaller than the true residuals, which essentially
stagnate from a certain moment. Consequently, a large gap means low attainable accu-
racy: the true residuals will stagnate early.

For the two-term recurrences of the form (29) Greenbaum [19, 20] proved the following
result (which improves a similar one of Sleijpen, van der Vorst, and Fokkema [42]):

Theorem 4.1 Assume iterates and residuals are updated according to (29). Then the gap
(28) between the true and the updated residual is given by

fn = f0 − l0 − · · ·− ln , (31)
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where
ln :≡ Ahn + gn (32)

is the local error whose components hn and gn are defined by

xn+1 = xn + vnωn + hn , rn+1 = rn −Avnωn + gn . (33)

In particular,

||fn||
||A|| ||x||

≤ (ε+O(ε2)) [n + 2 + (1 + µ+ (n + 1)(10 + 2µ))Θn] , (34)

where ε denotes the machine-epsilon, µ :≡ m
√
N with m the maximum number of nonzeros

in a row of A and N the matrix order, and

Θn :≡ max
k≤n

||xk||
||x||

. (35)

In contrast, for a pair of three-term recurrences (30) the following holds [29]:

Theorem 4.2 Assume iterates and residuals are updated according to (30). Then the gap
(28) satisfies, up to O(ε2),

fn+1 = f0 − l0

− l0
β0

γ1
− l1

− l0
β0β1

γ1γ2
− l1

β1

γ2
− l2

... (36)

− l0
β0β1 · · ·βn−1

γ1γ2 · · · γn
− . . .− ln−1

βn−1

γn
− ln ,

where
ln :≡ (−bεn +Ahn + gn)/γn (37)

is the local error whose components hn, gn, and εn are defined by

rn+1 = (Arn − rnαn − rn−1βn−1 + gn)/γn ,

xn+1 = −(rn + xnαn + xn−1βn−1 + hn)/γn ,

γn = −(αn + βn−1 + εn).

(38)

It is rather easy to derive from the definitions of the local errors, that is, from (32),
(33) and (37), (38), respectively, bounds for these local errors. They show that typically
the local errors in algorithms based on three-term updates are larger than those arising in
two-term updates. In the former case, (34) and (35) show that the size of the gap mainly
depends on the norm of the largest iterate. In the latter case, the largest residual norm
also has a direct influence, and the constants in the estimate are larger.
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However, the main difference between Theorems 4.1 and 4.2 lies in the explicit formulas
(31) and (36) for the gaps: while in the two-term case the gap fn is just a sum of local
errors lj, in the three-term case the (normally larger) local errors are multiplied (and thus
amplified) by potentially very large factors. So, the gap is typically much bigger in the
latter case. This leads to an explanation of the fact that the attainable accuracy, that
is, the level on which the true residuals stagnate, is much worse for a three-term based
algorithm than for one using two-term updates. This fact can be easily verified numerically
in examples where the residual norm fluctuates heavily, a quite common behavior when A
is ill-conditioned. This behavior is more likely in BiCG and other Lanczos-type methods
for non-Hermitian systems than in CG, but it can also occur in CG, and, actually, even
small CG examples can be constructed to illustrate it; see [29].

These investigations are easily adapted to other methods, including, e.g., (Bi)CGS,
where also Theorem 4.1 applies. Consequently, for (Bi)CGS the gap is not as bad as one
might expect from the very erratic convergence behavior, because the local errors (which
may be large due to high peaks in the residual norm history) are not amplified by large
factors. However, the peaks may be so high that neither the updated nor the true residual
converge.

A fairly general remedy against the growth of the gap between true and updated
residuals—and thus against the corresponding loss of attainable accuracy— is based on
an idea of Neumaier [35]: occasional synchronization of true and updated residual combined
with a shift of origin. Neumaier’s proposal is just a variation of using true instead of
recursive residuals. He suggested to compute in (Bi)CGS the true residual at every step
where the residual norm is reduced and, at the same time, to replace the current system
by one for the remaining correction δx in x, so that the current residual becomes the
new right-hand side. One can think of this as a repeated shift of the origin or an implicit
iterative refinement. At the beginning we let

b′ := b−Ax0 , x′ := x0 , x0 := o ,

so that b−Ax = b′ −A δx, where δx := x− x′. We then apply our algorithm of choice
to A δx = b′. At step n, if the update condition

||rn|| < ||b′|| γ′ (where γ′ ∈ (0, 1] is given) (39)

is satisfied, we include the reassignments

b′ := b′ −Axn , x′ := x′ + xn , xn := o . (40)

Note that at every step, we then have

rn = b′ −Axn = b−A(x′ + xn) .

Neumaier actually computed the true residual at every step and chose γ′ = 1, which
means that the update is performed at every step where the residual decreases, hence,
nearly always. Sleijpen and van der Vorst [41] followed up on this idea and suggested
several alternatives to the update condition (39), so that fewer shifts and true residuals
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are used. Recently, van der Vorst and Ye [46] came up with yet another improvement
of this strategy. It pushes the level of stagnation of the true residual down to the level
that has to be expected in view of the roundoff bounds for the evaluation of the residual
at the rounded exact solution in finite precision arithmetic. In general, each update (40)
requires an extra matrix-vector product. However, Neumaier [35] found a way to use it
in (Bi)CGS for replacing one of the two other such products, and Sleijpen and van der
Vorst [41] achieved the same for BiCGStab.
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[15] A. Frommer, V. Hannemann, B. Nöckel, T. Lippert, and K. Schilling. Accelerating
Wilson fermion matrix inversions by means of the stabilized biconjugate gradient
algorithm. Int. J. Modern Physics C, 5:1073–1088, 1994.

[16] A. Frommer and B. Medeke. Exploiting structure in Krylov subspace methods for
the Wilson fermion matrix. In A. Sydow, editor, 15th IMACS World Congress on
Scientific Computation, Modelling and Applied Mathematics, Vol. 3, Computational
Physics, Chemistry and Biology, pages 485–490. Wissenschaft und Technik Verlag,
1997.
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[29] M. H. Gutknecht and Z. Strakoš. Accuracy of two three-term and three two-term
recurrences for Krylov space solvers. SIAM J. Matrix Anal. Appl. To appear.

[30] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bureau Standards, 49:409–435, 1952.
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99-14 E. Süli, P. Houston,
C. Schwab

hp-Finite Element Methods for Hyperbolic
Problems
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