
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

An alternative to Ewald sums.
Part 3: Implementation and results

R. Sperb and R. Strebel∗

Research Report No. 2000-02
April 2000

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

∗Institut für Wissenschaftliches Rechnen, ETH-Zentrum, CH-8092 Zürich

An alternative to Ewald sums.

Part 3: Implementation and results

R. Sperb and R. Strebel∗

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Research Report No. 2000-02 April 2000

Abstract

This paper describes the implementation of a method for computing the Coulom-
bic interaction in a periodic system. If the basic cell contains n charges the CPU
time required to compute all forces and the total energy is O(n · log n) in contrast
to Ewald’s method with O(n

3

2).

∗Institut für Wissenschaftliches Rechnen, ETH-Zentrum, CH-8092 Zürich

1 Basic formulae

We consider a basic cell C containing n charges qi with total charge zero. For simplicity

we restrict ourselves to the most important case that C is a cube of side 1. The case

that C is an arbitrary orthorhombic box requires some small corrections. This case is

discussed in [7]. The Coulomb potential can then be written as

φ("r) =
∑

!"∈Z3

n∑

i=1

qi

|"r − "ri + "#|
, (1.1)

where "r is the position vector of an arbitrary point in C, "ri is the position vector of the

charge qi, and "# is a lattice vector, i.e. the components of "# are in Z.

The force on a given charge qj is then obtained from the gradient of φ where the

singular term occurring in (1.1) for i = j and "# = (0, 0, 0) is omitted.

It was shown in [5] that φ can be written as

φ(x, y, z) =
∑

!"∈Z2

|!"|>0

1

|"#|
cosh(π |"#|(1− 2|z|)

sinh(π · |"#|)
cos(2π "# · "ρ1) + 2π(z2 − |z|) (1.2)

where "ρ1 = (x, y). Note that here "# ∈ Z2 in contrast to the corresponding expression of

the Ewald summation where "# ∈ Z3. Although not obvious from (1.2) φ is symmetric in

x, y, z as it has to be.

The Coulomb energy can then be written (see [5]) as

E =
1

2

n∑

i "=j=1

qi qj φ(xi − xj , yi − yj, zi − zj) +Q0 ·
n∑

i=1

q2i +
2π

3

(n∑

i=1

qi "ri
)2

. (1.3)

The dipole term on the very right of (1.3) has to be added if one takes spherical means

in the conditionally converging sums (see the discussion in [3]). The constant Q0 is given

by analytical expressions (see [4], [5], [6]) and the numerical value is -1.942248.

If the distance between two charges is very small the sum in (1.2) converges very

slowly. An alternative expression for φ was derived in [5] and [6]. It can be written in the

form

φ =
1

r
+ φ̂ , (1.4)

with r =
√

x2 + y2 + z2 and φ̂(x, y, z) is regular at (0, 0, 0). The rather complicated

1

expression for φ̂ is

φ̂(x, y, z) =
∑

|!"|>0

∞∑

p=1

K0[2πp |"ρ2 + "#|] cos(2πpx)−
∑

m"=0

L[y, z +m]

+ 2Re
[∑

m≥1

b2m
2m(2m!)

(2π(z + iy))2m
]

+
∑

k≥0

(−1
2

k

) ψ(2k)(1 + x) + ψ(2k)(1− x)

(2k)!
(y2 + z2)k

+ 2π(z2 − |z|)− 2 log(4π) + 4γ .

(1.5)

Here K0 is the Besselfunction and the ψ are Polygamma functions, b2m are Bernoulli

numbers, γ is the Euler constant and "ρ2 stands for (y, z). Further,

L[y, z] := log[1− 2 cos(2πy) exp(−2π |z|) + exp(−4π|z|)]

is used as an abbreviation as well.

The self energy constant Q0 is thus given by 1
2 φ̂(0, 0, 0).

The regular part φ̂ is used for charges that are close to each other and then the series

converge very quickly.

An analysis of the rate of convergence of the sums in (1.2) and (1.5) is carried out in

[7]. For a maximal error of 10−4 one should use for example (1.5) for |z| ≤ 0.35 and then

switch to the form (1.2).

2 Application of product expansion

Let us first repeat the simple idea of a product expansion. Assume we have to calculate

an expression of the form (e.g. the Coulomb energy)

E =
n∑

i,j=1

f(xi, xj) (2.1)

and suppose one has an expansion of the form

f(xi, xj) =
∞∑

"=1

a" g"(x
i) h"(x

j) . (2.2)

Then we can write

E =
∞∑

"=1

a"

n∑

i=1

g"(x
i)

n∑

j=1

h"(x
j) ∼=

L∑

"=1

a"

n∑

i=1

g"(x
i)

n∑

j=1

h"(x
j) . (2.3)

2

The expression in (2.1) requires n2 terms whereas the approximation in (2.3) needs only
2 ·L ·n terms. Since we are interested in applications with large n (103−107) the product

expansion will drastically reduce the amount of work required for a given accuracy. The

product expansion for the terms occurring in (1.2) is elementary since we have to deal

with trigonometric and exponential functions, and a quadratic term only.

For the form (1.5), i.e. the regular part φ̂ we will use an expansion in cosh-functions

as described in [6] and this in turn leads to a product expansion.

Let us briefly describe the method for the form (1.2) of the potential. Consider the

interaction of two cubic boxes B1 and B2 given by

I12 =
∑

qi∈B1

∑

qj∈B2

φ(xi − xj , yi − yj, zi − zj) . (2.4)

Neglecting the quadratic term in (1.2) the interaction I12 may be written in the form

I12 =
∑

ν>0

c(ν)
∑

qi∈B1

∑

qj∈B2

8∑

α=1

e1(ν, zi) t
1
α(ν, xi) s

1
α(ν, yi) ×

e2(ν, zj) t2α(ν, xj) s2α(ν, yj)

I12 =
∑

ν>0

c(ν)
8∑

α=1

∑

qi∈B1

e1i t
1
αi s

1
αi

∑

qj∈B2

e2j t
2
αj s

2
αj

(2.5)

I12 =
∑

ν>0

c(ν)
8∑

α=1

Sα
1 · Sα

2 . (2.6)

Here ν = |"#|, e1(ν, zi), e2(ν, zj) are exponential terms of the form exp(−2π νzi), exp(2π νzj),

and t1α, t
2
α, s

1
α, s

2
α are sin or cos terms with arguments 2πxi, 2πyi or 2πxj , 2πyj.

Equation (2.6) shows a decoupled form of sums extended separately over the two boxes

B1 and B2. A similar equation can be derived for the regular part φ̂.

So far we have only exploited the fact that φ and φ̂ may be expanded into products.

In the following we will also make essential use of the other features of φ:

a) φ is symmetric in x, y, z

b) φ is 1-periodic in x, y, z

c) The number of terms required for given accuracy decreases with increasing distance
of two boxes B1, B2.

3

3 Algorithm

In this section, we describe the algorithm to compute φ and φ̂ in a graphical way. We have

seen above how to efficiently compute φ for two subsets B1 and B2 by using the product

expansion, as long as B1 and B2 are well separated. We illustrate the computation of the

interaction from a grey subset B1 to a black subset B2 as follows.

By combining the contributions of all grey boxes, which are distant enough from the black

box, we obtain the following splitting into far and near contributions.

near φ

= +

far φ

Note that all the interactions are still assumed to be periodic, so the near contribution

may actually be represented more clearly as

φ = φ̂

= +

φ φ = 1/r

We will describe later how to efficiently compute the simple Coulomb potential φ = 1/r
and the smooth contribution φ = φ̂ from the mirror images.

3.1 Far contribution φ

An analysis of the expansion (1.2) shows that the number #φ of terms required in the

expansion is proportional to 1/∆2, where ∆ is the minimal separation of the black box

from the grey region. The situation for reductions along the z- and y-axes is sketched

below

4

+

∆

∆

If we restrict ourselves to reduce the problem only once along each coordinate axis with

some separation ∆ = ∆(n), then the time complexity of the algorithm turns out to be

O(n7/5). The exponent 7/5 can be derived from the following considerations. Assuming
that the near interaction is computed pairwise, the amount of work is O(n2∆3) for the near

φ. Using #φ ∼ 1/∆2, the amount of work for the far contribution is given by O(n/∆2).

Letting O(n2∆3) = O(n/∆2), we obtain 1/∆ = O(n1/5), and the result O(n7/5) drops

out.

We can reduce the time complexity further from O(n7/5) to O(n logn), if we reduce
the problem in a hierarchical way.

= + +

· · ·

· · ·

first level second level

This approach makes use of the fact that #φ, the number of terms in the expansion, is

actually proportional to (λ/∆)2, where λ is the side length of the cubic box. The above

sketch shows that λ = 1 for the first level, λ = 1/2 for the second level, and so forth.
The second level can be regarded as a scaled-down version of the original problem, so the

relation #φ ∼ (λ/∆)2 is natural from a geometric point of view. Note, however, that

this is strictly correct only if we count the number of terms #φ for a given relative error

tolerance.

The hierarchic approach fails so far because the scaled-down problem is not periodic
any more. Consequently, the method is to make the problems in the second and further

levels periodic. This may be achieved by adding artificial mirror images, the idea is

sketched below for a simple reduction along one dimension.

λ

= −

λ λ/2

5

The pictorial equation in words is about the following. We want to compute a near λ-
periodic problem in a λ/2-box, which represents the second level in the hierarchic scheme.

This problem may be reduced to a periodic problem with period λ/2 minus a far correction

in the λ-period. Basically, this correction consists of artificial mirror images, and their

contribution requires the same terms, which are already needed for the usual computation.

Consequently, the additional cost is small, and we have an efficient O(n logn) method by

using this hierarchic approach.

The logn factor in the time complexity stems from the number of levels required,

so that we are left with small boxes containing relatively few particles. However, this

complexity measure is too pessimistic from a practical point of view, since the terms

for the second and further levels are significantly cheaper than the terms for the first

level. Basically, this follows from the scaling property of 1/r, which is homogeneous in
the variables x, y, z. For instance, if the first level requires the computation of eβz, then

the second level needs e2βz = (eβz)2. The relationship is similar for the sin(· · ·) and

cos(· · ·), where we can apply the addition theorem. Therefore, we only need to compute

exponentials and trigonometric functions for the first level, while terms for later levels can

be derived by squaring terms from the previous level. To exploit this property, several

levels along a coordinate axis are computed at once, as illustrated below.

+ · · ·+ +

3.2 Near contribution φ̂

We have already seen the splitting of the near contribution into a Coulomb 1/r potential

and the smooth φ̂ portion from the mirror images.

φ = φ̂

= +

φ φ = 1/r

6

Although the Coulomb potential φ = 1/r looks simple, a highly efficient implementation
is not straightforward. Most prominently, we have optimized the computation of 1/

√
x.

Several other implementation issues are nontrivial, as well.

In some way, things are reversed for the potential φ̂. The formula (1.5) for φ̂ looks

scary, but for small values of x, y and z the function is smooth and friendly. Since φ̂ is
an even function in its arguments x, y and z, a simple approximation is given by

φ̂ =
∑

i,j,k

cijk coshαix coshαjy coshαkz, (3.7)

where the coefficients cijk and factors αk may be determined to minimize the maximal

absolute error, for example. This is essentially an exponential expansion for φ̂, and we

may apply the ideas of product expansion to compute it efficiently. Another option is to

use cos(· · ·) instead of cosh(· · ·).

The number of terms required in (3.7) depends obviously on x, y and z. If we let

α0 = 0 and assume that |x|, |y|, |z| ≤ 1/6, then the maximal absolute errors in φ̂ for m+1

factors α0, . . . ,αm are

m = 1 2 3 4
cosh 4.0× 10−5 1.6× 10−6 4.0× 10−8 2.0× 10−10

cos 7.9× 10−4 1.0× 10−6 4.0× 10−8 1.0× 10−10

We conclude that the cosh expansion is more accurate for few terms, and the cos ex-

pansion is slightly more accurate for m ≥ 4. The cosh is both more efficient and easier

to implement, since it contains exponential functions instead of trigonometric functions.

Therefore, nearly everything is in favour of the cosh expansion.

For very high accuracy, an alternative to increasing m is to reduce the range of allowed

x, y and z. Using the notation from above, and assuming |x|, |y|, |z| ≤ 1/12, the maximal

absolute errors are given by the following table.

m = 1 2 3 4
cosh 6.0× 10−7 4.0× 10−9 1.6× 10−10 3.2× 10−13

cos 5.0× 10−5 1.3× 10−8 1.6× 10−10 2.5× 10−13

This data clearly confirms the above conclusions.

7

4 Efficiency

In this section, we investigate the execution times of some elementary functions, and

perform a quantitative and qualitative comparison of our method MMM
1 to PPPM and

Ewald’s method, described in [2] and [1], respectively. We have optimized these algorithms

for the Alpha 21164 microprocessor, so the results herein do not necessarily apply to other
processors. The particular machine we were performing the experiments on has a clock

rate of 500 MHz, 8M external cache, and 512M main memory.

4.1 Elementary functions

To compute the Coulomb potential φ = 1/r for given r2 = x2 + y2 + z2, the efficient

computation of 1/
√
r2 is of paramount importance. A straightforward standard solution

is to compute u =
√
r2 first and then v = 1/u. On the Alpha 21164,

√
r2 is computed by

a reasonably efficient library routine, and the division 1/v is done in hardware. We have

exploited the facts that we may compute 1/
√
r2 directly, and that we have to compute

several 1/
√
r2k simultaneously. A manually optimized version turns out to be about 7

times faster compared to the standard approach, if we want to compute many 1/
√
r2k.

Table 1 lists the execution time in ns per 1/
√
r2 for varying sizes of the argument vector

(r21, . . . , r
2dn). We use the standard approach for n = 1 and the manually optimized

version for n > 1.

n t[ns] = 20ns
1 163.0
4 50.0
8 35.4
16 28.1
32 24.5
64 23.8
128 21.7
256 21.6

Table 1: Execution time for 1/
√
r2

Since we are using exponential expansions, the computation of exponential and trigono-

metric functions cos and sin is important as well. In our specific problem, we always need

both ex and e−x, so our manually optimized routine computes pairs (e+xk , e−xk) for a given

argument vector (x1, . . . , xn). For the comparison, we use the standard approach, which

computes one exponential by a library routine and uses the inverse for the other, i.e.,
y+ = ex and then y− = 1/y+. Table 2 displays the execution times in ns per pair e±x for

varying vector sizes n. Again, the standard approach is used for n = 1 and the manually

1
MMM is the name of our algorithm

8

optimized routine for n > 1. For n ≥ 64, the optimized code is about 5 times faster than
the standard approach.

n t[ns] = 30ns
1 185.0
4 95.7
8 64.6
16 50.0
32 41.2
64 36.4
128 34.5
256 33.9

Table 2: Execution time for e±x

4.2 Comparison

In this subsection, we investigate the time complexity of MMM first. Subsequently, we

compare MMM to PPPM and Ewald’s method. The error ε will be computed from the

exact forces Fi and the computed forces F̄i for all particles by

ε2 =

∑
i ||F̄i − Fi||2∑

i ||Fi||2
.

Another simple measure of the error which is often used compares the potentials instead

of the forces, namely

ε2φ =

∑
i(φ̄i − φi)2∑

i φ
2
i

.

For MMM we have roughly εφ ≈ 2ε in typical cases, so there is not a huge difference.

We experimentally determine the time complexity of MMM by computing potentials
and forces with an error ε = 10−5 and varying numbers of particles from n = 210 ≈ 103 to

n = 220 ≈ 106. The optimal number of box reductions grows more or less logarithmically

with the number n of particles. For small n, the box is split into π3 = 6× 6× 6 subboxes,

which corresponds to 3 reductions, one along each coordinate axis. For n = 220, the

optimal subdivision involves 10 reductions and is given by π10 = 24 × 24 × 48. Table 3

lists the execution times in s for varying n and varying subdivisions π∗.

A graphical representation of the same data is given in Figure 1. Measured execution
times are indicated by symbols, and the optimal execution time of MMM is simply the

minimum over all curves associated with different subdivisions π∗. To simplify the inter-

pretation, the execution time is scaled by a factor σ/n for some constant σ, a method of

time complexity O(n) would be displayed as a constant.

9

n π3 π4 π5 π6 π7 π8 π9 π10

210 0.13 ∗ ∗ ∗ ∗ ∗ ∗ ∗
211 0.17 ∗ ∗ ∗ ∗ ∗ ∗ ∗
212 0.27 0.35 ∗ ∗ ∗ ∗ ∗ ∗
213 0.60 0.62 0.80 ∗ ∗ ∗ ∗ ∗
214 1.57 1.20 1.17 1.6 ∗ ∗ ∗ ∗
215 ∗ 3.17 2.45 2.5 3.7 ∗ ∗ ∗
216 ∗ ∗ ∗ 4.6 5.4 7.5 ∗ ∗
217 ∗ ∗ ∗ 12.5 10.8 10.3 15.4 ∗
218 ∗ ∗ ∗ ∗ 28.3 22.1 24.7 37.3
219 ∗ ∗ ∗ ∗ ∗ 57.8 47.3 55.0
220 ∗ ∗ ∗ ∗ ∗ 170.8 118.2 105.0

Table 3: Execution time of MMM for ε = 10−5

1.4

0.8

1.0

1.2

n
211 214210 212 213 215 216 219217 218 220

t× σ/n

Figure 1: Execution time of MMM scaled by σ/n

For small n ≈ 1000, we see that MMM suffers from the fact that there are not enough

particles to justify subdivisions, which are required to make the near interaction φ̂ from the

mirror smooth. Although it is possible to correct this weakness by introducing artificial

boxes, it is actually more efficient to use Ewald’s method for few particles n ≤ 210. In

Figure 2, the graphical representation of the execution time of Ewald’s method for n = 25

to n = 212 is shown with the same scaling factor σ/n used for MMM’s graph. The values
tω given in the table of Figure 2 indicate the deviation of our implementation of Ewald’s

method from the theoretical O(n3/2) time complexity, i.e., tω is proportional to t/n3/2.

In contrast to MMM and Ewald’s method, PPPM is only applicable for modest accu-

racy requirements. But then PPPM is very efficient for small ε, as the data and graphical

representation in Figure 3 demonstrates. Note that we have tried to make the comparison
as fair as possible by manually optimizing critical parts of PPPM as well.

10

n t[ms] tω
25 0.6 1.45
26 1.5 1.23
27 3.8 1.13
28 10.2 1.08
29 26.8 1.00
210 89.7 1.18
211 369.0 1.72
212 1260.0 2.07

3.0 = Ewald sum

2.0

1.0

= MMM

26 2925 27 28 210 211 212 n213

t× σ/n

Figure 2: Execution time for Ewald’s method with ε = 10−5

ε PPPM MMM

10−2 0.3 1.0

10−3 1.1 1.2
5× 10−4 2.9 1.4

10−4 ∗ 1.7
10−5 ∗ 2.6
10−6 ∗ 3.9

10−3

=PPPM

10−4

=MMM
1

3

4

2

10−2 10−5 10−6 ε

t[s]

Figure 3: Execution times of PPPM and MMM for n = 215

The time complexity of MMM is roughly O(log2 ε) for varying accuracy ε. The quanti-

tative comparison of PPPM and MMM supports the initial qualitative claim that PPPM

is very efficient for large ε and more or less fails for small error tolerance ε.

5 Further work

The current implementation of MMM only solves the periodic problem with a more or less

homogeneous particle distribution efficiently. However, modifications of MMM could be

applied to the following problems

(i) Non-periodic Coulombic problems, for example by adding artificial mirror images,

which have to be eliminated with similar methods MMM uses right now. This is

not necessarily the best approach, and we think that a specialized non-periodic code

based on exponential expansions should be superior.

11

(ii) Coulombic problems, which are periodic in two directions only. Again, we may use
artificial mirror images along the non-periodic axis. It depends on the dimensions

of the unit cell, if MMM can be applied efficiently without modifications or not.

(iii) Non-homogeneous particle distributions require a non-uniform subdivision of the

unit cell into smaller boxes. This could be implemented within MMM itself, or we

might use MMM on a uniform high-level and a non-periodic simpler computation

for the particle clusters.

(iv) Computing interactions for the potential e−kr/r instead of the Coulomb potential

1/r. For |k| not too large, the same approach as in MMM may be applied. The

derivation of the exponential expansion for e−kr/r is more or less identical to the

case 1/r.

References

[1] P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann.

Phys., 64:253–287, 1920.

[2] R. W. Hockney and C. R. Eastwood. Computer Simulation Using Particles. McGraw-
Hill, New York, 1981.

[3] S. W. De Leeuw, J. W. Perram, and E. R. Smith. Simulation of electrostatic systems

in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc.

Lond., A 373:27–56, 1980.

[4] John Lekner. Coulomb forces and potentials in systems with an orthorhombic unit

cell. Molecular Simulation, 20(6):357–368, 1998.

[5] R. Sperb. An alternative to Ewald sums, part 1: Identities for sums. Molecular

Simulation, 20(3):179–200, 1998.

[6] R. Sperb. An alternative to Ewald sums, part 2: The Coulomb potential in a periodic

system. Molecular Simulation, 22(3):199–212, 1999.

[7] Rolf Strebel. Pieces of software for the Coulombic m body problem. PhD thesis,

ETH Zürich, February 2000. Diss. ETH No. 13504, available by anonymous ftp as
ftp://ftp.inf.ethz.ch/pub/publications/diss/th13504.ps.

12

Research Reports

No. Authors Title

00-02 R. Sperb, R. Strebel An alternative to Ewald sums. Part 3: Im-
plementation and results

00-01 T. Werder, K. Gerdes,
D. Schötzau, C. Schwab

hp Discontinuous Galerkin Time Stepping for
Parabolic Problems

99-26 J. Waldvogel Jost Bürgi and the Discovery of the
Logarithms

99-25 H. Brunner, Q. Hu, Q. Lin Geometric meshes in collocation methods for
Volterra integral equations with proportional
time delays

99-24 D. Schötzau, Schwab An hp a-priori error analysis of the DG time-
stepping method for initial value problems

99-23 R. Sperb Optimal sub- or supersolutions in reaction-
diffusion problems

99-22 M.H. Gutknecht,
M. Rozložńık

Residual smoothing techniques: do they
improve the limiting accuracy of iterative
solvers?

99-21 M.H. Gutknecht,
Z. Strakoš

Accuracy of Two Three-term and Three Two-
term Recurrences for Krylov Space Solvers

99-20 M.H. Gutknecht,
K.J. Ressel

Look-Ahead Procedures for Lanczos-Type
Product Methods Based on Three-Term
Lanczos Recurrences

99-19 M. Grote Nonreflecting Boundary Conditions For Elas-
todynamic Scattering

99-18 J. Pitkäranta,
A.-M. Matache, C. Schwab

Fourier mode analysis of layers in shallow
shell deformations

99-17 K. Gerdes, J.M. Melenk,
D. Schötzau, C. Schwab

The hp-Version of the Streamline Diffu-
sion Finite Element Method in Two Space
Dimensions

99-16 R. Klees, M. van Gelderen,
C. Lage, C. Schwab

Fast numerical solution of the linearized
Molodensky problem

99-15 J.M. Melenk, K. Gerdes,
C. Schwab

Fully Discrete hp-Finite Elements: Fast
Quadrature

99-14 E. Süli, P. Houston,
C. Schwab

hp-Finite Element Methods for Hyperbolic
Problems

99-13 E. Süli, C. Schwab,
P. Houston

hp-DGFEM for Partial Differential Equations
with Nonnegative Characteristic Form

99-12 K. Nipp Numerical integration of differential algebraic
systems and invariant manifolds

99-11 C. Lage, C. Schwab Advanced boundary element algorithms
99-10 D. Schötzau, C. Schwab Exponential Convergence in a Galerkin Least

Squares hp-FEM for Stokes Flow

