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1 Introduction

We consider the delay Volterra integral equation

y(t) = f(t) +
∫ t

o
k1(t, s, y(s))ds +

∫ qt

0
k2(t, s, y(s))ds, t ∈ J := [0, T ], (1.1)

with 0 < q < 1. This equation (1.1) represents the general form of a Volterra integral

equation with proportional time delay, which includes the important case (set k1(·, ·, ·) =
−k2(·, ·, ·) =: k(·, ·, ·))

y(t) = f(t) +
∫ t

qt
k(t, s, y(s))ds, t ∈ J = [0, T ].

It will always be assumed that (1.1) possesses a unique solution y ∈ C2m(J), where

m is defined by the collocation space (Section 2). Regularity assumptions for the given

functions f and ki (i = 1, 2) will be stated in Theorem 1 (see also [4]).

It is well known that for the classical Volterra integral equations (k2 ≡ 0 in (1.1)) the

iterated solution associated with piecewise (m−1)st degree polynomial spline collocation

solution based on a uniform mesh possesses the optimal superconvergence order 2m at

the nodes of the mesh, provided that the collocation parameters are chosen as the m

Gauss points in (0, 1). For Volterra integral equations with constant delay this property

is preserved if the mesh is constrained (see [1, 3, 12]).

However, it has been shown in [4] and [14] that these superconvergence properties

on uniform meshes do not carry over to equation (1.1) (k2 $≡ 0). In fact, it can be

seen from [4] and [14] that for this kind of delay integral equation the optimal (local)

superconvergence order p∗ is at most p∗ = 2m− 1; for q = 1/2 and the Gauss points as

the collocation parameters {ci} in (0, 1), it is conjectured that p∗ = 2m.

In the present paper we introduce, based on an important observation, a new kind of

mesh, called geometric mesh (see [10]), in order to obtain local superconvergence results

of order at least 2m − 1. Theoretical results and numerical examples will show that

when such a mesh is used, the corresponding iterated collocation solution for (1.1) will

possess the superconvergence order 2m−ε at all nodes and for every q ∈ (0, 1), provided

the collocation parameters are chosen as the m Gauss points in (0, 1). Here, ε is an

arbitrarily small positive constant.

We note that nonuniform meshes similar to our geometric mesh have been employed

in [13] and [2] for the analysis of asymptotic stability properties of the θ-method for the

pantograph equation

y′(t) = ay(t) + by(qt), t ≥ 0 (0 < q < 1),

with Re(a) < 0, |b| < |a|.
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2 Main Result

For ease of notation, we consider the linear equation

y(t) = f(t) +
∫ t

0
K1(t, s)y(s)ds +

∫ qt

0
K2(t, s)y(s)ds, t ∈ J, (2.1)

where 0 < q < and where the given functions f and Ki are subject to the regularity

assumptions stated in Theorem 1 below.

For given N ∈ N, let JN : 0 = t0 < t1 < · · · < tN = T denote a partition (or mesh)

for the given interval J , and set en := [tn−1, tn], hn := tn − tn−1 (n = 1, · · · , N). In the

following we shall be concerned with the finite-dimensional collocation spaces

S(−1)
m−1(JN ) := {v : v |en∈ Pm−1 (n = 1, · · · , N)},

where m ≥ 1 and Pm−1 denotes the set of (real) polynomials of degree less than or equal

to m− 1.

Definition 1.1: {JN}N≥2 is called a sequence of geometric meshes if the mesh points

{tn} = {t(N)
n } satisfy

tn = t(N)
n = dN−nT, n = 1, · · · , N, (2.2)

where d (0 < d < 1; d is independent of n) remains to be determined.

Remark 1.1: Note that the mesh diameter h is given by hN = T (1− d). If we require

that h possess the property h := max1≤n≤N hn → 0 as N → ∞), then d → 1 (N → ∞).

Therefore d will depend on N .

We are looking for u ∈ S(−1)
m−1(JN ) satisfying

un(t) = f(t) +
∫ t

0
K1(t, s)u(s)ds +

∫ qt

0
K2(t, s)u(s)ds, t ∈ Xn( 1 ≤ n ≤ N), (2.3)

where un := u |en ; Xn := {tnj := tn−1 + cjhn, 0 ≤ c1 < · · · < cm ≤ 1 (n = 1, · · · , N)}.
The set X(N) :=

⋃N
n=1Xn will be referred to as the set of collocation points, which is

completely determined by the given mesh JN and the collocation parameters {cj}mj=1.

The collocation equation (2.3) will define a unique approximation u ∈ S(−1)
m−1(JN )

whenever the mesh diameter h is sufficiently small. As for classical Volterra integral

equations, this approximation u will be generated recursively by successive computa-

tion of its restrictions u1, · · · , uN to the subintervals e1, · · · , eN given by the mesh JN
(compare also [5]).

Once the collocation solution u has been found, we compute the corresponding iter-

ated collocation solution uit by

uit := f(t) +
∫ t

0
K1(t, s)u(s)ds +

∫ qt

0
K2(t, s)u(s)ds, t∈J. (2.4)

The following two assumptions are supposed to hold in the subsequent analysis:
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H1 : Let κ be the maximal natural number satisfying q
1
κ ≤ (1− 2mlnN

(m+1)N ), namely,

κ :=





lnq

ln(1− 2mlnN
(m+1)N )



 .

For a fixed q ∈ (0, 1), we have κ ≥ 1 when N → ∞. For such κ, d in (2.2) is chosen

as d = q
1
κ .

H2 : The collocation parameters {cj}mj=1 are chosen as the m Gauss points in (0, 1)

(that is, the zeros of the shifted Legendre polynomial Pm(2s − 1)).

Throughout this paper C will denote a generic positive constant which is independent

of N and q but which will depend on the constant T and the given function f and Ki).

Theorem 2.1 Let H1 and H2 hold. Assume that the functions f and Ki (i = 1, 2)

in (2.1) satisfy f ∈ C2m(J), Ki ∈ C2m(Ω), where Ω1 := {(t, s) : 0 ≤ s ≤ t ≤ T}
and Ω2 := {(t, s) : 0 ≤ s ≤ qt, t ∈ J}. If u ∈ S(−1)

m−1(JN ) denotes the collocation

approximation determined by (2.3), and uit is defined by (2.4), then the resulting error

eit := uit − y satisfies

max
t∈ZN

|eit(t)| ≤ CN−(2m−ε), N → ∞, (2.5)

where ZN := {tn : 1≤n≤N} and ε = εN is an arbitrarily small positive constant satisfy-

ing lim
N→∞

εN = 0.

Remark 2.1: Theorem 1 indicates that a suitably chosen geometric mesh can, in con-

trast to the uniform mesh, generate iterated collocation solution possessing the almost

optimal (local) superconvergence orderi p∗ = 2m − ε at all mesh points ZN . This is in

contrast to uniform meshes: it was shown in [4] that for such meshes the optimal order

of local superconvergence of uit satisfies p∗ ≤ 2m− 1 whenever q $= 1/2; if q = 1/2 then

it is conjectured (based on the order of uit at t1 = h and on numerical evidence; compare

also Table 2 in Section 5) that p∗ = 2m.

3 Lemmas

In this section we state a number of lemmas which will be crucial for establishing the

superconvergence result in Theorem 1 .

Lemma 3.1 Assume that H1 holds. Then, for N ≥ 2:

(i)

h1 ≤ CN− 2m
m+1 ; (3.1)

3



(ii)
N
∑

n=2

(hn)
2m+1 ≤ CN−(2m−ε). (3.2)

Here, the positive number ε = εN satisfies lim
N→∞

εN = 0.

Proof (i) Noting that

(1−
2mlnN

(m+ 1)N
)(m+1)N/2mlnN ≤ e−1 (N ≥ 2),

we have

h1 = t1 = TdN−1 ≤ Tq
1
k ≤ T (1−

2mlnN

(m+ 1)N
)N−1 ≤ Ce−

2mlnN
m+1 = CN− 2m

m+1 .

(ii) From H1 we obtain

hn = tn − tn−1 = TdN−n(1− d) ≤ CdN−n 2mlnN

(m+ 1)N
(n = 2, · · · , N).

Thus,

N
∑

n=2

(hn)
2m+1 ≤

C

(1− d2m+1)
·
(2mlnN)2m+1

(m+ 1)2m+1N
·N−2m

=
C(2mlnN)2m+1

(m+ 1)2m+1N(1− (1− 2mlnN
(m+1)N )2m+1)

·N−2m. (3.3)

Since m is a constant,

lim
N→∞

2mlnN

(m+ 1)N
= 0.

Hence, we can assume that for sufficiently large N ,

2mlnN

(m+ 1)N
< 1.

Using the standard inequality

(1− x)α ≤ 1− αx+
α(α − 1)

2
x2, 0≤x < 1, α ≥ 2,

we deduce that

1−
(

1−
2mlnN

(m+ 1)N

)2m+1

≥
2m(2m+ 1)lnN

(m+ 1)N
−

4m3(2m+ 1)(lnN)2

(m+ 1)2N2

≥
m(2m+ 1)lnN

(m+ 1)N
, N → ∞ ;
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by (3.3) this leads to

N
∑

n=2

(hn)
2m+1 ≤

C(2mlnN)2m

(2m+ 1)(m+ 1)2m
N−2m, N → ∞. (3.4)

Set

b :=
(2mlnN)2m

(2m+ 1)(m+ 1)2m
.

Then, using the identity b = N logNb, (3.4) can be written as

N
∑

n=2

(hn)
2m+1 ≤ CN−(2m−logNb), N → ∞. (3.5)

For a given constant m we thus obtain

εN = logN b =
lnb

lnN
→ 0, N → ∞,

and this, together with (3.5), yields the assertion (ii).

The following lemma reveals one of the key reasons for using geometric meshes: for

a suitable choice of the integer κ (recall assumption H1) the delay function θ(t) := qt

maps a mesh points to some previous mesh point. Compare also [13, 2].

Lemma 3.2 For κ + 1 ≤ n ≤ N , we have qtn = tn−κ∈ZN . Here, κ is defined in

assumption H1.

Proof: From the definitions of tn and d (see (2.2) we have

qtκ+1 = TqdN−(κ+1) = TdκdN−(κ+1) = TdN−1 = t1

and

qtn = TqdN−n = TdκdN−n = TdN−(n−κ) = tn−κ, κ+ 2 ≤ n ≤ N.

Set

Mi := max
(t,s)∈Ωi

|Ki(t, s)|, (i = 1, 2).

Then

|
∫ t

0
K1(t, s)y(s)ds| ≤ M1

∫ t

0
|y(s)|ds, t ∈ J, (3.6)

and, since q < 1,

|
∫ qt

0
K2(t, s)y(s)ds| ≤ M2

∫ qt

0
|y(s)|ds ≤ M2

∫ t

0
|y(s)|ds, t ∈ J. (3.7)

5



Lemma 3.3 Let the functions f and Ki (i = 1, 2) in (2.1) satisfy the smoothness

assumptions stated in Theorem 1. Then the equation (2.1) has a (unique) solution

y ∈ C2m(J) (for any q ∈ [0, 1]). Moreover, its derivatives y(j) (j = 1, · · · , 2m) are

uniformly bounded with respect to the parameter q (for any finite interval J).

Proof: It can be verified by standard Picard iteration (see also [9, 7] and [6]) that the

equation (2.1) has a unique solution y ∈ C(J). Equation (2.1), together with (3.6) and

(3.7), yields

|y(t)| ≤ M + (M1 +M2)
∫ t

0
|y(s)|ds, t ∈ J,

where

M := max
t∈J

|f(t)|.

Thus, it follows by Gronwall’s inequality that y is bounded with respect to q.

On the other hand, from (2.1) we have

y′(t) = f ′(t) +K1(t, t)y(t) + qK2(t, qt)y(qt)

+
∫ t

0

∂

∂t
K1(t, s)y(s)ds +

∫ qt

0

∂

∂t
K2(t, s)y(s)ds, t ∈ J.

Therefore, the regularity of y′ is the same that of the derivatives (with respect to t) of the

given functions. The regularity of the higher derivatives of y is then proved recursively

in an analogous way, for any q ∈ [0, 1].

Set now

W k,∞(J) = L∞(J) ∩ (∩N
i=1C

k(ei)).

For a nonnegative integer number k, we define the norm ‖ · ‖k,∞ by

‖v‖k,∞ :=

(

N
∑

i=1

‖v‖2k,ei,∞

)

1
2

,

with

‖v‖k,ei,∞ := max
0≤j≤k

(

max
t∈ei

|
dj

dtj
v(t)|

)

.

For the sake of convenience, the norm ‖ · ‖0,ei,∞ will be abbreviated by ‖ · ‖ei,∞.

Let π : C(J) → S(−1)
m−1(JN ) denote the sequence of interpolation operators such that

πv(tnj) = v(tnj) (n = 1, · · · , N ; j = 1, · · · ,m) for v∈C(J). It is well known that

‖πv‖ei,∞ ≤ C‖v‖ei,∞, v ∈ C(J), (3.8)

6



and

‖(π − I)v‖j,ei,∞ ≤ Chk−j‖v‖k,ei,∞, 0 ≤ j ≤ k ≤ m. (3.9)

For ease of notation, we define the operator K : L∞(J) → L∞(J) by

Kg(t) :=
∫ t

0
K1(t, s)g(s)ds +

∫ qt

0
K2(t, s)g(s)ds, t ∈ J.

Lemma 3.4 Under the assumptions stated in Theorem 1 we have

‖u− y‖e1,∞ ≤ hm1 ‖y‖m,e1,∞ (3.10)

and

‖u‖j,∞ ≤ C‖y‖m,∞, 0 ≤ j ≤ 2m. (3.11)

Proof: Since u ∈ S(−1)
m−1(JN ), it follows by the definition of π that πu = u. The equations

(2.1) and (2.2) may be written in operator form as

y = Ky + f, (3.12)

and

u = πKu+ πf. (3.13)

Set e := u− y and let I denote the identity operator. Subtraction of (3.12) from (3.13)

leads to

e = πKe+ (π − I)(Ky + f).

Hence, by observing (3.12),

e = πKe+ (π − I)y, (3.14)

which, together with (3.6), (3.7), (3.8) and (3.9), yields

|e(t)| ≤ (M1 +M2)
∫ t

0
|e(s)|ds +Chm1 ‖y‖m,e1,∞, t ∈ e1.

Thus, the inequality (3.10) is derived by employing Gronwall’s inequality.

The inequality

‖e‖0,∞ ≤ Chm‖y‖m,∞. (3.15)

can be proved in an analogous way. On the other hand, (3.14) can be as

e(t) = Ke(t) + (π − I)(Ke+ y)(t), t ∈ J. (3.16)

Furthermore,

e′(t) = K1(t, t)e(t) + qK2(t, qt)e(qt) +
∫ t

0

∂

∂t
K1(t, s)e(s)ds

+
∫ qt

0

∂

∂t
K2(t, s)e(s)ds +

d

dt
(π − I)(Ke+ y)(t), t ∈ J, (3.17)

7



which, by (3.15), leads to

‖e‖1,∞ ≤ Chm‖y‖m,∞ + ‖(π − I)(Ke+ y)‖1,∞. (3.18)

It follows by (3.9) and (3.15) that

‖(π − I)(Ke+ y)‖1,∞ ≤ ‖(π − I)Ke‖1,∞ + ‖(π − I)y‖1,∞
≤ C‖Ke‖1,∞ + Chm−1‖y‖m,∞

≤ C‖e‖0,∞ + Chm−1‖y‖m,∞

≤ Chm‖y‖m,∞ + Chm−1‖y‖m,∞,

and hence, by (3.18),

‖e‖1,∞ ≤ Chm−1‖y‖m,∞. (3.19)

In a similar manner we can prove (using (3.17) and (3.19))

‖e‖2,∞ ≤ Chm−2‖y‖m,∞,

and we then successively obtain

‖e‖j,∞ ≤ Chm−j‖y‖m,∞, 0 ≤ j ≤ m.

Thus,

‖u‖j,∞ ≤ ‖y‖j,∞ + ‖e‖j,∞ ≤ C‖y‖m,∞, 0 ≤ j ≤ m.

Since u(j)(t) = 0 (j ≥ m) on en (n = 1, · · · , N), the inequality (3.11) is also valid for

m ≤ j ≤ 2m.

The last lemma is a standard result in the superconvergence theory of integral equa-

tions (compare [8]).

Lemma 3.5 Assume that ψ∈Cm(J) and ϕ∈C2m(J). If H2 holds, then the following

estimate is valid for all en:

|
∫

en
ψ(t)(π − I)ϕ(t)dt |≤ C(hn)

2m+1‖ψ‖m,∞ · ‖ϕ‖2m,∞. (3.20)

4 Proof of Theorem 2.1

Since the resolvent operator of the global integral operator K is very complex (compare,

for example, [6] for the case where K1 = 0 in (2.1)), standard techniques of, e.g., [5, 3]

cannot be employed to establish optimal local superconvergence results. Thus, in this

section we propose a new approach using specially designed geometric meshes.
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First, we prove inductively that, for all ϕ ∈ Cm(ei),

|
∫

ei
ϕ(s)e(s)ds |≤ Chi(N

−(2m−ε)‖ϕ‖ei,∞ + h2mi ‖ϕ‖m,ei,∞) (1 ≤ i ≤ N). (4.1)

It follows by (3.14) and (3.8) that for any ψ∈Cm(e1) we have

|
∫

e1
ψ(s)e(s)ds |≤

∫

e1
|ψ(s)| · |Ke(s)|ds+ |

∫

e1
ψ(s)(I − π)y(s)ds |,

which, together with (3.10),(3.20) and (3.1), yields

|
∫

e1
ψ(s)e(s)ds | ≤ C(h21‖ψ‖e1,∞ · ‖e‖e1,∞

+h2m+1
1 ‖ψ‖m,e1,∞ · ‖y‖2m,e1,∞

≤ Ch1(h
m+1
1 ‖ψ‖e1,∞ · ‖y‖m,e1,∞ (4.2)

+h2m1 ‖ψ‖m,e1,∞ · ‖y‖2m,e1,∞)

≤ Ch1(N
−2m‖ψ‖e1,∞ + h2m1 ‖ψ‖m,e1,∞).

We assume that the following inequality is valid for every ϕ ∈ Cm(ei) and 1 ≤ i ≤ n:

|
∫

ei
ϕ(s)e(s)ds |≤ Chi(N

−2m‖ϕ‖ei,∞ + h2mi ‖ϕ‖m,ei,∞). (4.3)

We need to prove that, for any ψ ∈ Cm(en+1),

|
∫

en+1

ψ(s)e(s)ds |≤ Chn+1(N
−2m‖ψ‖en+1,∞ + h2mn+1‖ψ‖m,en+1,∞). (4.4)

In fact, the equation (3.16) can be written as

e(t) =
∫ t

0
K1(t, s)e(s)ds +A(t), t ∈ J,

with

A(t) =
∫ qt

0
K2(t, s)e(s)ds + (π − I)(Ku+ f)(t).

Let R1 be the resolvent kernel ofK1; standard Volterra theory implies that it inherits the

smoothness of the kernelK1. Thus, by the classical theory of Volterra integral equations,

we obtain

e(t) = A(t) +
∫ t

0
R1(t, s)A(s)ds, t ∈ J.

9



Furthermore,

∫

en+1

ψ(t)e(t)dt =
∫

en+1

ψ(t)A(t)dt +
∫

en+1

[ψ(t)
∫ t

0
R1(t, s)A(s)ds]dt

=
∫

en+1

ψ(t)(π − I)(Ku+ f)(t)dt

+
∫

en+1

[ψ(t)
∫ t

0
R1(t, s)(π − I)(Ku+ f)(s)ds]dt (4.5)

+
∫

en+1

[ψ(t)
∫ qt

0
K2(t, s)e(s)ds]dt

+
∫

en+1

[ψ(t)
∫ t

0
(R1(t, s)

∫ qs

0
K2(s, τ)e(τ)dτ)ds]dt

=: I1 + I2 + I3 + I4. (4.6)

The following inequality is a direct consequence of (3.20) and (3.11):

|I1| ≤ Ch2m+1
n+1 ‖ψ‖m,en+1,∞. (4.7)

Changing the order of integration leads to

I2 =
∫ tn+1

tn
[
∫ tn+1

s
ψ(t)R1(t, s)dt · (π − I)(Ku+ f)(s)]ds

+
∫ tn

0
[
∫ tn+1

tn
ψ(t)R1(t, s)dt · (π − I)(Ku+ f)(s)]ds.

Set

ψ1(s) =
∫ tn+1

s
ψ(t)R1(t, s)dt

and

ψ2(s) =
∫ tn+1

tn
ψ(t)r1(t, s)dt.

Since the function R1 possesses the same degree of regularity as the kernel K1, it follows

by (3.20) and (3.11) that (note that hi ≤ hn+1 for 1 ≤ i ≤ n)

|
∫ tn+1

tn
[
∫ tn+1

s
ψ(t)R1(t, s)dt · (π − I)(Ku+ f)(s)]ds |

≤ Ch2m+1
n+1 ‖ψ1‖m,en+1,∞ · ‖(π − I)(Ku+ f)‖2m,en+1,∞

≤ Ch2m+1
n+1 ‖ψ‖m,en+1,∞
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and

|
∫ tn

0
[
∫ tn+1

tn
ψ(t)r1(t, s)dt · (π − I)(Ku+ f)(s)]ds |

≤
n
∑

i=1

|
∫ ti

ti−1

ψ2(s)(π − I)(Ku+ f)(s)ds |

≤ C
n
∑

i=1

h2m+1
i ‖ψ2‖m,ei,∞ · ‖(π − I)(Ku+ f)‖2m,ei,∞

≤ C
n
∑

i=1

hih
2m
n+1hn+1‖ψ‖m,en+1,∞

≤ Ch2m+1
n+1 ‖ψ‖m,en+1,∞.

Thus,

|I2| ≤ Ch2m+1
n+1 ‖ψ‖m,en+1,∞ (4.8)

When 1 ≤ n ≤ κ, we have qtn+1 ∈ (0, t1] (see the proof of Lemma 3.2). Using (3.10)

and (3.1) we obtain

|I3| ≤ Chn+1qtn+1h
m
1 ‖ψ‖en+1,∞ · ‖y‖m,e1,∞

≤ Chn+1h
m+1
1 ‖ψ‖en+1,∞

≤ Chn+1N
−2m‖ψ‖en+1,∞.

We consider the case of n ≥ κ+ 1. Changing the order of integration leads to

I3 =
∫ qtn+1

qtn
[
∫ tn+1

s
q

ψ(t)K2(t, s)dt · e(s)]ds

+
∫ qtn

0
[
∫ tn+1

tn
ψ(t)K2(t, s)dt · e(s)]ds

=: I31 + I32.

From Lemma 3.2 we have qtn = tn−κ and qtn+1 = tn+1−κ. Set

ψ3(s) =
∫ tn+1

s
q

ψ(t)K2(t, s)dt

and

ψ4(s) =
∫ tn+1

tn
ψ(t)K2(t, s)dt.

Thus, it follows by the inductive assumption (4.2) that

|I31| ≤ Cqhn+1(N
−2m‖ψ3‖en+1−κ,∞ + (qhn+1)

2m‖ψ3‖m,en+1−κ,∞)

≤ Cqhn+1(N
−2mhn+1‖ψ‖en+1,∞ + (qhn+1)

2mq−m‖ψ‖m,en+1,∞)

≤ Chn+1(N
−2m‖ψ‖en+1,∞ + h2mn+1‖ψ‖m,en+1,∞)
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and

|I32| ≤
n−κ
∑

i=1

|
∫

ei
ψ4(s)e(s)ds |

≤ C
n−κ
∑

i=1

hi(N
−2m‖ψ4‖ei,∞ + h2mi ‖ψ4‖m,ei,∞)

≤ C
n−κ
∑

i=1

hi(N
−2mhn+1‖ψ‖en+1,∞ + h2mi hn+1‖ψ‖en+1,∞)

≤ Ctn−κhn+1(N
−2m‖ψ‖en+1,∞ + h2mn+1‖ψ‖m,en+1,∞)

≤ Chn+1(N
−2m‖ψ‖en+1,∞ + h2mn+1‖ψ‖m,en+1,∞).

Therefore,

|I3| ≤ Chn+1(N
−2m‖ψ‖en+1,∞ + h2mn+1‖ψ‖m,en+1,∞). (4.9)

In an analogous way we can prove that

|I4| ≤ Chn+1(N
−2m‖ψ‖en+1,∞ + h2mn+1‖ψ‖m,en+1,∞),

and this estimate, together with (4.5)-(4.9), allows us to deduce (4.4). It then follows

by the induction principle that the inequality (4.1) is valid.

Now, we can readily prove Theorem 2.1. By (4.1) and Lemma 3.1, we obtain

|
∫ tn

0
ϕ(t)e(t)dt |≤ CN−(2m−ε)‖ϕ‖m,[0,tn],∞, for all ϕ ∈ Cm[0, tn], 1 ≤ n ≤ N.

In particular, we find that

|
∫ tn

0
K1(tn, s)e(s)ds |≤ CN−(2m−ε), 1 ≤ n ≤ N. (4.10)

and

|
∫ qtn

0
K2(tn, s)e(s)ds |≤ CN−(2m−ε), κ+ 1 ≤ n ≤ N. (4.11)

When n ≤ κ, we have qtn ≤ t1. Hence, using (3.10) and (3.1) we are led to

|
∫ qtn

0
K2(tn, s)e(s)ds | ≤ Ct1h

m
1 ‖y‖m,e1,∞

≤ Chm+1
1 ≤ CN−2m, 1 ≤ n ≤ κ. (4.12)

On the other hand, subtraction of (2.1) from (2.3) yields

eit = uit − y = Ke,

which, together with (4.10), (4.11) and (4.12), gives the desired result.
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Remark 4.1: In the proof of Theorem 2.1, the use of the inductive method to prove

the inequality (4.1) is the key technique. This technique is, in essence, similar to the

recursive method introduced in [11] and [12].

Remark 4.2: The fact that we have qtn ∈ ZN when qtn ≥ t1 (tn ∈ ZN ) is important in

the proof of Theorem 1. This just reflects our motivation for introducing the “geometric”

meshes.

5 Numerical examples

For the numerical verification of the result stated in Section 2, we consider

y(t) = f(t)−
∫ t

0
y(s)ds +

1

2

∫ qt

0
y(s)ds, t ∈ [0, T ], (5.13)

where the function f is chosen as f(t) = 1
2(1 + e−qt), so that the exact solution is

y(t) = e−t; the delay parameter q is chosen to have the values q = 0.9, q = 0.5, and

q = 0.2. We set T = 10. The equation (5.1) is solved by three collocation methods using

the space S(−1)
1 (JN ) (m = 2).

The first method (M1) is based on the geometric meshes introduced in Section 2

and the Gauss collocation parameters: c1 = (3 −
√
3)/6, c2 = (3 +

√
3)/6; the second

method (M2) is based on the uniform meshes and the Gauss collocation parameters c1
and c2; and the third method (M3) uses uniform meshes and the q−Gauss collocation

parameters c̄1 := qc1 and c̄2 := qc2 (see [4] and [14]).

The resulting nodal errors are given in Table 1 (q = 0.9), Table 2 (q = 0.5), and

Table 3 (q = 0.2).

Table 1

max
t∈ZN

|eit(t)| (q = 0.9)

N (h = 10/N) 100 200 400 800 1600
M1 7.28D-8 4.57D-9 1.17D-10 1.11D-11 8.75D-13
M2 3.49D-6 4.67D-7 6.04D-8 7.68D-9 9.68D-10
M3 2.55D-5 6.03D-6 1.46D-6 3.61D-7 8.97D-8

Table 2

max
t∈ZN

|eit(t)| (q = 0.5)

N (h = 10/N) 100 200 400 800 1600
M1 1.94D-7 1.49D-8 1.45D-9 1.40D-10 1.23D-11
M2 2.95D-7 1.90D-8 1.21D-9 7.62D-11 4.78D-12
M3 1.86D-4 4.45D-5 1.09D-5 2.69D-6 6.69D-7
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Table 3

max
t∈ZN

|eit(t)| (q = 0.2)

N (h = 10/N) 100 200 400 800 1600
M1 1.70D-7 1.78D-8 1.72D-9 1.60D-10 1.47D-11
M2 3.91D-6 4.98D-7 6.25D-8 7.82D-9 9.77D-10
M3 4.18D-4 1.00D-4 2.44D-5 6.03D-6 1.50D-6

These tables confirm that our method (M1) is very effective for all parameter q ∈ (0, 1),

in that it generates iterated collocation solutions possessing the almost optimal super-

convergence rate when N → ∞. Moreover, the new method (M1) is better than the

standard method (M2) except for the particular case of q = 1
2 . As we have mentioned

before, it is conjectured that the iterated collocation solution based on S(−1)
m−1(JN ), with

uniform mesh JN and collocation at the Gauss points, exhibits the optimal order of

local superconvergence, p∗ = 2m. The results for (M2) in Table 2, and numerous other

numerical examples, clearly show that p∗ = 2m = 4 holds.

The numerical results also show that, when K1 $= 0, the q−Gauss collocation points

leads to a lower rate of convergence at the nodal points (it equals the global convergence

rate on J , p = m).
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