Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo

Geometric meshes in collocation methods for Volterra integral equations with proportional time delays

H. Brunner* ${ }^{*}$ Q. Hu** and Q. Lin †

Research Report No. 99-25
December 1999
Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

[^0]
Geometric meshes in collocation methods for Volterra integral equations with proportional time delays

H. Brunner*, Q. Hu** and Q. Lin ${ }^{\dagger}$
Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Research Report No. 99-25 December 1999

Abstract

In this paper we introduce new kind of nonuniform mesh, the so-called geometric mesh, and discuss the corresponding collocation method for Volterra integral equations of the second kind with proportional delay of the form $q t$ $(0<q<1)$. It will be shown that, in contrast to the uniform mesh, the iterated collocation solution associated with such a mesh exhibits almost optimal superconvergence at the mesh points, provided that collocation parameters are chosen as the Gauss points in $(0,1)$.

Keywords: Delay integral equation, geometric mesh, collocation method, iterated collocation solution, superconvergence

Subject Classification (1991): 65R20

[^1]
1 Introduction

We consider the delay Volterra integral equation

$$
\begin{equation*}
y(t)=f(t)+\int_{o}^{t} k_{1}(t, s, y(s)) d s+\int_{0}^{q t} k_{2}(t, s, y(s)) d s, \quad t \in J:=[0, T], \tag{1.1}
\end{equation*}
$$

with $0<q<1$. This equation (1.1) represents the general form of a Volterra integral equation with proportional time delay, which includes the important case (set $k_{1}(\cdot, \cdot, \cdot)=$ $\left.-k_{2}(\cdot, \cdot, \cdot)=: k(\cdot, \cdot, \cdot)\right)$

$$
y(t)=f(t)+\int_{q t}^{t} k(t, s, y(s)) d s, \quad t \in J=[0, T] .
$$

It will always be assumed that (1.1) possesses a unique solution $y \in C^{2 m}(J)$, where m is defined by the collocation space (Section 2). Regularity assumptions for the given functions f and $k_{i}(i=1,2)$ will be stated in Theorem 1 (see also [4]).

It is well known that for the classical Volterra integral equations ($k_{2} \equiv 0$ in (1.1)) the iterated solution associated with piecewise $(m-1)$ st degree polynomial spline collocation solution based on a uniform mesh possesses the optimal superconvergence order $2 m$ at the nodes of the mesh, provided that the collocation parameters are chosen as the m Gauss points in $(0,1)$. For Volterra integral equations with constant delay this property is preserved if the mesh is constrained (see $[1,3,12]$).

However, it has been shown in [4] and [14] that these superconvergence properties on uniform meshes do not carry over to equation (1.1) $\left(k_{2} \not \equiv 0\right)$. In fact, it can be seen from [4] and [14] that for this kind of delay integral equation the optimal (local) superconvergence order p^{*} is at most $p^{*}=2 m-1$; for $q=1 / 2$ and the Gauss points as the collocation parameters $\left\{c_{i}\right\}$ in $(0,1)$, it is conjectured that $p^{*}=2 m$.

In the present paper we introduce, based on an important observation, a new kind of mesh, called geometric mesh (see [10]), in order to obtain local superconvergence results of order at least $2 m-1$. Theoretical results and numerical examples will show that when such a mesh is used, the corresponding iterated collocation solution for (1.1) will possess the superconvergence order $2 m-\varepsilon$ at all nodes and for every $q \in(0,1)$, provided the collocation parameters are chosen as the m Gauss points in $(0,1)$. Here, ε is an arbitrarily small positive constant.

We note that nonuniform meshes similar to our geometric mesh have been employed in [13] and [2] for the analysis of asymptotic stability properties of the θ-method for the pantograph equation

$$
y^{\prime}(t)=a y(t)+b y(q t), \quad t \geq 0 \quad(0<q<1)
$$

with $\operatorname{Re}(a)<0,|b|<|a|$.

2 Main Result

For ease of notation, we consider the linear equation

$$
\begin{equation*}
y(t)=f(t)+\int_{0}^{t} K_{1}(t, s) y(s) d s+\int_{0}^{q t} K_{2}(t, s) y(s) d s, \quad t \in J, \tag{2.1}
\end{equation*}
$$

where $0<q<$ and where the given functions f and K_{i} are subject to the regularity assumptions stated in Theorem 1 below.

For given $N \in \mathbf{N}$, let $J_{N}: 0=t_{0}<t_{1}<\cdots<t_{N}=T$ denote a partition (or mesh) for the given interval J, and set $e_{n}:=\left[t_{n-1}, t_{n}\right], h_{n}:=t_{n}-t_{n-1}(n=1, \cdots, N)$. In the following we shall be concerned with the finite-dimensional collocation spaces

$$
S_{m-1}^{(-1)}\left(J_{N}\right):=\left\{v:\left.v\right|_{e_{n}} \in P_{m-1}(n=1, \cdots, N)\right\},
$$

where $m \geq 1$ and P_{m-1} denotes the set of (real) polynomials of degree less than or equal to $m-1$.

Definition 1.1: $\left\{J_{N}\right\}_{N \geq 2}$ is called a sequence of geometric meshes if the mesh points $\left\{t_{n}\right\}=\left\{t_{n}^{(N)}\right\}$ satisfy

$$
\begin{equation*}
t_{n}=t_{n}^{(N)}=d^{N-n} T, \quad n=1, \cdots, N, \tag{2.2}
\end{equation*}
$$

where $d(0<d<1 ; d$ is independent of $n)$ remains to be determined.
Remark 1.1: Note that the mesh diameter h is given by $h_{N}=T(1-d)$. If we require that h possess the property $h:=\max _{1 \leq n \leq N} h_{n} \rightarrow 0$ as $\left.N \rightarrow \infty\right)$, then $d \rightarrow 1(N \rightarrow \infty)$. Therefore d will depend on N.

We are looking for $u \in S_{m-1}^{(-1)}\left(J_{N}\right)$ satisfying

$$
\begin{equation*}
u_{n}(t)=f(t)+\int_{0}^{t} K_{1}(t, s) u(s) d s+\int_{0}^{q t} K_{2}(t, s) u(s) d s, \quad t \in X_{n}(1 \leq n \leq N) \tag{2.3}
\end{equation*}
$$

where $u_{n}:=\left.u\right|_{e_{n}} ; X_{n}:=\left\{t_{n j}:=t_{n-1}+c_{j} h_{n}, 0 \leq c_{1}<\cdots<c_{m} \leq 1(n=1, \cdots, N)\right\}$. The set $X(N):=\bigcup_{n=1}^{N} X_{n}$ will be referred to as the set of collocation points, which is completely determined by the given mesh J_{N} and the collocation parameters $\left\{c_{j}\right\}_{j=1}^{m}$.

The collocation equation (2.3) will define a unique approximation $u \in S_{m-1}^{(-1)}\left(J_{N}\right)$ whenever the mesh diameter h is sufficiently small. As for classical Volterra integral equations, this approximation u will be generated recursively by successive computation of its restrictions u_{1}, \cdots, u_{N} to the subintervals e_{1}, \cdots, e_{N} given by the mesh J_{N} (compare also [5]).

Once the collocation solution u has been found, we compute the corresponding iterated collocation solution $u_{i t}$ by

$$
\begin{equation*}
u_{i t}:=f(t)+\int_{0}^{t} K_{1}(t, s) u(s) d s+\int_{0}^{q t} K_{2}(t, s) u(s) d s, t \in J . \tag{2.4}
\end{equation*}
$$

The following two assumptions are supposed to hold in the subsequent analysis:
H_{1} : Let κ be the maximal natural number satisfying $q^{\frac{1}{\kappa}} \leq\left(1-\frac{2 m \ln N}{(m+1) N}\right)$, namely,

$$
\kappa:=\left[\frac{\ln q}{\ln \left(1-\frac{2 m \ln N}{(m+1) N}\right)}\right]
$$

For a fixed $q \in(0,1)$, we have $\kappa \geq 1$ when $N \rightarrow \infty$. For such κ, d in (2.2) is chosen as $d=q^{\frac{1}{\kappa}}$.
H_{2} : The collocation parameters $\left\{c_{j}\right\}_{j=1}^{m}$ are chosen as the m Gauss points in $(0,1)$ (that is, the zeros of the shifted Legendre polynomial $P_{m}(2 s-1)$).

Throughout this paper C will denote a generic positive constant which is independent of N and q but which will depend on the constant T and the given function f and K_{i}).

Theorem 2.1 Let H_{1} and H_{2} hold. Assume that the functions f and $K_{i}(i=1,2)$ in (2.1) satisfy $f \in C^{2 m}(J), K_{i} \in C^{2 m}(\Omega)$, where $\Omega_{1}:=\{(t, s): 0 \leq s \leq t \leq T\}$ and $\Omega_{2}:=\{(t, s): 0 \leq s \leq q t, t \in J\}$. If $u \in S_{m-1}^{(-1)}\left(J_{N}\right)$ denotes the collocation approximation determined by (2.3), and $u_{i t}$ is defined by (2.4), then the resulting error $e_{i t}:=u_{i t}-y$ satisfies

$$
\begin{equation*}
\max _{t \in Z_{N}}\left|e_{i t}(t)\right| \leq C N^{-(2 m-\varepsilon)}, N \rightarrow \infty \tag{2.5}
\end{equation*}
$$

where $Z_{N}:=\left\{t_{n}: 1 \leq n \leq N\right\}$ and $\varepsilon=\varepsilon_{N}$ is an arbitrarily small positive constant satisfying $\lim _{N \rightarrow \infty} \varepsilon_{N}=0$.

Remark 2.1: Theorem 1 indicates that a suitably chosen geometric mesh can, in contrast to the uniform mesh, generate iterated collocation solution possessing the almost optimal (local) superconvergence orderi $p^{*}=2 m-\varepsilon$ at all mesh points Z_{N}. This is in contrast to uniform meshes: it was shown in [4] that for such meshes the optimal order of local superconvergence of $u_{i t}$ satisfies $p^{*} \leq 2 m-1$ whenever $q \neq 1 / 2$; if $q=1 / 2$ then it is conjectured (based on the order of $u_{i t}$ at $t_{1}=h$ and on numerical evidence; compare also Table 2 in Section 5) that $p^{*}=2 m$.

3 Lemmas

In this section we state a number of lemmas which will be crucial for establishing the superconvergence result in Theorem 1.

Lemma 3.1 Assume that H_{1} holds. Then, for $N \geq 2$:
(i)

$$
\begin{equation*}
h_{1} \leq C N^{-\frac{2 m}{m+1}} \tag{3.1}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\sum_{n=2}^{N}\left(h_{n}\right)^{2 m+1} \leq C N^{-(2 m-\varepsilon)} . \tag{3.2}
\end{equation*}
$$

Here, the positive number $\varepsilon=\varepsilon_{N}$ satisfies $\lim _{N \rightarrow \infty} \varepsilon_{N}=0$.
Proof (i) Noting that

$$
\left(1-\frac{2 m \ln N}{(m+1) N}\right)^{(m+1) N / 2 m \ln N} \leq e^{-1} \quad(N \geq 2)
$$

we have

$$
h_{1}=t_{1}=T d^{N-1} \leq T q^{\frac{1}{k}} \leq T\left(1-\frac{2 m \ln N}{(m+1) N}\right)^{N-1} \leq C e^{-\frac{2 m \ln N}{m+1}}=C N^{-\frac{2 m}{m+1}} .
$$

(ii) From H_{1} we obtain

$$
h_{n}=t_{n}-t_{n-1}=T d^{N-n}(1-d) \leq C d^{N-n} \frac{2 m \ln N}{(m+1) N} \quad(n=2, \cdots, N) .
$$

Thus,

$$
\begin{align*}
\sum_{n=2}^{N}\left(h_{n}\right)^{2 m+1} & \leq \frac{C}{\left(1-d^{2 m+1}\right)} \cdot \frac{(2 m \ln N)^{2 m+1}}{(m+1)^{2 m+1} N} \cdot N^{-2 m} \\
& =\frac{C(2 m \ln N)^{2 m+1}}{(m+1)^{2 m+1} N\left(1-\left(1-\frac{2 m \ln N}{(m+1) N}\right)^{2 m+1}\right)} \cdot N^{-2 m} . \tag{3.3}
\end{align*}
$$

Since m is a constant,

$$
\lim _{N \rightarrow \infty} \frac{2 m \ln N}{(m+1) N}=0 .
$$

Hence, we can assume that for sufficiently large N,

$$
\frac{2 m \ln N}{(m+1) N}<1 .
$$

Using the standard inequality

$$
(1-x)^{\alpha} \leq 1-\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}, \quad 0 \leq x<1, \alpha \geq 2
$$

we deduce that

$$
\begin{aligned}
1-\left(1-\frac{2 m \ln N}{(m+1) N}\right)^{2 m+1} & \geq \frac{2 m(2 m+1) \ln N}{(m+1) N}-\frac{4 m^{3}(2 m+1)(\ln N)^{2}}{(m+1)^{2} N^{2}} \\
& \geq \frac{m(2 m+1) \ln N}{(m+1) N}, \quad N \rightarrow \infty ;
\end{aligned}
$$

by (3.3) this leads to

$$
\begin{equation*}
\sum_{n=2}^{N}\left(h_{n}\right)^{2 m+1} \leq \frac{C(2 m \ln N)^{2 m}}{(2 m+1)(m+1)^{2 m}} N^{-2 m}, N \rightarrow \infty \tag{3.4}
\end{equation*}
$$

Set

$$
b:=\frac{(2 m \ln N)^{2 m}}{(2 m+1)(m+1)^{2 m}}
$$

Then, using the identity $b=N^{\log _{N} b}$, (3.4) can be written as

$$
\begin{equation*}
\sum_{n=2}^{N}\left(h_{n}\right)^{2 m+1} \leq C N^{-\left(2 m-\log _{N} b\right)}, N \rightarrow \infty \tag{3.5}
\end{equation*}
$$

For a given constant m we thus obtain

$$
\varepsilon_{N}=\log _{N} b=\frac{\ln b}{\ln N} \rightarrow 0, N \rightarrow \infty
$$

and this, together with (3.5), yields the assertion (ii).
The following lemma reveals one of the key reasons for using geometric meshes: for a suitable choice of the integer κ (recall assumption H_{1}) the delay function $\theta(t):=q t$ maps a mesh points to some previous mesh point. Compare also [13, 2].

Lemma 3.2 For $\kappa+1 \leq n \leq N$, we have $q t_{n}=t_{n-\kappa} \in Z_{N}$. Here, κ is defined in assumption H_{1}.

Proof: From the definitions of t_{n} and d (see (2.2) we have

$$
q t_{\kappa+1}=T q d^{N-(\kappa+1)}=T d^{\kappa} d^{N-(\kappa+1)}=T d^{N-1}=t_{1}
$$

and

$$
q t_{n}=T q d^{N-n}=T d^{\kappa} d^{N-n}=T d^{N-(n-\kappa)}=t_{n-\kappa}, \kappa+2 \leq n \leq N
$$

Set

$$
M_{i}:=\max _{(t, s) \in \Omega_{i}}\left|K_{i}(t, s)\right|, \quad(i=1,2)
$$

Then

$$
\begin{equation*}
\left|\int_{0}^{t} K_{1}(t, s) y(s) d s\right| \leq M_{1} \int_{0}^{t}|y(s)| d s, t \in J \tag{3.6}
\end{equation*}
$$

and, since $q<1$,

$$
\begin{equation*}
\left|\int_{0}^{q t} K_{2}(t, s) y(s) d s\right| \leq M_{2} \int_{0}^{q t}|y(s)| d s \leq M_{2} \int_{0}^{t}|y(s)| d s, t \in J \tag{3.7}
\end{equation*}
$$

Lemma 3.3 Let the functions f and $K_{i}(i=1,2)$ in (2.1) satisfy the smoothness assumptions stated in Theorem 1. Then the equation (2.1) has a (unique) solution $y \in C^{2 m}(J)$ (for any $q \in[0,1]$). Moreover, its derivatives $y^{(j)}(j=1, \cdots, 2 m)$ are uniformly bounded with respect to the parameter q (for any finite interval J).

Proof: It can be verified by standard Picard iteration (see also [9, 7] and [6]) that the equation (2.1) has a unique solution $y \in C(J)$. Equation (2.1), together with (3.6) and (3.7), yields

$$
|y(t)| \leq M+\left(M_{1}+M_{2}\right) \int_{0}^{t}|y(s)| d s, t \in J
$$

where

$$
M:=\max _{t \in J}|f(t)|
$$

Thus, it follows by Gronwall's inequality that y is bounded with respect to q.
On the other hand, from (2.1) we have

$$
\begin{aligned}
y^{\prime}(t)= & f^{\prime}(t)+K_{1}(t, t) y(t)+q K_{2}(t, q t) y(q t) \\
& +\int_{0}^{t} \frac{\partial}{\partial t} K_{1}(t, s) y(s) d s+\int_{0}^{q t} \frac{\partial}{\partial t} K_{2}(t, s) y(s) d s, t \in J
\end{aligned}
$$

Therefore, the regularity of y^{\prime} is the same that of the derivatives (with respect to t) of the given functions. The regularity of the higher derivatives of y is then proved recursively in an analogous way, for any $q \in[0,1]$.

Set now

$$
W^{k, \infty}(J)=L^{\infty}(J) \cap\left(\cap_{i=1}^{N} C^{k}\left(e_{i}\right)\right)
$$

For a nonnegative integer number k, we define the norm $\|\cdot\|_{k, \infty}$ by

$$
\|v\|_{k, \infty}:=\left(\sum_{i=1}^{N}\|v\|_{k, e_{i}, \infty}^{2}\right)^{\frac{1}{2}}
$$

with

$$
\|v\|_{k, e_{i}, \infty}:=\max _{0 \leq j \leq k}\left(\max _{t \in e_{i}}\left|\frac{d^{j}}{d t^{j}} v(t)\right|\right)
$$

For the sake of convenience, the norm $\|\cdot\|_{0, e_{i}, \infty}$ will be abbreviated by $\|\cdot\|_{e_{i}, \infty}$.
Let $\pi: C(J) \rightarrow S_{m-1}^{(-1)}\left(J_{N}\right)$ denote the sequence of interpolation operators such that $\pi v\left(t_{n j}\right)=v\left(t_{n j}\right)(n=1, \cdots, N ; j=1, \cdots, m)$ for $v \in C(J)$. It is well known that

$$
\begin{equation*}
\|\pi v\|_{e_{i}, \infty} \leq C\|v\|_{e_{i}, \infty}, v \in C(J) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|(\pi-I) v\|_{j, e_{i}, \infty} \leq C h^{k-j}\|v\|_{k, e_{i}, \infty}, \quad 0 \leq j \leq k \leq m \tag{3.9}
\end{equation*}
$$

For ease of notation, we define the operator $K: L^{\infty}(J) \rightarrow L^{\infty}(J)$ by

$$
K g(t):=\int_{0}^{t} K_{1}(t, s) g(s) d s+\int_{0}^{q t} K_{2}(t, s) g(s) d s, t \in J
$$

Lemma 3.4 Under the assumptions stated in Theorem 1 we have

$$
\begin{equation*}
\|u-y\|_{e_{1}, \infty} \leq h_{1}^{m}\|y\|_{m, e_{1}, \infty} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{j, \infty} \leq C\|y\|_{m, \infty}, \quad 0 \leq j \leq 2 m \tag{3.11}
\end{equation*}
$$

Proof: Since $u \in S_{m-1}^{(-1)}\left(J_{N}\right)$, it follows by the definition of π that $\pi u=u$. The equations (2.1) and (2.2) may be written in operator form as

$$
\begin{equation*}
y=K y+f \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
u=\pi K u+\pi f \tag{3.13}
\end{equation*}
$$

Set $e:=u-y$ and let I denote the identity operator. Subtraction of (3.12) from (3.13) leads to

$$
e=\pi K e+(\pi-I)(K y+f)
$$

Hence, by observing (3.12),

$$
\begin{equation*}
e=\pi K e+(\pi-I) y \tag{3.14}
\end{equation*}
$$

which, together with $(3.6),(3.7),(3.8)$ and (3.9), yields

$$
|e(t)| \leq\left(M_{1}+M_{2}\right) \int_{0}^{t}|e(s)| d s+C h_{1}^{m}\|y\|_{m, e_{1}, \infty}, t \in e_{1}
$$

Thus, the inequality (3.10) is derived by employing Gronwall's inequality. The inequality

$$
\begin{equation*}
\|e\|_{0, \infty} \leq C h^{m}\|y\|_{m, \infty} \tag{3.15}
\end{equation*}
$$

can be proved in an analogous way. On the other hand, (3.14) can be as

$$
\begin{equation*}
e(t)=K e(t)+(\pi-I)(K e+y)(t), t \in J \tag{3.16}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
e^{\prime}(t) & =K_{1}(t, t) e(t)+q K_{2}(t, q t) e(q t)+\int_{0}^{t} \frac{\partial}{\partial t} K_{1}(t, s) e(s) d s \\
& +\int_{0}^{q t} \frac{\partial}{\partial t} K_{2}(t, s) e(s) d s+\frac{d}{d t}(\pi-I)(K e+y)(t), t \in J \tag{3.17}
\end{align*}
$$

which, by (3.15), leads to

$$
\begin{equation*}
\|e\|_{1, \infty} \leq C h^{m}\|y\|_{m, \infty}+\|(\pi-I)(K e+y)\|_{1, \infty} \tag{3.18}
\end{equation*}
$$

It follows by (3.9) and (3.15) that

$$
\begin{aligned}
\|(\pi-I)(K e+y)\|_{1, \infty} & \leq\|(\pi-I) K e\|_{1, \infty}+\|(\pi-I) y\|_{1, \infty} \\
& \leq C\|K e\|_{1, \infty}+C h^{m-1}\|y\|_{m, \infty} \\
& \leq C\|e\|_{0, \infty}+C h^{m-1}\|y\|_{m, \infty} \\
& \leq C h^{m}\|y\|_{m, \infty}+C h^{m-1}\|y\|_{m, \infty},
\end{aligned}
$$

and hence, by (3.18),

$$
\begin{equation*}
\|e\|_{1, \infty} \leq C h^{m-1}\|y\|_{m, \infty} \tag{3.19}
\end{equation*}
$$

In a similar manner we can prove (using (3.17) and (3.19))

$$
\|e\|_{2, \infty} \leq C h^{m-2}\|y\|_{m, \infty},
$$

and we then successively obtain

$$
\|e\|_{j, \infty} \leq C h^{m-j}\|y\|_{m, \infty}, \quad 0 \leq j \leq m .
$$

Thus,

$$
\|u\|_{j, \infty} \leq\|y\|_{j, \infty}+\|e\|_{j, \infty} \leq C\|y\|_{m, \infty}, 0 \leq j \leq m .
$$

Since $u^{(j)}(t)=0(j \geq m)$ on $e_{n}(n=1, \cdots, N)$, the inequality (3.11) is also valid for $m \leq j \leq 2 m$.

The last lemma is a standard result in the superconvergence theory of integral equations (compare [8]).

Lemma 3.5 Assume that $\psi \in C^{m}(J)$ and $\varphi \in C^{2 m}(J)$. If H_{2} holds, then the following estimate is valid for all e_{n} :

$$
\begin{equation*}
\left|\int_{e_{n}} \psi(t)(\pi-I) \varphi(t) d t\right| \leq C\left(h_{n}\right)^{2 m+1}\|\psi\|_{m, \infty} \cdot\|\varphi\|_{2 m, \infty} \tag{3.20}
\end{equation*}
$$

4 Proof of Theorem 2.1

Since the resolvent operator of the global integral operator K is very complex (compare, for example, [6] for the case where $K_{1}=0$ in (2.1)), standard techniques of, e.g., [5, 3] cannot be employed to establish optimal local superconvergence results. Thus, in this section we propose a new approach using specially designed geometric meshes.

First, we prove inductively that, for all $\varphi \in C^{m}\left(e_{i}\right)$,

$$
\begin{equation*}
\left|\int_{e_{i}} \varphi(s) e(s) d s\right| \leq C h_{i}\left(N^{-(2 m-\varepsilon)}\|\varphi\|_{e_{i}, \infty}+h_{i}^{2 m}\|\varphi\|_{m, e_{i}, \infty}\right) \quad(1 \leq i \leq N) . \tag{4.1}
\end{equation*}
$$

It follows by (3.14) and (3.8) that for any $\psi \in C^{m}\left(e_{1}\right)$ we have

$$
\left|\int_{e_{1}} \psi(s) e(s) d s\right| \leq \int_{e_{1}}|\psi(s)| \cdot|K e(s)| d s+\left|\int_{e_{1}} \psi(s)(I-\pi) y(s) d s\right|
$$

which, together with (3.10),(3.20) and (3.1), yields

$$
\begin{align*}
\left|\int_{e_{1}} \psi(s) e(s) d s\right| \leq & C\left(h_{1}^{2}\|\psi\|_{e_{1}, \infty} \cdot\|e\|_{e_{1}, \infty}\right. \\
& +h_{1}^{2 m+1}\|\psi\|_{m, e_{1}, \infty} \cdot\|y\|_{2 m, e_{1}, \infty} \\
\leq & C h_{1}\left(h_{1}^{m+1}\|\psi\|_{e_{1}, \infty} \cdot\|y\|_{m, e_{1}, \infty}\right. \tag{4.2}\\
& \left.+h_{1}^{2 m}\|\psi\|_{m, e_{1}, \infty} \cdot\|y\|_{2 m, e_{1}, \infty}\right) \\
\leq & C h_{1}\left(N^{-2 m}\|\psi\|_{e_{1}, \infty}+h_{1}^{2 m}\|\psi\|_{m, e_{1}, \infty}\right)
\end{align*}
$$

We assume that the following inequality is valid for every $\varphi \in C^{m}\left(e_{i}\right)$ and $1 \leq i \leq n$:

$$
\begin{equation*}
\left|\int_{e_{i}} \varphi(s) e(s) d s\right| \leq C h_{i}\left(N^{-2 m}\|\varphi\|_{e_{i}, \infty}+h_{i}^{2 m}\|\varphi\|_{m, e_{i}, \infty}\right) \tag{4.3}
\end{equation*}
$$

We need to prove that, for any $\psi \in C^{m}\left(e_{n+1}\right)$,

$$
\begin{equation*}
\left|\int_{e_{n+1}} \psi(s) e(s) d s\right| \leq C h_{n+1}\left(N^{-2 m}\|\psi\|_{e_{n+1}, \infty}+h_{n+1}^{2 m}\|\psi\|_{m, e_{n+1}, \infty}\right) \tag{4.4}
\end{equation*}
$$

In fact, the equation (3.16) can be written as

$$
e(t)=\int_{0}^{t} K_{1}(t, s) e(s) d s+A(t), t \in J
$$

with

$$
A(t)=\int_{0}^{q t} K_{2}(t, s) e(s) d s+(\pi-I)(K u+f)(t)
$$

Let R_{1} be the resolvent kernel of K_{1}; standard Volterra theory implies that it inherits the smoothness of the kernel K_{1}. Thus, by the classical theory of Volterra integral equations, we obtain

$$
e(t)=A(t)+\int_{0}^{t} R_{1}(t, s) A(s) d s, t \in J
$$

Furthermore,

$$
\begin{align*}
\int_{e_{n+1}} \psi(t) e(t) d t= & \int_{e_{n+1}} \psi(t) A(t) d t+\int_{e_{n+1}}\left[\psi(t) \int_{0}^{t} R_{1}(t, s) A(s) d s\right] d t \\
= & \int_{e_{n+1}} \psi(t)(\pi-I)(K u+f)(t) d t \\
& +\int_{e_{n+1}}\left[\psi(t) \int_{0}^{t} R_{1}(t, s)(\pi-I)(K u+f)(s) d s\right] d t \tag{4.5}\\
& +\int_{e_{n+1}}\left[\psi(t) \int_{0}^{q t} K_{2}(t, s) e(s) d s\right] d t \\
& +\int_{e_{n+1}}\left[\psi(t) \int_{0}^{t}\left(R_{1}(t, s) \int_{0}^{q s} K_{2}(s, \tau) e(\tau) d \tau\right) d s\right] d t \\
= & I_{1}+I_{2}+I_{3}+I_{4} . \tag{4.6}
\end{align*}
$$

The following inequality is a direct consequence of (3.20) and (3.11):

$$
\begin{equation*}
\left|I_{1}\right| \leq C h_{n+1}^{2 m+1}\|\psi\|_{m, e_{n+1}, \infty} \tag{4.7}
\end{equation*}
$$

Changing the order of integration leads to

$$
\begin{aligned}
I_{2}= & \int_{t_{n}}^{t_{n+1}}\left[\int_{s}^{t_{n+1}} \psi(t) R_{1}(t, s) d t \cdot(\pi-I)(K u+f)(s)\right] d s \\
& +\int_{0}^{t_{n}}\left[\int_{t_{n}}^{t_{n+1}} \psi(t) R_{1}(t, s) d t \cdot(\pi-I)(K u+f)(s)\right] d s .
\end{aligned}
$$

Set

$$
\psi_{1}(s)=\int_{s}^{t_{n+1}} \psi(t) R_{1}(t, s) d t
$$

and

$$
\psi_{2}(s)=\int_{t_{n}}^{t_{n+1}} \psi(t) r_{1}(t, s) d t .
$$

Since the function R_{1} possesses the same degree of regularity as the kernel K_{1}, it follows by (3.20) and (3.11) that (note that $h_{i} \leq h_{n+1}$ for $1 \leq i \leq n$)

$$
\begin{aligned}
& \left|\int_{t_{n}}^{t_{n+1}}\left[\int_{s}^{t_{n+1}} \psi(t) R_{1}(t, s) d t \cdot(\pi-I)(K u+f)(s)\right] d s\right| \\
\leq & C h_{n+1}^{2 m+1}\left\|\psi_{1}\right\|_{m, e_{n+1}, \infty} \cdot\|(\pi-I)(K u+f)\|_{2 m, e_{n+1}, \infty} \\
\leq & C h_{n+1}^{2 m+1}\|\psi\|_{m, e_{n+1}, \infty}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\int_{0}^{t_{n}}\left[\int_{t_{n}}^{t_{n+1}} \psi(t) r_{1}(t, s) d t \cdot(\pi-I)(K u+f)(s)\right] d s\right| \\
\leq & \sum_{i=1}^{n}\left|\int_{t_{i-1}}^{t_{i}} \psi_{2}(s)(\pi-I)(K u+f)(s) d s\right| \\
\leq & C \sum_{i=1}^{n} h_{i}^{2 m+1}\left\|\psi_{2}\right\|_{m, e_{i}, \infty} \cdot\|(\pi-I)(K u+f)\|_{2 m, e_{i}, \infty} \\
\leq & C \sum_{i=1}^{n} h_{i} h_{n+1}^{2 m} h_{n+1}\|\psi\|_{m, e_{n+1}, \infty} \\
\leq & C h_{n+1}^{2 m+1}\|\psi\|_{m, e_{n+1}, \infty}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left|I_{2}\right| \leq C h_{n+1}^{2 m+1}\|\psi\|_{m, e_{n+1}, \infty} \tag{4.8}
\end{equation*}
$$

When $1 \leq n \leq \kappa$, we have $q t_{n+1} \in\left(0, t_{1}\right]$ (see the proof of Lemma 3.2). Using (3.10) and (3.1) we obtain

$$
\begin{aligned}
\left|I_{3}\right| & \leq C h_{n+1} q t_{n+1} h_{1}^{m}\|\psi\|_{e_{n+1}, \infty} \cdot\|y\|_{m, e_{1}, \infty} \\
& \leq C h_{n+1} h_{1}^{m+1}\|\psi\|_{e_{n+1}, \infty} \\
& \leq C h_{n+1} N^{-2 m}\|\psi\|_{e_{n+1}, \infty}
\end{aligned}
$$

We consider the case of $n \geq \kappa+1$. Changing the order of integration leads to

$$
\begin{aligned}
I_{3}= & \int_{q t_{n}}^{q t_{n+1}}\left[\int_{\frac{s}{q}}^{t_{n+1}} \psi(t) K_{2}(t, s) d t \cdot e(s)\right] d s \\
& +\int_{0}^{q t_{n}}\left[\int_{t_{n}}^{t_{n+1}} \psi(t) K_{2}(t, s) d t \cdot e(s)\right] d s \\
= & I_{31}+I_{32} .
\end{aligned}
$$

From Lemma 3.2 we have $q t_{n}=t_{n-\kappa}$ and $q t_{n+1}=t_{n+1-\kappa}$. Set

$$
\psi_{3}(s)=\int_{\frac{s}{q}}^{t_{n+1}} \psi(t) K_{2}(t, s) d t
$$

and

$$
\psi_{4}(s)=\int_{t_{n}}^{t_{n+1}} \psi(t) K_{2}(t, s) d t
$$

Thus, it follows by the inductive assumption (4.2) that

$$
\begin{aligned}
\left|I_{31}\right| & \leq C q h_{n+1}\left(N^{-2 m}\left\|\psi_{3}\right\|_{e_{n+1-\kappa}, \infty}+\left(q h_{n+1}\right)^{2 m}\left\|\psi_{3}\right\|_{m, e_{n+1-\kappa}, \infty}\right) \\
& \leq C q h_{n+1}\left(N^{-2 m} h_{n+1}\|\psi\|_{e_{n+1}, \infty}+\left(q h_{n+1}\right)^{2 m} q^{-m}\|\psi\|_{m, e_{n+1}, \infty}\right) \\
& \leq C h_{n+1}\left(N^{-2 m}\|\psi\|_{e_{n+1}, \infty}+h_{n+1}^{2 m}\|\psi\|_{m, e_{n+1}, \infty}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|I_{32}\right| & \leq \sum_{i=1}^{n-\kappa}\left|\int_{e_{i}} \psi_{4}(s) e(s) d s\right| \\
& \leq C \sum_{i=1}^{n-\kappa} h_{i}\left(N^{-2 m}\left\|\psi_{4}\right\|_{e_{i}, \infty}+h_{i}^{2 m}\left\|\psi_{4}\right\|_{m, e_{i}, \infty}\right) \\
& \leq C \sum_{i=1}^{n-\kappa} h_{i}\left(N^{-2 m} h_{n+1}\|\psi\|_{e_{n+1}, \infty}+h_{i}^{2 m} h_{n+1}\|\psi\|_{e_{n+1}, \infty}\right) \\
& \leq C t_{n-\kappa} h_{n+1}\left(N^{-2 m}\|\psi\|_{e_{n+1}, \infty}+h_{n+1}^{2 m}\|\psi\|_{m, e_{n+1}, \infty}\right) \\
& \leq C h_{n+1}\left(N^{-2 m}\|\psi\|_{e_{n+1}, \infty}+h_{n+1}^{2 m}\|\psi\|_{m, e_{n+1}, \infty}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|I_{3}\right| \leq C h_{n+1}\left(N^{-2 m}\|\psi\|_{e_{n+1}, \infty}+h_{n+1}^{2 m}\|\psi\|_{m, e_{n+1}, \infty}\right) \tag{4.9}
\end{equation*}
$$

In an analogous way we can prove that

$$
\left|I_{4}\right| \leq C h_{n+1}\left(N^{-2 m}\|\psi\|_{e_{n+1}, \infty}+h_{n+1}^{2 m}\|\psi\|_{m, e_{n+1}, \infty}\right)
$$

and this estimate, together with (4.5)-(4.9), allows us to deduce (4.4). It then follows by the induction principle that the inequality (4.1) is valid.

Now, we can readily prove Theorem 2.1. By (4.1) and Lemma 3.1, we obtain

$$
\left|\int_{0}^{t_{n}} \varphi(t) e(t) d t\right| \leq C N^{-(2 m-\varepsilon)}\|\varphi\|_{m,\left[0, t_{n}\right], \infty}, \text { for all } \varphi \in C^{m}\left[0, t_{n}\right], 1 \leq n \leq N
$$

In particular, we find that

$$
\begin{equation*}
\left|\int_{0}^{t_{n}} K_{1}\left(t_{n}, s\right) e(s) d s\right| \leq C N^{-(2 m-\varepsilon)}, 1 \leq n \leq N \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{0}^{q t_{n}} K_{2}\left(t_{n}, s\right) e(s) d s\right| \leq C N^{-(2 m-\varepsilon)}, \kappa+1 \leq n \leq N \tag{4.11}
\end{equation*}
$$

When $n \leq \kappa$, we have $q t_{n} \leq t_{1}$. Hence, using (3.10) and (3.1) we are led to

$$
\begin{align*}
\left|\int_{0}^{q t_{n}} K_{2}\left(t_{n}, s\right) e(s) d s\right| & \leq C t_{1} h_{1}^{m}\|y\|_{m, e_{1}, \infty} \\
& \leq C h_{1}^{m+1} \leq C N^{-2 m}, 1 \leq n \leq \kappa \tag{4.12}
\end{align*}
$$

On the other hand, subtraction of (2.1) from (2.3) yields

$$
e_{i t}=u_{i t}-y=K e
$$

which, together with (4.10), (4.11) and (4.12), gives the desired result.

Remark 4.1: In the proof of Theorem 2.1, the use of the inductive method to prove the inequality (4.1) is the key technique. This technique is, in essence, similar to the recursive method introduced in [11] and [12].

Remark 4.2: The fact that we have $q t_{n} \in Z_{N}$ when $q t_{n} \geq t_{1}\left(t_{n} \in Z_{N}\right)$ is important in the proof of Theorem 1. This just reflects our motivation for introducing the "geometric" meshes.

5 Numerical examples

For the numerical verification of the result stated in Section 2, we consider

$$
\begin{equation*}
y(t)=f(t)-\int_{0}^{t} y(s) d s+\frac{1}{2} \int_{0}^{q t} y(s) d s, t \in[0, T] \tag{5.13}
\end{equation*}
$$

where the function f is chosen as $f(t)=\frac{1}{2}\left(1+e^{-q t}\right)$, so that the exact solution is $y(t)=e^{-t}$; the delay parameter q is chosen to have the values $q=0.9, q=0.5$, and $q=0.2$. We set $T=10$. The equation (5.1) is solved by three collocation methods using the space $S_{1}^{(-1)}\left(J_{N}\right)(m=2)$.

The first method (M1) is based on the geometric meshes introduced in Section 2 and the Gauss collocation parameters: $c_{1}=(3-\sqrt{3}) / 6, c_{2}=(3+\sqrt{3}) / 6$; the second method (M2) is based on the uniform meshes and the Gauss collocation parameters c_{1} and c_{2}; and the third method (M3) uses uniform meshes and the $q-G a u s s$ collocation parameters $\bar{c}_{1}:=q c_{1}$ and $\bar{c}_{2}:=q c_{2}($ see [4] and [14]).

The resulting nodal errors are given in Table $1(q=0.9)$, Table $2(q=0.5)$, and Table $3(q=0.2)$.

Table 1

$$
\max _{t \in Z_{N}}\left|e_{i t}(t)\right| \quad(q=0.9)
$$

$N(h=10 / N)$	100	200	400	800	1600
M1	$7.28 \mathrm{D}-8$	$4.57 \mathrm{D}-9$	$1.17 \mathrm{D}-10$	$1.11 \mathrm{D}-11$	$8.75 \mathrm{D}-13$
M2	$3.49 \mathrm{D}-6$	$4.67 \mathrm{D}-7$	$6.04 \mathrm{D}-8$	$7.68 \mathrm{D}-9$	$9.68 \mathrm{D}-10$
M3	$2.55 \mathrm{D}-5$	$6.03 \mathrm{D}-6$	$1.46 \mathrm{D}-6$	$3.61 \mathrm{D}-7$	$8.97 \mathrm{D}-8$

Table 2

$$
\max _{t \in Z_{N}}\left|e_{i t}(t)\right|(q=0.5)
$$

$N(h=10 / N)$	100	200	400	800	1600
M1	$1.94 \mathrm{D}-7$	$1.49 \mathrm{D}-8$	$1.45 \mathrm{D}-9$	$1.40 \mathrm{D}-10$	$1.23 \mathrm{D}-11$
M2	$2.95 \mathrm{D}-7$	$1.90 \mathrm{D}-8$	$1.21 \mathrm{D}-9$	$7.62 \mathrm{D}-11$	$4.78 \mathrm{D}-12$
M3	$1.86 \mathrm{D}-4$	$4.45 \mathrm{D}-5$	$1.09 \mathrm{D}-5$	$2.69 \mathrm{D}-6$	$6.69 \mathrm{D}-7$

Table 3

$$
\max _{t \in Z_{N}}\left|e_{i t}(t)\right| \quad(q=0.2)
$$

$N(h=10 / N)$	100	200	400	800	1600
M1	$1.70 \mathrm{D}-7$	$1.78 \mathrm{D}-8$	$1.72 \mathrm{D}-9$	$1.60 \mathrm{D}-10$	$1.47 \mathrm{D}-11$
M2	$3.91 \mathrm{D}-6$	$4.98 \mathrm{D}-7$	$6.25 \mathrm{D}-8$	$7.82 \mathrm{D}-9$	$9.77 \mathrm{D}-10$
M3	$4.18 \mathrm{D}-4$	$1.00 \mathrm{D}-4$	$2.44 \mathrm{D}-5$	$6.03 \mathrm{D}-6$	$1.50 \mathrm{D}-6$

These tables confirm that our method (M1) is very effective for all parameter $q \in(0,1)$, in that it generates iterated collocation solutions possessing the almost optimal superconvergence rate when $N \rightarrow \infty$. Moreover, the new method (M1) is better than the standard method (M2) except for the particular case of $q=\frac{1}{2}$. As we have mentioned before, it is conjectured that the iterated collocation solution based on $S_{m-1}^{(-1)}\left(J_{N}\right)$, with uniform mesh J_{N} and collocation at the Gauss points, exhibits the optimal order of local superconvergence, $p^{*}=2 m$. The results for (M2) in Table 2, and numerous other numerical examples, clearly show that $p^{*}=2 m=4$ holds.

The numerical results also show that, when $K_{1} \neq 0$, the q-Gauss collocation points leads to a lower rate of convergence at the nodal points (it equals the global convergence rate on $J, p=m)$.

Acknowledgement

The first author (H.B.) carried out part of this work while staying at the Seminar für Angewandte Mathematik, ETH Zürich (September 1998 to December 1999). He gratefully acknowledges the generous hospitality extended to him by SAM and by Professor Rolf Jeltsch during this visit.

References

[1] C.T.H. Baker, M.S. Derakhshan, Convergence and Stability of quadrature methods applied to Volterra equations with delay, IMA J.Numer.Anal., 13(1993), 67-91.
[2] A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of θ-methods for the pantograph equation, Appl. Numer. Math., 24 (1997), 275-293.
[3] H. Brunner, Iterated collocation methods for Volterra integral equations with delay arguments, Math. Comp., 62 (1994), 581-599.
[4] H. Brunner, On the discretization of differential and Volterra integral equations with variable delay, BIT, 37 (1997), 1-12.
[5] H. Brunner and P.J. van der Houwen, The Numerical Solution of Volterra Equations, CWI Monographs, Vol. 3, North-Holland, Amsterdam, 1986.
[6] Ll.G. Chambers, Some properties of the functional equation $\phi(x)=f(x)+$ $\int_{0}^{\lambda x} g(x, y, \phi(y)) d y$, Internat. J. Math. Math. Sci., 14 (1990), 27-44.
[7] J. Cerha, On some linear Volterra delay equations, Časopis Pešt Mat., 101 (1976), 111-123.
[8] F. Chatelin and R. Lebbar, Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem, J. Integral Equations, 6 (1984), 71-91.
[9] J.M. Bownds, J.M. Cushing and R. Schutte, Existence, uniqueness, and extendibility of solutions to Volterra integral systems with multiple variable delays, Funkcial. Ekvac., 19 (1976), 101-111.
[10] Q. Hu, Geometric meshes and their application to Volterra integro- differential equations with singularities, IMA J. Numer. Anal., 18 (1998), 151-164.
[11] Q. Hu, Interpolation correction for collocation solutions of Fredholm integrodifferential equations, Math.Comp., 67 (1998), 987-999.
[12] Q. Hu, Multilevel correction for discrete collocation solutions of Volterra integral equations with delay arguments, Appl.Numer.Math., 31 (1999), 159-171
[13] Y. Liu, Stability analysis of θ-methods for neutral functional-differential equations, Numer. Math., 70 (1995), 473-485.
[14] N. Takama, Y. Muroya and E. Ishiwata, On the attainable order of collocation methods for the delay differential equation with proportional delay, Tech.Report No.97-7, Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, 1997.

Research Reports

No. Authors Title

99-2	H. Brunner, Q. Hu, Q. Lin	Geometric meshes in collocation methods for Volterra integral equations with proportional time delays
99-24	D. Schötzau, Schwab	An $h p$ a-priori error analysis of the DG timestepping method for initial value problems
99-23	R. Sperb	Optimal sub- or supersolutions in reactiondiffusion problems
99-22	M.H. Gutknecht, M. Rozložník	Residual smoothing techniques: do they improve the limiting accuracy of iterative solvers?
99-21	M.H. Gutknecht, Z. Strakoš	Accuracy of Two Three-term and Three Twoterm Recurrences for Krylov Space Solvers
99-20	M.H. Gutknecht, K.J. Ressel	Look-Ahead Procedures for Lanczos-Type Product Methods Based on Three-Term Lanczos Recurrences
99-19	M. Grote	Nonreflecting Boundary Conditions For Elastodynamic Scattering
99-18	J. Pitkäranta, A.-M. Matache, C. Schwab	Fourier mode analysis of layers in shallow shell deformations
99-17	K. Gerdes, J.M. Melenk, D. Schötzau, C. Schwab	The $h p$-Version of the Streamline Diffusion Finite Element Method in Two Space Dimensions
99-16	R. Klees, M. van Gelderen, C. Lage, C. Schwab	Fast numerical solution of the linearized Molodensky problem
99-15	J.M. Melenk, K. Gerdes, C. Schwab	Fully Discrete $h p$-Finite Elements: Fast Quadrature
99-14	E. Süli, P. Houston, C. Schwab	$h p$-Finite Element Methods for Hyperbolic Problems
99-13	E. Süli, C. Schwab, P. Houston	$h p$-DGFEM for Partial Differential Equations with Nonnegative Characteristic Form
99-12	K. Nipp	Numerical integration of differential algebraic systems and invariant manifolds
99-11	C. Lage, C. Schwab	Advanced boundary element algorithms
99-10	D. Schötzau, C. Schwab	Exponential Convergence in a Galerkin Least Squares $h p$-FEM for Stokes Flow
99-09	A.M. Matache, C. Schwab	Homogenization via p-FEM for Problems with Microstructure
99-08	D. Braess, C. Schwab	Approximation on Simplices with respect to Weighted Sobolev Norms
99-07	M. Feistauer, C. Schwab	Coupled Problems for Viscous Incompressible Flow in Exterior Domains

[^0]: *Supported by the Natural Sciences and Engineering Research Council of Canada (Research Grant OPG0009406). Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1C 5S7; email: hermann@math.mun.ca
 ${ }^{* *}$ Supported by the Natural Sciences Foundation of China (19801030). Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing 100080, China; email: hqy@lsec.cc.ac.cn
 ${ }^{\dagger}$ Institute of System Sciences and Mathematics, Chinese Academy of Sciences, Beijing 100080, China; email: qlin@staff.iss.ac.cn

[^1]: *Supported by the Natural Sciences and Engineering Research Council of Canada (Research Grant OPG0009406). Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1C 5S7; email: hermann@math.mun.ca
 ${ }^{* *}$ Supported by the Natural Sciences Foundation of China (19801030). Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing 100080, China; email: hqy@lsec.cc.ac.cn
 ${ }^{\dagger}$ Institute of System Sciences and Mathematics, Chinese Academy of Sciences, Beijing 100080, China; email: qlin@staff.iss.ac.cn

