Optimal sub- or supersolutions in reaction-diffusion problems

R. Sperb

Optimal sub- or supersolutions in reaction-diffusion problems

R. Sperb

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Research Report No. 99-23 October 1999

Abstract

The type of problem under consideration is (*) $$
\begin{cases}u_{t}=\Delta u+f(u) & \text { in } \quad \Omega \times(0, T) \\ \frac{\partial u}{\partial n}+g(u)=0 & \text { on } \quad \partial \Omega \times(0, T) \\ u(x, 0)=u_{0}(x) & \end{cases}
$$

Here Ω is a finite domain of \mathbb{R}^{N}.
The solution of $\left({ }^{*}\right)$ is compared with a corresponding solution of the N-ball or a finite interval whose size depends on different quantities of an associated linear elliptic problem for Ω, such as e.g. the fixed membrane problem.

Possible applications include estimates for the blow-up or finite vanishing time.

1 Introduction

Let Ω be a finite domain of R^{N} and consider the semilinear problem

$$
\begin{cases}\frac{\partial u}{\partial t}=\Delta u+f(u) & \text { in } \quad \Omega \times(0, T) \tag{1.1}\\ \frac{\partial u}{\partial n}+g(u)=0 & \text { on } \quad \partial \Omega \times(0, T) \\ u(x, 0)=u_{0}(x) & \end{cases}
$$

where n is the exterior normal on $\partial \Omega$. Concerning smoothness we will assume that Ω has a $C^{2+\epsilon}$ boundary and f and g have all the derivatives that are used in the assumptions of the theorems.

Sub- or supersolutions play an important role in proving existence theorems or solution bounds and in many other questions.

In this paper sub- or supersolutions are constructed which are optimal in the sense that they are the solution of (1.1) if Ω is the N-ball $(N \geq 1)$ of an appropriate size. The corresponding construction for the steady state has been given in [6], [7] and was motivated by a paper of Payne [3].

In the parabolic case new features come in, and in particular the assumptions on $f(u)$, $g(u)$ are different from the elliptic case. The main idea can be used again and consists in considering two auxiliary problems:
a) the associated radially symmetric problem

$$
\left\{\begin{array}{l}
\frac{\partial R}{\partial t}=\frac{1}{r^{N-1}} \frac{\partial}{\partial r}\left(r^{N-1} \cdot \frac{\partial R}{\partial r}\right)+f(R) \text { in }\left(0, r_{0}\right) \times\left(0, T_{1}\right) \tag{1.2}\\
\frac{\partial R}{\partial r}(0, t)=0, \frac{\partial R}{\partial r}\left(r_{0}, t\right)+g\left(R\left(r_{0}, t\right)\right)=0 \\
R(r, 0)=R_{0}(r)
\end{array}\right.
$$

and
b) a standard linear elliptic problem, for example the so-called torsion problem

$$
\left\{\begin{align*}
\Delta \psi+1=0 & \text { in } \quad \Omega \tag{1.3}\\
\psi=0 & \text { on } \quad \partial \Omega .
\end{align*}\right.
$$

Problem (1.3) serves to "transplant" the solution of (1.2) from an interval $\left(0, r_{0}\right)$ to the given domain Ω. This is motivated by the following observation.

For the N-ball one can write the solution of (1.3) as

$$
\psi(r)=\frac{1}{2 N}\left(N^{2} \tau^{2}-r^{2}\right), \quad \tau=|\nabla \psi| \text { on } \partial \Omega, N \geq 1
$$

or as

$$
\psi(x)=\psi_{m}-\frac{1}{2} x^{2}, \quad \psi_{m}=\max _{\Omega} \psi(x), N=1
$$

Hence for $N \geq 1$ one has

$$
r=\sqrt{N^{2} \tau^{2}-2 N \psi(r)}
$$

and for $N=1$ we may also write

$$
x=\sqrt{2\left(\psi_{m}-\psi(x)\right)} .
$$

These relations suggest the choice of sub- or supersolutions of the form

$$
\begin{equation*}
v(x, t)=R(r(x), t) \tag{1.4}
\end{equation*}
$$

with $r(x)=\sqrt{N^{2} \tau^{2}-2 N \psi(x)}, \tau=\max _{\partial \Omega}|\nabla \psi|$ or else

$$
\begin{equation*}
v(x, t)=X(s(x), t) \tag{1.5}
\end{equation*}
$$

with $s(x)=\sqrt{2\left(\psi_{m}-\psi(x)\right)}$ and $X(s, t)$, being the solution of (1.1) for an interval $\left(0, s_{0}\right)$, i.e. $N=1$ in (1.2).

Instead of the torsion problem one can select the clamped membrane problem

$$
\left\{\begin{align*}
\Delta \varphi+\lambda \varphi=0 & \text { in } \quad \Omega \tag{1.6}\\
\varphi=0 & \text { on } \quad \partial \Omega .
\end{align*}\right.
$$

Then the solution for an interval now leads to the choice

$$
\begin{equation*}
s(x)=\frac{1}{\sqrt{\lambda_{1}}} \arccos \left(\frac{\varphi(x)}{\varphi_{m}}\right), \tag{1.7}
\end{equation*}
$$

with $\varphi_{m}=\max _{\Omega} \varphi(x), \lambda_{1}=$ first eigenvalue with associated eigenfunction $\varphi(x)$.
Another choice of an elliptic problem is $w(x)$, where

$$
\left\{\begin{array}{rll}
\Delta w-c^{2} w(x)=0 & \text { in } \quad \Omega \\
w=1 & \text { on } \quad \partial \Omega .
\end{array}\right.
$$

This choice has been made in [6] already in the steady state case.

2 The N-ball as optimal domain

Let x be a point of Ω and set

$$
\begin{equation*}
r(x)=\sqrt{N^{2} \tau^{2}-2 N \psi(x)} \tag{2.1}
\end{equation*}
$$

$\psi(x)$ being the solution of (1.2). The notation indicates that for the N-ball $r(x)=$ distance from the center. We denote by $R(r, t)$ the solution of (1.2) and use a prime for a derivative with respect to r or else a derivative with respect to R for $f(R), g(R)$. Time derivatives will be denoted by a dot.

The first result can then be stated as

Theorem 1 Suppose the following assumptions hold
a) $g(R) \geq 0, g^{\prime}(R) \geq 0, f^{\prime \prime}(R) \geq 0$ and

$$
\left(\frac{f(R)}{g(R)}+\frac{H \cdot N}{r_{0}} \log g(R)\right)^{\prime} \geq 0, \quad r_{0}=N \tau .
$$

b) The initial distribution $R_{0}(r)$ of (1.2) satisfies for $0<r<r_{0}$,

$$
\left(\frac{R_{0}^{\prime}(r)}{r}\right)^{\prime} \geq 0
$$

and

$$
R_{0}(r(x)) \geq u_{0}(x)
$$

Then

$$
\bar{u}(x, t)=R(r(x), t)
$$

is a supersolution of (1.1) for $0 \leq t \leq T_{1}$.
Proof: From (2.1) we calculate

$$
\begin{gather*}
\nabla r=-\frac{N \nabla \psi}{r}, \tag{2.2}\\
\Delta r=\frac{N}{r}\left(1-\frac{N|\nabla \psi|^{2}}{r^{2}}\right) . \tag{2.3}
\end{gather*}
$$

For $\bar{u}(x, t) \equiv R(r(x), t)$ we then have

$$
\begin{equation*}
\bar{u}_{t}-\Delta \bar{u}-f(\bar{u})=\dot{R}-\frac{N \cdot R^{\prime}}{r}\left(1-\frac{N|\nabla \psi|^{2}}{r^{2}}\right)-R^{\prime \prime} \cdot \frac{N^{2}|\nabla \psi|^{2}}{r^{2}}-f(R) \tag{2.4}
\end{equation*}
$$

and using the differential equation for $R(r, t)$ to eliminate $\dot{R}-f(R)$, (2.4) takes the form

$$
\begin{equation*}
\bar{u}_{t}-\Delta \bar{u}-f(\bar{u})=\left(R^{\prime \prime}-\frac{R^{\prime}}{r}\right)\left\{1-\frac{N^{2}\left|\nabla \psi^{2}\right|}{r^{2}}\right\} . \tag{2.5}
\end{equation*}
$$

It was proven by Payne [4] that

$$
|\nabla \psi|^{2}+\frac{2}{N} \psi \leq \tau^{2}
$$

and this inequality in turn implies that the bracket term $\}$ is nonnegative because of the defining equation (2.1) for $r(x)$.

It remains therefore to investigate the sign of the other bracket term on the right of (2.5). We write the radially symmetric part of the Laplacian as Δ_{r} and set

$$
\begin{equation*}
h(r, t)=r^{N}\left(R^{\prime \prime}-\frac{R^{\prime}}{r}\right)=r^{N} \Delta_{r} R-N r^{N-1} \cdot R^{\prime} \tag{2.7}
\end{equation*}
$$

After a routine calculation one finds that

$$
\begin{equation*}
\dot{h}-\Delta_{r} h+\frac{2 N}{r} h^{\prime}-f^{\prime}(R) \cdot h=r^{N} \cdot f^{\prime \prime}(R) \cdot R^{2^{2}} . \tag{2.8}
\end{equation*}
$$

At the end point $r=0$ we have $h(0, t)=0$ so that it remains to check the endpoint $r=r_{0}$. To this end, we form

$$
h^{\prime}\left(r_{0}, t\right)+g^{\prime}(R) \cdot h\left(r_{0}, t\right)
$$

and use that

$$
\begin{equation*}
h^{\prime}=r^{N}\left(\Delta_{r} R\right)^{\prime}=r^{N}(\dot{R}-f(R))^{\prime} . \tag{2.10}
\end{equation*}
$$

The expression \dot{R}^{\prime} can be eliminated by means of the time derivative of the boundary condition for R. A little manipulation shows then that $\left(1=\frac{d}{d R}\right)$

$$
\begin{equation*}
\left.\frac{\partial h}{\partial r}\right|_{r_{0}}+g^{\prime}(R) \cdot h=r_{0}^{N} \cdot g^{2}\left(\frac{f(R)}{g(R)}+\frac{N}{r_{0}} \log [g(R)]\right)^{\prime} \geq 0 \tag{2.11}
\end{equation*}
$$

Since $h(r, 0) \geq 0$ by assumption, the maximum principle again implies that

$$
h(r, t) \geq 0 \text { in }\left(0, r_{0}\right) \times\left(0, T_{1}\right),
$$

and hence

$$
\begin{equation*}
\bar{u}_{t}-\Delta \bar{u}-f(\bar{u}) \geq 0 \text { in } \Omega \times\left(0, T_{1}\right) . \tag{2.12}
\end{equation*}
$$

On $\partial \Omega \times(0, T)$ we have

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial n}+g(\bar{u})=R^{\prime} \cdot \frac{\partial r}{\partial n}+g(R)=g(R)\left\{1-N \frac{|\nabla \psi|}{r_{0}}\right\} \geq 0 \tag{2.13}
\end{equation*}
$$

if we choose $r_{0}=N \tau=N \max _{\partial \Omega}|\nabla \psi|$. Finally $\bar{u}(x, 0)=R_{0}(r(x)) \geq u_{0}(x)$ by assumption and the proof is completed.

Remarks on Theorem 1

1) One can check that if all inequality signs except for g^{\prime}, are reversed in the assumptions of Theorem 1 then

$$
\underline{u}(x, t)=R(r(x), t)
$$

is a subsolution.
2) In the case of Dirichlet boundary conditions in (1.1) and (1.2) one can modify the arguments. It follows from the Maximum Principle that the solution $R(r, t)$ of (1.2) with $R\left(r_{0}, t\right)=0$ now and $R_{0}(r) \geq 0$ remains nonnegative in $\left(0, r_{0}\right) \times\left(0, T_{1}\right)$ if $f \geq 0$. Hence $R^{\prime}\left(r_{0}, t\right) \leq 0$. The differential equation for $R(r, t)$ evaluated at the end-point r_{0} and the assumption $f(0)=0$ then imply that $h\left(r_{0}, t\right) \geq 0$.

Hence for Dirichlet boundary conditions assumption a) has to be replaced by

$$
f(0)=0, f(R) \geq 0, f^{\prime \prime} \geq 0
$$

Reversion of the inequality signs in $\left(a^{*}\right)$, (b) again yields a subsolution.
For the steady states of (1.1) and (1.2), denoted by $u_{s}(x)$ or $R_{s}(r)$ respectively, the proof of Theorem 1 needs only a slight adjustment to show that one has

Corollary 1 Let $u_{s}(x)$ and $R_{s}(r)$ denote steady states of (1.1) and (1.2) and suppose that $f \geq 0, f^{\prime} \geq 0$ and $g \geq 0$. Then

$$
\bar{u}_{s}(x)=R_{s}(r(x))
$$

is a supersolution of the steady state case of (1.1).

Proof: The calculations leading to (2.5) now show that

$$
\begin{equation*}
\Delta \bar{u}_{s}+f\left(\bar{u}_{s}\right)=-\left(R_{s}^{\prime \prime}-\frac{R_{s}^{\prime}}{r}\right)\left\{1-\frac{N^{2}|\nabla \psi|^{2}}{r^{2}}\right\} . \tag{2.14}
\end{equation*}
$$

The function

$$
h(r)=r^{N}\left(R_{s}^{\prime \prime}-\frac{1}{r} R_{s}^{\prime}\right)=r^{N} \Delta_{r} R_{s}-N r^{N-1} \cdot R_{s}^{\prime}
$$

satisfies

$$
h(0)=0
$$

and

$$
h^{\prime}(r)=r^{N} f\left(R_{s}\right) \cdot R_{s}^{\prime}=: r \cdot f\left(R_{s}\right) \cdot v(r) .
$$

But, if $f\left(R_{s}\right) \geq 0$, then we have

$$
v(r)^{\prime}=\left(r^{N-1} \cdot R_{s}^{\prime}\right)^{\prime} \leq 0
$$

Since $v(0)=0$, it follows that $v(r) \leq 0$ and therefore $h^{\prime}(r) \geq 0$, so that $h(r) \geq 0$. Hence one has

$$
\begin{equation*}
\Delta \bar{u}_{s}+f\left(\bar{u}_{s}\right) \leq 0 \text { in } \Omega, \tag{2.15}
\end{equation*}
$$

and since (2.13) also holds for \bar{u}_{s} the proof of Corollary 1 is completed.

Remark on Corollary 1:

If the inequality signs are reversed in Corollary 1 one obtains a subsolution.

3 The slab as optimal domain

As mentioned in the introduction there is another possibility of using the auxiliary problem (1.3). Let $X(s, t)$ be the solution of

$$
\left\{\begin{array}{l}
\dot{X}=X^{\prime \prime}+f(X) \text { in }\left(0, s_{0}\right) \times\left(0, T_{1}\right) \tag{3.1}\\
X^{\prime}(0, t)=0, X^{\prime}\left(s_{0}, t\right)+g\left(X\left(s_{0}, t\right)\right)=0 \\
X(s, 0)=X_{0}(s)
\end{array}\right.
$$

with a prime denoting a derivative with respect to s. We select now

$$
\begin{equation*}
s(x)=\sqrt{2\left(\psi_{m}-\psi(x)\right)}, \psi_{m}=\max _{\Omega} \psi(x) \tag{3.2}
\end{equation*}
$$

The analogue of Theorem 1 is then
Theorem 2 Suppose one has
a) $f^{\prime \prime} \geq 0, g \geq 0, g^{\prime} \geq 0$ and

$$
\left(\frac{f}{g}+\frac{1}{s_{0}} \log g\right)^{\prime} \geq 0
$$

$$
\text { for } s_{0}=\sqrt{2 \psi_{m}} .
$$

b) $\left(\frac{X_{0}^{\prime}(s)}{s}\right)^{\prime} \geq 0, X_{0}^{\prime}(0)=0$, and

$$
X_{0}(s(x)) \geq u_{0}(x)
$$

c) The mean curvature of $\partial \Omega$ is nonnegative everywhere. Then

$$
\bar{u}(x, t)=X(s(x), t)
$$

is a supersolution of (1.1).
Proof: Straightforward calculation gives

$$
\begin{gather*}
\nabla s=-\frac{\nabla \psi}{s} \tag{3.3}\\
\Delta s=\frac{1}{s}\left(1-\frac{|\nabla \psi|^{2}}{s^{2}}\right) \tag{3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{u}_{t}-\Delta \bar{u}-f(\bar{u})=\left(X^{\prime \prime}-\frac{1}{s} X^{\prime}\right)\left\{1-\frac{|\nabla \psi|^{2}}{s^{2}}\right\} . \tag{3.5}
\end{equation*}
$$

It was shown by Payne [4] that the $\}$ term is nonnegative if the mean curvature of $\partial \Omega$ is nonnegative.

We can now just repeat the calculations from (2.7) on to (2.13) with $N=1$ there and r_{0} replaced by s_{0}. This proves Theorem 2.

The remarks (1) and (2) on Theorem 1 also apply to Theorem 2, with the appropriate changes: $s(x)$ in the place of $r(x), N=1, s_{0}$ instead of r_{0}. In particular one has

Corollary 2 Let $u_{s}(x), X_{s}(x)$ be the steady states of (1.1) and (3.1) and assume that $f \geq 0, f^{\prime} \geq 0$ and $g \geq 0$. Then

$$
\bar{u}_{s}(x)=X_{s}(s(x))
$$

with $s(x)=\sqrt{2\left(\psi_{m}-\psi(x)\right)}$ is a supersolution of (1.1).
If the membrane problem (1.6) is used in the place of the torsion problem one is led to

Theorem 3 Assume that the following assumptions hold:
a) $f^{\prime \prime} \geq 0, g \geq 0, g^{\prime} \geq 0$ and $\left(\frac{f}{g}\right)^{\prime}-\frac{\lambda_{1}}{g} \geq 0$.
b) $\left(\frac{X_{0}^{\prime}(s)}{\sin \left(\sqrt{\lambda_{1}} s\right)}\right)^{\prime} \geq 0, X_{0}^{\prime}(0)=0, X_{0}(s(x)) \geq u_{0}(x)$, with $s(x)=\frac{1}{\sqrt{\lambda_{1}}} \arccos \left(\frac{\varphi(x)}{\varphi_{m}}\right)$, $s_{0}=\frac{\pi}{2 \sqrt{\lambda_{1}}}$ as defined in (1.6), (1.7).
c) The mean curvature of $\partial \Omega$ is nonnegative everywhere. Then

$$
\bar{u}(x, t)=X(s(x), t)
$$

is a supersolution of (1.1) for $x \in \Omega, 0 \leq t \leq T_{1}$.
Proof: A routine calculation shows that \bar{u} satisfies

$$
\begin{equation*}
\bar{u}_{t}-\Delta \bar{u}-f(\bar{u})=\left(\frac{X^{\prime \prime}}{\lambda_{1}}-\frac{\cot \left(\sqrt{\lambda_{1}} s\right)}{\sqrt{\lambda_{1}}} X^{\prime}\right)\left\{1-\frac{|\nabla \varphi|^{2}}{\lambda_{1}\left(\varphi_{m}^{2}-\varphi^{2}\right)}\right\} . \tag{3.6}
\end{equation*}
$$

By a result of Payne \& Stakgold [8] the bracket term $\}$ is nonnegative if the mean curvature of $\partial \Omega$ is nonnegative. We have to find conditions to ensure the sign of the other bracket term in (3.6). To this end we now set

$$
\begin{equation*}
h(s, t)=X^{\prime \prime} \cdot \sin \left(\sqrt{\lambda_{1}} s\right)-\cos \left(\sqrt{\lambda_{1}} s\right) \cdot X^{\prime} \cdot \sqrt{\lambda_{1}} . \tag{3.7}
\end{equation*}
$$

After some manipulation one obtains the parabolic equation

$$
\begin{equation*}
\dot{h}-h^{\prime \prime}+2 \sqrt{\lambda_{1}} \cot \left(\sqrt{\lambda_{1}} s\right) \cdot h^{\prime}-\left(f^{\prime}-\lambda_{1}\right) h=\sin \left(\sqrt{\lambda_{1}} s\right) \cdot f^{\prime \prime} \cdot X^{\prime^{2}} \tag{3.8}
\end{equation*}
$$

where the prime is used for derivatives with respect to s and with respect to X (for $f(X)$). For $0<s \leq s_{0}=\frac{\pi}{2 \sqrt{\lambda_{1}}}$ the right side of (3.8) is nonnegative. For $s=0$ we have $h=0$ and we therefore check the endpoint $s=s_{0}$. If we use the time derivative of the boundary condition for $X(s, t)$ and the differential equation in (3.1) we see that for $s=s_{0}$ one has

$$
\begin{equation*}
h^{\prime}+g^{\prime}(X) \cdot h=g^{2}\left[\left(\frac{f}{g}\right)^{\prime}+\frac{\lambda_{1}}{g}\right] \geq 0 . \tag{3.9}
\end{equation*}
$$

Finally $h(s, 0) \geq 0$ by the first inequality of assumption and therefore $h(s, t) \geq 0$ in $\left(0, s_{0}\right) \times\left(0, T_{1}\right)$ by the maximum principle. On the boundary $\partial \Omega$ one has

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial n}+g(\bar{u})=X^{\prime} \cdot \frac{\partial s}{\partial n}+g(X)=g(X)\left\{1-\frac{|\nabla \varphi|}{\sqrt{\lambda_{1}\left(\varphi_{m}^{2}-\varphi^{2}\right)}}\right\} \geq 0 \tag{3.10}
\end{equation*}
$$

since $g \geq 0$ and the bracket term is nonnegative by the result of Payne-Stakgold [8].
By assumption $\bar{u}(x, 0)=X_{0}(s(x)) \geq u_{0}(x)$ which completes the proof.

Remarks on Theorem 3

1. One can check that for zero Dirichlet boundary date assumption a) reduces to $f(0)=0, f \geq 0, f^{\prime \prime} \geq 0$.
2. If all inequality signs, except for g^{\prime}, are reversed in assumptions a), b) then one obtains a subsolution.
3. A possible choice for $X_{0}(s)$ is e.g. for Dirichlet boundary conditions $X_{0}(s)=$ $\cos \left(\sqrt{\lambda_{1}} s\right)$ if φ_{m} can be chosen such that

$$
\frac{\varphi(x)}{\varphi_{m}} \geq u_{0}(x)
$$

4. In the steady state situation a corresponding result can be proven:

Corollary 3 Let $u_{s}(x)$ and $X_{s}(x)$ be steady state solutions of (1.1) and (3.1) respectively. Assume that $g \geq 0, f \geq 0$ and $f^{\prime}\left(X_{s}\right) \geq \lambda_{1}$. Then

$$
\bar{u}_{s}(x):=X_{s}\left(\frac{1}{\sqrt{\lambda_{1}}} \arccos \left(\frac{\varphi(x)}{\varphi_{m}}\right)\right) \geq u_{s}(x) .
$$

Proof: From (3.6) we deduce that now

$$
\begin{equation*}
\Delta \bar{u}_{s}+f\left(\bar{u}_{s}\right)=\left(\frac{-X_{s}^{\prime \prime}}{\lambda_{1}}+\frac{\cot (\sqrt{\lambda, s})}{\sqrt{\lambda_{1}}} X^{\prime}\right) \cdot\left\{1-\frac{|\nabla \varphi|^{2}}{\lambda_{1}\left(\varphi_{m}^{2}-\varphi^{2}\right)}\right\} . \tag{3.11}
\end{equation*}
$$

Since we know already that $\} \geq 0$ it remains to check

$$
\begin{equation*}
h(s)=f\left(X_{s}\right) \cdot \sin \left(\sqrt{\lambda_{1}} s\right)+\cos \left(\sqrt{\lambda_{1}} s\right) \cdot X_{s}^{\prime} \sqrt{\lambda_{1}} . \tag{3.12}
\end{equation*}
$$

But $h(0)=0$ and

$$
\begin{equation*}
h^{\prime}(s)=X_{s}^{\prime} \sin \left(\sqrt{\lambda_{1}} s\right)\left(f^{\prime}\left(X_{s}\right)-\lambda_{1}\right) \leq 0 \tag{3.13}
\end{equation*}
$$

since

$$
X_{s}^{\prime} \leq 0
$$

if $f \geq 0$ and $X_{s}^{\prime}(0)=0$. Hence one has

$$
\Delta \bar{u}_{s}+f\left(\bar{u}_{s}\right) \leq 0 \text { in } \Omega .
$$

In addition the boundary inequality (3.10) still holds for \bar{u}_{s} which shows that \bar{u}_{s} is a supersolution.

As a last possibility we select (1.8) as an auxiliary problem and let $X(\sigma, t)$ be the solution of the one-dimensional case of (3.1) for the interval $\left(0, \sigma_{0}\right)$. For given value $c>0$ in problem (1.8) let $w_{0}=\min _{\Omega} w(x)$.

One then has
Theorem 4 Assume that the following assumption hold:
a) $f^{\prime \prime} \geq 0, g \geq 0, g^{\prime} \geq 0$ for positive arguments and

$$
\left(\frac{f}{g}\right)^{\prime}+\frac{c}{\sqrt{1-w_{0}^{2}}}(\log g)^{\prime}+\frac{c^{2}}{g} \geq 0
$$

b) The initial distribution $X_{0}(\sigma)$ of (3.1) satisfies

$$
\left(\frac{X_{0}^{\prime}}{\operatorname{Sinh}(c \sigma)}\right)^{\prime} \geq 0 \text { and } X_{0}(\sigma(x)) \geq u_{0}(x)
$$

with $\sigma(x)=\frac{1}{c} \operatorname{Arch}\left(\frac{w(x)}{w_{0}}\right), \sigma_{0}=\frac{1}{c} \operatorname{Arch}\left(\frac{1}{w_{0}}\right)$.
c) The mean curvature of $\partial \Omega$ is nonnegative everywhere. Then

$$
\bar{u}(x, t)=X(\sigma(x), t)
$$

is a supersolution of (1.1) for $0 \leq t \leq T_{1}$.
Proof: A calculation shows that

$$
\begin{equation*}
\bar{u}_{t}-\Delta \bar{u}-f(\bar{u})=\left[X^{\prime \prime}-c \cdot X^{\prime} \cdot \operatorname{Coth}(c \sigma)\right]\left\{1-\frac{|\nabla w|^{2}}{c^{2}\left(w^{2}-w_{0}^{2}\right)}\right\} \tag{3.14}
\end{equation*}
$$

where the prime here denotes a derivative with respect to the variable σ. Again by the result of Payne \& Stakgold [8] the bracket term $\}$ is nonnegative if c) holds.

One has to ensure again that the other bracket term in (3.14) is nonpositive. To show this, set

$$
\begin{equation*}
h(\sigma, t)=X^{\prime \prime} \cdot \operatorname{Sinh}(c \sigma)-\operatorname{Cosh}(c \cdot \sigma) \cdot X^{\prime} \tag{3.15}
\end{equation*}
$$

A straightforward calculation shows that

$$
\begin{equation*}
\frac{\partial h}{\partial t}-h^{\prime \prime}+2 c \cdot \operatorname{Coth}(c \sigma) \cdot h^{\prime}-\left(f^{\prime}+c^{2}\right) h=f^{\prime \prime} \cdot X^{\prime^{2}} \cdot \operatorname{Sinh}(c \sigma) . \tag{3.17}
\end{equation*}
$$

Here $f^{\prime}, f^{\prime \prime}$ again denote derivatives of $f(X)$ with respect to X.
By assumption the right hand side of (3.17) is nonnegative. For $\sigma=0$ we have $h=0$ and we therefore investigate the endpoint $\sigma_{0}=\frac{1}{c} \operatorname{Arch}\left(\frac{1}{w_{0}}\right)$. There we use the boundary condition for $X(\sigma, t)$, the differential equation and their derivatives with respect to t. After some routine steps one obtains

$$
\begin{equation*}
h^{\prime}\left(\sigma_{0}, t\right)+g^{\prime}\left(X\left(\sigma_{0}, t\right)\right) h\left(\sigma_{0}, t\right)=\operatorname{Sinh}\left(c \sigma_{0}\right) g^{2}\left[\left(\frac{f}{g}\right)^{\prime}+\operatorname{Coth}\left(c \sigma_{0}\right) \cdot(\log g)^{\prime}+\frac{c^{2}}{g}\right] \tag{3.18}
\end{equation*}
$$

The relation $\operatorname{Cosh}\left(c \sigma_{0}\right)=\frac{1}{w_{0}}$ and assumption a) allow to apply the maximum principle. Together with the fact that $h(\sigma, 0) \geq 0$ if the first inequality of assumption b) is satisfied we can then deduce that $h(\sigma, t) \geq 0$ in $\left(0, \sigma_{0}\right) \times\left(0, T_{1}\right)$. On $\partial \Omega$ we have

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial n}+g(\bar{u})=X^{\prime} \cdot \frac{\partial \sigma}{\partial n}+g(X)=g(X)\left\{1-\frac{|\nabla w|}{c \sqrt{w^{2}-w_{0}^{2}}}\right\} \geq 0 \tag{3.19}
\end{equation*}
$$

again as a consequence of Payne-Stakgold [8].
Finally

$$
\bar{u}(x, 0)=X_{0}(\sigma(x)) \geq u_{0}(x)
$$

is assumed to hold so that all properties of a supersolution are as required.

Remarks on Theorem 4

1. In the case of homogeneous Dirichlet boundary conditions one can check again as before that assumption a) has to be replaced by

$$
\begin{equation*}
f(0)=0, f \geq 0 \text { and } f^{\prime \prime} \geq 0 \tag{*}
\end{equation*}
$$

2. If all inequality signs except for g^{\prime}, are reversed in assumptions a) and b) then $\underline{u}(x, t)=X\left(\sigma_{0}(x), t\right)$ is a subsolution.
3. The analogue of Corollary 3 can be deduced as well and is stated as

Corollary 4 Let $u_{s}(x)$ and $X_{s}(\sigma)$ be the steady state solutions of (1.1) and (3.1) respectively. Assume that $g \geq 0, f \geq 0$ and $f^{\prime}\left(X_{s}\right) \geq-c^{2}$ for some $c>0$.

Then

$$
\bar{u}_{s}(x)=X_{s}\left(\frac{1}{c} \operatorname{Arch}\left(\frac{w(x)}{w_{0}}\right)\right) \geq u_{s}(x) .
$$

Proof: From (3.14) we see that $\bar{u}_{s}(x)$ satisfies

$$
\begin{equation*}
\Delta \bar{u}_{s}+f\left(\bar{u}_{s}\right)=\left[f\left(X_{s}\right)+c X_{s}^{\prime} \cdot \operatorname{Coth}(c \sigma)\right]\left\{1-\frac{|\nabla w|^{2}}{c^{2}\left(w^{2}-w_{0}^{2}\right)}\right\} . \tag{3.20}
\end{equation*}
$$

Furthermore the function

$$
\begin{equation*}
h(\sigma)=\operatorname{Sinh}(c \sigma) f\left(X_{s}(\sigma)\right)+c X_{s}^{\prime}(\sigma) \cdot \operatorname{Cosh}(c \sigma) \tag{3.21}
\end{equation*}
$$

satisfies $h(0)=0$ and

$$
\begin{equation*}
h^{\prime}(\sigma)=\operatorname{Sinh}(c \sigma) \cdot X_{s}^{\prime}(\sigma)\left(f^{\prime}\left(X_{s}(\sigma)\right)+c^{2}\right) . \tag{3.22}
\end{equation*}
$$

But if $f \geq 0$ and $g \geq 0$, then $X_{s}^{\prime}(\sigma) \leq 0$ so that $h^{\prime}(\sigma)$ and therefore $h(\sigma) \leq 0$ for $\sigma \geq 0$, implying that the right side of (3.20) is nonnegative.

On the boundary we have as in (3.19)

$$
\frac{\partial \bar{u}_{s}}{\partial n}+g\left(\bar{u}_{s}\right) \geq 0
$$

so that \bar{u}_{s} is a supersolution, which is the statement of Corollary 4 .

4 Examples

4.1 Finite blow-up for nonlinear reaction

Consider the problem

$$
\left\{\begin{array}{l}
u_{t}=\Delta u+u^{2}+\gamma u \text { in } \Omega=\text { ball in } \mathbb{R}^{3} \text { of radius } 1, u=0 \text { on } \partial \Omega \tag{4.1}\\
u(x, 0)=\varphi_{1}(x)=\text { first eigenfunction }=\frac{1}{2} \frac{\sin (\pi r)}{r}(r=|x| \leq 1)
\end{array}\right.
$$

It is well known that the solution of (4.1) blows up in finite time T.
Let us first mention some known bounds for T. Recall first Kaplan's method [2] which consists in considering the function

$$
\begin{equation*}
z(t)=\int_{\Omega} u(x, t) \varphi_{1}(x) d x . \tag{4.2}
\end{equation*}
$$

Using Jensen's inequality and the scaling $\int_{\Omega} \varphi_{1} d x=1$ one finds

$$
\begin{equation*}
\dot{z} \geq z^{2}+\left(\gamma-\lambda_{1}\right) z, z(0)=\int_{\Omega} \varphi_{1}^{2} d x=z_{0} \tag{4.3}
\end{equation*}
$$

and therefore one has the estimate

$$
\begin{equation*}
T \leq \int_{z_{0}}^{\infty} \frac{d z}{z^{2}+\left(\gamma-\lambda_{1}\right) z}, \quad\left(\gamma>\lambda_{1}-z_{0}\right) . \tag{4.4}
\end{equation*}
$$

A different bound was given in [5], p. 161, namely

$$
\begin{equation*}
T \leq \frac{\gamma}{\gamma-\lambda_{1}} \int_{\varphi_{m}}^{\infty} \frac{d z}{z^{2}+\gamma z}, \quad \varphi_{m}=\max _{\Omega} \varphi_{1}(x) . \tag{4.5}
\end{equation*}
$$

By Theorem 3 we have the lower bound

$$
\begin{equation*}
T \geq T_{1} \tag{4.6}
\end{equation*}
$$

where T_{1} is the blow-up time of the one-dimensional case, i.e. problem (1.2) with $N=1$, Dirichlet boundary conditions and $r_{0}=\frac{\pi}{2 \sqrt{\lambda_{1}}}=\frac{1}{2}$, so that $R_{0}(r)=\frac{\pi}{2} \cos (\pi r)$.

In the next table we list a few values:

			upper bounds		
γ	Exact value T	lower bound (4.6)	(4.4)	(4.5)	
10	0.921	0.710	1.178	$15 \cdot 3$	
20	0.226	0.210	0.260	0.259	
30	0.141	0.135	0.163	0.149	

4.2 Finite vanishing time

We consider now the problem
(4.7) $\left\{\begin{array}{lll}u_{t} & =\Delta u-\mu \cdot u^{p} & \\ u & =0 & \text { in } \Omega=\text { ball of radius } 1 \text { in } \mathbb{R}^{3} \\ u(r, 0) & =\varphi_{1}(r)=\frac{1}{2} \frac{\sin (\pi r)}{r} . & \end{array}\right.$

It is well known that for $0<p<1$ the solution vanishes identically in Ω if $t \rightarrow T_{0}<\infty$.
Kaplan's method also works in this case and a similar reasoning yields the bound

$$
\begin{equation*}
T_{0} \geq \int_{0}^{z_{0}} \frac{d z}{\mu z^{p}+\lambda_{1} z} \tag{4.8}
\end{equation*}
$$

with the same meaning of z_{0} and λ_{1} as in (4.4). The reasoning leading to (4.5) now gives the alternative lower bound

$$
\begin{equation*}
T_{0} \geq \frac{1}{\mu+\lambda_{1} \varphi_{m}^{1-p}} \int_{0}^{\varphi_{m}} \frac{d z}{z^{p}} . \tag{4.9}
\end{equation*}
$$

The application of Theorem 3 as in Section 4.1 leads to the bound

$$
\begin{equation*}
T_{0} \leq T_{1} \tag{4.10}
\end{equation*}
$$

where T_{1} is the vanishing time of problem (1.2) with $N=1$, Dirichlet boundary conditions, and as before, $r_{0}=\frac{1}{2}, R_{0}(r)=\frac{\pi}{2} \cos (\pi r)$.

In the next table some numerical values obtained by (4.8), (4.9), (4.10) are compared with the exact values.

$p=\frac{1}{2}$		lower bounds		
μ	Exact value T_{0}	(4.8)		upper bound
(4.9)	(4.10)			
5				
10	0.220	0.205	0.144	0.238
30	0.061	0.127	0.112	0.153
		0.052	0.059	0.065

4.3 Steady state in a degradation-absorption process

Consider a linear degradation reaction whose steady state concentration u is modeled by the equation

$$
\begin{equation*}
\Delta u-\gamma^{2} u=0 \text { in } \Omega \tag{4.11}
\end{equation*}
$$

and the absorption through the boundary is described by

$$
\begin{equation*}
\frac{\partial u}{\partial n}=\sigma(1-u)^{p} \text { on } \partial \Omega \tag{4.12}
\end{equation*}
$$

Here γ, σ, p are given positive parameters and the exterior concentration is 1 .
Let us first write down the solution of (4.11), (4.12) for an interval, a disk and a ball: For an interval $\left(-s_{0}, s_{0}\right)$ the solution is

$$
\begin{equation*}
X(s)=\alpha_{1} \cdot \operatorname{Cosh}(\gamma s) \tag{4.13}
\end{equation*}
$$

where α_{1} is the unique solution of

$$
\begin{equation*}
\alpha_{1} \gamma \operatorname{Sinh}\left(\gamma s_{0}\right)=\sigma\left(1-\alpha_{1} \operatorname{Cosh}\left(\gamma s_{0}\right)\right)^{p} . \tag{4.14}
\end{equation*}
$$

For a disk of radius r_{0} the solution is

$$
\begin{equation*}
R_{2}(r)=\alpha_{2} I_{0}(\gamma r), I_{0}=\text { Besselfunction }, \tag{4.15}
\end{equation*}
$$

and α_{2} is the unique solution of

$$
\begin{equation*}
\alpha_{2} \gamma I_{1}\left(\gamma r_{0}\right)=\left(1-\alpha_{2} I_{0}\left(\gamma r_{0}\right)\right)^{p} . \tag{4.16}
\end{equation*}
$$

Finally for a ball a radius r_{0} one obtains the solution

$$
\begin{equation*}
R_{3}(r)=\alpha_{3} \frac{\operatorname{Sinh}(\gamma r)}{r} \tag{4.17}
\end{equation*}
$$

with α_{3} being the solution of

$$
\begin{equation*}
\alpha_{3} \frac{1}{r_{0}^{2}}\left(\gamma \operatorname{Cosh}\left(\gamma r_{0}\right) \cdot r_{0}-\operatorname{Sinh}\left(\gamma r_{0}\right)\right)=\sigma\left(1-\alpha_{3} \frac{\operatorname{Sinh}\left(\gamma r_{0}\right)}{r_{0}}\right)^{p} . \tag{4.18}
\end{equation*}
$$

Let us denote the minimum value of the concentration $u(x)$ by μ. Then it is not hard to see from (4.13), (4.14) that μ is the unique solution in $(0,1)$ of the equation

$$
\begin{equation*}
\mu \gamma \operatorname{Sinh}\left(\gamma s_{0}\right)=\sigma\left(1-\mu \operatorname{Cosh}\left(\gamma s_{0}\right)\right)^{p} \tag{4.19}
\end{equation*}
$$

if Ω is the intervall $\left(-s_{0}, s_{0}\right)$. It is easy to see that μ is decreasing with increasing s_{0}. Hence one would like to have s_{0} as small as possible.

Now Corollary 1 gives $s_{0}=\tau(N=1)$, Corollary 2 has $s_{0}=\sqrt{2 \psi_{m}}$ and Corollary 3 uses $s_{0}=\frac{\pi}{2 \sqrt{\lambda_{1}}}$.

The difference between Corollary 1 and Corollaries 2, 3 is that the first needs no assumption on $\partial \Omega$, but the latter need a boundary whose mean curvature is nonnegative. One has (see [4]) for any geometry of Ω

$$
\begin{equation*}
2 \psi_{m} \leq N \tau^{2} \tag{4.20}
\end{equation*}
$$

and also (see [5])

$$
\begin{equation*}
\lambda_{1} \geq \frac{\pi^{2}}{8 \psi_{m}} \tag{4.21}
\end{equation*}
$$

if the mean curvature of $\partial \Omega$ is nonnegative. Clearly (4.20), (4.21) show that Corollary 3 gives the best value for s_{0}. For a general domain one will have to use bounds for τ, λ_{1} or ψ_{m} and then it is no longer clear which bound is best. Hence all three Corollaries may be useful.

A typical result one could derive by combining e.g. Corollary 3 with the inequality (see [5])

$$
\begin{equation*}
\lambda_{1} \geq \frac{\pi^{2}}{4 \rho^{2}}, \quad \rho=\text { radius of largest ball contained in } \Omega \tag{4.22}
\end{equation*}
$$

is stated as
Corollary 5 Assume that the mean curvature of $\partial \Omega$ is nonnegative. Then the minimum of the concentration u of (4.11), (4.12) is bounded below by the unique solution μ in $(0,1)$ of the equation

$$
\begin{aligned}
& \mu \cdot \gamma \operatorname{Sinh}(\gamma \rho)=\sigma(1-\mu \cdot \operatorname{Cosh}(\gamma \rho))^{p}, \\
& \rho=\text { radius of largest ball contained in } \Omega .
\end{aligned}
$$

In order to get an idea of how close the bounds for $u_{\text {min }}=\mu$ derived e.g. from Corollary 5 are, we compare in the following table the exact value μ with the lower bound. We take $\gamma=\sigma=1, \Omega$ a disk or a ball of radius 1 and different values of p.

$\Omega=$ disk			
$\lambda_{1}=5.78$	p	$\mu=$	$\mu \geq$
	0.5	0.675	0.649
	2	0.410	0.391
	4	0.288	0.271
$\Omega=$ ball			
$\lambda_{1}=\pi^{2}$			
	0.5	0.781	0.751
	2	0.490	0.455
	4	0.344	0.320

4.4 Gelfand problem

The problem under consideration is

$$
\left\{\begin{align*}
\Delta u+\lambda e^{u}=0 & \text { in } \quad \Omega \tag{4.23}\\
u=0 & \text { on } \quad \partial \Omega .
\end{align*}\right.
$$

It is well known that this problem has a positive solution only for $0<\lambda \leq \lambda^{*}<\infty$. For a disk of radius r_{0} one has the solution

$$
\begin{equation*}
R(r)=R_{m}-2 \log \left[1+\left(e^{R_{m / 2}}-1\right)\left(\frac{r}{r_{0}}\right)^{2}\right] \tag{4.24}
\end{equation*}
$$

where $R_{m}=\max _{0<r<r_{0}} R(r)$ and

$$
\begin{equation*}
\lambda=\frac{8}{r_{0}^{2}}\left(e^{-R_{m / 2}}-e^{-R_{m}}\right) \leq \frac{2}{r_{0}^{2}}=\lambda^{*}, \tag{4.25}
\end{equation*}
$$

where λ^{*} is attained for $R_{m}=\log 4$ and for $\lambda<\lambda^{*}$ one has two solutions with values

$$
\begin{equation*}
R_{m}=-2 \log \left[\frac{1}{2} \pm \sqrt{\frac{1}{4}-\frac{\lambda r_{0}^{2}}{8}}\right] \tag{4.26}
\end{equation*}
$$

For the interval $(-L, L)$ the solution can be written as

$$
\begin{equation*}
X(s)=X_{m}-2 \log \left[\operatorname{Cosh}\left(\frac{s}{L} \operatorname{Arch}\left(e^{X_{m / 2}}\right)\right)\right], X_{m}=\max _{s} X(s) \tag{4.27}
\end{equation*}
$$

In this case the relation between λ and X_{m} is

$$
\begin{equation*}
\lambda=\frac{2}{L^{2}} e^{-X_{m}} \cdot \operatorname{Arch}^{2}\left[e^{X_{m / 2}}\right] \leq \frac{0.8785}{L^{2}}=\lambda^{*} \tag{4.28}
\end{equation*}
$$

and the maximum value of λ is attained for the solution of

$$
\begin{equation*}
m=2 \log \left[\operatorname{Cosh}\left(\sqrt{\frac{e^{m}}{e^{m}-1}}\right)\right] \cong 1.1868 \tag{4.29}
\end{equation*}
$$

Some implications of Corollaries 2 and 3 are now considered. Since $\underline{u} \equiv 0$ is a subsolution to (4.23) it suffices to find a positive supersolution.

By Corollary 2 we can select the supersolution

$$
\begin{equation*}
\bar{u}(x)=X\left(\sqrt{2\left(\psi_{m}-\psi(x)\right.}\right) \tag{4.30}
\end{equation*}
$$

for any $\lambda \leq \frac{0.8785}{2 \psi_{m}}$ and hence one has
Corollary 6 Let Ω be a domain such that the mean curvature of $\partial \Omega$ is nonnegative. Then the critical value λ^{*} satisfies

$$
\begin{equation*}
\lambda^{*} \geq \frac{0.4392}{\psi_{m}} \tag{4.31}
\end{equation*}
$$

For given value of $\lambda \in\left(0, \frac{0.4392}{\psi_{m}}\right.$) an upper bound for $u_{m}=\max _{\Omega} u$ can be derived ($u=$ minimal solution of (4.23))

$$
\begin{equation*}
u_{m} \leq M(\lambda) \tag{4.32}
\end{equation*}
$$

where $M(\lambda)$ is the first positive solution of

$$
\begin{equation*}
\frac{1}{\psi_{m}} e^{-M} \cdot \operatorname{Arch}^{2}\left[e^{M / 2}\right]=\lambda \tag{4.33}
\end{equation*}
$$

A lower bound for u_{m} can be given as well. It is easy to check from (3.13) that the function

$$
\begin{equation*}
\underline{u}(x)=X\left(\frac{1}{\sqrt{\lambda_{1}}} \arccos \left(\frac{\varphi(x)}{\varphi_{m}}\right)\right) \tag{4.34}
\end{equation*}
$$

is a subsolution to (4.23) if

$$
\begin{equation*}
\lambda e^{X_{m}} \leq \lambda_{1} \tag{4.33}
\end{equation*}
$$

By (4.28) (with $L=\frac{\pi}{2 \sqrt{\lambda_{1}}}$ there) a little manipulation shows that (4.32) holds provided

$$
\begin{equation*}
\lambda \leq \frac{\lambda_{1}}{\operatorname{Cosh}^{2}\left[\frac{\pi}{2 \sqrt{2}}\right]} \cong \frac{\lambda_{1}}{2.83227}=: \lambda_{0} . \tag{4.34}
\end{equation*}
$$

Therefore, for $\lambda \leq \lambda_{0}$ one has a lower bound for u_{m} given by the first positive solution $m(\lambda)$ of

$$
\begin{equation*}
\frac{8}{\pi^{2}} \lambda_{1} e^{-m} \cdot \operatorname{Arch}^{2}\left[e^{m / 2}\right]=\lambda \tag{4.35}
\end{equation*}
$$

Remark: The bounds (4.33), (4.35) were proven in [3] by different methods.

Some general bounds for λ^{*}, u_{m} in problem (4.23) for two-dimensional domains can be found in [1]. One has for a two-dimensional region Ω

$$
\begin{equation*}
\frac{2 \pi}{A} \leq \lambda^{*} \leq \frac{2}{\dot{r}^{2}} \tag{4.36}
\end{equation*}
$$

where $A=$ area of $\Omega, \dot{r}=$ maximal conformal radius of Ω. Equality holds in (4.36) if Ω is a disk. An alternative bound is

$$
\begin{equation*}
\lambda^{*} \leq \frac{\lambda_{1}}{e} \tag{4.37}
\end{equation*}
$$

For given λ with $\mu=\frac{\lambda A}{2 \pi} \leq 1$ one has (see [1], p. 199)

$$
\begin{equation*}
u_{m} \leq \log 4-2 \log \left(\frac{\mu}{1-\sqrt{1-\mu}}\right) \tag{4.38}
\end{equation*}
$$

In the next table we compare different bounds for $\lambda^{*}, u_{m}(\lambda)$ for the case that Ω is a square or a rectangle.

Domain	bounds for λ^{*}	$u_{m}(\lambda) \geq(4.35)$	λ	$u_{m}^{(\lambda)} \leq(4.32)$	(4.38)
Square	$(4.36):$	0.066	1	0.0787	0.085
side 1	$6.283 \leq \lambda^{*} \leq 6.875$	0.141	2	0.170	0.182
$\Psi_{m}=0.07367$	$(4.31):$				
$\lambda_{1}=2 \pi^{2}$	$5.96 \leq \lambda^{*}$	0.226	3	0.279	0.298
$\dot{r}=0.5394$		0.329	4	0.418	0.443
		0.458	5	0.616	0.641
	$(4.36):$				
Rectangle	$3.14 \leq \lambda^{*} \leq 5$	0.110	1	0.127	0.182
sides 2,1	$(4.31),(4.37):$	0.245	2	0.290	0.443
$\psi_{m}=0.11387$	$3.86 \leq \lambda^{*} \leq 4.538$	0.429	3	0.533	1.00
$\lambda_{1}=\frac{5}{4} \pi^{2}$					
$\dot{r}=0.63189$					

5 Extensions

5.1 Systems

For diffusion-reaction systems of the form

$$
\begin{equation*}
u_{t}^{k}=D_{k} \Delta u^{k}+f^{k}(u j) \text { in } \Omega \times(0, T), \quad k, j=1, \ldots, n \tag{5.1}
\end{equation*}
$$

there are possible extensions of Theorem 1 to 4 , provided one has among other things

$$
\begin{aligned}
& \frac{\partial f^{k}}{\partial u j} \geq 0 \text { for } k \neq j \text { and the matrices } \\
& A_{\ell m}^{k}:=\left(\frac{\partial^{2} f^{k}}{\partial u^{\ell} \partial u^{m}}\right) \text { are positive semidefinite for } k=1, \ldots, n
\end{aligned}
$$

Another version are systems with a mixed quasimonotone structure (see e.g. [9]).

5.2 Elliptic operator L instead of Δ

If the Laplacian is replaced by a general uniformly elliptic operator one has to use a generalisation of the result of Payne \& Stakgold [8] applied in this paper. Such generalisations are discussed in [5]. An important case is that L is the Laplace-Beltrami operator. For a surface and an elliptic problem this is treated in [7].

References

[1] Bandle C.: Isoperimetric Inequalities and Applications. Pitman, 1980.
[2] Kaplan S.: On the growth of solutions of quasilinear parabolic equations. Comm. Pure and Appl. Math., 16, (1963), 305-330.
[3] Payne L.E.: Bounds for the solutions of a class of quasilinear elliptic boundary value problems in terms of the torsion function. Proc. Royal Soc. Edinburgh 88A, (1981), 251-265.
[4] Payne L.E.: Bounds for the maximum stress in the St. Venant torsion problem. Indian J. Mech. Math., Special Issue, (1968), 51-59.
[5] Sperb R.: Maximum Principles and their Applications. Academic Press, New York, 1981.
[6] Sperb R.: Optimal bounds in semilinear elliptic problems with nonlinear boundary conditions. Z. Angew. Math. Phys., 44, (1993), 639-653.
[7] Sperb R.: Optimal bounds for the critical value in a semilinear boundary value problem on a surface. General Inequalities V, ISNM8, (1987), 391-400.
[8] Payne L.E. and Stakgold I.: On th mean value of the fundamental mode in the fixed membrane problem. Applicable Analysis, 3, (1973), 295-303.
[9] Pao C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum, New York, 1992.

Research Reports

No. Authors

99-23
R. Sperb

99-22 M.H. Gutknecht, M. Rozložník

99-21 M.H. Gutknecht, Z. Strakoš

99-20 M.H. Gutknecht, K.J. Ressel

99-19 M. Grote

99-18 J. Pitkäranta, A.-M. Matache, C. Schwab

99-17 K. Gerdes, J.M. Melenk, D. Schötzau, C. Schwab

99-16 R. Klees, M. van Gelderen, C. Lage, C. Schwab

99-15 J.M. Melenk, K. Gerdes, C. Schwab

99-14 E. Süli, P. Houston, C. Schwab

99-13 E. Süli, C. Schwab, P. Houston

99-12 K. Nipp

99-11 C. Lage, C. Schwab
99-10 D. Schötzau, C. Schwab

99-09 A.M. Matache, C. Schwab

99-08 D. Braess, C. Schwab
99-07 M. Feistauer, C. Schwab

99-06 J. Maurer, M. Fey
99-05 M.J. Grote

Optimal sub- or supersolutions in reactiondiffusion problems
Residual smoothing techniques: do they improve the limiting accuracy of iterative solvers?
Accuracy of Two Three-term and Three Twoterm Recurrences for Krylov Space Solvers
Look-Ahead Procedures for Lanczos-Type Product Methods Based on Three-Term Lanczos Recurrences
Nonreflecting Boundary Conditions For Elastodynamic Scattering
Fourier mode analysis of layers in shallow shell deformations
The $h p$-Version of the Streamline Diffusion Finite Element Method in Two Space Dimensions
Fast numerical solution of the linearized
Molodensky problem
Fully Discrete $h p$-Finite Elements: Fast Quadrature
$h p$-Finite Element Methods for Hyperbolic Problems
$h p$-DGFEM for Partial Differential Equations with Nonnegative Characteristic Form
Numerical integration of differential algebraic systems and invariant manifolds
Advanced boundary element algorithms
Exponential Convergence in a Galerkin Least Squares $h p$-FEM for Stokes Flow
Homogenization via p-FEM for Problems with Microstructure
Approximation on Simplices with respect to Weighted Sobolev Norms
Coupled Problems for Viscous Incompressible Flow in Exterior Domains
A Scale-Residual Model for Large-Eddy Simulation
Am Rande des Unendlichen: Numerische Verfahren für unbegrenzte Gebiete

