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Abstract

Many iterative methods for solving linear systems, in particular the bicon-
jugate gradient (BiCG) method and its “squared” version CGS(or BiCGS),
produce often residuals whose norms decrease far from monotonously, but
fluctuate rather strongly. Large intermediate residuals are known to reduce
the ultimately attainable accuracy of the method, unless special measures are
taken to counteract this effect. One measure that has been suggested is resid-
ual smoothing: by application of simple recurrences, the iterates xn and the
corresponding residuals rn :≡ b−Axn are replaced by smoothed iterates yn

and corresponding residuals sn :≡ b−Ayn. We address the question whether
the smoothed residuals can ultimately become markedly smaller than the pri-
mary ones. To investigate this, we present a roundoff error analysis of the
smoothing algorithms. It shows that the ultimately attainable accuracy of
the smoothed iterates, measured in the norm of the corresponding residuals,
is, in general, not higher than that of the primary iterates. Nevertheless,
smoothing can be used to produce certain residuals, most notably those of
the minimum residual method, with higher attainable accuracy than by other
frequently used algorithms.

∗Part of this author’s work was supported by the Grant Agency of the Czech Republic under
grant No. 201/98/P108



1 Introduction

Observing the sequence of 2-norms of the residuals, sometimes called the residual
norm history, is the usual way of monitoring the convergence of an iterative
method for solving linear systems Ax = b. Unfortunately, for many methods
and problems, in particular for the biconjugate gradient (BiCG) method and
even more so for its “squared” version CGS (or BiCGS), this residual norm
history shows quite an erratic convergence behavior, far from the monotonous
convergence one might hope for. For wide classes of methods based on either
two-term or three-term recurrences, it has been shown that large intermediate
residuals reduce the ultimately attainable accuracy of the method, unless special
measures are taken to counteract this effect; see [12, 17, 25, 28]. One such
measure that has been suggested is residual smoothing: the primary sequences
of approximate solutions (or, iterates) xn and corresponding residuals rn :≡
b−Axn provided by some iterative method are replaced by smoothed sequences
of iterates yn and corresponding residuals sn :≡ b − Ayn. The smoothed
residual sn is defined as a linear (and normally convex) combination of rn and
some of the earlier smoothed residuals s0, . . . , sn−1, and the smoothed iterate
yn is defined consistently. Alternatively, the smoothed residual sn could be
chosen as a linear combination of rn, sn−1 and some of the earlier primary
residuals r0, . . . , rn−1 [32, 3]. Consequently, smoothing can be viewed as a
weighting process, although not all weights need to be positive. Particular
smoothing methods differ by how many old smoothed iterates and residuals
get involved and by how the weights are chosen. We will restrict ourselves
to schemes which, for computing yn and sn, only involve the last previous
smoothed iterate and residual, yn−1 and sn−1, and the new primary iterate
and residual, xn and rn. The two best known methods, minimal residual (MR)
smoothing and quasi-minimal residual (QMR) smoothing are discussed below.
Both MR and QMR smoothing can effectively eliminate peaks in the residual
norm history; for MR smoothing the convergence becomes even monotonous.
However, as has been noticed in many numerical experiments and was recently
explained by suitably interpreting known connections between the primary and
the smoothed residuals [2, 4, 5, 15, 14, 29, 30], in exact arithmetic the smoothed
residuals do not converge considerably faster than those of the primary method,
unless the primary iterative method converges extremely slowly [16]. We will
show here—and this does not come as a surprise— that this is also true in finite
precision arithmetic.

Therefore, all we can hope for is that in finite precision arithmetic the ul-
timate accuracy of the smoothed iterates, measured by the residual norm, is
higher. This is the main question addressed in this paper. We will see that the
answer is again rather negative. Nevertheless, there is a useful consequence of
the fact that the ultimate accuracy of the smoothed residuals is on the same
level as that of the primary iterates: smoothing can be applied to produce
smoothed residuals that are ultimately more accurate than those obtained by
other, mathematically equivalent algorithms frequently used in practice. The
minimum residual solution will be seen to be an example for this effect.
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Our results on the ultimate accuracy of the smoothed iterates are based on
an analysis of the gap between the true and updated residuals. In theory, by
definition, the primary and the smoothed residuals are rn :≡ b − Axn and
sn :≡ b − Ayn, respectively, but in finite precision arithmetic we have to dis-
tinguish between the updated residuals computed by some recurrence formula
and the true residual, obtained by evaluating the above definitions. For dis-
tinction, we denote quantities computed in finite precision arithmetic by bars:
for the primary iterates and the primary updated residuals we write x̄n and
r̄n, respectively, and for those of the smoothing method ȳn and s̄n. Conse-
quently, the primary gap is defined as b−Ax̄n− r̄n, and the corresponding gap
of the smoothed method, which will be mostly referred to just as the gap, is
b−Aȳn − s̄n. Essentially, our result will be that both gaps are roughly of the
same size except when the updated primary residual is considerably larger than
the updated smoothed residual and the final accuracy has not yet been reached.

We assume that the usual rules of a well designed floating-point arithmetic
hold, and use occasionally the notation fl{. . . } for the computed result of an
expression {. . . }. The machine precision is denoted by ε. In particular, for a
sparse matrix-vector multiplication the error bound

‖fl{Ap}−Ap‖ ≤ mN1/2 ε‖A‖‖p‖ (1)

is used, where m refers to the maximum number of nonzeros of A per row, and
‖p‖ is the 2-norm of p, which is generally applied in this paper. For the matrix
A, we also make use of the spectral norm ‖A‖ and the corresponding condition
number κ(A). Finally, we apply the O-notation when suitable.

2 Two smoothing methods and their three im-

plementations

Since roundoff errors depend on the particular formulas used, we do not only in-
vestigate various smoothing methods but also several mathematically equivalent
implementations for each of these methods.

The Schönauer-Weiss implementation [23], [30] assumes only that the pri-
mary sequences xn and rn are provided. While these are generated, we compute
the smoothed sequences of iterates yn and corresponding residuals sn by choos-
ing, for n = 1, 2, . . . , the smoothing parameter σn and evaluating

yn = (1− σn)yn−1 + σnxn , sn = (1− σn)sn−1 + σnrn . (2)

At the start we set y0 = x0 and s0 = r0.
In (2) we assume to use the updated primary residual. (We do not yet use

bars at this point, since we do not yet analyze the roundoff errors.) But as s
a variant we will analyze an ‘expensive’ Schönauer-Weiss implementation that
uses the true residuals:

yn = (1− σn)yn−1 + σnxn , sn = (1− σn)sn−1 + σn(b−Axn) . (3)
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The Zhou-Walker implementation [32] assumes additionally that the primary
iterates and residuals are updated by recurrences involving direction vectors pn:

xn = xn−1 + αn−1pn−1 , rn = rn−1 − αn−1Apn−1 . (4)

Actually, it does not make use of xn and rn directly, but only of αn−1pn−1

and αn−1Apn−1. The smoothed sequences of iterates yn and residuals sn are
recursively computed as follows: starting from y0 = x0, s0 = r0, u0 = v0 = o,
and σ0 = 1, for n = 1, 2, . . . we first update the “smoothed” direction vector vn

and its image un :≡ Avn according to

vn = (1−σn−1)vn−1+αn−1pn−1 , un = (1−σn−1)un−1+αn−1Apn−1 , (5)

then determine the smoothing parameter σn (see formulas below), and finally
let

yn = yn−1 + σnvn , sn = sn−1 − σnun . (6)

One can verify that this procedure generates the same sequences of {yn} and
{sn} as (2) if the same smoothing parameters are used. Moreover, comparing
(2) and (6) we can then conclude that

rn = sn−1 − un . (7)

Hence, if the primary residuals are not updated according to the second equation
in (4), they can be obtained from (7).

We next recall two ways of choosing the smoothing parameters σn. First, the
minimal residual (MR) smoothing proposed by Schönauer [23] and investigated
by Weiss [30, 31] takes σn such that ‖sn‖ becomes as small as possible, assuming
sn is of the form given in (2), (3), or (6). This one-dimensional minimization
problem is solved by making sn orthogonal to sn−1 − rn, that is

σn :≡
〈sn−1, sn−1 − rn〉
‖sn−1 − rn‖2

(8)

in case of the Schönauer-Weiss implementation, and, in view of (7),

σn :≡
〈sn−1,un〉
‖un‖2

(9)

for the Zhou-Walker implementation. From Pythagoras’ theorem we have then

‖sn‖2 = ‖sn−1‖2 − ‖sn−1 − rn‖2|σn|2 = ‖sn−1‖2 − ‖un‖2|σn|2. (10)

Note that by definition of sn,

‖sn‖ ≤ ‖sn−1‖, ‖sn‖ ≤ ‖rn‖. (11)

Under the additional assumption that the residuals of the primary method
are mutually orthogonal, we have rn ⊥ sn−1, so that (8) and (9) simplify to

σn =
‖sn−1‖2

‖sn−1‖2 + ‖rn‖2
∈ (0, 1]. (12)
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Inserting this into (10) yields then [30]

1

||sn||2
=

||sn−1||2 + ||rn||2

||sn−1||2||rn||2
=

1

||sn−1||2
+

1

||rn||2
=

n∑

k=0

1

||rk||2
. (13)

Second, the quasi-minimal residual (QMR) smoothing proposed by Zhou
and Walker [32] defines the smoothing parameters by

σn :≡
τ2n

‖rn‖2
, where

1

τ2n
=

n∑

k=0

1

‖rk‖2
, τn > 0 . (14)

The scalar τn can be seen to be the norm of the so-called quasi-residual, the
coefficient vector which represents the smoothed residual in the constructed
underlying basis of the Krylov space; see, i.e., §5.2 of [15] or [16]. Clearly, τ−2

n

can be computed recursively by

1

τ20
=

1

‖r0‖2
,

1

τ2k
=

1

τ2k−1

+
1

‖rk‖2
(k = 1, . . . , n). (15)

If the Zhou-Walker implementation of QMR smoothing is applied to a primary
method that does not generate residuals directly, we have to replace ‖rk‖ in the
above formulas by ‖sk−1 − uk‖ (k = 1, . . . , n); see (7). From (15) we obtain
conversely,

‖rn‖ =

√
τ2n

1− (τn/τn−1)2
. (16)

Note that in view of (13) the relations (15) and (16) also hold for MR smooth-
ing if the primary method produces orthogonal residuals (or at least if we have
sn−1 ⊥ rn at every step), and if we replace τn by ‖sn‖. These two relations
are the basis of the so-called peak-plateau connection between primary and
smoothed methods, as has been clarified by Cullum and Greenbaum [5], follow-
ing earlier work of Brown [2], Cullum [4], Walker [29], and others. Actually, this
work is about the connections between the residual norms of FOM and GMRes
as well as those of CG and CR. In fact, the above relations of MR smoothing
hold for these residuals if we denote those of FOM (or CG) by rn and those
of GMRes (or CR) by sn: Weiss [30] showed that the GMRes iterates and
residuals can be obtained from those of FOM by applying MR smoothing.

QMR smoothing must not be confused with the QMR method due to Fre-
und and Nachtigal [8], which combines the (look-ahead) Lanczos process [7] with
ideas from MinRes [22] to generate iterates whose residuals converge typically
much smoother than those of the related biconjugate gradient (BiCG) method.
However, the denomination “QMR smoothing” is justified since, in exact arith-
metic, QMR smoothing applied to the BiCG iterates produces exactly the
QMR iterates.

For our roundoff error analysis we will need some crude estimates of the size
of the smoothing parameters and of the norm of the smoothed residuals. First,
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note that the recurrences (2) imply (recall that σ0 = 1)

yn =
n∑

k=0

xkσk

n∏

j=k+1

(1− σj) , sn =
n∑

k=0

rkσk

n∏

j=k+1

(1− σj) . (17)

From (14) follows in particular that for the quasi-residual norm τn holds

1√
n+ 1

min
k=0,...,n

{‖rk‖} ≤ τn ≤ min
k=0,...,n

{‖rk‖} . (18)

We also make use of the simple estimate ‖sn‖ ≤
√
n+ 1 τn from [32], which is

inherited from the QMR method [8] and leads to

‖sn‖ ≤
√
n+ 1 τn ≤

√
n+ 1 min

k=0,...,n
{‖rk‖} . (19)

3 How to make the roundoff effects in MR smooth-

ing worse than in QMR smoothing

The size of the smoothing coefficients σn may affect the numerical behavior
of the smoothing procedure. For QMR smoothing we have 0 ≤ σn ≤ 1, and
the same is true for MR smoothing provided sn−1 ⊥ rn (∀n), which holds in
particular when the residuals of the primary method are mutually orthogonal,
such as in CG or FOM. However, as we will see here, in general, when MR
smoothing is applied to nonorthogonal residuals, the local rounding errors may
get amplified due to the size of the smoothing coefficients; this case seems to be
rare in practice, but we can construct examples with such a behavior.

To identify such a case, we assume real vectors and consider σn of (8) as a
function of γ :≡ 〈sn−1, rn〉:

σn(γ) :≡
‖sn−1‖2 − γ

‖sn−1‖2 + ‖rn‖2 − 2γ
. (20)

Assuming sn−1 += rn we see that |σn(γ)| > 1 if and only if one of the following
two cases hold

{
σn(γ) > 1 ⇐⇒ γ > ‖rn‖2 ,
σn(γ) < −1 ⇐⇒ γ > 2

3
‖sn−1‖2 + 1

3
‖rn‖2 .

(21)

We are going to choose the first case for constructing examples. For most
methods and examples the inner product γ = 〈sn−1, rn〉 is close to zero. In
particular, when smoothing is applied to orthogonal residual methods like CG
or FOM, this inner product is usually close to the level of machine precision.
But in a method with non-orthogonal residuals the smoothing coefficients σn =
σn(γ) may be large when sn−1 and rn are nearly parallel. Making use of this
observation we can construct examples of MR smoothing where some large
σn amplify the rounding errors in the recurrences for the smoothed residuals
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and iterates. In such cases QMR smoothing is superior to MR smoothing.
But we stress again that this behavior is rare and hardly appears in practice
when methods exhibit strongly oscillating residual norm histories. In fact, such
oscillations indicate that the vectors rn and sn−1 differ significantly.

We now describe how we can construct examples with this behavior. First,
solving (20) for γ we obtain

γ =
(σn − 1)‖sn−1‖2 + σn‖rn‖2

2σn − 1
. (22)

Choosing σ :≡ σn > 1 independent of n, we can write the condition γ > ‖rn‖2
of (21), complemented by the Schwarz inequality γ ≤ ‖rn‖‖sn−1‖, as

‖rn‖2 <
(σ − 1)‖sn−1‖2 + σ‖rn‖2

2σ − 1
≤ ‖rn‖‖sn−1‖.

The second inequality can be expressed as (σ − 1)‖sn−1‖2 + σ‖rn‖2 − (2σ −
1)‖rn‖‖sn−1‖ ≤ 0. Here, the quadratic function of ‖rn‖ on the left vanishes at
‖rn‖ = ‖sn−1‖ and ‖rn‖ = (σ − 1)/σ ‖sn−1‖, and its (negative) minimum is at

‖rn‖ =
2σ − 1

2σ
‖sn−1‖ . (23)

We can enforce this relation by starting with s0 = r0 = e1, and, at step n,
defining the primary residual rn by, e.g.,

rn =
8σ2 − 8σ + 1

8σ2 − 4σ
sn−1 + ηen+1 , (24)

where en+1 is the (n + 1)st unit vector and where the parameter η is chosen
such that (23) holds. This is possible since, according to (2) and (24), sn−1 ∈
span{e1, . . . , en} ⊥ en+1 and since the fraction in (24) can be seen to be smaller
than the one in (23), so that we can set, by Pythagoras’s theorem,

η =

√(
2σ − 1

2σ

)2

−
(
8σ2 − 8σ + 1

8σ2 − 4σ

)2

.

Given any nonsingular system matrix A, in theory the primary iterate xn

that corresponds to the residual rn constructed according to (24) could be found
from xn = A−1(b − rn). Using this construction we also achieve that there is
almost no primary gap (that is, difference between the updated primary residu-
als generated according to (24) and the true primary residuals). In any case, the
primary gap is of order ε. The smoothed approximate solutions yn and residu-
als sn are then computed as in (2), and once sn is known, (24) provides rn+1.
Generating such a sequence of primary residuals and applying MR smoothing
to them we thus obtain, in exact arithmetic, the given smoothing parameters
σ = σn. However, note that the primary iterates and residuals are not the
result of a common iterative method; but they can always be understood as

6
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Figure 1: Relative norms of updated (solid lines with dots) and true (solid lines)
smoothed residuals obtained by MR smoothing of the sequence of residuals
constructed according to (24) (relative norms shown as dashed lines) for various
choices of the smoothing coefficients σ = σn (independent of n).

the result of a Krylov space solver, since here, the residuals are clearly linearly
independent. In fact, such a solver can be viewed as determined by an upper
Hessenberg matrix whose column sums are equal to zero; see §4.3 of [15]. Given
a prescribed sequence of linearly independent residuals, one can construct such
a matrix, so that the corresponding Krylov space method generates these resid-
uals. But in the present context the exact specification of the primary iterative
method is not important.

Figure 1 shows the results of a numerical experiment. We see that despite
the fact that the primary gap is close to the level of the machine precision ε,
for the smoothed residuals there is a strong divergence for various values of σ
that exceed 2. If instead, we applied QMR smoothing to the same sequence
of primary residuals, then the gap between the true and updated smoothed
residuals would become almost invisible.

As we will verify later, it is important to have smoothing coefficients smaller
than 2 so that |1− σn| < 1. In the following we will analyze QMR smoothing,
where 0 ≤ σn ≤ 1. In MR smoothing the critical situation where |1 − σn| ≥ 1
can be avoided by redefining σn :≡ 1 whenever the value of (8) is bigger than 1,
and σn :≡ 0 whenever this value is negative. We will refer to this as stabilized
MR smoothing.
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4 Relations between computed primary and smoothed

residuals

In this section we study the effects of rounding errors on the relationship be-
tween the norms of the recursively computed primary and smoothed residuals.
We consider QMR smoothing, but the results remain valid for stabilized MR
smoothing. First, we compare the norm of the primary residuals, computed by
updating, with the norm of the computed (smoothed) quasi-residual. A rela-
tionship similar to (16) is given. From this relationship we can conclude that the
peak-plateau connection still holds to a close approximation in finite precision
arithmetic. Then we show that, up to terms proportional to the machine preci-
sion, the inequality (19) between the norms of primary and smoothed residuals
holds also in finite precision arithmetic.

Our approach is based on introducing an exact smoothing procedure applied
to the set of computed primary residuals. We show that the smoothed residuals
obtained from this exact procedure are close to the smoothed residuals com-
puted in finite precision arithmetic. Using bounds for the small differences and
the fact that the smoothed residuals and the quasi-residuals associated with this
exact smoothing procedure satisfy the arithmetic relations (16) and (19) exactly,
we can derive the finite precision analogs of these relations. All three imple-
mentations mentioned in Section 1 are considered, and it is shown that there is
no substantial difference between them with respect to their local behavior.

4.1 Schönauer-Weiss implementation

The recurrences for the actually computed quantities have the following form:

ȳ0 = x̄0 , ȳn = (1− σ̄n)ȳn−1 + σ̄nx̄n + δyn , (25)

s̄0 = r̄0 , s̄n = (1− σ̄n)s̄n−1 + σ̄nr̄n + δsn , (26)

where δyn and δsn represent the local errors produced at the step n. Applying
the standard rules for finite precision arithmetic we find

‖δyn‖ ≤ 3ε|1− σ̄n|‖ȳn−1‖+ 2ε|σ̄n|‖x̄n‖+O(ε2), (27)

‖δsn‖ ≤ 3ε|1− σ̄n|‖s̄n−1‖+ 2ε|σ̄n|‖r̄n‖+O(ε2). (28)

Here, σ̄n denotes the floating-point result of (14) with τ2n obtained from the
recurrence (15). The square of the quasi-residual norm that is computed as
a byproduct of recurrence (15) will be denoted by τ̄2n, and the value of 1/τ2n
computed before will be referred to as χ̄n. We will not need to compute τ̄n
itself.

Theorem 4.1. In the Schönauer-Weiss implementation the computed square
τ̄2n of the (smoothed) quasi-residual norm satisfies

τ̄2n = τ̂2n + δτn, |δτn| ≤ (N + n+ 3)ετ̂2n +O(ε2), (29)

8



where τ̂n is the exact quasi-residual norm defined by the recursion

τ̂0 = ‖r̄0‖,
1

τ̂2k
=

1

τ̂2k−1

+
1

‖r̄k‖2
(k = 1, . . . , n). (30)

Proof. For the computed value χ̄0 of 1/τ20 = 1/‖r0‖2, the standard rules for
floating-point error estimates yield |χ̄0 − 1/‖r̄0‖2| ≤ (N + 1)ε/‖r̄0‖2 + O(ε2).
For the later values χ̄n we can show that

∣∣∣∣χ̄n − (χ̄n−1 + fl(
1

‖r̄n‖2
))

∣∣∣∣ ≤ ε|χ̄n−1|+ (N + 2)ε
1

‖r̄n‖2
+O(ε2). (31)

After some manipulation, we obtain
∣∣∣∣∣
χ̄n −

n∑

k=0

1

‖r̄k‖2

∣∣∣∣∣
≤ (N + n+ 3)ε

n∑

k=0

1

‖r̄k‖2
+O(ε2). (32)

Finally, when taking into account the rounding error in computing the reciprocal
of χ̄n, we find the bound given in (29).

Next, using a similar approach as in [5] we can establish a relation between
updated primary residuals and the computed smoothed quasi-residuals. The
following theorem holds.

Theorem 4.2. In the Schönauer-Weiss implementation the norm of the com-
puted (smoothed) quasi-residuals and the norm of the primary residual computed
by updating are related by

‖r̄n‖ =

√√√√
τ̄2n

1− τ̄2
n

τ̄2

n−1

+

τ̄2

n

τ̄2

n−1

δτn−1 − δτn

2

√(
1− τ̄2

n

τ̄2

n−1

)3
+O(δ2), (33)

where O(δ2) stands for the higher-order terms in δτn and δτn−1.

Proof. The proof is analogous to the one of Theorem 4 in [5]. The exact quasi-
residual norms τ̂n satisfy

‖r̄n‖ =

√
τ̂2n

1− (τ̂2n/τ̂
2
n−1)

.

Substituting (29) for τ̂2n and τ̂2n−1 in (30) we get the desired result after some
manipulation.

Using (29) and standard rounding error analysis we can write the computed
smoothing parameters σ̄n in the form

σ̄n = σ̂n + δσn, |δσn| ≤ (N + n+ 5)εσ̂n +O(ε2), (34)
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where the coefficient σ̂n is defined as σ̂n :≡ τ̂2n/‖r̄n‖2. We use this coefficient
to define an exact smoothing procedure applied to a sequence of computed
primary residuals. The corresponding smoothed residuals are then given by the
recurrence

ŝ0 = r̄0 , ŝn = (1− σ̂n)ŝn−1 + σ̂nr̄n . (35)

Theorem 4.3. In the Schönauer-Weiss implementation the norm of the com-
puted smoothed residual is related to the norm of the computed primary residual
by

‖s̄n‖ ≤
√
n+ 1 min

k=0,...,n
{‖r̄k‖}+ n(N + n+ 8)(

√
n+ 1)ε‖r̄0‖+O(ε2). (36)

Proof. The difference between the computed residual s̄n and the exactly smoothed
residual ŝn can be written as

s̄n − ŝn = (1− σ̄n)(s̄n−1 − ŝn−1) + δσn(r̄n − ŝn−1) + δsn. (37)

Taking norms on both sides, using the bound (28), and applying this inequality
recursively we get

‖s̄n − ŝn‖ ≤
n∑

k=1

n∏

j=k+1

|1− σ̄j |(1 + 3ε) [|δσk|(‖r̄k‖+ ‖ŝk−1‖) (38)

+ 2ε|σ̄n|‖r̄k‖+ 3ε|1− σ̄k|‖ŝk−1‖] .

Using the relation (34) we can bound the terms |1 − σ̄j | by 1. After some
manipulation the inequality (38) leads us then to

‖s̄n − ŝn‖ ≤
n∑

k=1

[|δσk|(‖r̄k‖+ ‖ŝk−1‖) + 3ε‖ŝk−1‖+ 2εσ̂k‖r̄k‖] +O(ε2). (39)

Noting that for the exactly smoothed residual we have by (19) and (14)

‖ŝn‖ ≤
√
n+ 1 τ̂n =

√
1

1
n+1

∑n
k=0

1
‖r̄k‖2

≤
√
n+ 1 min

k=0,...,n
{‖r̄k‖} (40)

and using

σ̂k‖r̄k‖ =
τ2k
‖r̄k‖

≤
1

‖r̄k‖

(
min

j=0,...,k
{‖r̄j‖}

)2

≤ min
j=0,...,k

{‖r̄j‖} ≤ ‖r̄0‖ (41)

(obtained from (14) and (18)) and ‖ŝk−1‖ ≤
√
kminj=0,...,k−1{‖r̄j‖} (k =

1, . . . , n) (obtained from (19)) we finally find the statement of the theorem.

The statement of Theorem 4.3 shows that the relationship (19) between the
norms of smoothed and primary residuals holds to a close approximation also
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in finite precision arithmetic provided the roundoff term in (36) is much smaller
than the norms of the computed primary residuals, that is

min
k=0,...,n

{‖r̄k‖} / O((n+N)n3/2)ε‖r̄0‖ (n ≥ 0). (42)

Since we are in this section only interested in the local behavior of the smoothing
procedure above the level of the limiting accuracy, this requirement does not
mean a restriction. As we will see later, the level of O((n + N)n3/2)ε‖r̄0‖ is
usually below or equal to the maximum attainable accuracy of any iterative
Krylov subspace method. We will return to this point later.

If we consider instead the expensive Schönauer-Weiss implementation, the
recurrence in (26) must be replaced by the recurrence

s̄0 = t̄0 , s̄n = (1− σ̄n)s̄n−1 + σ̄nt̄n + δsn , (43)

where t̄n is the residual computed directly from the approximate solution x̄n

and satisfying the relation

‖t̄n − (b−Ax̄n)‖ ≤
[
(mN1/2 + 1)‖A‖‖x̄n‖+ ‖b‖

]
ε+O(ε2). (44)

It is easy to see that by replacing the vectors r̄k by t̄k, k = 0, . . . , n, we obtain for
this implementation the same results as for the Schönauer-Weiss implementation
except that the norms ‖r̄k‖ have to be replaced by ‖t̄k‖ in the statements of
Theorems 4.1–4.3.

4.2 Zhou-Walker implementation

Except for y0 = x0 and s0 = r0 the only vectors needed for the Zhou-Walker im-
plementation are the direction vectors ᾱn−1p̄n−1. In finite precision arithmetic,
the recurrences (5)–(6) are replaced by

v̄0 = o , v̄n = (1− σ̄n−1)v̄n−1 + ᾱn−1p̄n−1 + δvn , (45)

ū0 = o , ūn = (1− σ̄n−1)ūn−1 + ᾱn−1Ap̄n−1 + δun , (46)

ȳ0 = x0 , ȳn = ȳn−1 + σ̄nv̄n + δyn , (47)

s̄0 = r̄0 , s̄n = s̄n−1 − σ̄nūn + δsn , (48)

where the local errors δun, δvn, δsn, and δyn satisfy the bounds

‖δvn‖ ≤ 3ε|1− σ̄n−1|‖v̄n−1‖+ 2ε‖ᾱn−1p̄n−1‖+O(ε2), (49)

‖δun‖ ≤ 3ε|1− σ̄n−1|‖ūn−1‖+ (2 +mN1/2)ε‖A‖‖ᾱn−1p̄n−1‖+O(ε2),(50)

‖δyn‖ ≤ ε‖ȳn−1‖+ 2ε|σ̄n|‖v̄n‖+O(ε2), (51)

‖δsn‖ ≤ ε‖s̄n−1‖+ 2ε|σ̄n|‖ūn‖+O(ε2). (52)

For QMR smoothing, the smoothing coefficient σ̄n is the floating-point result
of the computation (14), where, however, the residuals r̄k are replaced by com-
puted vectors q̄k, k = 1, . . . , n, satisfying

‖q̄k − (s̄k−1 − ūk)‖ ≤ ε‖s̄k−1 − ūk‖. (53)
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We also set q̄0 :≡ r̄0. Consequently, the smoothing coefficient σ̄n can be written
as

σ̄n = σ̂n + δσn, |δσn| ≤ (N + n+ 5)εσ̂n +O(ε2), (54)

where the ‘exact’ smoothing coefficient σ̂n is now defined by

σ̂n :≡
τ̂2n

‖q̄n‖2
, where

1

τ̂2n
=

n∑

k=0

1

‖q̄k‖2
, τ̂n > 0 . (55)

We introduce again an exact smoothing procedure with residual recurrence

ŝ0 = r̄0 , ŝn = (1− σ̂n)ŝn−1 + σ̂nq̄n . (56)

Using this construction we find the following analog of Theorem 4.3.

Theorem 4.4. In the Zhou-Walker implementation the norm of the computed
smoothed residuals are related to the norms of the computed primary residuals
by

‖s̄n‖ ≤
√
n+ 1 min

k=0,...,n
{‖q̄k‖}+ n(N + n+ 8)(

√
n+ 1)ε‖r̄0‖+O(ε2). (57)

Proof. The difference between the computed residual s̄n and the ‘exact’ smoothed
residual ŝn can be written

s̄n − ŝn = (1− σ̄n)(s̄n−1 − ŝn−1) + δσn(q̄n − ŝn−1) + σ̄n(s̄n−1 − ūn − q̄n) + δsn.

Using a similar technique as in the proof of Theorem 4.3 we obtain for the norm
of the difference

‖s̄n − ŝn‖ ≤
n∑

k=1

n∏

j=k+1

(|1− σ̄j |+ 3ε)
[
|δσk|(‖q̄k‖+ ‖ŝk−1‖) (58)

+ |σ̄k|‖s̄k−1 − ūk − q̄k‖+ 2ε|σ̂n|‖s̄k−1 − ūk‖+ 3ε‖ŝk−1‖
]
.

We can bound the terms |1− σ̂j |+ 3ε by 1. Using the bounds (53) and (54) we
get then

‖s̄n − ŝn‖ ≤
n∑

k=1

[|δσk|(‖q̄k‖+ ‖ŝk−1‖) + 3ε‖ŝk−1‖+ 3εσ̂k‖q̄k‖] +O(ε2). (59)

Since it follows from (19) that

‖ŝk‖ ≤
√
k + 1 min

j=0,...,k
{‖q̄k‖} (k = 1, . . . , n), (60)

and since, in analogy to (41), σ̂k‖q̄k‖ ≤ minj=0,...,k{‖q̄j‖} the proof is easily
completed.

For MR smoothing we can show analogous results assuming that 0 < σn < 2
for all n. This can be achieved by stabilizing the MR smoothing with a small
modification of the code, as we mentioned at the end of Section 3.
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5 Maximum attainable accuracy of the smoothed

method

For many methods the norm of the updated residuals r̄n decreases far below
the level of machine precision ε, and, indeed, there is a heuristic argument to
explain this: often, an iterative algorithm scales with respect to the size of the
residuals, that is, if we restart it from an initial residual that is smaller by a
factor 2−M , then, even in finite precision arithmetic all the following residuals
will be as much smaller; in particular, in such an algorithm there is no feedback
from the iterates to the residuals. This argument does not prove that updated
residuals decrease till they reach underflow—since continuing an iteration is
not the same as restarting it—but it makes such a behavior plausible.

On the other hand, we must expect that there is a limitation to the accuracy
of the norm of the true residuals b−Ax̄n. In fact, typically this norm stagnates
from a certain point on. We say then that the level of the maximum attainable
accuracy has been reached. For certain classes of methods it was shown in [25],
[12], and [17] that the gap b−Ax̄n − r̄n can increase during the iteration, and
may even do so drastically in certain methods and examples. Assuming that the
norm of the updated residual converges to 0, we obtain from estimates for this
gap an estimate for the level of the maximum attainable accuracy of a particular
method. Note that in the stagnation phase the true residual may even increase
again, an effect that is often observed when local errors are amplified and the
updated residuals oscillate.

The analysis of Greenbaum [12] shows that for algorithms using recursions
of the form (4) the norm of the gap can be bounded by

‖b−Ax̄n − r̄n‖ ≤ 2n(3 +mN1/2)ε‖A‖ max
k=0,...,n

{‖x− x̄k‖} (61)

+ (1 +mN1/2)ε‖A‖‖x0‖

+ (n+ 1)ε‖A‖‖x‖+O(ε2)

≤ 2n(3 +mN1/2)εκ(A) max
k=0,...,n

{‖r̄k‖} (62)

+ (1 +mN1/2)εκ(A)‖r0‖

+ (n+ 1)εκ(A)‖b‖+O(ε2).

Consequently, the maximum attainable accuracy of these algorithms, measured
by Greenbaum [12] in terms of the quantity

‖b−Ax̄n − r̄n‖
‖A‖ ‖x‖

, (63)

depends on the largest norm of the error (of the approximate solutions) during
the full iteration. It can be bounded further in terms of the largest residual
norm, as in (62). For the conjugate gradient (CG) and the conjugate residual
(CR) methods, where the error norm or the residual norm, respectively, are
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known to converge monotonously, these bounds depend actually on the initial
error or residual, respectively. In contrast, there are other Krylov subspace
methods (such as BiCG or CGS) that are well-known to often produce very
large intermediate residuals and approximate solutions. This will then affect
their maximum attainable accuracy. Since the smoothing techniques avoid such
large intermediate residuals, one may wonder whether the maximum attainable
accuracy of smoothed residuals can be much higher than that of a primary
method affected by large oscillations in the residual norm. Our aim is to answer
this question.

Note that Greenbaum’s measure (63) differs from ours by a factor (‖A‖ ‖x‖)−1.
Its rationale is that when (63) is of order O(ε), the computed approximate so-
lution x̄n is known to be backward stable.

In this section we give bounds for local errors that appear in the recurrences
for the quantities computed in the smoothing method. It is shown that although
we deal with potentially large primary residuals and iterates, the smoothing
techniques keep the local errors small. Then we analyze the gap between the
smoothed true and updated residuals and show that for both the Schönauer-
Weiss implementation (2) and the Zhou-Walker implementation (4), this gap
remains on the same level as that of the primary method. Only for the expensive
implementation (3) it is close to the level of machine precision, so that the gap
between the true and updated residuals is almost invisible. Nevertheless, for
all three variants of smoothing discussed, the maximum attainable accuracy
remains at least on the same level as for the primary method.

In accordance with the special case (63) we make the general assumption
that the primary gap is of order ε:

‖b−Ax̄n − r̄n‖ ≤ O(ε). (64)

It need not be small, but when the gap is multiplied by another factor of order
O(ε), the effect will be covered by the O(ε2) term that appears in our bounds.

5.1 Schönauer-Weiss implementation

For the Schönauer-Weiss implementation the recurrences (25)–(26) are valid in
finite precision arithmetic. Starting from them we can establish for the norm of
the gap b−Aȳn − s̄n the following theorem.

Theorem 5.1. In the Schönauer-Weiss implementation of QMR residual smooth-
ing the gap between true and updated smoothed residuals satisfies the recurrence

b−Aȳn − s̄n = (1− σ̄n)(b−Aȳn−1 − s̄n−1) (65)

+ σ̄n(b−Ax̄n − r̄n) +Aδyn + δsn,
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and thus it is given by

b−Aȳn − s̄n =
n∑

k=0

σ̄k




n∏

j=k+1

(1− σ̄j)



 (b−Ax̄k − r̄k) (66)

+
n∑

k=1




n∏

j=k+1

(1− σ̄j)



 (Aδyk + δsk)

and bounded according to

‖b−Aȳn − s̄n‖ ≤
n∑

k=0

‖b−Ax̄k − r̄k‖
‖r̄k‖

min
j=0,...,k

{‖r̄j‖} (67)

+ 3n(
√
n+ 1)ε(κ(A) + 1)‖r̄0‖+ 6nεκ(A)‖b‖+O(ε2).

Proof. The recurrence (65) follows from (25)–(26). Applying it inductively and
taking into account ȳ0 = x̄0 = x0, s̄0 = r̄0, and σ̄0 = 1 we obtain (66). Taking
there norms on both sides and using (34), (64), and the fact that |1 − σ̄j | < 1
holds under the assumption of the theorem, we conclude that

‖b−Aȳn− s̄n‖ ≤
n∑

k=0

|σ̂k|‖b−Ax̄k− r̄k‖+
n∑

k=1

(‖A‖‖δyk‖+‖δsk‖)+O(ε2).

(68)
For bounding the local error in the computation of the updated smoothed resid-
ual we note that, by proceeding similarly as in (41), half of the second term on
the right-hand side of (28) can be bounded by

ε|σ̄k|‖r̄k‖ ≤ εσ̂k‖r̄k‖+O(ε2) ≤ ε min
j=0,...,k

{‖r̄j‖}+O(ε2).

Using Theorem 4.3 we can write for one third of the first term

ε|1− σ̄k|‖s̄k−1‖ ≤ ε‖ŝk−1‖+O(ε2) ≤ ε
√
k min

j=0,...,k
{‖r̄j‖}+O(ε2).

In summary, the local error δsk in the computation of the updated smoothed
residual satisfies

‖δsk‖ ≤ 3(
√
k + 1)ε min

j=0,...,k
{‖r̄j‖}+O(ε2) ≤ 3(

√
k + 1)ε‖r̄0‖+O(ε2). (69)

Similarly for bounding the error δyk in the computation of the smoothed ap-
proximate solution we note that

ε|σ̄k|‖x̄k‖ ≤ εσ̂k‖x−x̄k‖+ε‖x‖+O(ε2) ≤ ε
‖x− x̄k‖
‖r̄k‖

min
j=0,...,k

{‖r̄j‖}+ε‖x‖+O(ε2)

and

ε|1− σ̄k|‖ȳk−1‖ ≤ ε
‖x− ȳk−1‖
‖s̄k−1‖

√
k min

j=0,...,k−1
{‖r̄j‖}+ ε‖x‖+O(ε2).
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Recalling again assumption (64) and making the inductive assumption that the
gap between recursive and true smoothed residuals is also proportional to ε, the
image Aδyk of the local error δyk can be bounded by

‖A‖‖δyk‖ ≤ 3(
√
k + 1)εκ(A)‖r̄0‖+ 6ε‖A‖‖x‖+O(ε2). (70)

Substituting (69) and (70) into (68) we finally obtain (67).

Theorem 5.1 establishes an explicit formula, (66), and a bound, (67), for
the gap. Making the earlier discussed assumption that the updated primary
residuals decay far beyond the level of machine precision ε, we can conclude that
the same is true for the updated smoothed residuals and in this way estimate the
maximum attainable accuracy of the smoothed method. Theorem 5.1 shows that
the maximum attainable accuracy is not improved by smoothing. In fact, on the
right-hand side of (66) we find as the last term of the sum just σ̄n(b−Ax̄n− r̄n)
since the corresponding product

∏n
j=k+1

(1 − σ̄j) is empty (and thus 1). The
other terms in the first sum cannot be expected to compensate this one as
the gap vectors are unlikely to be collinear, and the products are smaller than
1. The second sum contains just local errors, which are typically rather small
compared to the gap. When ‖r̄n‖ / mink=0,...,n{‖r̄k‖} (that is, when we are
at a peak in the residual norm history), it follows from (14) and (18) that σ̄n is
small, so that in fact ‖b−Aȳn − s̄n‖ 0 ‖b−Ax̄n − r̄n‖ is possible. However,
under the assumptions made in [12, 17, 25] (which reflect the behavior of Krylov
space methods that use recurrences to update the residuals), the primary gap
will not shrink later. Thus, once ‖r̄n‖ ≈ mink=0,...,n{‖r̄k‖} (that is when the
peak is left behind), (14) and (18) yield

1

n+ 1
<∼ σ̄n

<∼ 1 (71)

and we find that the size of the gap of the smoothed residual has caught up
with the primary one: roughly,

1

n+ 1
‖b−Ax̄n − r̄n‖

<∼ ‖b−Aȳn − s̄n‖
<∼ ‖b−Ax̄n − r̄n‖. (72)

The above argument has to be modified if in the primary method measures
are taken to reduce the gap after peaks of the residual norm. In [21, 24, 28] it
has been proposed to replace updated by true residuals (and also to shift the
origin in x-space) at certain steps. Then the ultimate accuracy does no longer
depend on the largest xn or rn, but the order O(ε)‖A‖ ‖x‖ can be achieved.
Since the primary method is then so accurate, the smoothed method cannot be
considerably more accurate, so again, smoothing will not improve the ultimately
attained accuracy.

When the primary method is based on the recursions (4), we can use the
results (61)–(62) of Greenbaum [12] to prove the following corollary. If the
Schönauer-Weiss implementation of QMR residual smoothing is applied to pri-
mary iterates xn and residuals rn that are computed by the recursion (4), the
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gap between the true and updated smoothed residuals is bounded according to

‖b−Aȳn − s̄n‖ ≤ 2n(3 +mN1/2)εκ(A)
n∑

k=0

maxj=0,...,k{‖r̄j‖}
‖r̄k‖

min
j=0,...,k

{‖r̄j‖}

+ (n+ 1)(mN1/2 + 3n)ε(κ(A) + 1)‖r̄0‖
+ (7n+ 1)εκ(A)‖b‖.

In accordance with Theorem 5.1 this result shows that when the primary
method uses the two-term recursions (4), then, unfortunately, the maximum
attainable accuracy of the smoothed method again depends on the largest norm
of the primary residual. Like in [12] we could rewrite this result in terms of the
norms of computed approximate solutions.

The best we can hope for in finite precision arithmetic is that the backward
error associated with the computed smoothed approximate solution ȳn is on the
level of p(n,m,N) ε, where p(n,m,N) is a low degree polynomial in the number
n of iteration steps, the dimension N of the problem, and the maximum number
m of nonzeros per row in the matrix A. Then the true smoothed residual
stagnates at most on the level of p(n,m,N) εκ(A)‖b‖. (The opposite need not
be true.) If we assume a properly chosen initial approximation x0, this level is
close to the level of p(n,m,N) εκ(A)‖r0‖, which appears in our bounds.

In contrast, for the ‘expensive implementation’ based on (3) we have the
following result.

Theorem 5.2. In the expensive Schönauer-Weiss implementation (3) of QMR
residual smoothing the gap between the true and updated smoothed residuals is
bounded according to

‖b−Aȳn − s̄n‖ ≤ (n+ 1)(mN1/2 + 1)ε(κ(A) + 1)‖r̄0‖
+ (n+ 1)(mN1/2 + 6)ε(κ(A) + 1)‖b‖.

This shows that the gap is small for the expensive implementation. This is
due to the fact that in this implementation the updated residuals do not appear
in the recursions, and we are smoothing the residuals t̄n that are computed
directly from the iterates. Therefore the gap becomes almost invisible. How-
ever, these updated smoothed residuals do not decay to zero, but, like the true
smoothed residuals, remain on the level of the true primary residuals. Roughly
speaking, while in the original Schönauer-Weiss implementation the updated
smoothed residuals are smoothing the sequence of updated primary residuals,
which converge usually far beyond machine precision, in the ‘expensive imple-
mentation’ the updated smoothed residuals behave like the primary residuals
that are directly computed from the (inaccurate) approximate solutions. The
maximum attainable accuracy consequently remains on the same level.
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5.2 Zhou-Walker implementation

For the Zhou-Walker implementation the situation is very similar to the one of
Schönauer-Weiss. In this subsection we give a bound for the corresponding gap.
It implies that ultimately the norm of the gap must be expected to be of the same
order as the limiting accuracy of the primary method. In practice, we frequently
see here that also the updated smoothed residual stagnates on a certain level.
This, of course, does not mean, that the Zhou-Walker implementation is better
than the Schönauer-Weiss implementation; its maximum attainable accuracy
remains on the same level.

Here we assume that the recurrences in the primary method are of the form
(4). The primary iterates and residuals are not used for generating the smoothed
ones, but we need to analyze them for our comparison of the accuracy. For the
computed quantities holds

x̄n = x̄n−1 + ᾱn−1p̄n−1 + δxn, (73)

r̄n = r̄n−1 − ᾱn−1Ap̄n−1 + δrn (74)

with bounds for the local errors δxn and δrn given by

‖δxn‖ ≤ ε‖x̄n−1‖+ 2ε‖ᾱn−1p̄n−1‖+O(ε2), (75)

‖δrn‖ ≤ ε‖r̄n−1‖+ (2 +mN1/2) ε ‖A‖ ‖ᾱn−1p̄n−1‖+O(ε2). (76)

Here, the factor ‖ᾱn−1p̄n−1‖ can be bounded according to

‖ᾱn−1p̄n−1‖ ≤ ‖x− x̄n‖+ ‖x− x̄n−1‖+ ‖δxn‖. (77)

This leads ultimately to the bound (61) for the primary gap given by Greenbaum
[12].

Alternatively, we can estimate in (75) and (76)

‖x̄n−1‖ ≤ ‖x0‖+
n−1∑

i=1

‖ᾱi−1p̄i−1‖+O(ε)

≤ ‖x0‖+ (n− 1) max
i=1,...,n−1

‖ᾱi−1p̄i−1‖+O(ε), (78)

‖r̄n−1‖ ≤ ‖r̄0‖+ ‖A‖
n−1∑

i=1

‖ᾱi−1p̄i−1‖+O(ε)

≤ ‖r̄0‖+ (n− 1)‖A‖ max
i=1,...,n−1

‖ᾱi−1p̄i−1‖+O(ε), (79)

which leads to a bound for the primary gap in terms of maxi=1,...,n−1 ‖ᾱi−1p̄i−1‖.
Next we analyze the gap in the smoothed method.

Theorem 5.3. In the Zhou-Walker implementation of QMR residual smoothing
the gap between the true and updated smoothed residuals satisfies the coupled
recurrences

b−Aȳn − s̄n = b−Aȳn−1 − s̄n−1 + σ̄n(ūn −Av̄n) +Aδyn + δsn,(80)

ūn −Av̄n = (1− σ̄n)(ūn−1 −Av̄n−1) + δun −Aδvn, (81)
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which yield the explicit representation

b−Aȳn − s̄n = b−Ax0 − r̄0

+
n∑

k=1





Aδyk + δsk + σ̄k

k∑

j=1




k∏

l=j+1

(1− σ̄l)



 (δuj −Aδvj)





(82)

and the bound

‖b−Aȳn − s̄n‖ ≤ 2n2(6 +mN1/2)εκ(A)× (83)

×
n∑

k=1

(
maxj=0,...,k{‖q̄j‖}

‖q̄k‖
min

j=0,...,k
{‖q̄j‖}

)

+
[
3n(

√
n+ 1) + 1 +mN1/2

]
ε(κ(A) + 1)‖r̄0‖

+
[
n+ 1 +mN1/2

]
ε(κ(A) + 1)‖b‖.

Proof. According to (46) and (47), the gap satisfies the recurrence (80), and for
the computed direction vectors we conclude from (45) and (46) that (81) holds.
Applying (80) and (81) recursively and taking into account that ū0 = v̄0 = o

yields the explicit formula (82) and the bound

‖b−Aȳn − s̄n‖ ≤ ‖b−Ax0 − r̄0‖+
n∑

k=1

|σ̄k| ‖ūk −Av̄k‖ (84)

+
n∑

k=1

(‖A‖‖δyk‖+ ‖δsk‖).

The first term satisfies

‖b−Ax0 − r̄0‖ ≤ ε(1 +mN1/2)‖A‖‖x0‖+ ε‖b‖. (85)

Taking norms on both sides of (81) and using |1− σ̄n| ≤ 1 we obtain, after some
manipulations similar to those in previous proofs,

‖ūk −Av̄k‖ ≤
k∑

j=1

(‖δuj‖+ ‖A‖‖δvj‖) +O(ε2). (86)

Using the recurrence (46) we can establish for the first term on the right-hand
side of (49) the bound

3ε|1−σ̄j−1|‖v̄j−1‖ ≤ 3ε|1−σ̄j−1|
j−1∑

i=1

j−1∏

l=i+1

|1−σ̄l−1| [‖ᾱi−1p̄i−1‖+ ‖δvi‖]+O(ε2).

Using this results in the bound (49) we find that

‖δvj‖ ≤ 3jε max
i=1,...,j

{‖ᾱi−1p̄i−1‖}+O(ε2). (87)

19



Similarly we can get as bound for the local error in the computation of ūj

‖δuj‖ ≤ j(3 +mN1/2)ε‖A‖ max
i=1,...,j

{‖ᾱi−1p̄i−1‖}+O(ε2). (88)

Consequently, summing up all the bounds for the local errors we obtain

‖ūk −Av̄k‖ ≤ k2(6 +mN1/2)ε‖A‖ max
j=1,...,k

{‖ᾱj−1p̄j−1‖}+O(ε2). (89)

Next, we consider the recurrences (45) and (47), rewritten as

s̄j−1 − ūj = s̄j−2 − ūj−1 − ᾱj−1Ap̄j−1 − δuj − δsj .

Since the norm of the correction vectors ᾱj−1p̄j−1 is bounded by

‖ᾱj−1p̄j−1‖ ≤ ‖A−1‖(‖s̄j−2 − ūj−1‖+ ‖s̄j−1 − ūj‖) +O(ε),

the difference ūk −Av̄k satisfies due to (53)

‖ūk −Av̄k‖ ≤ 2k2(6 +mN1/2) ε κ(A) max
j=0,...,k

{‖q̄j‖}+O(ε2). (90)

In the following we estimate the local errors in the computation of the smoothed
residuals and iterates computed according to (47) and (48). The first term on
the right-hand side of (52) is bounded by

ε‖s̄k−1‖ ≤ ε‖ŝk−1‖+O(ε2) ≤
√
kε min

j=0,...,k−1
{‖q̄j‖}+O(ε2).

For the second term in (52) it follows that

ε|σ̄k|‖ūk‖ ≤ εσ̂k(‖q̄k‖+ ‖s̄k−1‖) +O(ε2) ≤ (
√
k + 1)ε min

j=0,...,k−1
{‖q̄j‖}+O(ε2).

Consequently, the local error δsk can be bounded by

‖δsk‖ ≤ 3(
√
k + 1)ε min

j=0,...,k−1
{‖q̄j‖}+O(ε2) ≤ 3(

√
k + 1)ε‖r̄0‖+O(ε2). (91)

Similarly we can deal with the local error δyk. Starting from (51), taking into
account the fact that the difference between the vectors ūk and Av̄k is propor-
tional to ε, and making the induction assumption that the difference between
the true and updated smoothed residuals at the steps k < n is proportional to
ε we find the bounds

ε‖ȳk−1‖ ≤ ε(‖x− ȳk−1‖+ ‖x‖)
≤ ε‖A−1‖(‖s̄k−1‖+ ‖b‖) +O(ε2)

≤
√
kε‖A−1‖ min

j=0,...,k−1
{‖q̄j‖}+ ε‖A−1‖‖b‖+O(ε2),

and

ε|σ̄k|‖v̄k‖ ≤ εσ̂k‖A−1‖‖ūk‖+O(ε2) ≤ (
√
k+1)ε‖A−1‖ min

j=0,...,k−1
{‖q̄j‖}+O(ε2).
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Putting these two results together we can bound the image Aδyk of the local
error δyk by

‖A‖‖δyk‖ ≤ 3(
√
k + 1)εκ(A) min

j=1,...,k−1
{‖q̄j‖}+ εκ(A)‖b‖+O(ε2)

≤ 3(
√
k + 1)εκ(A)‖r̄0‖+ εκ(A)‖b‖+O(ε2). (92)

Adding up the inequalities (85), (90), (91), and (92) we finally get the desired
(83).

Theorem 5.3 again establishes an explicit formula, (82), and a bound, (83),
for the gap, and under the previously made assumption of ultimately very small
primary residuals, these formulas then also describe the maximum attainable
accuracy. From Theorem 5.3 and its proof we can conclude that also for the
Zhou-Walker implementation this maximum attainable accuracy is not improved
essentially by smoothing. Indeed, on the right-hand side of (82) the biggest term

is typically σ̄k(δuk −Aδvk) if σ̄k lies in the range (k+1)−1 <∼ σ̄k ≤ 1, see (71),
which corresponds to ‖q̄k‖ ≈ minj=0,...,k{‖q̄j‖}. In fact, when j < k, the terms
δuj −Aδvj are multiplied by a product of factors |1 − σ̄l| < 1, an aspect that
is not reflected in (86), because these factors are there replaced by their upper
bound 1. For j = k it is clear from (87) and (88) that the norms of the vectors
δuk and Aδvk are of the order p(k,m,N) ε‖A‖maxi=1,...,k{‖ᾱi−1p̄i−1‖}, where
p(k,m,N) is again a low degree polynomial in k, m, and N ; so the bound for the
gap is dominated by a term of this form. Recall now that in the Zhou-Walker
setting the primary iterates and residuals are computed according to (4), which
in finite precision arithmetic becomes (73)–(74), with the bounds (75)–(76) for
the local errors, and the estimates (78) and (79), which lead to a bound of the
same form for the gap. Consequently, the primary gap is of the same order as
the one between true and updated smoothed residuals.

6 Examples and numerical experiments

We report on two sets of numerical experiments, one with a real, symmetric
positive definite (spd) matrix, the other with a real nonsymmetric matrix. Both
matrices are from the Harwell-Boeing collection. The spd matrix NOS6 has
dimension 675 and condition number 7.6505E+6. It originates from a simple
5-point stencil finite difference approximation of Poisson’s equation on an L-
shape; the bandwidth is 61, and there are at most 5 nonzeros per row. The
nonsymmetric matrix ORSREG1 has dimension 2205 and condition number
1.0E+2. It describes a 3d oil reservoir simulation based on a 7-point stencil finite
difference approximation on a regular 21 × 21 × 5 grid. Thus, the bandwidth
is 881, and there are at most 7 nonzeros per row. In both cases we choose
the right-hand side b as the vector e with all components 1, and the initial
approximation x0 = o.

To the spd system we apply various versions of the conjugate gradient (CG)
method of Hestenes and Stiefel [18], followed by QMR smoothing. Both the
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Schönauer-Weiss and the Zhou-Walker implementations, and also the ‘expen-
sive’ Schönauer-Weiss implementation are tested. In exact arithmetic we could
obtain the same results from CG followed by MR smoothing, but also the re-
lated conjugate residual (CR) method [27] and the MinRes algorithm due to
Paige and Saunders [22] would produce the same results. To illustrate the influ-
ence of finite precision arithmetic on these algorithms, we show residual norm
histories obtained with each of them. Considerable differences in the ultimate
accuracy will be noticed. Though the local roundoff behavior differs for the var-
ious schemes, this has only in few cases an effect on the speed of convergence.
The versions of the CG method investigated are (compare [1]):

(i) the classical Hestenes-Stiefel or CG-OMin implementation based on three
coupled two-term recurrences for the iterates, residuals, and direction vec-
tors,

(ii) the CG-ORes implementation based on two three-term recurrences for
the iterates and the residuals, and

(iii) the CG-ODir implementation based on a three-term recurrence for the
direction vectors and two coupled two-term recurrences for the the iterates
and the residuals.

The algorithms resulting from piping the CG approximates and residuals into
a smoothing process will be denoted by CG-OMin|MR, CG-OMin|QMR, and
CG-ORes|MR, etc. The type of the implementation of the smoother could
be displayed additionally in brackets: [SW], [ZW], or [EXP]. For the conjugate
residual method there exist analogous versionsCR-OMin, CR-ORes, and CR-
ODir. Actually one even has to differentiate their implementations further.
For versions of CR-OMin we did not notice relevant differences in the error
behavior. But for CR-ODir it is important that we used the version that
requires two matrix-vector multiplications (MVs) for computingApn and A2pn

in each step (in contrast to applying an extra three-term recurrence for the
vectors Apn, which produces additional large local errors); we will return to
this question elsewhere. The term ‘accurate’ will refer to the ultimate accuracy
of an algorithm, that is the level of stagnation of the norm of the true residual.

To the nonsymmetric system we apply the biconjugate gradient (BiCG)
method due to Lanczos [20] followed by either MR or QMR smoothing imple-
mented according to Schönauer-Weiss. Specifically, we use the following ver-
sions:

(i) the classical BiOMin implementation of BiCG due to Lanczos [20] and
Fletcher [6], called Lanczos/orthomin by Jea and Young [19]; it general-
izes CG-OMin and is also based on coupled two-term recurrences;

(ii) the BiORes implementation [13, 15], called Lanczos/orthores in [19],
which, analogously to CG-ORes is based on three-term recurrences;

(iii) the BiODir implementation [13, 15] (similar to Lanczos/orthodir in
[19]), which is fully analogous to CG-ODir.
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QMR smoothing: Schoenauer!Weiss, ‘expensive’, and Zhou, Walker implementations

NOS6(675), cond(A)=7.6505E+6

Figure 2: QMR smoothing of Hestenes-Stiefel CG (CG-OMin) applied to an
spd system with the matrix NOS6. Relative 2-norms of updated (dots) and
true (initially oscillating solid line) residuals of CG-OMin. Comparison with
three implementations of QMR smoothing applied to the CG results: updated
(lower dashed line) and true (solid line) residuals of the Schönauer-Weiss imple-
mentation, updated (dashed line ending in lower plateau) and true (solid line)
residuals of the Zhou-Walker implementation, and updated (dashed line covered
by solid line) and true (solid line) residuals of ‘expensive’ implementation. On
the plateau, the four solid lines cannot be distinguished.

The resulting combined algorithms will be called BiOMin|MR, BiOMin|QMR,
and BiORes|MR, etc.

Recall that in exact arithmetic, BiCG|QMR would produce the same results
as the QMR method of Freund and Nachtigal [8] if in both cases either no look-
ahead or the same look-ahead procedure were applied. Our results published
here do not include look-ahead, but we will consider both the original QMR
algorithm based on three-term Lanczos recurrences [8] and the one based on
coupled two-term recurrences [9, 10, 11]. Unlike in the spd case, in general,
BiCG|QMR is not equivalent to BiCG|MR.

We start by solving the spd system with the matrix NOS6 with the Hestenes-
Stiefel (OMin) version of CG and applying the three discussed implementations
of QMR smoothing ([SW], [ZW], [EXP]) to the CG residuals and iterates. The
results are shown in Figure 2. Clearly, as expected and predicted by the now
well-known analysis based on (16) [5], the strongly fluctuating residual norm
history of CG is effectively smoothed. However, the most relevant conclusion is

23



0 500 1000 1500 2000 2500
10

!18

10
!16

10
!14

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

10
2

                                CG!OMIN/QMR, CR!OMIN, MINRES  

re
la

tiv
e

 r
e

si
d

u
a

l n
o

rm
s

iteration number

NOS6(675), cond(A)=7.6505E+6

Figure 3: Comparison of QMR-smoothed CG-OMin with CR-OMin and Min-
Res applied to the spd system with the matrix NOS6. Relative 2-norms of
true residuals (lower solid line) obtained by QMR smoothing from CG-OMin.
Comparison with the norms of the true residuals of CR-OMin (overlapping
lower solid line) and MinRes (upper solid line). Also shown are the norms of
the updated residuals of CG-OMin|QMR (lower dashed line), and CR-OMin
(mostly overlapping dash-dotted line), and the MinRes quantities ρ̃n (upper
dashed line), as well as the levels of κ(A)ε (lower dotted straight line) and of
κ2(A)ε (upper dotted straight line).

that the true residuals (solid lines) of all four algorithms stagnate on the same
level. The same would be true for MR-smoothing (not shown). In other words,
smoothing does not increase the ultimate accuracy of CG. We also note that
the updated smoothed residual norm from the Zhou-Walker implementation
stagnates ultimately, but on a much lower level than the true residual. For
the expensive implementation, true and updated residuals stagnate on the same
level and almost coincide, while the recursive residuals of the Schönauer-Weiss
implementation decrease further; however, this is of no relevance for solving the
linear system.

In Figure 3 we compare various mathematically equivalent residual min-
imizing algorithms for the solution of the same spd system: MinRes, CR-
OMin, and QMR smoothing applied to CG-OMin. Note that CR-OMin and
smoothed CG-OMin are equally accurate (overlapping lower solid lines), while
MinRes (upper solid line), as has to be expected from the recent analysis of
Sleijpen, van der Vorst, and Modersitzki [26], stagnates much earlier. The accu-

24



0 500 1000 1500 2000 2500
10

!18

10
!16

10
!14

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

10
2

iteration number

re
la

tiv
e

 r
e

si
d

u
a

l n
o

rm
s

CG!ORES/QMR, CR!ORES, CG!OMIN/QMR

NOS6(675), cond(A)=7.6505E+6

Figure 4: QMR smoothing of coupled two-termCG (CG-OMin) vs. three-term
CG (CG-ORes), applied to the spd system with the matrix NOS6. Relative
2-norms of updated (dots) and true (initially oscillating solid line) residuals of
CG-ORes. Comparison with norms of updated (upper dashed line) and true
(upper solid line) residuals of CG-ORes|QMR, and with updated (dash-dotted
line) and true (overlapping upper solid line) residual norms of CR-ORes. For
reference, the norms of the updated (lower dashed line) and true (lower solid
line) residuals of CG-OMin|QMR residuals are shown again.

racy of CR-OMin and CG-OMin|QMR is well captured by the estimate κ(A)ε
(lower dotted straight line), while the level of κ2(A)ε (upper dotted straight line)
that one might expect forMinRes from the bound in [26] is here too pessimistic.
We also display the norms of the updated residuals of CR-OMin (dash-dotted
line) and the quantities ρ̃n of MinRes (dashed line), which is, in exact arith-
metic, equal to the residual norm, and comes for free, as a byproduct of the LQ
decomposition that is computed. Compared to the updated residuals of CR-
OMin and CG-OMin|QMR (which can be understood as differences between
r0 and its computed projection onto a Krylov subspace of growing dimension)
the quantities ρ̃n of MinRes seem to be affected by roundoff causing a slight
delay of convergence.

Next, we consider CG and CR algorithms based on three-term recurrences.
Figure 4 shows primarily the relative norms of the updated (dots) and the
true (oscillating solid line, stagnating early) residuals of CG-ORes, as well
as the corresponding norms obtained by QMR smoothing (upper dashed line
and upper solid line, respectively). For comparison, we also show the updated
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NOS6(675), cond(A)=7.6505E+6

Figure 5: QMR smoothing of coupled two-term CG (CG-OMin) vs. coupled
two/three-term CG (CG-ODir), applied to the spd system with the matrix
NOS6. Relative 2-norms of updated (invisible dots, covered by oscillating solid
line) and true (initially oscillating solid line covering the dots) residuals of CG-
ODir. Comparison with the norms of updated (covered upper dashed line) and
true (middle solid line covering the dashed line) residuals of CG-ODir|QMR,
and with updated (dash-dotted line covered by upper solid line) and true (top
solid line covering the dash-dotted line) residual norms of CR-ODir. For refer-
ence, the norms of the updated (lower, visible dashed line) and the true (bottom
solid line) residuals of CG-OMin|QMR are shown once more.

(dash-dotted line) and the true (again mostly the same upper solid line) residual
norms of CR-ORes, and the updated (lower dashed line) and true (lower solid
line) residual norms of CG-OMin|QMR from Figures 2 and 3. Clearly, the
algorithms based on three-term recurrences are less accurate than CG-OMin
of Hestenes and Stiefel, and, again, smoothing does not help to increase the
accuracy. There is also a very minor delay of convergence of the three-term
versions compared to the two-term one, both for the true and updated residual
norms.

In Figure 5 we show the results obtained with the ODir version of CG. Re-
markably, here norms of the true and updated residuals of the primary method,
CG-ODir, overlap (initially oscillating solid line), as do those of CR-ODir
(top solid line), and those of smoothed CG-ODir|QMR (middle solid line).
Again, QMR smoothing yields no higher ultimate accuracy than the primary
method provides, and this accuracy is less than that of CG-OMin and CG-
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ORSREG1(2205), cond(A)=1.0E+2

Figure 6: QMR smoothing of standard BiCG (BiOMin) compared with the
QMRmethod, when applied to a linear system with the matrix ORSREG1. Rel-
ative 2-norms of updated (dots) and true (initially oscillating solid line) residuals
of BiOMin. Comparison with the QMR method and QMR smoothing: up-
dated (lower dashed line) and true (lower solid line) residuals ofBiOMin|QMR,
true residuals of standard three-term QMR (upper solid line) and two-term
QMR (lower solid line overlapping the one of BiOMin|QMR), and the quan-
tities ρ̃n of three-term QMR (upper dashed line) and two-term QMR (dash-
dotted line ending in lowest plateau).

OMin|QMR. Once more, the norms of the true and the updated residuals of
the latter algorithm are shown for comparison.

Now we turn to the nonsymmetric system with the matrix ORSREG1. As
already anticipated in Schönauer’s short note in [23], the natural application
of smoothing is to BiCG, and as shown by Zhou and Walker, BiCG|QMR is
mathematically equivalent to the QMR method without look-ahead. In Fig-
ure 6 we first exhibit the effect of smoothing and note how little persists from
this equivalence when we turn to finite precision arithmetic. We show the rela-
tive 2-norms of the updated (dots) and the true (initially oscillating solid line)
residuals of the standard BiCG algorithm (BiOMin), as well as those of the
updated (lower dashed line) and true (lower solid line ending on same plateau
as BiOMin) residuals of the smoothed BiOMin|QMR. For comparison we fur-
ther display the true residual norms of standard three-term QMR (upper solid
line) and coupled two-term QMR (lower solid line overlapping with that of
BiOMin|QMR), both without look-ahead, and the corresponding quantities ρ̃n
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(upper dashed and dash-dotted lines, respectively), which are a byproduct of
the QR decomposition and are, in exact arithmetic, equal to the quasi-residual
norms. They are often used as indicators for the size of the actual residuals.
Clearly, three-term QMR is less accurate than the other methods, which is no
surprise in view of the mentioned error analysis of Sleijpen et al. [26] for Min-
Res, from which we must expect a fortiori a similar (or even worse) behavior
for three-term QMR. In contrast, two-term QMR is as accurate as BiOMin or
BiOMin|QMR, but not better.

Next we perform also for this nonsymmetric system a comparison of three-
term recurrences with coupled two-term recurrences, both of the primary and
the QMR-smoothed algorithms. From Gutknecht and Strakoš [17] we have to
expect that the primary three-term algorithm BiORes (top dash-dotted line) is
much less accurate than standard BiCG (BiOMin) (lower initially oscillating
solid line), and this is fully confirmed in Figure 7. Moreover, from our results
we have to expect that this discrepancy persists if we apply smoothing, and this
is indeed confirmed too. Note that here not even the updated BiORes (upper
set of dots) and BiORes|QMR (upper dashed line) residual norms decay to
zero, which is a counterexample to the heuristic argument that we have given,
but, at least, they are several orders of magnitude smaller than the norms of
the true residuals. Moreover, the true BiORes residual history has some strong
spikes even after stagnation, and due to such a spike, more than an order of
magnitude in accuracy is lost after the residuals first stagnates on a 10−7 level.

Finally, in Figure 8 we compare QMR smoothing with MR smoothing, both
for the three-term and the coupled two-term version of BiCG. Compared to the
difference between the primary algorithms, those between MR smoothing and
QMR smoothing are rather small, both for the updated (dot-dashed and dashed
lines, respectively) and for the true residuals (solid lines).

7 Conclusions

We have first shown by a contrived example that the ultimate accuracy, that is
the level of stagnation of the true residual, can be much worse forMR smoothing
than for QMR smoothing. However, such a difference seems to appear rarely
in practice. For QMR smoothing and for all three implementations of both
CG (OMin, ORes, and ODir) and BiCG (BiOMin, BiORes, and BiODir)
considered, the smoothing relations are locally satisfied up to quantities pro-
portional to machine precision. The convergence of the true smoothed residuals
is not faster than that of the original residuals, but at least it also does not
deteriorate due to rounding errors. In other words, smoothing—despite earlier
hopes—does not improve the attainable accuracy. But by examples we have
shown that by smoothing residuals of algorithms based on two-term recursions
one can construct the minimum residual iterates for an spd system or the quasi-
minimal residual iterates for a nonsymmetric system with higher accuracy than
with MinRes and three-term QMR, respectively, and with comparable accu-
racy as with coupled two-term CR or QMR. (Using a result of Sleijpen, van
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Figure 7: QMR smoothing of coupled two-term BiCG (BiOMin) vs. coupled
three-term BiCG (BiORes), applied to the nonsymmetric system with the
matrix ORSREG1. Relative 2-norms of updated (upper set of dots) and true
(initially oscillating top dash-dotted line) residuals of BiORes, and of updated
(lower set of dots) and true (initially oscillating solid line) residuals of BiOMin.
QMR-smoothed updated (upper dashed line) and true (top solid line) residuals
of BiORes|QMR, and of updated (bottom dashed line) and true (lower solid
line, overlapping with the one of BiOMin) residuals of BiOMin|QMR.
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Figure 8: QMR smoothing vs. MR smoothing, both for coupled two-term
and three-term BiCG, applied to the nonsymmetric system with the ma-
trix ORSREG1. Relative 2-norms of updated BiOMin|QMR residuals (lower
dashed line) vs. updated BiOMin|MR residuals (lower dot-dashed line), as well
as norms of true BiOMin|QMR vs. BiOMin|MR residuals (nearly overlapping
lower solid lines). Comparison with norms of updated BiORes|QMR residu-
als (upper dashed line) and updated BiORes|MR residuals (upper dot-dashed
line), as well as norms of true BiORes|QMR residuals (middle solid line) and
BiORes|MR residuals (top solid line).
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der Vorst, and Modersitzki [26], this observation can also be justified theoreti-
cally.) Generally, algorithms based on coupled two-term recurrences are again
seen to be sometimes much more accurate than the corresponding ones using
three-term recurrences for residuals and iterates.
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