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1 Introduction

Among the Krylov space solvers for linear systems Ax = b (with A an N ×N -
matrix and b an N -vector) there are quite a few that are based on three-term
recurrences for both the residuals rn and the iterates xn. Given an initial
approximation x0, we let r0 = b − Ax0, r−1 = o, x−1 = o, β−1 = 0 and
consider for n ≥ 0, while γn $= 0,

rn+1 = (Arn − rnαn − rn−1βn−1)/γn ,

xn+1 = −(rn + xnαn + xn−1βn−1)/γn .
(1)

In order that the recurrences (1) be consistent with the residual definition rn ≡
b−Axn, the scaling coefficients γn need to be chosen according to

γn = −(αn + βn−1), (2)

which means that the tridiagonal matrix with coefficients βn−1, αn, and γn in
its (n+ 1)st column has column sums zero; see, for example, § 4.3 of [14].

The list of algorithms based on (1) and (2) includes the Chebyshev iteration
[24, 21, 19], the second-order Richardson iteration [21] (which is the station-
ary form of the Chebyshev iteration), the three-term versions (ORes) of the
conjugate-gradient (CG) and the conjugate residual (CR) methods [24, 15],
and the three-term version (BiORes) of the unsymmetric or two-sided Lanc-
zos method [18, 14] (which is a variation of the biconjugate gradient or BiCG
method); see also [2, 15]. On the other hand, for example, neither the version of
CG suggested by Rutishauser [21] (based on recurrences for the increments in x

and r) nor the minres algorithm of Paige and Saunders [20], which implements
the CR method for symmetric indefinite matrices, nor their symmlq algorithm
are covered by our assumptions. An interesting contribution to the rounding
error analysis of minres and symmlq can be found in [23].

CG, CR, and BiCG have better known versions (OMin and BiOMin) that
are instead based on three two-term recurrences involving in addition to the
iterates and their residuals also direction vectors pn: for n ≥ 0,

pn = rn + pn−1ψn−1 ,

rn+1 = rn −Apnωn ,

xn+1 = xn + pnωn ,

(3)

with p0 = r0. Other methods like OrthoMin [28] use the last two of these
recurrences, but have a more complex update formula for the direction vectors.
In principle, the version (3) can be obtained from the three-term version (1)-
(2) by an LU decomposition of the tridiagonal matrix of recurrence coefficients;
see [1, 5, 14, 20]. The folklore is that implementations based on the two-term
recurrences (3) are less affected by roundoff than those based on the three-term
recurrences (1)-(2). It should be pointed out that the meaning of the phrase
less affected by roundoff should be carefully specified, otherwise the previous
statement is imprecise and can be misleading.
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Recent work of Greenbaum [10, 11] shows that under the sole assumption
that the last two recurrences (3) hold, there is a limitation on the accuracy of
the iterates computed in finite precision arithmetic; the corresponding residuals
b−Axn cannot be expected to decrease below a certain level. (A similar, but
somewhat weaker result was given by Sleijpen, van der Vorst, and Fokkema [22].)
This level depends primarily on the largest norm of an approximate solution xn

generated during the iteration, but it does not explicitly depend on how the
coefficients ωn and ψn are determined. Since, for example, the BiCG method
may produce very large intermediate iterates and residuals, this result is of great
importance in practice. In contrast, related work on GMRES showed that the
size of intermediate iterates does not play a role [4, 12].

In this paper we investigate and answer the question when and why algo-
rithms based on two three-term recurrences of the form (1)–(2) usually do not
produce as small residuals as mathematically equivalent algorithms based on
three two-term recurrences (3). Similarly to [10, 11, 22, 4], we investigate the
gap fn ≡ (b − Axn) − rn between the explicitly computed residuals b −Axn

and the recursively updated residuals rn. We will refer to the former as true
residuals and to the latter as updated residuals. We show that for computations
based on (1)–(2), the gap fn satisfies a nonhomogeneous second order difference
equation. By writing n steps of this difference equation as the superposition
of n+ 1 homogeneous difference equations (in a different context, this idea has
been used by Grcar [8]), we receive an explicit formula for fn in terms of the
local roundoff errors. The resulting formula contains, in addition to the sum of
local errors (which is the analog of the sum that represents the gap fn in the case
of two-term recurrences analyzed by Greenbaum), each local error multiplied by
a set of potentially large multipliers. Moreover, the local errors may become for
the two three-term recurrences much larger than for two-term recurrences.

Assume that—in any application for which they are suitable—the methods
based on the recurrences (1)–(2) or (3) will eventually produce small updated
residuals (whose norm will decrease to the level of roundoff occurring in the finite
precision computation of the residual b −Ax for the exact solution x). Then
the size of the gap fn determines the ultimate attainable accuracy measured by
the size of the true residual; a large gap will eventually mean a poor residual
b−Axn. The methods based on (1)–(2) are proven to be in this sense potentially
much less accurate than those based on (3). In this sense, the folklore statement
mentioned above is correct.

Our theoretical conclusions are well supported by numerical experiments.
It should be mentioned that the question of the ultimate attainable accuracy

of iterative methods was studied by several other authors in addition to those
mentioned above; see, for example, [3, 17, 25, 26, 27]. For a more detailed
discussion we refer to [11]. However, up to our knowledge, the problem of
numerical differences between the recurrences (1)–(2) and (3) was not analyzed
in these papers.
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2 Local roundoff and the basic recurrence for

the gap

In finite precision arithmetic, recurrences (1) have to be replaced by

rn+1 = (Arn − rnαn − rn−1βn−1 + gn)/γn ,

xn+1 = −(rn + xnαn + xn−1βn−1 − hn)/γn ,
(4)

where gn and hn contain all the local rounding errors produced at the step n+1,
and rn, xn, etc., denote the actually computed quantities.

The first step of the analysis consists in estimating these local errors. We
make the usual assumption that the floating-point arithmetic with roundoff unit
ε satisfies

fl(a± b) = a(1 + ε1)± b(1 + ε2), |ε1|, |ε2| ≤ ε, (5)

fl(a op b) = (a op b)(1 + ε3), |ε3| ≤ ε, op = ∗, /. (6)

Then the roundoff in the matrix-vector multiplication (computed in a stan-
dard way) is bounded according to

|fl(Ap) −Ap| ≤ m ε |A| |p|+O(ε2), (7)

where |A| and |p| denote the elementwise absolute values of A and p, and m is
the maximal number of nonzeros in any row of A. Assuming that the first and
the third term in (1) are summed up first, we get by applying these rules

|gn| ≤ ((m+ 3) |A| |rn|+ 3 |rnαn|+ 4 |rn−1βn−1|) ε+O(ε2), (8)

|hn| ≤ (3 |rn|+ 3 |xnαn|+ 4 |xn−1βn−1|) ε+O(ε2). (9)

Both gn and hn are bounded by a quantity proportional to ε, but the behavior
of their bounds close to convergence is different. While the updated residual
will become eventually small in reasonable computations, and the bound for
|gn| will decrease correspondingly, the bound for |hn| will not. Note that we
could consider a norm of gn and hn here, but there is no real need for this.

In the following estimates we assume that the computed coefficients αn,
βn−1, and γn satisfy, in analogy to (2),

γ0 = −α0 , γn = −(αn + βn−1) + εn (n > 0) (10)

with error terms εn (note that this is another symbol than ε) that are bounded
by

|εn| ≤ (|αn|+ |βn−1|) ν ε (n > 0) , (11)

where ν is a suitable small constant. Note that ν = 1 when γn is computed
using (2). For later convenience we set ε0 = 0.

We want to estimate the norm of the difference (or, gap) between updated
and true residuals, hence, of

fn ≡ b−Axn − rn .

3



For n = 0, the gap f0 is the roundoff in computing r0 from A, x0, and b; that
is, f0 = b−Ax0 − fl(b−Ax0), and this is bounded by

|f0| ≤ ((m+ 1) |A| |x0|+ |b|) ε+O(ε2). (12)

Inserting the recursions (4) and the equality (10) we have

fn+1 = b+ (Arn +Axnαn +Axn−1βn−1 −Ahn)
1

γn

− (Arn − rnαn − rn−1βn−1 + gn)
1

γn

= − [(b−Axn − rn)αn + (b−Axn−1 − rn−1)βn−1 − b εn +Ahn + gn]
1

γn

= − [fn αn + fn−1 βn−1 − b εn +Ahn + gn]
1

γn
. (13)

Let us gather the last three terms, the local errors, in

ln ≡ (−b εn +Ahn + gn)
1

γn
.

By inserting the estimates (8), (9), and (11) we see that

|ln| ≤ [ |b| (|αn|+ |βn−1|) ν + (m+ 6) |A| |rn|+ 3 (|A| |xn|+ |rn|) |αn|

+ 4 (|A| |xn−1|+ |rn−1|) |βn−1| ]
ε

|γn|
+O(ε2).

For n = 0, we have γ0 = −α0, ε0 = 0, and thus

l0 = (Ah0 + g0)
1

γ0
, f1 = f0 − l0.

In summary, (13) yields for the gaps fn the linear second order difference equa-
tion

f1 = f0 − l0 , fn+1 = −
(
fn

αn

γn
+ fn−1

βn−1

γn
+ ln

)
(n ≥ 1), (14)

or, equivalently, the pair of first order difference equations
[

fn
fn+1

]
=

[
O I

−βn−1

γn
I −αn

γn
I

] [
fn−1

fn

]
−
[

o

ln

]
(n ≥ 1) (15)

with f1 = f0 − l0. These recurrences describe the propagation of the local
rounding errors lk, k = 0, . . . , n. We see that the gap fn between the updated
and the true residuals after n steps is determined by a nonhomogeneous second
order difference equation. This is in sharp contrast to the error behavior of the
coupled two-term recurrences, where the gap after n steps is just a simple sum
of local errors; see [11]. Consequently, as we will see in the next section, the
two three-term recurrences may suffer from a strong amplification of the local
errors.
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3 Formula for the gap between true and up-

dated residuals

For the moment, assume that the term εn in (10) vanishes, that is,

−
αn

γn
−

βn−1

γn
= 1 (16)

holds even in finite precision arithmetic. Denote by zn+1 = D(zn−m+1, zn−m;m)
the result of m steps of the recurrence

zk+1 = −zk
αk

γk
− zk−1

βk−1

γk
, k = n−m+ 1, . . . , n, (17)

started at the step n−m. Note that due to (16), zn−m+k+1 = D(zn−m+1, zn−m; k) =
zn−m for all k whenever zn−m+1 = zn−m. Our discussion will rely heavily on
this fact.

First, we derive how the gap fn+1 is affected by f0. Clearly, the part of this
gap that depends on f0 is given by

D(f0, f0;n) = f0 ,

that is, f0 is not amplified in the process. Next we have to analyze the depen-
dence of fn+1 on the elementary rounding errors l0 born in the first step of the
algorithm. Clearly, considering (14) for n = 1, subtracting and adding l0

β0

γ1
, the

contribution of l0 to the gap fn+1 can be decomposed into two parts: the part
which propagates through the recurrence without any change,

D(−l0,−l0;n) = − l0 ,

and the part depending on the modified local error of the first step,

l̃1 ≡ l0
β0

γ1
+ l1 ,

which has yet to be analyzed. Repeating the same idea for the steps 2 through n,
we can conclude that the gap fn+1 can be written as the following superposition
of effects of local errors:

fn+1 = f0 − l0

− l0
β0

γ1
− l1

− l0
β0β1

γ1γ2
− l1

β1

γ2
− l2 (18)

...

− l0
β0β1 · · ·βn−1

γ1γ2 · · · γn
− . . .− ln−1

βn−1

γn
− ln

5



Let us give another derivation of this fundamental result. From (15) we see
that, in view of f1 = f0 − l0,

[
fn

fn+1

]
=

n∏

k=1

[
O I

−βk−1

γk
I −αk

γk
I

][
f0
f0

]
(19)

−
n∑

j=0

n∏

k=j+1

[
O I

−βk−1

γk
I −αk

γk
I

][
o
lj

]
.

Here, due to (16), the matrices in the first product leave [ f"0 f"0 ]" invariant.
In the product that appears after the sum, we split off the last matrix (the one
where k = j + 1) and apply it to [ o" l"j ]" to get

[
lj

−lj
αj+1

γj+1

]
=

[
lj
lj

]
+

[
o

lj
βj

γj+1

]

.

Now we have again a first term that is left invariant by the matrices it is multi-
plied with and a second term of the form [ o" ) ]" that can be treated in the
same way that [ o" l"j ]" was treated before. Repeating this trick we finally
obtain

[
fn

fn+1

]
=

[
f0
f0

]
−

n−1∑

j=0

[
lj
lj

](
1 +

βj

γj+1

+ · · ·+
βj · · ·βn−2

γj+1 · · · γn−1

)
(20)

−
n∑

j=0

[
o

lj

]
βj · · ·βn−1

γj+1 · · · γn
,

which is the same as formula (18), written for both fn and fn+1.
Now we describe how the picture changes when the coefficients αn, βn−1,

and γn are computed imprecisely, that is, when (16) is replaced by (10). We
can follow the analysis described above with the only difference that we should
add the effect of the quantity f0ε1/γ1 propagating through n − 1 steps of the

recurrence (17) with z1 := o, the effect of l̃1ε2/γ2 propagating through n − 2
steps of (17) with z2 := o, and so on. As long as the constant ν is small and
εn is close to the machine precision ε, these modifications will only cause effects
proportional to O(ε2). In (18) we should therefore add termsO(ε2) to individual
terms of the sum. However, once the size of these terms is considered, the new
O(ε2) contributions can be thought of as being incorporated in the O(ε2) terms
already present in the bounds for f0, l0, . . . , ln. Therefore we can use (18) in
the further analysis with no change and no limitation.

We summarize our main result in the following theorem.
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Theorem 3.1 Up to a term O(ε2), the gap fn+1 between true and updated
residuals is given by the formula

fn+1 = f0 −
∑n

j=0 lj

− l0

(
β0

γ1
+ β0β1

γ1γ2
+ · · ·+ β0···βn−1

γ1···γn

)

− l1

(
β1

γ2
+ · · ·+ β1···βn−1

γ2···γn

)

...

− ln−1
βn−1

γn
.

(21)

It is tempting to estimate ||fn|| directly on the basis of (19), using an appro-
priate norm for the 2× 2 block matrices. However, the resulting estimate is too
generous as it does not take into account the fundamental special properties of
these block matrices.

4 Comparison with three coupled two-term re-

currences

In our notation, Greenbaum’s gap [11] for the coupled two-term recurrences (3)
is

fGn+1 = f0 −
n∑

j=0

lGj , where lGj ≡ AhG
j + gG

j , (22)

with gG
n and hG

n denoting the local rounding errors in the computation of the
first two recurrences of (3), analogously to gn and hn in (4). A comparison of
(22) with (21) is instructive.

We point out that the size of the local rounding errors may be consider-
ably larger in the two three-term recurrences than in the three two-term re-
currences; the size of the local error lGj in the step n is essentially bounded by
O(ε)||A|| max1≤j≤n ||xj ||, see [11], where ||A|| denotes the spectral norm of A.
In our case, a similar term in the bound for ||ln|| would be multiplied by the fac-
tor (3|αn|+4|βn−1|)/|γn|, which can be substantially larger than 1; see Section 5
below for the specific case of the CG method. Nevertheless, as documented by
our numerical experiments in Section 6, the difference between the implementa-
tions based on the two three-term recurrences (1)–(2) and those using the three
two-term recurrences (3) cannot be explained by the size of the local rounding
error terms only. The amplification of the local errors due to possibly large
multipliers plays a substantial if not decisive role: the additional terms in (21)
can be of similar size as or even dominate the sum of local rounding errors. If
the multipliers become very large, then the two three-term recurrences (1)–(2)
are likely to exhibit a dramatically wider gap than the two-term recurrences (3).

Assuming, as in [11], that the updated residuals become eventually negligi-
ble, the relations (21) and (22) determine the ultimate attainable accuracy of

7



the methods based on (1)–(2) and (3), respectively, measured by the norm of
the true residuals.

5 Example: conjugate gradient method

For the following discussion of the size of the multiplicative factors

k∏

j=i

βj−1

γj
, (1 ≤ i ≤ k)

we restrict ourselves to symmetric positive definite matrices A and to the
method of conjugate gradients (CG). First, for the simplicity of our exposition,
we assume exact arithmetic.

The coefficients in the two-term recurrences (3) are for CG given by [16]

ωn =
〈rn, rn〉

〈pn,Apn〉
, ψn =

〈rn+1, rn+1〉
〈rn, rn〉

. (23)

Both ωn and ψn are positive. Without specific knowledge about A and r0
we cannot say anything more about their values. More precisely, given any
two sequences of positive numbers, ω0, . . . ,ωN−1 and ψ0, . . . ,ψN−2, there is
a symmetric positive definite matrix A and a vector r0 such that the classical
OMin form (Hestenes-Stiefel implementation, denoted further as HS) of the CG
method applied to A with the initial residual r0 generates the given coefficients;
see Theorem 18:3 of Hestenes and Stiefel [16]. This result allows us to construct
examples having any given set of multipliers, and thus to find some with very
large gaps. On the other hand, if the matrix A is reasonably well conditioned
and if the CG method converges well, then the bounds derived for the multipliers
will show that no substantial amplification of the local rounding errors will
occur.

It is well known [20, 5, 1], that by eliminating the direction vectors pn in (3)
we obtain the three-term (ORes) variant of the CG method with recurrences
of the form (1)–(2). From the orthogonality of the residuals we receive

αn =
〈rn,Arn〉
〈rn, rn〉

, βn−1 = γn−1

〈rn, rn〉
〈rn−1, rn−1〉

. (24)

Using (23) and γn = −(αn + βn−1), we see that the coefficients of the two
implementations are related by

γn = −
1

ωn
< 0,

βn−1

γn
=

ψn−1ωn

ωn−1

≥ 0,
αn

γn
= −1−

ψn−1ωn

ωn−1

≤ −1,

(25)
where ψ−1 = 0, ω−1 = 1. The equality is attained in the last two formulas
only if xn = x, that is, if we have reached the solution. We conclude that the

8



multiplicative factors in (18) have the form

k∏

j=i

βj−1

γj
=

ωk

ωi−1

k∏

j=i

ψj−1 , (26)

and therefore, they may exhibit, in general, an arbitrary behavior.
For a given matrix A and an initial residual r0, it is possible to relate the

size of the multipliers to the condition number of A and the convergence of the
CG process measured by the norm of the residuals. First, according to Theorem
5:5 in [16],

〈pn,Apn〉
〈pn,pn〉

<
1

ωn
= |γn| <

〈rn,Arn〉
〈rn, rn〉

,

which yields, with the spectral norm,

1

‖A−1‖
=

1

σmin(A)
<

1

ωn
= |γn| < ‖A‖. (27)

Rewriting the multipliers in the form

k∏

j=i

βj−1

γj
=

ωk

ωi−1

||rk||2

||ri−1||2
,

we receive the following bounds:

1

κ(A)

||rk||2

||ri−1||2
≤

k∏

j=i

βj−1

γj
≤ κ(A)

||rk||2

||ri−1||2
, (28)

where κ(A) is the spectral condition number of the matrix A. Note that

||rk||2

||ri−1||2
=

||A1/2 A1/2 (x − xk)||2

||A1/2 A1/2 (x− xi−1)||2
≤

||A||
σmin(A)

||x− xk||2A
||x− xi−1||2A

≤ κ(A)

due to the monotonicity of the A-norm of the error. Consequently,

k∏

j=i

βj−1

γj
≤ κ2(A).

As mentioned in Section 2, the bound for the size of the local rounding errors
ln in the two three-term recurrences (1)–(2) contains the factors |αn/γn| and
|βn−1/γn|. In view of (24) and (27) we have 0 ≤ αn ≤ ‖A‖ and |γn|−1 ≤ ‖A−1‖.
Using (25), we obtain the estimate

0 ≤
βn−1

γn
≤

∣∣∣∣
αn

γn

∣∣∣∣ ≤ κ(A). (29)

Surprisingly, to establish that the developed bounds remain relevant in the
case of finite precision computation we do not need any extra work: the results
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of [9] and [13] imply that in finite precision arithmetic the following slightly
relaxed bounds hold:

(1− ϑ)
1

κ(A)

||rk||2

||ri−1||2
≤

k∏

j=i

βj−1

γj
≤ (1 + ϑ) κ(A)

||rk||2

||ri−1||2
, (30)

k∏

j=i

βj−1

γj
≤ (1 + ϑ) κ2(A) , (31)

βn−1

γn
≤

∣∣∣∣
αn

γn

∣∣∣∣ ≤ (1 + ϑ) κ(A) , (32)

where 0 ≤ ϑ + 1 (here, we make the usual assumption about the numerical
nonsingularity of the matrix A; for details see the references mentioned above).
Note, however, that the conclusion we just made is far from trivial. The values
of the actually computed recurrence coefficients and of the residual norms may
be completely different from their theoretical counterparts. But still, essentially
the same bounds hold!

The large size of the upper bounds for ill-conditioned A suggest that though
the size of the local errors may contribute to a possibly large gap between true
and updated residuals, the further amplification of the local errors due to large
multipliers may have a much stronger effect.

6 Numerical experiments with the conjugate gra-

dient method

The construction of our numerical experiments follows ideas from [16].
Example 1. We consider N = 48 and aim at the following values of the

coefficients (23) for the classical HS form of the CG method:

ω0 = ω1 = . . . = ω47 = 1,

ψ0 = 10, ψ1 = ψ3 = . . . = ψ43 = 0.01, ψ2 = . . . = ψ42 = 100,(33)

ψ44 = 10−2, ψ45 = 10−3, ψ46 = 10−4.

Using the well-known formulas [9]

T0,0 =
1

ω0

,

Ti,i =
1

ωi
+

ψi−1

ωi−1

, (34)

Ti,i−1 = Ti−1,i =

√
ψi−1

ωi−1

, i = 1, . . . , N − 1,

we construct an N by N symmetric positive definite tridiagonal matrix T with
spectral norm ‖T‖ = 102 and condition number κ(T) ≈ 2 × 106 (for N = 48).
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For any unitary N by N matrix V, the CG method (3), (23) applied to the
system Ax = b with A = VTV$ and r0 = b − Ax0 = Ve1 then generates
in steps 1 to N the prescribed coefficients ωj, ψj , j = 0, . . . , N − 1, and the
residual norms

‖rj‖ = 101/2 for j = 1, 3, . . . , 43,

‖rj‖ = 10−1/2 for j = 2, 4, . . . , 44,

with ‖rj‖ sharply decreasing in the steps 45 through 48. For an initial residual
different from Ve1 the behavior of the residual norms will be different, but we
may still expect some oscillations and, consequently, some large multipliers.

We have used the construction described above, choosing V as the unitary
matrix resulting from the QR decomposition of a randomly generated N by
N matrix; in Matlab notation [V,R] = qr(randn(N,N)). Furthermore, we
have chosen x = (1, . . . , 1)", b = Ax, x0 = o, r0 = b. Hence, r0 $= Ve1.
Experiments were performed on an Sun Ultra 10 Workstation with ε ≈ 1.11×
10−16 using Matlab 5.0.

Three implementations of the CG method have been compared: except for
Figure 9, solid lines always represent results of the classical OMin or Hestenes-
Stiefel version HS given by (3) and (23), dots those of the Rutishauser variant
(R) described in [21], and dashed lines those of the ORes implementation of
the form (1)–(2) presented, for example, in [15], p. 143, and denoted here as
HY. In Rutishauser’s variant the recurrences are, for n ≥ 0, of the form

∆rn = (−Arn +∆rn−1 ηn−1) τ−1
n , rn+1 = rn +∆rn ,

∆xn = (rn +∆xn−1 ηn−1) τ−1
n , xn+1 = xn +∆xn ,

(35)

and they are started with r0 = b −Ax0, ∆r−1 = o, ∆x−1 = o, and η−1 = 0.
The coefficients are computed according to

τn =
〈rn,Arn〉
〈rn, rn〉

− ηn−1 , ηn = τn
〈rn+1, rn+1〉

〈rn, rn〉
. (36)

In the HY variant, the following recurrences are used for n ≥ 0:

rn+1 = θn+1(−µn+1Arn + rn) + (1 − θn+1)rn−1 ,

xn+1 = θn+1(µn+1rn + xn) + (1− θn+1)xn−1 .
(37)

They are started with r0 = b −Ax0, θ1 = 1, x−1 = o, and r−1 = o, and the
coefficients are computed according to

µn =
〈rn, rn〉
〈rn,Arn〉

, θn+1 =

(
1−

µn+1

µn

〈rn, rn〉
〈rn−1, rn−1〉

1

θn

)−1

. (38)

Clearly, the finite precision equivalent of (37) can be written in the form (4).
Consequently, Theorem 3.1 applies, although the bounds for the size of the local
errors derived in Section 2 have to be modified slightly.
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Figure 1: Example 1: Norms of the updated residuals for the two-term (HS;
solid line), three-term (HY; dashed line), and Rutishauser (R; dots) variants of
the CG method.

Norms of the updated residuals are compared in Figure 1. We can see
the oscillations followed by the fast convergence for n around 70. Of course,
theoretically the method should converge in 48 steps, but, as can be explained
by the analysis in [9, 13], the convergence is delayed due to roundoff effects.
Norms of the true residuals ‖b−Axn‖ are shown in Figure 2. Clearly, residual
norms of the HY variant stagnate at a significantly worse level than those of
the HS variant, as predicted by our analysis.

In Figure 3 the norms of the gaps fn we investigated, that is, of the differences
between true and updated residuals, are displayed. Note that for the HY variant
the gap starts to grow soon, much earlier than one can detect from the two
previous figures. Figure 4 shows the behavior of the error norms ‖x − xn‖.
Surprisingly, the differences in the error norms are much less pronounced than
those in the true residuals.

Example 2. The second example makes use of the same construction, but
now, again for N = 48, we aim at

ω0 = ω1 = . . . = ω47 = 1,

ψ0 = ψ1 = . . . = ψ39 =
√
2, ψ40 = . . . = ψ46 = 2−7,

(39)

which gives ‖T‖ ≈ 4.8 and κ(T) ≈ 6 × 107. Again, we consider the system
Ax = b, A = VTV$, where V is determined as in Example 1, x = (1, . . . , 1)",
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Figure 2: Example 1: Norms of the true residuals computed as ‖b−Axn‖ for
the two-term (HS; solid line), three-term (HY; dashed line), and Rutishauser
(R; dots) variants of the CG method.

b = Ax. If we chose x0 so that r0 = Ve1, we would find residuals with

‖rn‖ = (
√
2)n for n = 1, 2, . . . , 40,

and a sharply decreasing norm in the subsequent steps. However, we have
again chosen x0 differently, namely x0 = o, so that r0 = b. Then we do not
find an initially increasing, but a quickly decreasing residual norm, both for
the updated (Figure 5) and the true residual (Figure 6); note the significant
oscillation around n = 45. The norm of the true residuals of the HY variant
stagnates again at a significantly worse level than in the HS variant. Figure 7
shows the norm of the gaps fn. The differences in the norms of the errors,
displayed in Figure 8, are again less pronounced.

To illustrate the contribution of the size of local rounding errors to the
gap fn, we plotted in Figure 9 the size of the coefficients |αn/γn|, βn/γn and
|1/γn|. Clearly, while the gap exhibits a loss of accuracy of about six orders
of magnitude, the anticipated contribution of the local errors to this gap is not
greater than about two orders of magnitude. The disastrous difference between
updated and true residuals must therefore be caused by an amplification of
the local rounding errors due to large multipliers. In the analogous figure (not
shown) for Example 1 the same behavior is slightly less pronounced.

A detailed explanation of the performance of the Rutishauser variant and of
the behavior of the error in all variants requires further work.
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Figure 3: Example 1: Norms of the differences (gaps) fn between the true and
updated residuals for the two-term (HS; solid line), three-term (HY; dashed
line), and Rutishauser (R; dots) variants of the CG method.

7 Conclusions

We have explained why the ultimate attainable accuracy measured by the norm
of the true residual b−Axn can be much worse for implementations of Krylov
space methods based on the two three-term recurrences (1)–(2) than for the
corresponding implementations based on two-term recurrences of the form (3).
For example, in the three-term (ORes) version of the CG method, the gap
between true and updated residuals is affected not only by the maximum size of
the intermediate iterates ||xk|| as in the coupled two-term (OMin) version, but
also by oscillations of the squared norms of the residuals, that is, the quantities
||rk||2/||ri−1||2, 1 ≤ i ≤ k.

Many well-known algorithms like minres and symmlq [20], or the three-
term and the coupled two-term versions of the QMR method [6, 7], as well as
the Rutishauser variant of the CG method are not of the form (1)–(2) or (3).
Hence, the results presented in this paper do not apply to them.

Chris Paige suggested another derivation of the results presented in this
paper, based entirely on matrix formulations of the algorithms. His approach
brings some additional insight into the problem and has potential for further
generalization of the results. We hope to report about the results of the joint
subsequent work in the near future.
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Figure 4: Example 1: Norms of the errors ‖x−xn‖ for the two-term (HS; solid
line), three-term (HY; dashed line), and Rutishauser (R; dots) variants of the
CG method.
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Figure 5: Example 2: Norms of the updated residuals for the two-term (HS;
solid line), three-term (HY; dashed line), and Rutishauser (R; dots) variants of
the CG method.
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Figure 6: Example 2: Norms of the true residuals computed as ‖b−Axn‖ for
the two-term (HS; solid line), three-term (HY; dashed line), and Rutishauser
(R; dots) variants of the CG method.
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Figure 7: Example 2: Norms of the differences (gaps) fn between the true and
updated residuals for the two-term (HS; solid line), three-term (HY; dashed
line), and Rutishauser (R; dots) variants of the CG method.
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Figure 8: Example 2: Norms of the errors ‖x−xn‖ for the two-term (HS; solid
line), three-term (HY; dashed line), and Rutishauser (R; dots) variants of the
CG method.
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Figure 9: Example 2: Size of the three-term recurrence coefficients |αn/γn|
(solid line), βn/γn (dots) and |1/γn| (dashed line) for the HY variant of the CG
method
.
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