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Abstract

When standard boundary element methods (BEM) are used to solve the linearized
vector Molodensky problem we are confronted with two problems: (i) the absence of
O(|x|−2) terms in the decay condition is not taken into account, since the single layer
ansatz, which is commonly used as representation of the perturbation potential, is of the
order O(|x|−1) as x → ∞. This implies that the standard theory of Galerkin BEM is not
applicable since the injectivity of the integral operator fails; (ii) the N ×N BEM stiffness
matrix is dense, with N typically of the order 105. Without fast algorithms, which provide
suitable approximations to the stiffness matrix by a sparse one with O(N(logN)s), s ≥ 0,
non-zero elements, high-resolution global gravity field recovery is not feasible.

We propose solutions to both problems. (i) A proper variational formulation taking
the decay condition into account is based on some closed subspace of co-dimension 3
of L2(Γ). Instead of imposing the constraints directly on the boundary element trial
space, we incorporate them into a variational formulation by penalization with a Lagrange
multiplier. The conforming discretization yields an augmented linear system of equations
of dimension N + 3 × N + 3. The penalty term guarantees the well-posedness of the
problem, and gives precise information about the incompatibility of the data. (ii) Since
the upper left submatrix of dimension N × N of the augmented system is the stiffness
matrix of the standard BEM, the approach allows to use all techniques to generate sparse
approximations to the stiffness matrix such as wavelets, fast multipole methods, panel
clustering etc. without any modification. We use a combination of panel clustering and
fast multipole method in order to solve the augmented linear system of equations in O(N)
operations.

In order to demonstrate the potential of the method we solve a Robin problem on the
sphere with a nullspace of dimension 3. For N = 65538 unknowns the matrix assembly

takes about 600 s and the solution of the sparse linear system using GMRES without any
preconditioning takes about 8 s on a workstation. 30 GMRES iterations are sufficient to

make the error smaller than the discretization error.
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1 Introduction

The determination of the exterior gravity field of the Earth from terrestrial observations is

usually formulated in terms of a boundary value problem (BVP) for the Laplace-Poisson
equation. Depending on the type of observations several boundary value problems can be
defined. However, after linearization around a suitable approximate solution all problems

are more or less special cases of the exterior oblique derivative BVP for the Laplace
operator; the boundary surface is either the Earth’s surface, a suitable approximation

to it like a telluroid or an ellipsoid of revolution. Numerical solutions of the linearized
BVP are usually based on various additional approximation steps like, e.g., spherical

approximation and constant radius approximation.

Here we consider Galerkin methods for integral equation formulations of the linearized

BVP which avoid any of the aforementioned approximations. The price to pay for this
is that the kernel functions are non-isotropic and the boundary surface is non-spherical.

Therefore, the assembly of the linear system of equations becomes more elaborate; more-
over, since the system matrix is dense, sparse solvers cannot be used any more to solve
for the huge number of unknowns.

There is another aspect which has to be taken into account in the formulation of geodetic

BVPs. Usually, the low frequency components of the geopotential are accurately obtained
by satellite measurements. That means that a number of coefficients in the spherical
harmonics series expansion of the geopotential is determined with a precision that cannot

be improved by terrestrial data. This is accounted for in the formulation of the geodetic
BVP in the form of additional constraints to the perturbation problem. The same holds

if the geodetic BVP lacks well-posedness. For instance, the vector Molodensky BVP
requires the first order terms in the expansion of the geopotential in spherical harmonics
to vanish in order to ensure uniqueness of the solution; for the same reason the Altimetry-

Gravimetry I & II BVPs require that no zero order term is present. Finally, if the measured
data is not in the range of the operator the problem may even not have any solution at

all.

Therefore, a numerical approach has to be designed that can handle these peculiarities
of geodetic BVPs. As far as Galerkin methods to integral equations are concerned this
implies the following questions: (i) how to properly handle the conditions that ensure

well-posedness of the problem, (ii) how to properly include satellite-derived geopotential
models, and (iii) how to design a fast algorithm which is suitable for high resolution global

geopotential recovery with a performance that is almost independent of (i) and (ii)?

Our solution to (i) and (ii) is based on a new saddle point formulation which avoids to

modify the trial and test spaces. The solution to (iii) is a fast algorithm that combines
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ideas of panel clustering and fast multipole methods, and which is easy to combine with
the saddle point formulation.

2 The mathematical model

The linearized Molodensky problem reads as follows: Given a differentiable embedding

ϕ : S2 → R3 and a function f on the surface Γ := ∂ϕ(S2) ⊂ R3: find U(x) satisfying

#U(x) = 0 x ∈ ext Γ , (2.1a)

U(x) + 〈∇U(x), h(x)〉 = f(x) x ∈ Γ , (2.1b)

U(x) =
c

|x| +O(|x|−3), |x| →∞ , c ∈ R\{0} . (2.1c)

Under certain conditions on ϕ(x) and the field h(x), which we shall assume to hold in
what follows, (2.1) is a regular oblique derivative problem, and Fredholm’s alternative
holds. It was proved in [5] that the homogeneous problem (2.1) is uniquely solvable,

while the homogeneous problem (2.1a), (2.1b) admits 3 eigensolutions which span the
nullspace N . Thus, uniqueness implies existence, and the former requires that the data f

satisfies 3 compatibility conditions, i.e., the data f must be orthogonal to the nullspace of
the homogeneous adjoint BVP which, due to Fredholm’s alternative, has dimension 3 as
well. Moreover, the problem has a unique solution U ⊥ N if f satisfies this compatibility

condition.

In order to reformulate the BVP (2.1) as an integral equation, we satisfy the differential
equation (2.1a) by the single layer ansatz with kernel k(z) = (4π|z|)−1:

U(x) =

∫

y∈Γ
k(x− y) u(y) dΓ(y), x ∈ ext Γ (2.2)

where u is the unknown density function. Inserting (2.2) into the boundary condition

(2.1b) yields a Cauchy singular boundary integral equation for the unknown density u:

Au := −h(x) · n(x)
2

u(x) −
∫

Γ

h(x) ·∇x k(x− y)u(y)dΓ(y)

+

∫

Γ

k(x− y)u(y)dΓ(y) = f(x), x ∈ Γ
(2.3)

If the field h(x) does not deviate too much from the exterior unit normal vector n(x) to Γ,
the principal symbol of the integral operator A is positive which implies that A is strongly

elliptic. Moreover, we assume that A is bijective from L2(Γ) → L2(Γ) (this assumption
could be weakened). Notice, however, that the absence of the O(|x|−2)-terms in the decay
condition (2.1c) is not taken into account by (2.2) since the single layer potential is of

order O(|x|−1) as |x| → ∞.
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3 Weak formulation and Galerkin approximation

We use the Galerkin method in order to discretize the boundary integral equation (2.3).
Note that we could use collocation as well, but this would not be the proper discretization

method for the linearized geodetic BVPs, where we usually have to deal with Cauchy-
singular and hypersingular operators A. We consider the weak form of the integral equa-

tion (2.3):
u ∈ L2(Γ) : 〈Au, v〉 = 〈f, v〉 ∀v ∈ L2(Γ), (3.1)

where 〈·, ·〉 denotes the L2(Γ)-inner product. The Galerkin method in abstract form reads:
Given a dense sequence {VN}∞N=0 of finite dimensional subspaces of L2(Γ), find

uN ∈ VN : 〈AuN , v〉 = 〈f, v〉 ∀v ∈ VN . (3.2)

Hence, for a given basis {b1, . . . , bN} of VN , we have to solve the linear system of equations

Au = f where the stiffness matrix A and the right-hand side f are defined by

(A)ij := 〈bi, Abj〉, and (f)i := 〈bi, f〉, i, j = 1 . . .N. (3.3)

It is known that continuity, Garding inequality, and injectivity of the operator A ensure
the unique solvability of this system, provided that N is sufficiently large [4]. However, in
our case (3.1) does not take into account the constraint U ⊥ N which means that U resp.

UN computed from u resp. uN via (2.2) will violate (2.1c). The proper weak formulation
of Au = f must not be based on L2(Γ) but on some closed subspace of co-dimension 3 of

L2(Γ):
u ∈ L2(Γ) ∩N⊥ : 〈Au, v〉 = 〈f, v〉 ∀v ∈ L2(Γ) ∩N⊥ (3.4)

The corresponding conforming approximate solution is

uN ∈ VN ∩N⊥ : 〈AuN , v〉 = 〈f, v〉 ∀v ∈ VN ∩N⊥ (3.5)

Therefore, we need the subspace N . In our case the condition of vanishing O(|x|−2)-terms
in the expansion of U at infinity is equivalent to the orthogonality of the density u to the

restriction to the boundary Γ of the homogeneous harmonic polynomials of degree 1 (for
a proof we refer to Appendix A). This implies that N in (3.4), (3.5) is the linear space

spanned by the restriction to the boundary Γ of the 3 homogeneous harmonic polynomials
of degree 1:

N = span{H1,m|Γ : m = −1, 0, 1} (3.6)

4 The saddle point formulation

The conforming Galerkin discretization (3.5) is difficult to realize in practice. The reason

is that the homogeneous harmonic polynomials of degree 1 which span N are globally
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supported, and for the computations a basis of VN ∩ N⊥ must be generated. Since the
dimension of VN is typically very large (in the experiments below about 105 gravity field
parameters have to be solved for), it is a non-trivial matter how to do that stably and

efficiently. Moreover, the support of the base functions spanning VN ∩N⊥ will be larger
than the support of the base functions spanning VN which increases the computational

effort. [6] have discussed this problem in another context, and have proposed the method
of modified multiscale trial & test spaces. However, this solution strategy is currently

limited to constraints involving homogeneous harmonic polynomials of degree 0.

Here, we propose a different approach: We reformulate (3.4) as a saddle point problem

analogous to what is done in incompressible fluid flow. The constraint u ⊥ N will not
be imposed directly on the boundary element space VN , but will rather be incorporated

into the variational formulation by penalization with a Lagrange multiplier p. This leads
to an augmented system which reads:

(u, p) ∈ L2(Γ)×N :
〈Au, v〉+ 〈Ap, v〉 = 〈f, v〉 ∀v ∈ L2(Γ)

〈u, q〉 = 0 ∀q ∈ N (4.1)

and the conforming Galerkin approximation to (4.1) is:

(uN , pN) ∈ VN ×N :
〈AuN , v〉+ 〈ApN , v〉 = 〈f, v〉 ∀v ∈ VN

〈uN , q〉 = 0 ∀q ∈ N (4.2)

(u, p) is called the saddle point of the variational system. The conforming approximation
defines a linear system of equations of dimension N+3. The upper left matrix is the usual

N ×N stiffness matrix of the unconstrained problem, the upper right and the transposed
of the lower left matrix have dimension N × 3; their elements are inner products of the

bases of AN and of N , respectively, with the basis of VN .

A major advantage of the saddle point formulation is that all techniques to generate sparse

approximations to the matrix 〈AuN , v〉 such as wavelets, fast multipole methods, panel
clustering etc. can be used here without any modification. Moreover, if the data happen to

be compatible, then, of course, p = 0. In practice, however, f is not exactly compatible due
to various data and approximation errors. Then, the saddle point formulation (4.1) is still
well-posed and the size of p gives precise information about the degree of incompatibility

of the data f . Note that the proper weak formulation (3.4) would not have a solution if
f were incompatible.

Remark 4.1 The assembly of the matrix 〈ApN , v〉 is of order O(N2). In particular, if

N ⊂ VN the assembly process consists of three matrix vector multiplications with the
stiffness matrix A. However, fast cluster algorithms as proposed in Section 6 could be
used to reduce the complexity of the calculations substantially. The assembly of 〈uN , q〉
takes O(N) operations, and therefore, does not make the numerics much more elaborate.
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5 Convergence Analysis

We set V = L2(Γ) in what follows and note that the operator A in (2.3) as well as its
adjoint A∗ are bounded, linear operators on V : for all v ∈ V holds

‖Av‖V ≤ C ‖v‖V , ‖A∗v‖V ≤ C∗‖v‖V . (5.1)

Further, A satisfies a Gårding inequality: there exists γ > 0 and a compact operator K
on V = L2(Γ) such that

∀v ∈ V : 〈v, (A+K)v〉 ≥ γ ‖v‖2V . (5.2)

Lemma 5.1 Let A : V → V be bounded, injective and assume that (5.2) holds. Let
{VN}N be a dense sequence of subspaces of V . Then there exist N0 ∈ N, γ0 > 0 such that

for every N ≥ N0 holds the discrete inf-sup condition:

inf
0&=u∈VN

sup
0&=v∈VN

〈Au, v〉
‖u‖V ‖v‖V

≥ γ0 . (5.3)

Proof. We proceed in 3 steps.

i) The Gårding inequality (5.2) implies the continuous inf-sup condition, i.e. (5.3) with
VN replaced by V . For, given u ∈ V , select vu ∈ V to be a solution of A∗vu = u.
Then vu exists and is unique, since A∗ is injective (as is A), and by (5.1)

‖vu‖L2(Γ) = ‖(A∗)−1u‖V ≤ c ‖u‖V .

Further,
〈Au, vu〉 = 〈u,A∗vu〉 = ‖u‖2V ,

whence

inf
0&=u∈V

sup
0&=v∈V

〈Au, v〉
‖u‖V ‖v‖N

≥ 1

c
> 0 . (5.4)

ii) We set D = A+K, K a compact operator on V as in (5.2). We claim that

‖PN Au‖V ≥ γ0‖u‖V for all u ∈ V , N ≥ N0 ,

where PN : V → VN denotes the L2(Γ)-projection. If it were wrong, there would be
a sequence {ui}i ⊂ V , ui ∈ Vi, ‖ui‖V = 1 such that

‖PiAui‖V = ‖Pi Dui − PiK ui‖V → 0 i → ∞ . (5.5)
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Now, {ui}i contains a weakly convergent subsequence, again denoted by ui, i.e.
ui ⇀

V
u ∈ V .

Now, Pi Au ⇀
V

Au, since for every v ∈ V

〈PiAui, v〉 = 〈ui, A
∗Piv〉 → 〈u,A∗v〉 = 〈Au, v〉

by the density of {Vi}i in V . Hence (5.5) implies that Au →
V

0. Further, since K is

compact, Kui →
V

Ku and Pi Kui →
V

Ku. By (5.5) therefore

PiDui →
V

Ku .

By (5.2) then

γ ‖u− ui‖2V ≤ | 〈u− ui, D(u− ui)〉 |

= | 〈D∗u, u− ui〉 − 〈ui, Du〉+ 〈ui, Pi Dui〉 |

−→
i→∞

| 〈u, Ku〉 − 〈u,Du〉 |

= | 〈u,Au〉 |

= 0

since Au = 0, hence ui →
V

u. But ‖u‖V = 1, since

∣

∣ ‖ui‖V − ‖u‖V
∣

∣ ≤ ‖u− ui‖V → 0 ,

so that u 1= 0, and Au = 0, a contradiction to the injectivity of A.

iii) Proof of (5.3). Hence, for N ≥ N0, and every 0 1= u ∈ V ,

0 < γ0 ‖u‖V ≤ ‖PN Au‖V = sup
0&=v∈V

〈v, PN Au〉
‖v‖V

≤ sup
0&=v∈V

〈PNv, Au〉
‖PNv‖V

,

since ‖PNv‖V ≤ ‖v‖V for every v ∈ V .

Since VN ⊂ V , we may choose in particular any 0 1= u = uN ∈ VN so that

0 < γ0 ‖uN‖V ≤ sup
v∈V

〈PNv, AuN〉
‖PNv‖V

= sup
vN∈VN

〈vN , AuN〉
‖vN‖V

.

Since 0 1= uN ∈ VN was arbitrary, the discrete inf-sup condition (5.3) follows. !

6



We now turn to the analysis of (4.1), (4.2). To this end, we define the bilinear form
B : (V,N )× (V,N ) → R by

B(u, p; v, q) := 〈Au, v〉+ 〈Ap, v〉+ 〈u, q〉 . (5.6)

Unique solvability of (4.1) and (4.2) and quasioptimal convergence of uN , pN in (4.2) to

u, resp. to p follow from inf-sup conditions for B. We have

Lemma 5.2 The bilinear form B satisfies the inf-sup condition on (V,N )× (V,N ).

Proof. We observe that by (5.4), A is invertible on V . Given (u, p) ∈ (V,N ), we select

q = −2p ∈ N , v := (A−1)∗(u+ p) ∈ V .

Then
B(u, p; v, q) = 〈A(u+ p), v〉+ 〈u, q〉

= 〈A(u+ p), (A−1)∗(u+ p)〉 − 2〈u, p〉

= ‖u‖2V + ‖p‖2V = |||(u, p)|||2 ,

(5.7)

and evidently

|||(v, q)||| ≤ C |||(u, p)||| . (5.8)

!

The discrete inf-sup condition will now follow by a perturbation argument. For (u, p) ∈
(V,N ), we define |||(u, p)||| := (‖u‖2V + ‖p‖2V )1/2. The there holds

Proposition 5.3 Let {VN}N be dense in V and {0} 1= N ⊂ V be finite dimensional.
Define

ϕ(N) := sup
0&=p∈N

inf
pN∈VN

‖p− pN‖V
‖p‖V

.

Then there holds for all N ≥ N0.

inf
u∈VN

p∈N

inf
v∈VN

q∈N

B(u, p; v, q)

|||(u, p)||| |||(v, q)||| ≥ γ0 > 0 (5.9)

provided N0 is such that ϕ(N0) is sufficiently small.

Proof. Let (uN , p) ∈ (VN ,N ) be given, ‖uN‖2V + ‖p‖2V > 0. Then, for N large enough, A

is invertible on VN by Lemma 5.1, and (5.3′) holds.
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We select q = −2p ∈ N and vN ∈ VN to be the solution of

∀w ∈ VN : 〈w,A∗vN 〉 = 〈w, uN + p〉 . (5.10)

By Lemma 5.1, applied to A∗, vN exists and

‖vN‖V ≤ C |||(uN , p)||| ≤ C(‖uN‖V + ‖p‖V ) . (5.11)

Pick in (5.10) w = uN + PN p ∈ VN , and set pN = PNp. Then

〈uN + pN , uN + p〉 = 〈w,A∗vN〉 = 〈uN + pN , uN + p〉 .

Now

B(uN , p; vN , q) = 〈A(uN + p), vN〉+ 〈uN , q〉

= 〈A(uN + pN), vN〉+ 〈A(p− pN), vN〉+ 〈uN , q〉
(5.10)
= 〈uN + pN , uN + p〉+ 〈p− pN , A

∗vN〉 − 2〈uN , p〉

= ‖uN + p‖2V − 2〈uN , p〉

+ 〈p− pN , A
∗vN 〉+ 〈pN − p, uN + p〉

≥ |||(uN , p)|||2 − ‖p− pN‖V (|||A∗||| ‖vN‖V +
√
2|||(uN , p)|||)

(5.11)

≥ |||(uN , p)|||2 −
‖p− pN‖V

‖p‖V
√
2(1 + C |||A∗|||) |||(uN , p)||| ‖p‖V

≥ (1− ϕ(N)
√
2(1 + C |||A∗|||)) |||(uN , p)|||2

from where the assertion follows. !

Remark 5.4 The condition that ϕ(N0) is sufficiently small means that VN has to be so
large as to be able to represent elements of N as well. If N consists, as it is the case in

the linearized Molodensky problem, just of a few low degree spherical harmonics, this is
rather easy to achieve. If, however, N contains a rather high order approximation of the
geopotential (e.g. a spherical harmonics expansion up to order 512) then N has to be

rather large. Nevertheless, even then the approach (5.10), (5.11) may be advantageous
since VN allows for local refinement on Γ, whereas spherical harmonics expansions don’t.

Remark 5.5 From (5.9) follows the quasioptimal convergence of (uN , p) in (4.2), if
{VN}N is dense in V since

‖u− uN‖V + ‖p− pN‖V ≤ C inf
v∈VN
q∈N

{‖u− v‖V + ‖p− q‖V } .

In particular therefore ‖u− uN‖V → 0 as N → ∞.
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Remark 5.6 So far, we analyzed only the Galerkin scheme (5.11), where 〈AuN , vN〉 is
realized exactly for uN , vN ∈ VN . In practice, however, and in particular in the fast
algorithms presented below, the interactions 〈AuN , vN〉 will only be available approxi-

mately, thereby introducing additional errors. The impact of these consistency errors on
the Galerkin scheme (5.11) remain yet to be analyzed. In the unconstrained case, these

errors do not spoil the convergence rate (e.g. [13]).

6 The fast clustering algorithm

In BEM the stiffness matrix is a dense N ×N -matrix, since the kernel function k(x− y)
links every point x ∈ Γ to every point y ∈ Γ. Hence, storage and time consumptions of
the method are of order O(N2) provided that iterative solvers could be applied efficiently

which limits the application of BEM in practice. In the eighties Hackbusch and Nowak [3]
developed the panel clustering method in order to overcome this grave drawback. Inde-

pendently, Rokhlin proposed the fast multipole method [12]. Both methods are based on
an approximation of the kernel factorizing the x, y-dependency. By this, the x-integration
is separated from the y-integration reducing the amount of work substantially. More re-

cently, Rathsfeld [11] proposed a wavelet-type basis to reduce the computational work.
See also [13].

In our approach, we use a blend of panel clustering and fast multipole method. Suppose
that the kernel k may be replaced by a degenerate kernel km

k(x, y) ≈ km(x, y; x0, y0) =
∑

(µ,ν)∈ Im

κµν(x0, y0)Xµ(x; x0)Yν(y; y0) (6.1)

with parameters m ∈ N, x0, y0 ∈ R3 such that the error bound

|k(x, y)− km(x, y; x0, y0)| ≤ Cη η
m |k(x, y)| (6.2)

is valid for some 0 < η < 1 and all x, y ∈ R3 satisfying

|y − y0|+ |x− x0| ≤ η |y0 − x0|. (6.3)

Here, Im denotes a finite index set.
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There are several possibilities to choose an approximation by degenerate kernels [8]. In
our experiments described in Section 7 approximation (6.1) was obtained by applying a
truncated multipole expansion, i.e.,

Jm := {µ ∈ N0 × Z : |µ2| ≤ µ1, µ1 < m}, Im := {(µ, ν) ∈ (Jm)
2 : µ1 + ν1 < m} (6.4)

κµν(x0, y0) := κµ+ν(x0, y0) :=
1

4πCµ2+ν2
µ1+ν1 |y0 − x0|µ1+ν1+1

Y µ2+ν2
µ1+ν1

(

y0 − x0

|y0 − x0|

)

(6.5)

Xµ(x; x0) := Cµ2

µ1
|x− x0|µ1Y −µ2

µ1

(

x− x0

|x− x0|

)

, Yν(y; y0) := Xν(−y;−y0) (6.6)

with

Cp
l :=

i|p|
√

(l − p)!(l + p)!
, Y p

l (x) := P
|p|
l (cos θ) eipφ (6.7)

for x = (cosφ sin θ, sinφ sin θ, cos θ)T ∈ S2. The functions Xµ and Yν are solid spherical

harmonics of positive degree whereas the expansion coefficients κµν are homogeneous
harmonic polynomials of negative degree. Note that the multipole expansion is nothing
else but an efficient representation of the Taylor expansion of |y−x|−1. While for arbitrary

kernel functions k, the index set Jm of a truncated Taylor expansion contains O(m3)
indices, onlyO(m2) coefficients must be stored to evaluate the Taylor expansion of |y−x|−1

using the multipole ansatz according to (6.4)-(6.6). The expansion for the adjoint kernel of
the double layer potential is obtained from (6.4)-(6.6) by applying the 〈h(x),∇·〉-Operator
to Xµ(·, x0).

In order to derive an efficient approximation of the stiffness matrix A from the approx-

imation of the kernel, we have to define appropriate regions on the boundary surface Γ,
such that the approximation error could be controlled by (6.2),(6.3). Let P(Γ) denote the
set of all subsets of Γ and C ⊂ P(Γ)×P(Γ) a finite set defining a partition of Γ×Γ. The

elements of the first and second component of C, i.e.,

X := XC := {σ ⊂ Γ : ∃ τ ⊂ Γ , (σ, τ) ∈ C} (6.8a)

Y := YC := {τ ⊂ Γ : ∃ σ ⊂ Γ , (σ, τ) ∈ C}, (6.8b)

are called clusters. A pair of clusters (σ, τ) ∈ C is η-admissible, iff

řσ + řτ ≤ η|čσ − čτ |, (6.9)

where řM and čM denote for M ⊂ R3 the Čebyšev radius and center, respectively. Using
this property we split the partition C into a far field

F := FC(η) := {(σ, τ) ∈ C : (σ, τ) is η-admissible} (6.10)
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and a near field
N := NC(η) := C\FC(η) (6.11)

which implies a corresponding splitting of the stiffness matrix A into a near field contri-

bution N and a far field contribution F:

(N)i,j :=
∑

(σ,τ)∈N

∫

σ

bi(x)

∫

τ

k(x, y) bj(y) dydx (6.12)

(F)i,j :=
∑

(σ,τ)∈F

∫

σ

bi(x)

∫

τ

k(x, y) bj(y) dydx (6.13)

Since the domains of integration of the far field part are well-separated, i.e., satisfy (6.3)
with x0 := čσ and y0 := čτ , the kernel k can be replaced by its approximation km which

in turn yields an approximation of F:

F ≈
∑

(σ,τ)∈F

XσFστYτ , (6.14)

where the matrices Xσ, Yτ , and Fστ are defined by

(Xσ)i,µ :=

∫

σ

bi(x)Xµ(x; cσ)dx, (Yτ)ν,j :=

∫

τ

bj(y)Yν(y; cτ)dy (6.15)

(Fστ )µ,ν :=

{

κµν if (µ, ν) ∈ Im
0 else

(6.16)

In other words, the stiffness matrix is approximated by a near field matrix N and a

finite sum of rank-|Jm| modifications corresponding to the approximation of the kernel
by degenerate kernels. The matrices Xσ only depend on x, the matrices Yτ only on y,

and the matrices Fστ contain the expansion coefficients κµν .

Essential for the efficiency of the algorithm is (i) the construction of a partition C such

that the near field matrix N is a sparse matrix, i.e., contains only O(N) entries, and (ii)
the fast evaluation of the approximate far field contribution (6.14), in particular the fast

evaluation of the matrix vector product

v =
∑

(σ,τ)∈F

Xσ FστYτ u. (6.17)

The key is a hierarchical organization of clusters. Let P denote the given panelization of

Γ. We subdivide P into two about equally large sets recursively until the subsets contain
O(1) panels. This defines a binary tree with root P. Each node of the tree represents a

subset of P which in turn implies a subset of Γ, i.e. the binary tree defines a hierarchical
decomposition of Γ into clusters.

By traversing the tree a suitable partition C = F ∪N is constructed:

11



partition(σ, τ,F ,N ){
if (σ is a leaf) or (τ is a leaf) then

N ← {(σ, τ)} ∪N
else if ((σ, τ) η-admissible) then

F ← {(σ, τ)} ∪ F
else if (řσ < řτ ) then

for all children τ ′ of τ partition(σ, τ ′,F ,N )

else

for all children σ′ of σ partition(σ′, τ,F ,N )
}

The matrix vector product (6.17) is evaluated in three steps:

1. evaluate uτ := Yτu for all τ ∈ Y ,

2. evaluate vσ :=

{

Fστuτ for (σ, τ) ∈ F ,

0 otherwise
for all σ ∈ X ,

3. evaluate v =
∑

σ Xσvσ.

The first and the last step could be accelerated by using so-called shift operations. We
find

Yτ =
∑

τ ′ child of τ

Dττ ′Yτ ′, (6.18)

with matrices Dττ ′, i.e.,

uτ =

{

Yτu for τ a leaf,
∑

τ ′ child of τ Dττ ′uτ ′ otherwise.
(6.19)

Hence, to evaluate uτ for all τ ∈ Y we only have to assemble matrices Yτ if τ is a

leaf. These matrices are sparse with O(|Jm|) = O(m2) entries. The products Dττ ′uτ ′ are
handled by efficient algorithms without assembling Dττ ′ explicitly [1]. The same holds

for step 3. With matrices Cσσ∗ defined by

Xσ∗ =
∑

σ child of σ∗

XσCσσ∗ , (6.20)

and vectors v̄σ := vσ +Cσσ∗ v̄σ∗ , σ child of σ∗, it follows that

v =
∑

σ

Xσvσ =
∑

σ a leaf

Xσv̄σ. (6.21)
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Again, only matrices Xσ for leaves σ ∈ X must be assembled.

An analysis of the complexity (cf. [3], [12]) shows that the number of operations necessary

to perform the matrix vector product (6.17) is of order O(m4N), with N the number of
unknowns.1 The memory requirements are of order O(m2N). To ensure that the error

of the far field approximation is asymptotically equal to the order of the discretization
error, we have to choose m = O(log N).

7 Numerical experiments

The main objective of the numerical experiment is (1) to validate the saddle point for-
mulation, (2) to validate the clustering algorithm and (3) to validate the O(N log4N)

complexity of the algorithm. In addition we want to demonstrate the performance of the
method compared to the classical BEM algorithm in terms of CPU-time, storage require-

ment. Finally, we want to demonstrate that the fast algorithm is suited to solving geodetic
boundary value problems. Rather than computing a full linearized Molodensky problem

with real data, we chose two model problems, which nevertheless exhibits the most im-
portant features of the linearized Molodensky case, and therefore, allow addressing the
items stated above.

In the first experiment we solve the following problem: The “true” potential is given by

U(x) = |x|−1 + x1x2 |x|−5 (7.1)

and the embedding ϕ = id, i.e. Γ = S2, and h(x) = −n(x) with n(x) the exterior unit
normal vector to Γ.

The main difference between this problem and the linearized vector Molodensky problem
(2.1) is the spherical geometry and the boundary operator which involves the normal

derivative instead of the oblique derivative. However, our approach does rely neither on
the normal derivative nor on the spherical geometry of the boundary surface. In fact, the

saddle point formulation and the fast algorithm are applicable without any modification
for oblique derivative problems and non-spherical geometries, as well. The decision to use
ϕ = id and h(x) = −n(x) has been done for reasons of simplicity.

We approximated the unit sphere by planar triangles. Continuous piecewise linear poly-

nomials have been used as trial and test functions. The numerical quadrature for the near
field integrals has been done using special quadrature techniques [9],[7].

1With a more sophisticated approach to evaluate the products Fστuτ using exponential expansions
this could be reduced to O(m3N) [1].
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The linear system of equations (LSE) was solved using a GMRES solver without any
preconditioning. About 30 iterations were necessary to keep the error lower than the
discretization error, independent of the number of unknowns. For our cluster algorithm

the matrix-vector operations for the calculation of the far field contribution have been
done in every iteration step. The necessary information about the Xσ, Yτ and Fστ

matrices have been stored in core on the workstation. The quality of the solution has
been checked at a grid of points with distance 0.5 to the surface of the unit sphere.

The results were obtained on a SUN Ultra-Enterprise 4000/5000 on a single processor
(UltraSPARC, 248MHz), 2 GB RAM using the SUN C++ 4.2 Compiler and the class

library Concepts-1.3 for boundary elements.
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Figure 1: CPU-time for matrix assembly (m = 3, 4, 5, 6, 7)(in seconds) versus number N
of panels: standard BEM (dashed line) versus fast algorithm (solid lines).

Figure 1 shows the CPU-time for the matrix assembly for the standard BEM (dashed line)
and our fast algorithm (solid lines). The latter depends on the order m of the multipole

expansion. The computations have been done for m = 3 . . . 7. The results are shown as
function of the number of unknowns, i.e., of the resolution. At the finest resolution (65538
unknowns, 131072 panels) the (spherical) distance between the data points is smaller than

1.1 degrees. This corresponds to a global solution in terms of spherical harmonics up to
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degree and order 360 (half-wavelength resolution 0.5 degrees), since we used linear trial
functions. The dependence on m is minor, because N dominates. Compared with the
standard method a speed-up of up to 3 orders of magnitude can be expected for the finest

resolution.
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Figure 2: Relative mean absolute error in a set of points with distance 0.5 from the surface
of the unit sphere versus the number of panels: standard BEM (dashed line) versus fast
algorithm for m = 3, 4, 5, 6, 7 (solid lines).

Figure 2 shows the relative mean absolute error in the potential in exterior points lo-
cated at a distance of 0.5 from the surface of the unit sphere. The solid lines represent

the cluster-BEM solution for m = 3 . . . 7, the dashed line represents the standard-BEM
solution. Only for m = 6, 7 we observe an almost monotone decreasing error with in-

creasing number of unknowns. This indicates that small values of m corresponding to
low expansion orders produce approximation errors that dominate the total error budget

if the discretization becomes finer. At a certain discretization level m = 5 gives a better
accuracy than m = 7. This can be explained by the influence of the discretization error
which dominates at this discretization level the total error budget. Therefore, variations

in order of the discretization error can be expected.
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Figure 3: Compression of the stiffness matrix for m = 3, 4, 5, 6, 7 versus the number of
panels.

Figure 3 shows the compression rate as a function of the number of unknowns. A com-

pression factor of 0.01 means that the total of entries to store the necessary information
of the Xσ, Fστ , Yτ matrices is equal to 1% of the entries of the dense stiffness matrix A.

In Figure 4 we show the number of necessary matrix entries for the cluster-BEM and the
standard-BEM as a function of the potential error in exterior points. It clearly shows

that the higher the accuracy requirements are the more storage could be saved with the
cluster-BEM.

In the second test we used the IAG Earth Model developed in the framework of the
IAG Working Group on ”Numerical Techniques for Geodetic Boundary Value Problems”

within Special Commission 1 of Section IV [2]. The boundary value problem we solved is
the Robin problem

#T (x) = 0 x ∈ ext Γ

− 1

R
T (x) +

∂T

∂n
= f(x) x ∈ Γ (7.2)

T (x) → 0, |x| → ∞.
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Figure 4: Number of necessary matrix entries as function of the potential error in exterior
points: standard BEM (dashed line) versus fast algorithm (m = 7) (solid line).

R is the mean radius of the Earth. The boundary surface Γ is very similar to the to-

pography of the Earth as described by the GETECH topography model. The synthetic
gravity field was generated with a maximum resolution of approximtely 750 km [2]. See
Figure 6 for a picture of the boundary data for the BVP computed from this field. This

field resembles as closely as possible the true gravity field of the earth but filtered such
that its content can be represented by the sampling points of the level 4 triangulation,

which have a maximal distance of 8.7 degrees. In addition, the signal does not contain
the zero and first oder term.

The triangulation of the topography is based on a subsequent subdivision of the triangular
faces of an octahedron. Each of the eight faces of the octahedron is first subdivided into

4 congruent subtriangles by halving the sides. This defines the triangles at level 1. The
process is repeated until the maximum level is reached. At level l there are 8 ·4l triangles.
The projection of the corners of the triangles (‘nodes’) onto the topography defines the
corners of the triangulation of the topography (see figure 5). Finally, the boundary data
have been generated at these corners. No noise has been added. Table 1 contains for

level 4− 7 the number of triangles, the number of nodes (data points) and the minimum
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Level Triangles Nodes Res. (deg.)

4 2048 1026 8.7

5 8192 4098 4.4
6 32768 16386 2.2

7 131072 65538 1.1

Table 1: Number of elemenents and minimum resolution for each level.

resolution.

Octahedron

Triangle 
refinement

Resolution level 4

Figure 5: The panel subdivision.

The computations have been done on a HP-C180 workstation with 512 Mb internal mem-
ory. Due to memory constraints the simulations were only carried out up to level 6. The

results for higher levels were obtained by extrapolation. They are indicated in Figures
7- 10 by dashed lines. The maximum distance between the data points at level 6 is about

2.2 degree. Since piecewise linear polynomials have been used as trial functions, the max-
imum resolution of the trial space is about one level higher. Therefore, a level-7 solution
represents similar details as a spherical harmonic expansion up to degree and order 360.

The performance in terms of the CPU-time for matrix assembly and for the solution of the
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Figure 6: The boundary data (no zero- and first-degree terms).

linear system of equations is comparable to the first test (cf. Figure 7, 8). The storage re-
quirements for the standard BEM algorithm increase very fast with higher levels. Due to

the efficient approximation of the matrix-vector product Fu, which is the basic operation
in the GMRES algorithm, much memory can be saved with the fast algorithm: up to two

orders of magnitude for level 7, depending on the order m of the cluster expansion (see
Figure 9). The results shown for m = 3 and m = 6 indicate that the storage requirements

increase with increasing degree of the multipole expansion. Theoretically, the increase
is proportional to m2, which may cause a problem for large m. The actual choice of m
depends on the dimension N of the solution space. We have to choose m = O(logN) in

order to keep the error due to the degenerate kernel approximation below the error of the
Galerkin discretization.

We also studied the accuracy of the BEM solution at external data points. We selected
test points at a height of 1.5 × R above the corner points of the level 4 triangulation,

where R is the Earth’s mean radius. We computed the mean square difference ”true -
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Figure 7: The CPU time (seconds) for stiffness matrix assembly (bold: fast algorithm,
m=3; normal: standard BEM algorithm)
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Figure 8: The CPU time (seconds) for stiffness matrix assembly and solution of the linear
system of equations (bold: fast algorithm, m=3; normal: standard BEM algorithm.

computed” of the disturbing potential at these points. The results are shown in Figure 10.

We observe a significant improvement for higher levels although the improvement is not
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Figure 9: Storage requirements (bold: fast algorithm; normal: standard BEM algorithm).

steady when augmenting the level. At level 6 the relative mean square potential difference
is about 8.9 · 10−4. Please note that the error reflects the sum of the discretization error,

the error of numerical integration, and the error of kernel approximation.

8 Perspectives for physical geodesy

The saddle point formulation and the fast algorithm are well-suited for solving geodetic
BVPs. The former guarantees not only the well-posedness of the discrete problem but

also allows to properly include any a priori given geopotential models. This is an essential
requirement since the most accurate long wavelength geopotential models (up to degree

and order, say, 50 of a spherical harmonic expansion) obtained so far are derived from
satellite observations. Most of these coefficients cannot be improved from terrestrial

data, and, therefore, have to be fixed in the solution of the Molodensky boundary value
problem as has been shown in [6] and [10]. In the near future dedicated satellite gravity
field missions such as the German CHAMP, the US/German GRACE and ESA’s GOCE

will provide even medium wavelengths with unprecedented accuracy. Then, terrestrial
data will provide locally improved gravity field solutions with resolutions of, say, 5 × 5

minutes for areas as large as Europe and North America; comparable resolutions may also
be computed for the oceans.

The fast boundary element algorithm has the potential to speed up the assembly and
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Figure 10: Relative mean square difference ”true-computed” at evenly distributed control

points with distance 1.5 × R above the surface (R mean Earth’s radius). Do to memory
constraints m = 6 has been computed for level 4 and 5 only.

solution of the linear system by 2 − 3 orders of magnitude, and to reduce the storage
requirements by about the same amount. Therefore, it will make high resolution global

and local gravity field recovery feasible. The flexibility and efficiency of our method
should not degrade significantly if oblique derivatives are taken into account, or if a large

number of geopotential coefficients has to be fixed, and if higher order gravity fields have
to be recovered from terrestrial data. However, in order to assess this more numerical
investigations have to be done. A major point of concern may be the m-term in the

complexity estimates, which is of the order O(logN). When m4 ≈ N for a reasonable
choice of η, the number of operations necessary to perform the matrix-vector product

is not significantly smaller than for the standard BEM algorithm. This would seriously
degrade the performance of the fast algorithm. Similar statements hold for the memory

requirements, which increase proportionally to m2. The second numerical test, however,
seems to indicate that even for a resolution equivalent to degree and order 360 the choice
m = 6 may be sufficient, i.e. m4 7 N . However, before a definite answer can be given,

more numerical tests have to be carried out. As far as ultra-high resolution local gravity
field improvements are concerned, we are still missing a detailed error analysis for this

type of local boundary value problems. Here local refinement and adaptivity afforded by
the BEM may be attractive alternatives.

Acknowledgement: Roger Haagmans developed and implemented the synthetic earth
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A Appendix

Here we supply the proof that the condition (2.1c) of vanishing O(|x|−2)-terms in the
far-field expansion of U is equivalent to the orthogonality of the single layer density u to

the restriction to the boundary Γ of the homogeneous harmonic polynomials of degree 1.

If U does not contain terms of order O(|x|−2) then U is orthogonal to all surface spherical
harmonics of degree 1 on any Brouillon sphere, i.e., on any surface SR of a sphere of radius

R and center 0 enclosing Γ:

〈U, Y1,m′〉L2(SR) =

∫

SR

U(x) Y1,m′

(

x

|x|

)

dSR(x) = 0, m′ = −1, 0, 1, (A.1)

where {Y1,m′ : m′ = −1, 0, 1} denotes the set of complex surface spherical harmonics of
degree 1. For x ∈ extΓ, we may represent U by the single layer potential with density u:

U(x) =

∫

Γ

u(y)
1

|x− y| dΓ(y), x ∈ extΓ. (A.2)

Inserting (A.2) into (A.1) yields

∫

x∈SR

(
∫

y∈Γ
u(y)

1

|x− y| dΓ(y)
)

Y1,m′

(

x

|x|

)

dSR(x)

=

∫

y∈Γ
u(y)

∫

x∈SR

1

|x− y|
Y1,m′

(

x

|x|

)

dSR(x) dΓ(y) = 0, m′ = −1, 0, 1.

Since

1

|x− y| =
∞
∑

n=0

n
∑

m=−n

(−1)m
|y|n
|x|n+1

Yn,−m

(

x

|x|

)

Yn,m

(

y

|y|

)

, ∀ |x| > |y|,

we obtain

∞
∑

n=0

n
∑

m=−n

(−1)m
∫

y∈Γ
u(y) |y|n Yn,m

(

y

|y|

)

· 1

Rn+1

∫

x∈SR

Yn,−m

(

x

|x|

)

Y1,m′

(

x

|x|

)

dSR(x) dΓ(y) = 0, m′ = −1, 0, 1, (A.3)
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where we have used that |x| = R, ∀x ∈ SR. Observing the orthogonality property of the
complex surface spherical harmonics,

∫

SR

Yn,−m Y1,m′ dSR =
4πR2

3
(−1)m

′

δmm′δn1,

(A.3) is equivalent to
∫

y∈Γ
u(y) |y|Y1,m′

(

y

|y|

)

= 0, m′ = −1, 0, 1. (A.4)

H1,m′ := |y| Y1,m′

(

y
|y|

)

is a homogeneous harmonic polynomial of degree 1 and order m′.

The space of homogeneous harmonic polynomials of degree 1 has dimension 3, so (A.1) is
equivalent to

〈u, H1,m′|Γ〉 = 0, m′ = −1, 0, 1,

i.e., u is orthogonal to the restriction to the boundary Γ of all homogeneous harmonic
polynomials of degree 1. This completes the proof.
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[5] L. Hörmander. The boundary problems of physical geodesy. Arch. Rat. Mech. Anal.,

1976.

[6] R. Klees and R. Lehmann. Integration of a priori gravity field models in boundary

element formulations to geodetic boundary value problems. In Accepted for publica-
tion in Proc. IV Hotine-Marussi Symposium on Mathematical Geodesy, Trento, Italy,

1999.

[7] Ch. Lage. Softwareentwicklung zur Randelementmethode: Analyse und Entwurf ef-

fizienter Techniken. PhD thesis, Universität Kiel, 1996. In german.

24



[8] Ch. Lage. Fast evaluation of singular kernel functions by cluster methods. Technical
report, Seminar für Angewandte Mathematik, ETH Zürich, CH-8092 Zürich, 1998.
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C. Schwab

Generalized p-FEM in Homogenization

98-10 J.M. Melenk, C. Schwab The hp Streamline Diffusion Finite Element
Method for Convection Dominated Problems
in one Space Dimension

98-09 M.J. Grote Nonreflecting Boundary Conditions For Elec-
tromagnetic Scattering

98-08 M.J. Grote, J.B. Keller Exact Nonreflecting Boundary Condition For
Elastic Waves

98-07 C. Lage Concept Oriented Design of Numerical Soft-
ware


