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E. Süli†, P. Houston† and C. Schwab ∗

Research Report No. 99-14
July 1999

Seminar für Angewandte Mathematik
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1.1 INTRODUCTION

The discontinuous Galerkin finite element method (DGFEM) has a long and distinguished
history. Its roots can be traced back to the work of Pian and collaborators [20] in the
early 1960s on hybrid methods for elliptic problems (see also [19] for a historical survey);
the mathematical analysis of hybrid methods was initiated by Babuška [4]. In 1971, J.
Nitsche [18] considered an alternative scheme where the boundary multipliers present in
the hybrid formulation were eliminated in terms of normal fluxes and stabilisation terms
were added to recover the optimal convergence rate. In a different context, discontin-
uous finite element methods were introduced by Reed and Hill [21], and Lesaint and
Raviart [17] in order to overcome the stability limitations of conventional continuous fi-
nite element approximations to first-order hyperbolic problems. Although subsequently
much of the research in the field of numerical analysis of partial differential equations
concentrated on the development and the analysis of conforming finite element methods,
in recent years there has been an upsurge of interest in discontinuous schemes. This
paradigm shift was stimulated by several factors: the desire to handle, within the finite
element framework, nonlinear hyperbolic problems (see [10] and [11]) which are known
to exhibit discontinuous solutions even when the data are perfectly smooth; the need to
treat convection-dominated diffusion problems without excessive numerical stabilisation;
the computational convenience of discontinuous finite element methods due to a large de-
gree of locality; and the necessity to accommodate high-order hp-adaptive finite element
discretisations in a flexible manner (see [9]). The DGFEM can also be thought of as
the higher-order extension of the classical cell centre finite volume method – a popular
discretisation technique in the computational aerodynamics community.

In the present paper we develop the error analysis of the hp-DGFEM for partial differ-
ential equations of hyperbolic and nearly hyperbolic character. We begin by considering
the a priori error analysis of the hp-DGFEM for second-order partial differential equations
with nonnegative characteristic form; this represents a continuation of our earlier work
[14] for first-order hyperbolic equations. In [14] an error bound, optimal both in terms of
the local mesh size h and the local polynomial degree p, was derived for the hp-DGFEM
supplemented by a streamline-diffusion type stabilisation involving a stabilisation param-
eter δ of size h/p. Here, we establish a similar result in the case of partial differential
equations with nonnegative characteristic form; the resulting error bound is optimal in
terms of powers of h, the part of the error bound which arises from the diffusion term is
by one power of p below the optimal rate, while the parts which stem from the advection
and reaction terms are of optimal order in p. For convection-dominated diffusion equa-
tions, suboptimality in p is compensated by the fact that the leading term in the error
bound is multiplied by a small number, proportional to the square root of the norm of
the diffusion matrix. Indeed, in the case of a first-order hyperbolic equation, our error
bound collapses to one that is hp-optimal. On the other hand, when the advective term
is absent, the error bound is optimal in terms of powers of h and it is 1/2 a power below
optimal in terms of the polynomial degree p. The hp-DGFEM considered in this paper
involves a discontinuity-penalisation device based on the ideas of Nitsche [18], Wheeler
[26] and Arnold [3], albeit with a small but significant modification which permits us to
pass to the hyperbolic limit with inactive discontinuity-penalisation. The error analysis of
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the hp-DGFEM discretisation considered here can also be viewed as an extension of the
work of Baumann [6], Oden, Babuška and Baumann [19] and Riviere and Wheeler [22]
in the reaction-diffusion case; also, they present an improvement over our earlier results
presented in [25] where the error analysis of the hp-DGFEM was considered for partial
differential equations with nonnegative characteristic form, albeit without streamline dif-
fusion stabilisation. While in [25] the size of the discontinuity penalisation parameter was
required to be Const.p2/h, in the present paper it has been reduced to Const/h.

The second part of the paper is concerned with the a posteriori error analysis of the
hp–DGFEM for hyperbolic problems. Here, we derive an a posteriori bound on the error
for hp-DGFEM approximations of linear functionals of the analytical solution. The a
posteriori error bound is based on an error representation formula which stems from a
duality argument and the Galerkin orthogonality property of the hp-DGFEM. The error
representation formula involves the computable finite element residual and the difference
between the dual solution and its projection. We exemplify the relevance of the theoretical
results by implementing the a posteriori error bound into an hp-adaptive algorithm for
calculating the outflow normal flux of the solution to within a prescribed tolerance.

1.2 MODEL PROBLEM AND DISCRETISATION

Suppose that Ω is a bounded Lipschitz domain in Rd, d = 2, 3, and consider the linear
second-order partial differential equation

Lu ≡ −
d

∑

i,j=1

∂j (aij(x) ∂iu) +
d

∑

i=1

bi(x) ∂iu+ c(x)u = f(x) , (1.1)

where f is a real-valued function belonging to L2(Ω), and the real-valued coefficients a, b, c
are such that:

a(x) = {aij(x)}di,j=1 ∈ L∞(Ω)d×d
sym ,

b(x) = {bi(x)}di=1 ∈ W 1,∞(Ω)d, c(x) ∈ L∞(Ω) .
(1.2)

It will be assumed throughout that the characteristic form associated with the principal
part of the partial differential operator L is nonnegative; that is,

ξT a(x) ξ ≥ 0 ∀ξ ∈ Rd and a.e. x ∈ Ω̄ . (1.3)

In order to ensure that the restriction of the matrix a to the boundary ∂Ω of Ω is well
defined, we shall assume, for simplicity, that the entries of a are piecewise continuous on
Ω̄. This assumption is sufficiently general to cover most cases of practical significance.
Now let µ(x) = {µi(x)}di=1 denote the unit outward normal vector to Γ = ∂Ω at x ∈ Γ
and define the following subsets of Γ:

Γ0 = {x ∈ Γ : µTa(x)µ > 0} ,

Γ− = {x ∈ Γ\Γ0 : b · µ < 0} and Γ+ = {x ∈ Γ\Γ0 : b · µ ≥ 0} .

The sets Γ∓ will be referred to as the inflow and outflow boundary, respectively. With
these definitions we have that Γ = Γ0 ∪ Γ− ∪ Γ+. We shall further decompose Γ0 into
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two connected parts, ΓD where a Dirichlet boundary condition is imposed and ΓN where
a Neumann condition is given, and we supplement the partial differential equation (1.1)
with the following boundary conditions:

u = gD on ΓD ∪ Γ− and µTa∇u = gN on ΓN . (1.4)

The boundary value problem (1.1), (1.4) includes a range of physically relevant instances,
such as the mixed boundary value problem for an elliptic equation corresponding to the
case when (1.3) holds with strict inequality, as well as the case of a linear transport
problem associated with the choice of a ≡ 0 on Ω̄.

1.2.1 Finite element spaces

Suppose that T is a subdivision of Ω into open element domains κ such that Ω̄ = ∪κ∈T κ̄.
Let us assume that the family of subdivisions T is shape-regular and that each κ ∈ T is
a smooth bijective image of a fixed master element κ̂, that is, κ = Fκ(κ̂) for all κ ∈ T
where κ̂ is either the open unit simplex or the open unit hypercube in Rd. For an integer
r ≥ 1, we denote by Pr(κ̂) the set of polynomials of total degree ≤ r on κ̂; when κ̂ is
the unit hypercube, we also consider Qr(κ̂), the set of all tensor-product polynomials of
degree ≤ r in each coordinate direction. The case of r = 0 can be easily incorporated
into our analysis, but we have chosen to exclude it for simplicity of presentation so as to
ensure that 1/r is meaningful for any polynomial degree under consideration. Next, to
κ ∈ T we assign an integer pκ ≥ 1, collect the pκ and Fκ in the vectors p = {pκ : κ ∈ T }
and F = {Fκ : κ ∈ T }, respectively, and consider the finite element space

Sp(Ω, T ,F) = {u ∈ L2(Ω) : u|κ ◦ Fκ ∈ Rpκ(κ̂) ∀κ ∈ T } ,

where Rpκ is either Ppκ or Qpκ . Assuming that T is a subdivision of Ω and s > 0,
Hs(Ω, T ) will denote the associated broken Sobolev space of index s.

1.2.2 The numerical method

Discretisation of the Low-Order Terms. Since the emphasis in this paper is on
problems of hyperbolic and nearly-hyperbolic character, we begin by considering the hp-
DGFEM approximation of the first-order partial differential operator Lb defined by

Lbw = b ·∇w + cw .

Assuming that κ is an element in the subdivision T , we denote by ∂κ the union of open
faces of κ. This is non-standard notation in that ∂κ is a subset of the boundary of κ; we
have adopted it so as to ensure that the unit outward normal vector µ(x) to ∂κ at x ∈ ∂κ
is correctly defined. With these conventions, we define the inflow and outflow parts of
∂κ, respectively, by

∂−κ = {x ∈ ∂κ : b(x) · µ(x) < 0} , ∂+κ = {x ∈ ∂κ : b(x) · µ(x) ≥ 0} . (1.5)

For each v ∈ H1(Ω, T ) and any κ ∈ T , we denote by v+ the interior trace of v on ∂κ (the
trace taken from within κ). Let us consider an element κ such that the set ∂−κ\Γ− is
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nonempty; then for each x ∈ ∂−κ\Γ− (with the exception of a set of (d− 1)-dimensional
measure zero) there exists a unique element κ′, depending on the choice of x, such that
x ∈ ∂+κ′. If ∂−κ\Γ− is nonempty for some κ ∈ T , then we can also define the outer
trace v− of v on ∂−κ\Γ− relative to κ as the inner trace v+ relative to those elements
κ′ for which ∂+κ′ has intersection with ∂−κ\Γ− of positive (d − 1)-dimensional measure.
Furthermore, we introduce the oriented jump of v across ∂−κ\Γ−: * v + = v+ − v− .

Given that v, w ∈ H1(Ω, T ), we define, as in [16], for example, the bilinear form

Bb(w, v) =
∑

κ∈T

∫

κ
(Lbw)v dx (1.6)

−
∑

κ∈T

∫

∂−κ\Γ−

(b · µ)*w+ v+ ds−
∑

κ∈T

∫

∂−κ∩Γ−

(b · µ)w+ v+ ds ,

and the linear functional

$b(v) =
∑

κ∈T

∫

κ
fv dx−

∑

κ∈T

∫

∂−κ∩Γ−

(b · µ) gv+ ds . (1.7)

Next, we focus on the discretisation of the leading term in the partial differential equation.

Discretisation of the Leading Term. Let us suppose that the elements in the sub-
division have been numbered in a certain way, regardless of the direction of the advective
velocity vector b. We denote by E the set of element faces (edges for d = 2 or faces for
d = 3) associated with the subdivision T . Since hanging nodes are permitted in DGFEM,
E will be understood to consist of the smallest faces in ∂κ. Also, let Eint, resp. Γint, denote
the set, resp. union, of all faces e ∈ E which do not lie on ∂Ω. Given that e ∈ Eint, there
exist indices i and j such that i > j and κi and κj share the interface e; we define the
(numbering-dependent) jump of v ∈ H1(Ω, T ) across e and the mean value of v on e,

respectively, by [v] = v|∂κi∩e − v|∂κj∩e and 〈v〉 =
(

v|∂κi∩e + v|∂κj∩e

)

/2 .

It is clear that, in general, [v] will be distinct from *v+ in that the latter depends on
the direction of the unit outward normal to an element boundary, while the former is only
dependent on the element numbering; however, |[v]| = |*v+|. With each face e ∈ Eint we
associate the normal vector ν which points from κi to κj ; on boundary faces we define
ν = µ. Finally, we introduce, following [19], the bilinear form

Ba(w, v) =
∑

κ∈T

∫

κ
a(x)∇w ·∇v dx+

∫

ΓD

{w((a∇v) · ν)− ((a∇w) · ν)v}ds

+
∫

Γint

{[w]〈(a∇v) · ν〉 − 〈(a∇w) · ν〉[v]}ds , (1.8)

associated with the principal part of the differential operator L, and the linear functional

$a(v) =
∫

ΓD

gD((a∇v) · ν) ds+
∫

ΓN

gNv ds .
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Discontinuity-Penalisation Term. Let ā = ||a||2, with || · ||2 denoting the matrix
norm subordinate to the l2 vector norm on Rd, and let āκ = ā|κ. To each e in Eint
which is a common face of elements κi and κj in T we assign the nonnegative function
〈ā〉e = (āκi

|e + āκj
|e)/2. Letting ED denote the set of all faces contained in ΓD, to each

e ∈ ED we assign the element κ ∈ T with that face and define 〈ā〉e = āκ|e. Consider the
function σ defined on Γint ∪ ΓD by σ(x) = K〈ā〉e/|e| for x ∈ e and e ∈ Eint ∪ ED, where
|e| = measd−1(e) and K is a positive constant (whose value is irrelevant for the present
analytical study, so we put K = 1) and introduce

Bs(w, v) =
∫

ΓD

σwv ds+
∫

Γint

σ[w][v] ds , $s(v) =
∫

ΓD

σgDv ds . (1.9)

We highlight the fact that since the weight-function σ involves the norm of the matrix
a, in the hyperbolic limit of a ≡ 0 the bilinear form Bs(·, ·) and the linear functional
$s both vanish. This is a desirable property, since linear hyperbolic equations may pos-
sess solutions that are discontinuous across characteristic hypersurfaces, and penalising
discontinuities across faces which belong to these would be unnatural.

Streamline-diffusion stabilisation. Let δ ∈ H1(Ω, T ) be a nonnegative function. In
the present context δ will play the role of a stabilisation parameter ; typically δ is chosen
to be constant on each κ ∈ T , although we shall not require this for now. We define the
bilinear form and the linear functional, respectively,

Bδ(w, v) =
∑

κ∈T

∫

κ
δ(Lw)(b ·∇v) dx , $δ(v) =

∑

κ∈T

∫

κ
δf(b ·∇v) dx . (1.10)

The precise choice of the stabilisation parameter will be given in the next section.

Definition of the Method. Finally, we define the bilinear formBDG(·, ·) and the linear
functional $DG(·), respectively, by

BDG(w, v) = Ba(w, v) +Bb(w, v) +Bs(w, v) +Bδ(w, v) ,

$DG(v) = $a(v) + $b(v) + $s(v) + $δ(v) .

The hp-DGFEM approximation of (1.1), (1.4) is: find uDG ∈ Sp(Ω, T ,F) such that

BDG(uDG, v) = $DG(v) ∀v ∈ Sp(Ω, T ,F) . (1.11)

In the next section we state the key properties of this method. Before we do so,
however, we note that in the definitions of the bilinear forms and linear functionals above
and in the arguments which follow it has been tacitly assumed that a ∈ C(κ) for each
κ ∈ T , that the fluxes (a∇u) · ν and (b · µ)u are continuous across element interfaces,
and that u is continuous in an (open) neighbourhood of the subset of Ω where a is not
identically equal to zero. If the problem under consideration violates these properties, the
scheme and the analysis have to be modified accordingly.
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1.3 ANALYTICAL RESULTS

Our first result concerns the positivity of the bilinear form BDG(·, ·) and the existence
and uniqueness of a solution to (1.11). In order to prove it, we shall require the following
inverse inequality (see [23]): there exists a positive constant Cinv, dependent only on the
constant of the angle condition such that

‖∇ ·W‖L2(κ) ≤ Cinv
p2κ
hκ

‖W‖L2(κ) (1.12)

for all κ ∈ T and all W = (w1, . . . , wd) ∈ [Sp(Ω, T ,F)]d.

Theorem 1 Suppose that, in addition to (1.2) and (1.3), there exists a positive constant
γ0 such that γ ≡ c− 1

2∇ · b ≥ γ0 on Ω̄. Let us also assume that

0 ≤ δ ≤
1

2
min

(

h2
κ

C2
invp4κāκ

,
γ

c̄2κ

)

∀κ ∈ T , (1.13)

where c̄κ = ‖c‖L∞(κ) . Then,

BDG(w,w) ≥ |||w|||2DG ≡ D +
1

2

∑

κ∈T

Eκ +
1

2

∑

κ∈T

Fκ +
1

2

∑

κ∈T

Gκ , (1.14)

where

D ≡
∫

ΓD

σw2 ds+
∫

Γint

σ[w]2 ds , Eκ ≡ ‖
√
a∇w‖2L2(κ) + ‖

√
γw‖2L2(κ) ,

Fκ ≡
∫

∂−κ∩Γ−

|b · µ|w2
+ ds+

∫

∂+κ∩Γ+

|b · µ|w2
+ ds+

∫

∂−κ\Γ−

|b · µ|*w+2 ds ,

Gκ ≡ ‖
√
δ(b ·∇w)‖2L2(κ) ,

with
√
a denoting the (nonnegative) square-root of the matrix a, and σ as in the defini-

tion of the discontinuity-penalisation. Furthermore, the hp-DGFEM (1.11) has a unique
solution uDG in Sp(Ω, T ,F).

Proof: We begin by proving (1.14). First, we note that, trivially,

Bs(w,w) =
∫

ΓD

σw2 ds+
∫

Γint

σ[w]2 ds .

Further, as (b ·∇w)w = 1
2b ·∇(w2), after integration by parts we have that

Bb(w,w) =
1

2

∑

κ∈T

Fκ +
∑

κ∈T

∫

κ
|
√

γ(x)w(x)|2 dx .

Next, we observe that

Ba(w,w) =
∑

κ∈T

∫

κ
|
√

a(x)∇w(x)|2 dx .
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Finally, by the Cauchy-Schwarz inequality,

Bδ(w,w) ≥
∑

κ∈T

[

1

2
‖
√
δ(b ·∇w)‖2L2(κ) − ‖

√
δ(∇ · (a∇w))‖2L2(κ) − ‖

√
δcw‖2L2(κ)

]

.

Noting (1.12) and (1.13), this implies that

Bδ(w,w) ≥
1

2

∑

κ∈T

(

‖
√
δ(b ·∇w)‖2L2(κ) − ‖

√
a∇w‖2L2(κ) − ‖

√
γw‖2L2(κ)

)

.

Upon recalling the definition of the bilinear form BDG(·, ·), we arrive at (1.14).
To complete the proof of the lemma, we note that since γ > 0 on each element κ

in the subdivision T , then BDG(w,w) > 0 for all w in Sp(Ω, T ,F) \ {0}, and hence we
deduce the uniqueness of the solution uDG. Further, since the linear space Sp(Ω, T ,F)
is finite-dimensional, the existence of the solution to (1.11) follows from the fact that its
homogeneous counterpart has the unique solution uDG ≡ 0. 01

Our second result provides a bound on the global error e = u − uDG. For simplicity,
we shall assume that the entries of the matrix a are constant on each element κ ∈ T (with
possible discontinuities across faces e ∈ E). We quote the following result [5, 23].

Lemma 1 Suppose that u ∈ Hkκ(κ), kκ ≥ 0, κ ∈ T . Then, there exists Πhpu in the finite
element space Sp(Ω, T ,F), a constant C dependent on kκ and the angle condition of κ,
but independent of u, hκ = diam(κ) and pκ, such that

‖u−Πhpu‖Hs(κ) ≤ C
hτκ−s
κ

pkκ−s
κ

‖u‖Hkκ(κ) , (1.15)

where 0 ≤ s ≤ τκ and τκ = min(pκ + 1, kκ) for κ ∈ T .

Our main result concerns the accuracy of the hp-DGFEM (1.11) and is stated in the
next theorem. We recall the notation introduced earlier on: given that ā = ||a||2, with
|| · ||2 denoting the matrix norm subordinate to the l2 vector norm on Rd, we let āκ = ā|κ.
Similarly, we define b̄κ = ‖b‖L∞(κ), c̄κ = ‖c‖L∞(κ) and γ̄κ = ‖γ‖L∞(κ).

Theorem 2 In addition to the hypotheses of Theorem 1, let us assume that for any κ ∈ T
such that b̄κ 2= 0,

δ(x) =
1

2
min

(

h2
κ

C2
invp4κāκ

,
hκ

pκb̄κ
,
γ

c̄2κ

)

, x ∈ κ . (1.16)

Then, the solution uDG ∈ Sp(Ω, T ,F) of (1.11) obeys the error bound

|||u− uDG|||2DG ≤ C
∑

κ : b̄κ (=0

(

āκ
h2(τκ−1)
κ

p2(kκ−2)
κ

+ b̄κ
h2(τκ−1/2)
κ

p2(kκ−1/2)
κ

+ γ̄κ
h2τκ
κ

p2kκκ

)

‖u‖2Hkκ(κ)

+C
∑

κ : b̄κ=0

(

āκ
h2(τκ−1)
κ

p2(kκ−3/2)
κ

+ γ̄κ
h2τκ
κ

p2kκκ

)

‖u‖2Hkκ(κ) ,

where τκ = min(pκ + 1, kκ), and u ∈ Hkκ(κ) with kκ ≥ 2 when b̄κ 2= 0, kκ > 3/2 when
b̄κ = 0, for κ ∈ T .
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Proof: Let us decompose e = u−uDG as e = η+ξ where η = u−Πhpu, ξ = Πhpu−uDG,
and Πhp is as in Lemma 1. Then, by virtue of Theorem 1,

|||ξ|||2DG ≤ BDG(ξ, ξ) = BDG(e− η, ξ) = −BDG(η, ξ) ,

where we have used the Galerkin orthogonality property BDG(u − uDG, ξ) = 0 which
follows from (1.11) with v = ξ and the definition of the boundary value problem (1.1),
(1.4), given the assumed smoothness of u. Thus, we deduce that

|||ξ|||2DG ≤ |Ba(η, ξ)|+ |Bb(η, ξ)|+ |Bs(η, ξ)|+ |Bδ(η, ξ)| . (1.17)

Now, from (1.9) we have that

|Bs(η, ξ)| ≤ |||ξ|||DG

(
∫

ΓD

σ|η|2 ds+
∫

Γint

σ[η]2 ds
)1/2

. (1.18)

Next we consider Bb(η, ξ). Upon integration by parts, we obtain

Bb(η, ξ) =
∑

κ

∫

κ
(c−∇ · b)ηξ dx−

∑

κ∈T

∫

κ
η(b ·∇ξ) dx+

∑

κ∈T

∫

∂+κ∩Γ+

(b · µ)η+ξ+ ds

+
∑

κ∈T

∫

∂+κ\Γ+

(b · µ)η+ξ+ ds+
∑

κ∈T

∫

∂−κ\Γ−

(b · µ)η−ξ+ ds . (1.19)

Denoting by S1, . . . , S5 the five terms on the right-hand side of (1.19), we find, after
shifting the ‘indices’ in the summation in S4, that

|S4 + S5 | ≤
∑

κ∈T

(

∫

∂−κ\Γ−

|b · µ||η−|2 ds
)1/2 (

∫

∂−κ\Γ−

|b · µ|*ξ+2 ds
)1/2

.

Also, we note that elements κ ∈ T with b̄κ = 0 can be omitted from the summation in
term S2. Thus, after multiplying and dividing by

√
γ and

√
δ under the integral signs in

S1 and S2, respectively, (1.19) yields

|Bb(η, ξ)| ≤ C|||ξ|||DG





∑

κ : b̄κ (=0

‖(1 + δ−1/2)η‖2L2(κ) +
∑

κ∈T

∫

∂+κ∩Γ+

|b · µ||η+|2 ds

+
∑

κ∈T

∫

∂−κ\Γ−

|b · µ||η−|2 ds
)1/2

, (1.20)

where C is a generic positive constant, as in the statement of the theorem.
Next, we consider the term Ba(η, ξ):

|Ba(η, ξ)| ≤ I + II + III ,

where

I ≡
∣

∣

∣

∣

∣

∑

κ∈T

∫

κ
a∇η ·∇ξ dx

∣

∣

∣

∣

∣

, II ≡
∣

∣

∣

∣

∫

ΓD

{η((a∇ξ) · ν)− ((a∇η) · ν)ξ}ds
∣

∣

∣

∣

,
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III ≡
∣

∣

∣

∣

∫

Γint

{[η]〈(a∇ξ) · ν〉 − 〈(a∇η) · ν〉[ξ]} ds
∣

∣

∣

∣

.

Now, we have that

I2 ≤ |||ξ|||2DG

∑

κ∈T

‖
√
a∇η‖2L2(κ) ,

II2 ≤ C|||ξ|||2DG

∑

κ : ∂κ∩ΓD (=∅

(

āκp2κ
hκ

‖η‖2L2(∂κ∩ΓD) + āκhκ‖∇η‖2L2(∂κ∩ΓD)

)

,

III2 ≤ C|||ξ|||2DG

∑

κ : ∂κ∩Γ=∅

(

āκp2κ
hκ

‖[η]‖2L2(∂κ)+ āκhκ‖∇η‖2L2(∂κ)

)

.

Collecting the bounds on the terms I, II and III gives,

|Ba(η, ξ)| ≤ C|||ξ|||DG

(

∑

κ∈T

‖
√
a∇η‖2L2(κ)

+
∑

κ : ∂κ∩ΓD (=∅

(

āκp2κ
hκ

‖η‖2L2(∂κ∩ΓD) + āκhκ‖∇η‖2L2(∂κ∩ΓD)

)

+
∑

κ : ∂κ∩Γ=∅

(

āκp2κ
hκ

‖[η]‖2L2(∂κ)+ āκhκ‖∇η‖2L2(∂κ)

)





1/2

. (1.21)

Finally, for Bδ(η, ξ) we have the bound

|Bδ(η, ξ)| ≤ |||ξ|||DG





∑

κ : b̄κ (=0

‖
√
δLη‖2L2(κ)





1/2

. (1.22)

The required result now follows by noting that

|||u− uDG|||DG ≤ |||η|||DG + |||ξ|||DG ,

inserting the estimates (1.18), (1.20), (1.21) and (1.22) into (1.17) to bound |||u−uDG|||DG

in terms of |||η|||DG and other norms of η, and applying Lemma 1, together with the Trace
Inequality to estimate norms over e and ∂κ in terms of norms of η over κ, κ ∈ T . 01

We note that in the purely hyperbolic case of a ≡ 0 the error bound in Theorem 2
collapses to the hp-optimal error bound O(hτ−1/2/pk−1/2) in the DG-norm established in
[14], which represents a generalisation of the optimal h-version bound for the DGFEM
(see [16]) to the hp-version. In fact, for a ≡ 0 the error bound of Theorem 2 is by 1/2 a
p-order sharper than the corresponding estimate of Bey and Oden [8], except that there
the streamline-diffusion parameter was δ = h/p2, while in the case of a ≡ 0 Theorem
2 corresponds to δ = h/p. We note in this respect that the error bound of [8] may be
reproduced even with δ = 0, i.e. with less damping in the streamwise direction than
required in [8]; see [25]. For further developments in this direction, we refer to [14, 25].
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1.4 A POSTERIORI ERROR ANALYSIS

For the second half of this paper, we turn our attention to the subject of a posteriori error
analysis of first–order hyperbolic problems, corresponding to aij ≡ 0 for i, j = 1, . . . , d. In
particular, using the approach in [7], we discuss the question of error estimation for linear
functionals, such as the outflow flux and the local average of the solution. For simplicity,
we restrict ourselves to the case when the streamline–diffusion stabilisation δ is set to
zero; the case when δ > 0 may be treated analogously, cf. [13]. Under these assumptions,

BDG(·, ·) ≡ Bb(·, ·) and $DG(·) ≡ $b(·) ,

where Bb(·, ·) and $b(·) are as defined in (1.6) and (1.7), respectively.
Given a linear functional J(·), our aim is to control the discretisation error between

the true value J(u), based on the analytical solution u to (1.1), and the actual computed
value J(uDG). The proceeding error analysis is based on a hyperbolic duality argument;
for full details and further numerical experiments, see [15]. To this end, we introduce the
following dual or adjoint problem: find z in H(L∗,Ω) such that

BDG(w, z) = J(w) ∀w ∈ H(L,Ω) , (1.23)

where H(L,Ω), resp. H(L∗,Ω), denotes the graph space of the first–order operator
L ≡ Lb, resp. L∗. Here, we assume that (1.23) has a unique solution; the validity
of this assumption depends on the precise definition of the linear functional J(·) under
consideration. In the case when J(·) represents the (weighted) normal flux through the
outflow boundary Γ+, i.e.

J(w) ≡ Nψ(w) =
∫

Γ+

(b · µ)wψ ds , (1.24)

z is the (unique) solution to the following partial differential equation: find z in H(L∗,Ω)
such that

L∗z ≡ −∇ · (bz) + cz = 0 , x ∈ Ω , z = ψ , x ∈ Γ+ . (1.25)

Other examples include the mean flow of the field u over the computational domain Ω or
some compact subset of Ω.

For each element κ in the mesh T , we define the internal residual rh,p and the boundary
residual r−h,p by

rh,p|κ = (f − LuDG)|κ and r−h,p|∂−κ∩Γ−
= (g − u+

DG)|∂−κ∩Γ−
, (1.26)

respectively. With this notation we have the following general result.

Theorem 3 Let u and uDG denote the solutions of (1.1) and (1.11), respectively, and
suppose that the dual solution z satisfies (1.23). Then, the following a posteriori error
bound holds:

|J(u)− J(uDG)| ≤ ε(uDG, h, p, z, zh,p) ≡
∑

κ∈T

ηκ , (1.27)



11

where

ηκ = |(rh,p, z − zh,p)κ + ((b · µ)*uDG+, (z − zh,p)
+)∂−κ\Γ−

− ((b · µ)r−h,p, (z − zh,p)
+)∂−κ∩Γ−

|

and zh,p belongs to the finite element space Sp(Ω, T ,F).

Proof: Choosing w = u − uDG in (1.23) and exploiting the Galerkin orthogonality
property of the hp–DGFEM (cf. proof of Theorem 2), we deduce that

J(u)− J(uDG) = J(u− uDG) = BDG(u− uDG, z) = BDG(u− uDG, z − zh,p) .

Recalling the definition of the bilinear form BDG(·, ·) and applying the triangle inequality
gives the desired result. 01

While the residual terms rh,p and r−h,p and the ‘jump’ term *uDG+ are easily evaluated
once the numerical solution uDG has been computed, the calculation of the corresponding
‘weights’ involving the dual solution z requires special care. As in [13], z will be estimated
by numerically solving the dual problem (1.23); this will be discussed in detail in Section
1.5.1. First, however, in the case when the functional of interest J(·) is defined to be the
mean flow of the field u over Ω, we derive an a posteriori bound on the error u− uDG in
negative Sobolev norms, cf. [13, 24], for example.

Theorem 4 Let u and uDG denote the solutions of (1.1) and (1.11), respectively. Then
there exists a positive constant C, dependent only on the dimension d, the shape regularity
of T and m, m > 0, such that

‖u− uDG‖H−m(Ω) ≤ C





(

∑

κ∈T

h2τκ
κ

p2mκ
‖rh,p‖2L2(κ)

)1/2

+

(

∑

κ∈T

h2τκ−1
κ

p2m−1
κ

‖*uDG+‖2∂−κ\Γ−

)1/2

+

(

∑

κ∈T

h2τκ−1
κ

p2m−1
κ

‖r−h,p‖2∂−κ∩Γ−

)1/2


 ,

where τκ = min(pκ + 1, m) for all κ in T .

Proof: The proof is based on a duality argument using the Galerkin orthogonality of
the hp–DGFEM, together with stability bounds for the dual problem, see [15]. 01

We end this section by stating an a priori bound on the error in the computed func-
tional in terms of Sobolev norms of the analytical solution u and the dual solution z which
indicates the expected rate of convergence for |J(u)− J(uDG)| as the finite element space
is enriched, i.e. as h → 0 and p → ∞. This will play a crucial role in the design of an
hp–adaptive algorithm for automatically controlling the error in the computed functional,
see Section 1.5.2 below. To this end, we assume for the moment that

b ∈
[

S1(Ω, T ,F) ∩ C(Ω)
]d

, c ∈ S0(Ω, T ,F) , f ∈ Sp(Ω, T ,F) . (1.28)

Theorem 5 Let u and uDG denote the solutions of (1.1) and (1.11), respectively. Given
that u|κ ∈ Hkκ(κ), kκ ≥ 1, and z|κ ∈ H lκ(κ), lκ ≥ 1, for all κ in T , we have

|J(u)− J(uDG)|2 ≤ C
∑

κ∈T

h2τκ−1
κ

p2kκ−2
κ

‖u‖2Hkκ(κ) ·
∑

κ∈T

h2θκ−1
κ

p2lκ−2
κ

‖z‖2Hlκ (κ) , (1.29)

where τκ = min(pκ + 1, kκ) and θκ = min(pκ + 1, lκ) for all κ ∈ T . Here, C is a positive
constant, dependent only on d, the shape regularity of T and kκ and lκ, κ ∈ T .
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Proof: See [15] for details. 01
For uniform orders, pκ = p, kκ = k ≥ 1, lκ = l ≥ 1, and hκ = h for all κ in T , we have

|J(u)− J(uDG)| ≤ C
hτ+θ−1

pk+l−1
p ‖u‖Hk(Ω)‖z‖Hl(Ω) , (1.30)

where τ = min(p + 1, k) and θ = min(p + 1, l). Here, the bound (1.30) is optimal in
h and suboptimal in p by one order; in the case of fixed p, (1.30) reduces the optimal
h–convergence error bound proved in [13] for a stabilised continuous approximation to u.
From (1.30) we may deduce the following a priori error bound

‖u− uDG‖H−m(Ω) ≤ C
hτ+θ−1

pk+m−1
p ‖u‖Hk(Ω) , (1.31)

where τ = min(p + 1, k) and θ = min(p + 1, m). In the presence of streamline–diffusion
stabilisation, with stabilisation parameter δ = h/p, the bounds (1.30) and (1.31) can be
sharpened to ones that are simultaneously optimal in both h and p.

Finally, we note that the dependence of the constant C appearing in the a priori
bound (1.29) on the regularity of the primal solution u and the dual solution z may be
made explicit using the approximation results derived in [23]. In particular, this allows us
to deduce that the error in the computed functional J(·) decays exponentially as p → ∞
if either u or z are elementwise analytic, cf. [15]; this will be demonstrated in Section
1.5.3.

1.5 NUMERICAL IMPLEMENTATION

1.5.1 Numerical approximation of the dual solution

To ensure that the a posteriori error bound stated in Theorem 3 is fully computable, the
dual solution z must be numerically approximated. In this section we describe a DGFEM
for this purpose. As stated in Section 1.4, the particular form of the dual problem is
dependent on the functional under consideration. For simplicity, let us suppose that
J(·) = Nψ(·), i.e. J represents the outflow normal flux, cf. (1.24). In this case the dual
solution z satisfies (1.25) for a given weight function ψ.

As in Section 1.2.1, we define S̃p̃(Ω, T̃ , F̃) to be the finite element space consisting
of piecewise polynomials of degree p̃|κ̃ = p̃κ̃ on a mesh T̃ consisting of shape regular
elements κ̃ of size h̃κ̃. With ∂+κ̃ defined as in (1.5), we introduce the bilinear form and
linear functional

B̃DG(w, v) =
∑

κ̃∈T̃

∫

κ̃
L∗w v dx+

∑

κ̃∈T̃

∫

∂+κ̃\Γ+

(b · µ)*w+ v+ ds

+
∑

κ̃∈T̃

∫

∂+κ̃∩Γ+

(b · µ)w+ v+ ds ,

$̃DG(v) =
∑

κ̃∈T̃

∫

∂+κ̃∩Γ+

(b · µ)ψv+ ds ,
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respectively. The hp-DGFEM approximation of (1.25) is defined as follows: find z̃DG ∈
S̃p̃(Ω, T̃ , F̃) such that

B̃DG(z̃DG, v) = $̃DG(v) ∀v ∈ S̃p̃(Ω, T̃ , F̃) . (1.32)

1.5.2 Adaptive algorithm

For a user–defined tolerance TOL, we now consider the problem of designing the hp–finite
element space Sp(Ω, T ,F) such that

|J(u)− J(uDG)| ≤ TOL , (1.33)

subject to the constraint that the total number of degrees of freedom in Sp(Ω, T ,F) is
minimised. To ensure that (1.33) holds, we use the a posteriori error bound (1.27) to
construct Sp(Ω, T ,F) such that

ε(uDG, h, p, z, zh,p) ≤ TOL . (1.34)

The stopping criterion (1.34) is enforced by equidistributing ε|κ ≡ ηκ over the elements κ
in the mesh T . Thus, we insist that

ηκ ≈ TOL/N (1.35)

holds for each κ in T ; here, N denotes the number of elements in the mesh T .
Thereby, each of the elements in the mesh is flagged for either refinement or derefine-

ment to ensure that the equidistribution principle (1.35) holds. Once an element κ has
been flagged a decision must be made whether the local mesh size hκ or the local degree
of the approximating polynomial pκ should be adjusted accordingly. Let us first deal with
refinement, i.e. when the local error estimator ηκ is larger than the ‘localised–tolerance’
TOL/N . Clearly, if the error in the functional is locally ‘smooth’, then p–enrichment will
be more effective than h-refinement, since the error will be expected to decay quickly
within the current element κ as pκ is increased. However, if the error in the functional
has low regularity within the element κ, then h–refinement will be performed. Thus, re-
gions in the computational domain where the error is locally non-smooth are isolated from
smooth regions, thereby reducing the influence of singularities/shocks as well as making
p–enrichment more effective.

To ensure that the desired level of accuracy is achieved efficiently, an automatic pro-
cedure for deciding when to h– or p–refine must be implemented. To this end, we first
compute the local error indicator ηκ on each element κ in the mesh T using both a pκ and
a pκ − 1 representation for uDG. Thereby, assuming that ηκ(pκ − 1) 2= 0, the perceived
smoothness of the local error may be estimated using the ratio

ρκ = ηκ(pκ)/ηκ(pκ − 1) ; (1.36)

here, we have written ηκ(pκ) to emphasise the dependence of the local error indicator ηκ
on the local degree pκ of the approximating polynomial, cf. Adjerid et al. [1] and Gui &
Babuška [12], for example. If ρκ ≤ γ, 0 < γ < 1, the error is decreasing as the polynomial
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degree is increased, indicating that p–enrichment should be performed. On the other
hand, ρκ > γ means that the element κ should be locally subdivided. The number γ is
referred to as the type–parameter [12]. Clearly, the choice of γ is critical to the success of
this algorithm and will depend on the asymptotic behaviour of the quantity of interest.
Instead of assigning an ad hoc value to the type parameter γ, we use ρκ together with
the a priori error bound (1.29) to directly estimate the local regularities kκ and lκ of the
primal and dual solutions, respectively, on each element κ in T . More precisely, motivated
by (1.30), we assume that on a given element κ in T

ηκ = ε(uDG, hκ, pκ, z, zh,p)|κ ≈ Cκ p
−kκ−lκ+1
κ .

Thus, we have that

kκ + lκ = log(ρκ)/ log((pκ − 1)/pκ) + 1 .

Ideally, we would like to know kκ and lκ individually. The dual regularity lκ may be
estimated by calculating the L2(κ) norm of the error between the projection of z̃DG onto
the finite element spaces Sp(Ω, T ,F) and Sp−1(Ω, T ,F), together with the approximation
result (1.15). Once, both kκ and lκ have been determined on element κ, then κ is p–
enriched if either kκ or lκ is larger than pκ + 1; otherwise the element is subdivided. For
computational simplicity, only one hanging node is allowed on each side of a given element
κ, though no restriction on the difference between the polynomial degrees on neighbouring
elements is imposed. We note that this approach has been developed by Ainsworth &
Senior [2] in the context of norm control for second–order elliptic problems.

On the other hand, if an element has been flagged for derefinement, then the strategy
implemented here is to coarsen the mesh in smooth low–error–regions and decrease the
degree of the approximating polynomial in non-smooth low–error–regions, cf. [1]. To this
end, we again compute the local regularities kκ and lκ of the primal and dual solutions,
respectively, on each element κ in T as described above. The element κ is then coarsened
if either kκ or lκ is larger than pκ + 1, otherwise the degree pκ is reduced by one.

For the practical implementation of this adaptive algorithm, the dual solution z will
be numerically approximated as outlined in Section 1.5.1. Here, we write ε̂ in lieu of
ε(uDG, h, p, z̃DG, z̃h,p), where z̃DG denotes the numerical approximation to z defined by
(1.32) and z̃h,p denotes the L2–projection of z̃DG onto the finite element space Sp(Ω, T ,F)
used to calculate uDG. Furthermore, the finite element space S̃p̃(Ω, T̃ , F̃) used to approx-
imate the dual solution z will be constructed adaptively at the same time as Sp(Ω, T ,F).
For this purpose, we define the following error indicator for the dual approximation

η−1,κ̃ = (h̃κ̃/p̃κ̃) ‖L∗z̃DG‖L2(κ̃) + (h̃κ̃/p̃κ̃)
1/2

(

‖*z̃DG+‖∂+κ̃\Γ+
+ ‖ψ − z̃DG‖∂+κ̃∩Γ+

)

,

which results from controlling the H−1(Ω) norm of the error z− z̃DG, cf. Theorem 4. The
hp–adaptive algorithm for the dual problem will be based on the fixed fraction strategy.
Once the elements have been flagged for refinement/derefinement, h̃κ̃ and p̃κ̃ are altered
accordingly by estimating the local regularity l̃κ̃ of the dual solution on the dual mesh T̃
as above by calculating η−1,κ̃ using a p̃κ̃ and p̃κ̃ − 1 representation of z̃DG, together with
the a priori error bound (1.31).
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(a) (b)

Figure 1.1: Piecewise bilinear interpolant on a 129× 129 mesh of the analytical solution
to: (a) Primal problem; (b) Dual Problem.
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Figure 1.2: (a) |Nψ(u) − Nψ(uDG)| and ε̂ using hp–refinement; (b) True error in the
functional using both h– and hp–refinement.
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1.5.3 Example

Here we consider a compressible hyperbolic problem subject to discontinuous inflow
boundary condition, with b = (2y2 − 4x + 1, 1 + y), c = 0 and f = 0. The charac-
teristics enter the computational domain Ω from three sides of Γ, namely from x = 0,
y = 0 and x = 1, and exit Ω through y = 1. Thus, we may prescribe

u(x, y) =































0 for x = 0 , 0.5 < y ≤ 1 ,
1 for x = 0 , 0 ≤ y ≤ 0.5 ,
1 for 0 ≤ x ≤ 0.75 , y = 0 ,
0 for 0.75 < x ≤ 1 , y = 0 ,
sin2(πy) for x = 1 , 0 ≤ y ≤ 1 .

We define the weight function ψ in the functional Nψ(·), cf. (1.24), by

ψ = 2 + tanh((x− 1/2)/ε) for 0 ≤ x ≤ 1 , y = 1 ,

where ε = 10−2. Thereby, the true value of the outward normal flux is Nψ(u) = 2.0115.
The analytical solutions to both the primal and dual problems are shown in Figure 1.1.

In Figure 1.2 we show the performance of the adaptive algorithm described in Section
1.5.2 for TOL = 10−6; we note that this level of accuracy may be far beyond what is
of practical importance, but is chosen to illustrate that the true error and the bound ε̂
exhibit the same asymptotic behaviour as the finite element space Sp(Ω, T ,F) is enriched.
In Figure 1.2(a) we plot the error in the computed functional Nψ(·), together with the
error bound ε̂. Here, we see that while on very coarse meshes ε̂ slightly underestimates
the true error in the functional, as the finite element space is enriched the error bound
over-estimates |Nψ(u) − Nψ(uDG)| by a consistent factor. Furthermore, in Figure 1.2(b)
we compare the true error in the functional using both h– and hp–adaptive refinement.
We have plotted the error against the square–root of the number of degrees of freedom
on a linear–log scale. While the error |Nψ(u)−Nψ(uDG)| using h–refinement ‘tails–off’ as
Sp(Ω, T ,F) is enriched, we see that after the initial transient, the error in the computed
functional using hp–refinement becomes a straight line, thereby indicating exponential
convergence. We note that the slight ‘dip’ and the subsequent rise in the true error in
the functional observed at the end of the hp–refinement algorithm, cf. Figure 1.2, is
attributed to the fact that once the desired tolerance has almost been achieved, the last
couple of iterations of the adaptive algorithm attempt to equidistribute the local error
indicators ηκ over the elements κ in the computational mesh T .

Finally in Figures 1.3 and 1.4 we show primal and dual meshes after 8 and 15 adaptive
mesh refinements, respectively. For clarity, in each case we show the h–mesh alone, as
well as the corresponding distribution of the polynomial degree and the percentage of
elements with that degree. From Figure 1.3, we see that the elements in the primal mesh
have been refined along the first discontinuity emanating from (x, y) = (0.75, 0), since
the dual solution has a layer in this region as well. In contrast, elements lying on the
second discontinuity in the primal problem, which emanates from (x, y) = (0, 0.5) have
been less refined since the dual solution is smooth here. Furthermore, the mesh for the
dual solution is concentrated within the steep layer in the weight function ψ; the inherent
smoothing in the dual problem introduced by the compressible nature of b leads to p
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Figure 1.3: Mesh 9: Primal (top: 412 elements, 531 nodes and 5723 DOF) and Dual
(bottom: 865 elements, 1064 nodes and 7037 DOF) h– and hp–meshes

refinement in this layer as the flow moves away from Γ+. The same behaviour is observed
in Figure 1.4 for the primal and dual solutions.
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[25] E. Süli, C. Schwab, and P. Houston (1999). hp-DGFEM for partial differential equa-
tions with nonnegative characteristic form. In: B. Cockburn, G. Karniadakis, and
C.-W. Shu, editors, Discontinuous Galerkin Finite Element Methods. Lecture Notes
in Computational Science and Engineering. Springer-Verlag (to appear).

[26] M.F. Wheeler (1978). An elliptic collocation finite element method with interior
penalties. SIAM J. Numer. Anal., 15:152–161.



Research Reports

No. Authors Title
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