
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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Abstract

The dynamics of a differential algebraic equation takes place on a lower di-
mensional manifold in phase space. Applying a numerical integration scheme,
it is natural to ask if and how this geometric property is preserved by the
discrete dynamical system. In the index-1 case answers to this question are
obtained from the singularly perturbed case treated in [6] for Runge-Kutta
methods and in [7] for linear multistep methods. As main result, it is shown
that also for Runge-Kutta methods and linear multistep methods applied to an
index-2 problem of Hessenberg form there is a (attractive) invariant manifold
for the discrete dynamical system and this manifold is close to the manifold
of the differential algebraic equation.



1 Introduction

The dynamics of a differential algebraic equation (DAE) is restricted to a manifold. When
applying a numerical integration scheme to a DAE, does the discrete dynamical system
preserve this geometric property of the continuous dynamical system? We investigate
Runge-Kutta methods (RKMs) and linear multistep methods (LMMs) applied to DAEs
of index 1 and index 2.

In Section 2 we show that the existence of invariant manifolds for RKMs and LMMs
applied to DAEs of index 1 as well as convergence results and global error estimates are
obtained from the singularly perturbed case (treated for RKMs in [6] and for LMMs in
[7]) just by putting the singular perturbation parameter ε = 0. Indeed, we show that
there is a commuting diagram for the two cases.

In Section 3 we consider index-2 problems of Hessenberg form. In Paragraph 3.1 we
first deal with RKMs and LMMs applied to the index-1 formulation and show that at
least for the case of a linear constraint the commuting diagram of Section 2 still exists also
containing the additional ‘index-2 submanifolds’. In the nonlinear case we prove a linear
(in t) drift off the index-2 submanifold of the DAE. In Paragraph 3.2 we consider RKMs
and LMMs applied to the index-2 formulation of the DAE which is preferred in practice
(no reduction to index 1). Here, the question of interest is the existence of an attractive
invariant ‘index-1 manifold’. Again, for the case of a linear constraint it can easily be
verified that there is such a manifold. In the nonlinear case, we prove the existence of such
an invariant manifold and derive important additional properties for BDF-like RKMs and
for LMMs.

For DAEs of index 2 we follow the lines of [2] and [4] where also a standard bibliography
for DAEs may be found. It is to mention that in [1] invariant manifold techniques similar to
ours have been applied to the index-1 formulation of index-2 DAEs in order to investigate
stabilizations of the linear drift mentioned above. The results and invariant manifold
techniques of this paper may also be applied to index-3 problems of Hessenberg form
(cf. [2], [4]) which admit three types of manifolds that may or may not ’persist’ under
numerical approximation.

In this introductory section, in order to introduce the notation and to keep the paper
mostly self-contained and legible, we first summarize the results for singularly perturbed
ODEs and their approximations by RKMs and LMMs given in [6], [7]. There, RKMs and
LMMs are applied to stiff systems of singular perturbation type of the form

(1)ε
ẋ = f(x, y)

εẏ = g(x, y)
satisfying

Hypothesis Hε

1) f and g are bounded and there is r with r ≥ 2 such that f ∈ Cr
b (lR

m×lRn, lRm) , g ∈
Cr

b (lR
m×lRn, lRn).

2) There is a function s0 ∈ Cr
b (lR

m, lRn) such that g(x, s0(x)) = 0 for x ∈ lRm.
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3) There is a positive constant b0 such that all eigenvalues of the Jacobian gy(x, s0(x))
have real parts smaller than −b0 for all x ∈ lRm.

By Cr
b we denote spaces of functions of class Cr with bounded derivatives.

Under these assumptions Eq. (1)ε admits, for all ε > 0 small enough, an attractive
invariant manifold Mε which is the graph over x-space of a smooth function s

Mε = {(x, y)|x ∈ lRm, y = s(x, ε)}

with s of class Cr
b with respect to x and ε (for ε ∈ (−ε0, ε0), ε0 small) and s(x, 0) = s0(x).

Mε is highly attractive, i.e.,

|y(t)− s(x(t), ε)| ≤ K χt
ε |y(0)− s(x(0), ε)| , t ≥ 0 ,

where χt
ε := e−βt/ε with β ∈ (0, b0).

Mε possesses a stable foliation, i.e., there exists a positively invariant family of stable
fibers which are smooth manifolds over y-space. The ’steepness’ of the fibers is of the order
of Lε

12 = εLipy(f), i.e., if (x, y) and (x̄, ȳ) are two points on a fiber then x̄−x = O(ε). As
a consequence, the property of ‘asymptotic phase’ holds: For every trajectory of Eq. (1)ε
there exists a unique trajectory on Mε such that the two trajectories tend to each other
exponentially with rate χt

ε. The whole situation is sketched in Fig. 1.

x2

x1

y

Mε : y = s(x, ε)

Fig. 1: The attractive invariant manifold Mε of Eq. (1)ε, stable foliation
and ’asymptotic phase’

For RKMs applied to Eq. (1)ε it is assumed that the following assumptions hold.

Hypothesis HRKM

1) The RKM has order p and stage order 1 ≤ q < p.

2) The RKM-matrix A is invertible.

3) The stability function R(z) := 1+zbT (Is−zA)−111s, z ∈ lC, where 11s := (1, . . . , 1)T ∈
lRs, satisfies |R(∞)| < 1.
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Here, s is the number of stages of the RKM. Since A is invertible, R(∞) = 1− bT A−1 11s
holds. For RKMs with asi = bi, i = 1, . . . , s, this implies R(∞) = 0. Under Hypothesis
HRKM the RKM

X = 11s ⊗ x+ h(A⊗ Im) f(X, Y )

Y = 11s ⊗ y +
h

ε
(A⊗ In) g(X, Y )

x̄ = x+ h(bT ⊗ Im) f(X, Y )

ȳ = y +
h

ε
(bT ⊗ In) g(X, Y )

defines a smooth map (I)h,ε : (x, y) (−→ (x̄, ȳ) from lRm × lRn into itself. (We have used
the notation X := (X1, . . . , Xs)T ∈ lRsm, f(X, Y ) := (f(X1, Y1), . . . , f(Xs, Ys))T ∈ lRsm,
etc., ⊗ denotes the Kronecker product.) In coordinates measuring the difference to Mε

y = s(x, ε) + z, Y = s(X, ε) + Z

this map may be written as (we often suppress the dependence of s(x, ε) on ε for short)

(Ĩ)h,ε
x̄ = x+ h(bT ⊗ Im) f(X, s(X) + Z)

z̄ = (R(∞)In +O(ε/h))z + ((bT A−1 ⊗ In) +O(ε/h))E − e

where the stages X,Z satisfy

X = 11s ⊗ x+ h(A⊗ Im) f(X, s(X) + Z)

Z = O(ε/h) .

The functions E and e are defined as

E(x,X) := s(X)− 11s ⊗ s(x)−
h

ε
(A⊗ In) g(X, s(X))

e(x, x̄, X) := s(x̄)− s(x)−
h

ε
(bT ⊗ In) g(X, s(X)) .

Note that g(X, s(X)) = O(ε).

The RKM-map (I)h,ε admits an attractive invariant manifold Mh,ε which is the graph
of a smooth function σ(x, h, ε):

Mh,ε = {(x, y)|x ∈ lRm, y = σ(x, h, ε)}

with σ of class Cr
b with respect to x and ε (also for ε = 0) and

σ(x, h, ε) = s(x, ε) +





O(hq+1)

O(εhq), if bi = asi, i = 1, . . . , s .
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The attractivity rate is χh,ε = |R(∞)|+ c ε/h < 1. Mh,ε again has a stable foliation with
fibers of ’steepness’ O(ε) (since the Lipschitz constant Lh,ε

12 of the right-hand side of the
first equation of (Ĩ)h,ε is O(ε)) and every RKM-orbit has an accompanying ‘asymptotic
phase’ orbit on Mh,ε. In Fig. 2 a sketch of these results is given. For the global error of
the RKM applied to Eq. (1)ε we have for h and ε/h small enough and for jh ≤ Nh = T
fixed

(GE)h,ε
xj − x(jh) = O(hp) +O(εhq+1) +O(ε|y0 − s(x0, ε)|)

yj − y(jh) = O(hq+1) +O((ε+ χj
h,ε) |y0 − s(x0, ε)|)

where for bi = asi, i = 1, . . . , s, the term O(hq+1) in the y-equation is replaced by O(hp)+
O(εhq).

x2

x1

y

Mε

O(hq+1)

Mh,ε : y = σ(x, h, ε)

Fig. 2: The attractive invariant manifold Mh,ε of the RKM-map (I)h,ε,
stable foliation and asymptotic phase and closeness to Mε

For LMMs we have the analogous results although the situation is somewhat more
complicated. This is due to the fact that LMMs cannot be considered as a map from
phase space into itself. They are best described by a map in a high-dimensional space.

A k-step method applied to Eq. (1)ε is defined by

k∑

i=0

αi xi = h
k∑

i=0

βi f(xi, yi)

, αk = 1 ,
k∑

i=0

αi yi =
h

ε

k∑

i=0

βi g(xi, yi)

where (xi, yi), i = 0, . . . , k− 1, are given starting values. We make the following assump-
tion.
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Hypothesis HLMM

1) The LMM is an irreducible k-step method of order p ≥ 1.

2) The LMM is ρ1-strictly stable, i.e., the polynomial ρ(z) :=
k∑

j=0
αjzj has 1 as a simple

zero and all other zeros have modulus smaller than ρ1 < 1.

3) The LMM is σ1-stiffly stable, i.e., βk *= 0 and all zeros of the polynomial σ(z) :=
k∑

j=0
βjzj have modulus smaller than σ1 < 1.

Note that
∑k

i=0 αi = 0 and since αk = 1 this implies
∑k−1

i=0 αi = −1. Under the above
assumptions, the LMM defines a smooth map (I)h,ε from lRkm × lRkn into itself. Defining
α := (α0, . . . ,αk−1)T ∈ lRk, β := (β0, . . . , βk−1)T ∈ lRk and

R :=





0 1 0
. . . 1

0
0



 , Xi :=





xi

...

xi+k−1



 , Lα := ek α
T =





0

α0 . . .αk−1



 ,

etc., and again measuring the difference toMε by the change of coordinates y = s(x, ε)+z
this map has the form

(Ĩ)h,ε

X1 = ((R− Lα)⊗ Im)X0 + h(Lβ ⊗ Im) f(X0, s(X0) + Z0)

+ hβk(ek ⊗ f(xk, s(xk) + zk))

Z1 =
[
(R⊗ In)−

1

βk
(Lβ ⊗ In) + |β|O( max

0≤i<k
|xi − x0|

+ h+ d+ ε/h) +O(ε/h)
]
Z0 +O(ε/h)

mapping (X0, Z0) ∈ lRkm × lRkn ∩ {|Z0|∞ ≤ d} to (X1, Z1) ∈ lRkm × lRkn.

The LMM-map (I)h,ε admits an m-dimensional attractive invariant manifold Sh,ε in
lRkm × lRkn

Sh,ε = {x0, . . . , xk−1, y0, . . . , yk−1 | x0 ∈ lRm,

xi = Φi(x0, h, ε), yi = σ(xi, h, ε), i = 0, . . . , k − 1} .

The function Φ is a one-step method of order p for the differential equation ẋ = f(x, s(x, ε))
(by Φi we denote the i-th iterate) and

σ(x, h, ε) = s(x, ε) +O(εhp) .

If started appropriately, i.e., xi = Φi(x0, h, ε), i = 0, . . . , k − 1, the manifold

Mh,ε = {(x, y) | x ∈ lRm, y = σ(x, h, ε)}
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is invariant under the map (I)h,ε and is O(εhp)-close to Mε. The attractivity rate in
y-direction is χh,ε = max{ρ1, σ1} + O(h + ε/h + d) < 1 and for β = 0 one has χh,ε =
ρ1+O(h+ε/h) < 1 and yj−σ(xj , h, ε) = zj+O(εhp) = O(ε/h) for j ≥ k as seen from (Ĩ)h,ε
giving the y-attractivity const · ε/h · χj

h,ε , j ≥ k. Again there exists a stable foliation

(Lh,ε
12 = O(ε), i.e., ’steepness’ of the fibers O(ε)) implying the property of asymptotic

phase. Hence, Fig. 2 again gives the right picture also for LMMs (after the k-th step).
For the global error of the LMM applied to Eq. (1)ε we have for h and ε/h small enough
and for jh ≤ T fixed:

(GE)h,ε

xj − x(jh) = O(hp) +O(max
0≤i<k

{|xi − x(ih)|})

+ O(h [ max
0≤i<k

{|yi − y(ih)|}+ |y0 − s(x0, ε)|])

yj − y(jh) = O(hp) +O( max
0≤i<k

{|xi − x(ih)|})

+ O((h + χj
h,ε)[ max

0≤i<k
{|yi − y(ih)|}+ |y0 − s(x0, ε)|]) .

For β = 0 the factor h in the x-equation is replaced by ε and the factor (h+ χj
h,ε) in the

y-equation is replaced by the factor (ε+O(ε/h)[j/k]).

Notation: Throughout this paper, we denote the continuous dynamical system of singular
perturbation type by (1)ε (satisfying Hypothesis Hε), its invariant manifold by Mε with
attractivity χt

ε and ’steepness’ of the stable fibers Lε
12. Similarly, for both RKMs and

LMMs applied to (1)ε we denote the discrete dynamical system by (I)h,ε, its invariant
manifold by Mh,ε with attractivity χh,ε and ’steepness’ of the stable fibers Lh,ε

12 , and the
global error estimate by (GE)h,ε. If we consider the variable z (instead of y) measuring
the distance to Mε we put a ˜ on (I)h,ε, i.e., we write (Ĩ)h,ε.

In the DAE case, we replace the ε by 0 for index 1: (1)0 (satisfying Hypothesis H0),
M0, χt

0, L
0
12; (I)h,0, Mh,0, χh,0, L

h,0
12 , (GE)h,0 and (Ĩ)h,0. For index 2 we keep the notation

but put a ¯ on top, i.e., (1̄)0 (satisfying Hypothesis H0), M 0; (̄I)h,0, Mh,0, etc. ,

2 Systems of index 1

Consider the DAE

(1)0
ẋ = f(x, y)

0 = g(x, y)
satisfying

Hypothesis H0

1) f and g are bounded and f ∈ Cr
b (R

m × lRn, lRm), g ∈ Cr
b (lR

m × lRn, lRn) for r ≥ 2.

2) There is a function s0 ∈ Cr
b (lR

m, lRn) such that g(x, s0(x)) = 0 for x ∈ lRm.

3) The matrix gy(x, s0(x)) is invertible and gy(x, s0(x))−1 is bounded for x ∈ lRm.

6



Under these assumptions, Eq. (1)0 is of index 1 since g(x, y) = 0 has a unique solution
y = s0(x) for (x, y) ∈ Ωd := {x ∈ lRm, |y − s0(x)| ≤ d} if d is small enough. All solutions
of the DAE (1)0 in Ωd lie on the m-dimensional surface

M0 = {(x, y)| x ∈ lRm, y = s0(x)} ⊂ lRm × lRn .

Remark 1): i) If, for (x0, y0) ∈ Ωd, we define the ‘impulse solution’ (x(t), y(t)) with
x(0) = x0, y(0) = s0(x0) the set M0 may be viewed as ‘infinitely attractive invariant
manifold’ of (1)0 (there is no dynamics off M0) with a vertical stable foliation (L0

12 = 0,
i.e., all points on a fiber have the same x-coordinate). Note that the index-1 case is just
the limit case (ε = 0) of the singularly perturbed case (except for Hypothesis H0 3)).

ii) Note that in Hypothesis H0 3) we do not assume that gy(x, s0(x)) has eigenvalues with
negative real part as we did in Hypothesis Hε 3). M0 is ’infinitely attractive’ independently
of the sign of the real part of the eigenvalues as is the invariant manifold Mh,ε (and Mh,0

below) of the discrete dynamical system (since |R(∞)| < 1). Hence, since there is also
an invariant manifold of Eq. (1)ε in the case of H0 3) which is hyperbolic, however, all
assertions of Section 2 hold under Hypothesis H0 3). In this case, for the global error
of RKMs and LMMs applied to Eq. (1)ε one has to consider solutions of (1)ε on Mε,
however. ,

2.1 RKMs

We follow the lines of [2] and [4].

a) The indirect approach. The RKM

X = 11s ⊗ x+ h(A⊗ Im) f(X, Y )

0 = g(X, Y )

x̄ = x+ h(bT ⊗ Im) f(X, Y )

0 = g(x̄, ȳ)

is, due to Hypothesis H0, equivalent to applying a RKM to the m-dimensional system
ẋ = f(x, s0(x)) and defining yk = s0(xk). If the method is of order p the global error is
O(hp) (for a nonstiff vector field f).

b) The direct approach. Here, the RKM is derived via (1)ε and (I)h,ε and putting ε = 0.
For the RKM assume Hypothesis HRKM. If we put ε = 0 in Hypothesis Hε, in the
differential equation (1)ε and in the map (Ĩ)h,ε, in the invariant manifolds Mε and Mh,ε,
in the attractivity constants χt

ε and χh,ε, and in the Lipschitz constants Lε
12 and Lh,ε

12 we
obtain Hypothesis H0, Eq. (1)0, the map

(Ĩ)h,0

X = 11s ⊗ x+ h(A⊗ Im) f(X, s0(X) + Z)

0 = Z

x̄ = x+ h(bT ⊗ Im) f(X, s0(X) + Z)

z̄ = (1− bT A−111s) z + (bT A−1 ⊗ In)E0 − e0

7



where E0 := s0(X)−11s⊗ s0(x), e0 := s0(x̄)− s0(x), and the invariant manifolds M0 with
attractivity χt

0 = 0 and

Mh,0 = {(x, y) | x ∈ lRm, y = σ0(x, h) := σ(x, h, 0)}

with attractivity χh,0 = |R(∞)|, and Lh,0
12 = 0. From [6] we know that (bT A−1⊗In)E−e =

O(hq+1)+O(ε) and σ(x, h, ε)−s(x, ε) = O(hq+1) implying (bT A−1⊗In)E0−e0 = O(hq+1)
and σ0(x, h)−s0(x) = O(hq+1). Note that in the x, y-variables (in Ωd) the RKM-map has
the form

(I)h,0

X = 11s ⊗ x+ h(A⊗ Im) f(X, Y )

O = g(X, Y )

x̄ = x+ h(bT ⊗ Im) f(X, Y )

ȳ = (1− bT A−1 11s) y + (bT A−1 ⊗ In) Y

considered in [2] and [4]. The global error (GE)h,0 of (I)h,0 is also obtained from (GE)h,ε
by putting ε = 0.

Hence, we have shown that the RKM-map (I)h,0 admits an m-dimensional attractive
invariant manifold Mh,0 which is O(hq+1)-close to M0. The precise results are given in

Theorem 1 Let Eq. (1)0 satisfy Hypothesis H0, apply a RKM satisfying Hypothesis HRKM

and assume r < p.
Then there exist positive constants d, h0, K and a function σ0 : lR

m × (0, h0] → lRn, of
class Cr

b with respect to x, such that for h ≤ h0 and for (x, y) ∈ Ωd := {(x, y) | x ∈ lRm,
|y − s0(x)| ≤ d} ⊂ lRm × lRn the following assertions hold.

i) The set Mh,0 = {(x, y) | x ∈ lRm, y = σ0(x, h)} is invariant under the RKM-map
(I)h,0.

ii) For (x, y) in Ωd the invariant manifold Mh,0 is attractive with attractivity constant
χh,0 = |R(∞)|, i.e.,

|ȳ − σ0(x̄, h)| ≤ χh,0 |y − σ0(x, h)|

holds.

iii) Mh,0 has a stable (vertical) foliation of the form

W s(x, y) = {(ξ, η) | ξ = x, |η − s0(ξ)| ≤ d} ,

implying the property of asymptotic phase, i.e., for (x0, y0) ∈ Ωd there is (x̂, ŷ) ∈
Mh,0 such that the RKM-orbits (xj , yj) and (x̂j , ŷj) satisfy

x̂j = xj

|ŷj − yj| ≤ K χj
h,0 |y0 − σ0(x0, h)|

for j ∈ lN0.
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iv)
σ0(x, h) = s0(x) + hq+1Q(x, h) ,

with σ0 of class Cr
b with respect to x and |Q| ≤ K, for all x ∈ lRm.

v) Let (x(t), y(t)) be a solution of Eq. (1)0 with x(0) = x0 and let (x0, y0) ∈ Ωd. Then
for every T > 0 fixed, there is K > 0 such that the global error satisfies

(GE)h,0
|xj − x(jh)| ≤ K hp

|yj − y(jh)| ≤ K(hq+1 + χj
h,0 |y0 − s0(x0)|)

for jh ≤ T .

The assertions of Theorem 1 are illustrated in Fig. 3.

x

y

y = s0(x)

y = σ0(x, h)M0

(x̂0, ŷ0)

O(hq+1)

Mh,0

(x0, y0)

(x(0), s0(x(0))

Fig. 3: The invariant manifolds for the DAE (1)0 and the RKM-map (I)h,0

Remark 2): In the case where the RKM satisfies asi = bi, i = 1, . . . , s (implying R(∞) = 0,
since A is invertible), we have ȳ = s0(x̄) in (I)h,0 and therefore σ0(x, h) = s0(x) and
Mh,0 = M0, χh,0 = 0 (infinite attractivity). The global error satisfies

(GE)h,0
|xj − x(jh)| ≤ K hp

, jh ≤ T .
|yj − y(jh)| ≤ K hp

For asi = bi, i = 1, . . . , s, the direct and the indirect approach are identical. ,

Summarizing, we have shown for the direct approach that the diagram of Fig. 4 com-
mutes, i.e., the results for the RKM applied to Eq. (1)0 are obtained from the results of
the RKM applied to Eq. (1)ε just by putting ε = 0. Of course, the DAE-results could be
derived by directly applying the invariant manifold theory for maps (cf. [5]) to the map
(Ĩ)h,0. However, on the one hand, the results for the singularly perturbed case have been
derived before (cf. [6]) and, on the other hand, the diagram of Fig. 4 gives additional
insight.
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(1)ε; ε ẏ (1)0 ;

Mε,χt
ε, L

ε
12 ε = 0−− → M0,χt

0, L
0
12

RKM
0

0RKM

(I)h,ε; ε = 0 (I)h,0;

Mh,ε,χh,ε, L
h,ε
12 ; (GE)h,ε Mh,0,χh,0, L

h,0
12 ; (GE)h,0

Fig. 4: The correspondence between the DAE and the singularly perturbed
differential equation and their RKM-maps

2.2 LMMs

For a LMM satisfying Hypothesis HLMM applied to Eq. (1)0 we obtain analogous results
as for the RKMs of Paragraph 2.1, in particular, there is again a commuting diagram.
There is one major difference, however, the ‘discrete’ manifold Mh,0 is always equal to
the ‘continuous’ manifold M0. More precisely, by putting ε = 0 in (Ĩ)h,ε we obtain the
LMM-map in lRkm × lRkn (Y = s0(X) + Z, |Z|∞ ≤ d, d small enough)

(Ĩ)h,0

X1 = ((R− Lα)⊗ Im)X0 + h(Lβ ⊗ Im) f(X0, s0(X0) + Z0)

+ h(βk ⊗ f(xk, s0(xk) + zk))

Z1 = {(R⊗ In) + (Lβ ⊗ C(xk, zk)−1) diag[B0(X0) + B̂(X0, Z0)])}Z0

where C(xk, zk) := −βk(B0(xk) + B̂(xk, zk)), B0(x) := gy(x, s0(x)), B̂(x, 0) = 0. (Note
that it can be seen directly that Z = 0 is an invariant manifold of (̃I)h,0).

Again, all results are inherited from the singularly perturbed case by putting ε = 0:

• Invariant manifold of (I)h,0 : Mh,0 = M0 .

• Attractivity in y-direction: χh,0 = max{ρ1, σ1}+O(h+ |β|d) .

• Stable (vertical) foliation and asymptotic phase.

• Global error for j ≤ N :

(GE)h,0

|xj − x(jh)| ≤ KN [max
0≤$<k

{|x$ − x()h)|}+ h(max
0≤$<k

{|y$ − y()h)|}

+ |y0 − s0(x0)|) + hp]

|yj − y(jh)| ≤ KN [max
0≤$<k

{|x$ − x()h)|}+ (h + χj
h,0)(max

0≤$<k
{|y$ − y()h)|}

+ |y0 − s0(x0)|) + hp] .
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Remark 3): For β = 0 (BDF-like methods, corresponding to asi = bi, i = 1, . . . , s, in the
RKM case) we have:

• χk
h,0 = 0 (infinite attractivity in y-direction), i.e., yj = s0(xj) for j ≥ k independently

of the starting values y0, . . . , yk−1 (this is easily seen from (̃I)h,0 with β = 0).

• Global error for j ≤ N :

(GE)h,0

|xj − x(jh)| ≤ KN [max
0≤$<k

{|x$ − x()h)|}+ hp]

|yj − y(jh)| ≤ KN [max
0≤$<k

{|x$ − x()h)|}+ hp

+ χ[j/k]
h,0 (max

0≤$<k
{|y$ − y()h)|}+ |y0 − s0(x0)|)] .

,

3 Systems of index 2

We consider the semi-explicit problem of so-called Hessenberg form

(1̄)0
ẋ = f(x, y)

0 = G(x)

satisfying

Hypothesis H0

1) f is bounded and f ∈ Cr+1
b (lRm × lRn, lRm), G ∈ Cr+1

b (lRm, lRn), r ≥ 2.

2) There is a function s0 ∈ Cr
b (lR

m, lRn) such that Gx(x) f(x, s0(x)) = 0 for x ∈ lRm.

3) The matrix Gx(x) fy(x, s0(x)) is invertible and the inverse is bounded for x ∈ lRm.

Under these assumptions, Eq. (1̄)0 is of index 2 since differentiating 0 = G(x) with respect
to t yields 0 = Gx(x) f(x, y) which together with ẋ = f(x, y) is an index-1 problem by
Hypothesis H0. The algebraic system 0 = Gx(x) f(x, y) has a unique solution y = s0(x)
for (x, y) ∈ Ωd := {x ∈ lRm, |y− s0(x)| ≤ d}, d small enough. All solutions (x(t), y(t)) in
Ωd of the index-1 DAE (the so-called index-1 formulation of the index-2 problem (1̄)0)

(1)0
ẋ = f(x, y)

0 = g(x, y) := Gx(x) f(x, y)

lie in the m-dimensional surface

M0 = {(x, y) | x ∈ lRm, y = s0(x)} ∈ lRm × lRn .
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In addition, they satisfy for all t ∈ lR

∫ t

0
Gx(x(τ)) f(x(τ), s0(x(τ)) dτ = 0

implying
G(x(t))−G(x(0)) = 0 .

This means that Eq. (1)0 has G as first integral. The manifold

M0 = {(x, y) |G(x) = 0, y = s0(x)} ⊂ M0 ⊂ lRm × lRn .

is invariant under (1̄)0. Hence, we have shown that under Hypothesis H0 all solutions of
Eq. (1̄)0 (in Ωd) lie in the submanifold M0 of M0 (cf. Fig. 5). Again the set M 0 may
be viewed as ‘invariant manifold being infinitely attractive in y-direction with a vertical
stable foliation’ (cf. Remark 1)).

x2

x1

y

M0
M0 : y = s0(x)

Fig. 5: The invariant manifold M 0 of Eq. (1̄)0

Remark 4): Note that every manifold M
const
0 := {(x, y)|G(x) = const, y = s0(x)} is

invariant under Eq. (1)0 and lies in M0, i.e., the m-dimensional surface M0 consists of

submanifolds M
const
0 . And, of course, all solutions of (1)0 satisfy ẋ = f(x, y), G(x) =

G(x(0)). ,

3.1 RKMs and LMMs applied to the index-1 formulation

Obviously, applying a RKM satisfying Hypothesis HRKM or a LMM satisfying Hypoth-
esis HLMM to the index-1 formulation (1)0 yields the results of Paragraphs 2.1 and 2.2,
respectively, with the commuting diagram Fig. 4. However, the question of interest is if
the dynamical systems (1)ε, (I)h,ε and (I)h,0, respectively, also possess a ‘first integral’,
i.e., a submanifold of Mε, Mh,ε and Mh,0, respectively.
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A) (1)ε: The invariant manifold Mε is the graph of the function s(x, ε) which satisfies the
invariance equation

ẋ = f(x, s(x, ε))

ε sx(x, ε) f(x, s(x, ε)) = g(x, s(x, ε)) .

The second equation is equivalent to εṡ = Gx(x) ẋ implying

ε[s(x(t), ε)− s(x(0), ε)] = G(x(t))−G(x(0)) .

Hence, Eq. (1)ε with g(x, y) = Gx(x)f(x, y) admits the invariant manifold

Mε = {(x, y) |G(x)− ε s(x, ε) = 0, y = s(x, ε)} ⊂ Mε .

Of course, again any set

M
const
ε = {(x, y) |G(x)− ε s(x, ε) = const, y = s(x, ε)} ⊂ Mε

is an invariant manifold of Eq. (1)ε. Putting ε = 0 one obtainsM 0 ⊂ M0 or M
const
0 ⊂ M0,

respectively.

B.a) (I)h,ε and (I)h,0 for RKMs. i) The linear case: We assume

G(x) = Bx+ c

where B is a n × m-matrix and c is a n-vector both independent of x. This implies
g(x, y) = Gx(x)f(x, y) = Bf(x, y). In the RKM case the discrete invariant manifold Mh,ε

is the graph of the function σ(x, h, ε) satisfying the invariance equation

x̄− x = h
s∑

i=1

bi f(Xi, Yi)

ε[σ(x̄, h, ε)− σ(x, h, ε)] = h
s∑

i=1

bi g(Xi, Yi) = B(x̄− x) .

This implies the existence of the invariant manifold

Mh,ε = {(x, y) |G(x)− ε σ(x, h, ε) = 0, y = σ(x, h, ε)} ⊂ Mh,ε

for the RKM-map (I)h,ε. Putting ε = 0 we obtain the invariant manifold

Mh,0 = {(x, y) |G(x) = 0, y = σ0(x, h)} ⊂ Mh,0

for the RKM-map (I)h,0. We know that σ0(x, h) = s0(x) +O(hq+1). The situation for the
DAE in the linear case is sketched in Fig. 6. Note that if asi = bi, i = 1, . . . , s, we have
Mh,0 = M0 and Mh,0 = M 0, i.e., the continuous and the discrete manifolds are the same.

13



x2

y

O(hq+1)

Mh,0

M 0

x1

Mh,0 : y = σ0(x, h)

M0 : y = s0(x)

Fig. 6: The manifolds M 0 and M0 of Eq. (1)0 and the invariant manifolds
Mh,0 and Mh,0 of the RKM-map (I)h,0 for G(x) = Bx+ c

For RKMs applied to the index-1 formulation of Eq. (1̄)0 we have shown that in the
linear case the commuting diagram of Fig. 4 also holds if the submanifolds M0, M ε, Mh,ε

and Mh,0, respectively, are added into the picture.

Remark 5): The invariant manifolds M 0, M ε, Mh,ε and Mh,0, respectively, inherit the
attractivity of the invariant manifolds M0, Mε, Mh,ε and Mh,0, respectively, in y-direction.

Moreover, every ‘shifted manifold’ M
const
0 := {(x, y) |G(x) = const, y = s0(x)}, M

const
ε ,

M
const
h,ε and M

const
h,0 (defined analogously) is also invariant. ,

ii) The nonlinear case: For RKMs applied to Eq. (1)ε we have the following invariance
equation for Mh,ε

x̄− x = h
s∑

i=1

bi f(Xi, Yi)

ε [σ(x̄)− σ(x)] = h
s∑

i=1

bi Gx(Xi) f(Xi, Yi)
(2)

where we have suppressed the dependence of σ on h, ε. The stages Xi, Yi, i = 1, . . . , s, are
functions of x, h and ε (smooth with respect to x, ε). We define the function Q(x; h, ε) by

Q(x; h, ε) := G(x̄)−G(x)− h
s∑

i=1

bi Gx(Xi) f(Xi, Yi) .(3)

Starting the RKM with G(x0) − εσ(x0) = ∆0 we obtain using the definition of Q and
Eq. (2) that for j ≥ 1

G(xj)− ε σ(xj, h, ε) =
j−1∑

$=0

Q(x$; h, ε) +∆0 .(4)
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We want to estimate the function Q(x$; h, ε). Let (x(t), y(t)) be a solution of Eq. (1)ε with
initial values x(0) = x$, y(0) = y$ = σ(x$). Integrating

d
dt G(x(t)) = Gx(x(t)) f(x(t), y(t))

between 0 and h we get

G(x(h))−G(x$) =
∫ h

0
Gx(x(τ)) f(x(τ), y(τ)) dτ .(5)

From the definition of Q we have

G(x$+1)−G(x$) = h
s∑

i=0

bi Gx(Xi) f(Xi, Yi) +Q(x$; h, ε)(6)

where Xi, Yi are functions of x$, h and ε. From Eqs. (3) and (6) we obtain

Q(x$; h, ε) = G(x$+1)−G(x(h))− [P1 − P2]

with P1 := h
∑s

i=0 bi Gx(Xi) f(Xi, Yi) and P2 :=
∫ h
0 Gx(x(τ)) f(x(τ), y(τ))dτ . From [6],

Theorem 2 and Theorem 3 (with proof) we know that

x$+1 − x(h) = O(hp+1) +O(εhq+1) +O(ε|σ(x$)− s(x$)|)

= O(hp+1) +O(εhq+1) .

Since G is of class C1
b this implies G(x$+1)−G(x(h)) = O(hp+1) +O(εhq+1).

It remains to estimate P1 − P2. From nonstiff RKM-theory (cf. [3]) we know that for
a RKM applied to u̇ = f(u, s(u)), u(0) = u0 := x$ the relations

u(cih)− u0 = h
s∑

j=1

aij f(u(cjh), s(u(cjh))) +O(hq+1) , i = 1, . . . s,

u(h)− u0 = h
s∑

i=1

bi f(u(cih), s(u(cih))) + O(hp+1)
(7)

hold. Moreover, for the function Gx(u(t)) f(u(t), s(u(t))) the RKM is a quadrature for-
mula of order p, i.e.,

∫ h

0
Gx(u(τ)) f(u(τ), s(u(τ)))dτ =

= h
s∑

i=1

bi Gx(u(cih)) f(u(cih), s(u(cih))) +O(hp+1) .
(8)

We introduce Zi, i = 1, . . . , s, and z(t) by Yi = s(Xi) + Zi and y(t) = s(x(t)) + z(t) and
we estimate

P1 − P2 = P1 − P 1 + P 1 − P 2 + P 2 − P2

where

P 1 := h
s∑

i=1

bi Gx(Ui) f(Ui, s(Ui))

P 2 := h
s∑

i=1

bi Gx(u(cih)) f(u(cih), s(u(cih))) .
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We have
P1 − P 1 := hO

(
max
1≤i≤s

|Xi − Ui|+ max
1≤i≤s

|Zi|
)
,

P 1 − P 2 := hO
(
max
1≤i≤s

|Ui − u(cih)|
)

and with (8)

P 2 − P2 = O(hp+1) + hO
(
max
0≤t≤h

|x(t)− u(t)|+ max
0≤t≤h

|z(t)|
)
.

From [6] we know that

Zi = O(εhq) , Xi − Ui = O(εhq+1) , i = 1, . . . , s .

The first relation of (7) implies

Ui − u(cih) = O(hq+1) , i = 1, . . . , s ,

and a simple Gronwall type argument yields

max
0≤t≤h

|x(t)− u(t)| = hO(max
0≤t≤h

|z(t)|) .

For z(t) we apply Theorems 1 and 3 of [6]:

z(t) = x(t)− s(x(t)) = O(e−const·t/ε|y(0)− s(x(0))|)

= O(|σ(x$)− s(x$)|) = O(hq+1) .

Adding up, we finally have
Q(x$; h, ε) = O(hq+2) .

(We have used the fact that the ε . h and q < p which cancels out the O(hp+1)- and
O(εhq+1)-terms). Hence, Eq. (4) implies for all j ∈ lN

G(xj)− εσ(xj; h, ε) = ∆0 + jh · O(hq+1)(9)

where the constant in O(hq+1) is independent of j. This means a RKM-orbit starting
on Mh,ε and O(hq+1)-close to Mh,ε has at worst a linear (in t = jh) drift off in the x-
component. (Of course, starting off Mh,ε there is the attractivity in the y-component with
χh,ε).

Remark 6): Using the global error estimate (GE)h,ε it is simple to get the estimate

G(xj)− εσ(xj , h, ε) = ∆0 +O(hp) +O(εhq+1) .

However, here the constants in the O-terms are of the form Konst · econst·jh which is a
much weaker result than the one of Eq. (9).

The above results also hold for ε = 0. We state the DAE case in
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Theorem 2 Let Eq. (1)0 satisfy Hypothesis H0, apply a RKM satisfying Hypothesis HRKM

to its ‘index-1 formulation’ (1)0 and assume r < p. Consider for ∆0 ∈ lRn the set

M
∆0

h,0 = {(x, y) |G(x) = ∆0, y = σ0(x, h)} ⊂ Mh,0

with σ0 and Mh,0 from Theorem 1. Then the following assertions hold.

i) A RKM-orbit (xj , yj), j ∈ lN, with G(x0) = ∆0, y0 = σ(x0, h) satisfies

|G(xj)−∆0| ≤ jh ·Khq+1 , yj = σ0(xj , h)

for some constant K independent of j.

ii) If G is linear, G(x) = Bx+c, the set M
∆0

h,0 is an invariant manifold of the RKM-map
(I)h,0.

Remark 7): i) Note, that for asi = bi, i = 1, . . . , s, σ0(x, h) = s0(x) and hence M
∆0

h,0 =

M
∆0

0 = {(x, y) |G(x) = ∆0, y = s0(x)} ⊂ M0.

ii) If the RKM-orbit is started such that |y0−s0(x0)| ≤ d small enough, one obtains due to
the vertical stable foliation of Mh,0 the same x-estimates as in Theorem 2 and exponential

attractivity to M
∆0

h,0 in y-direction (cf. Theorem 1). ,

iii) The global error is (GE)h,0 of the index-1 problem as given in Theorem 1 v) and in
Remark 2).

B.b) (I)h,ε and (I)h,0 for LMMs. The invariance equation for Mh,ε is

k∑

i=0

αi xi = h
k∑

i=0

βi f(xi, σ(xi))

ε
k∑

i=0

αi σ(xi) = h
k∑

i=0

βi Gx(xi) f(xi, σ(xi))

(10)

together with xi = Φi(x0, h, ε), i = 1, 2, . . .. Here, we again have suppressed the depen-
dence of σ on h and ε. We define the function

Q(x0; h, ε) :=
k∑

i=0

αi G(xi) − h
k∑

i=0

βi Gx(xi) f(xi, σ(xi)) .(11)

We will also need the fact that Φ is a one-step method of order p for u̇ = f(u, s(u, ε)) (cf.
[7], Theorem 2). For ∆0 ∈ lRn we take x0 such that G(x0) − εσ(x0) = ∆0 and we define
for j = 0, 1, 2, . . .

∆j := G(xj)− εσ(xj)
and

Qj := Q(xj ; h, ε)
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where Q(xj ; h, ε) is defined as in (11) with xi replaced by xj+i. From Eqs. (10) and (11)
we have for j ≥ 0

k∑

i=0

αi ∆j+i = Qj

or with δ0 := (∆0, . . . ,∆k−1)T ∈ lRkn, δ1 := (∆1, . . . ,∆k)T , r0 := (0, . . . , 0, Q0)T ∈ lRkn,
r1 := (0, . . . , 0, Q1)T , etc.,

δj = ((R − Lα)⊗ In) δj−1 + rj−1 , j ≥ 1 ,
and, therefore,

δj = ((R − Lα)⊗ In)j δ0 +
j−1∑

$=0

((R− Lα)⊗ In)
$ rj−$−1 , j ≥ 1 .

By Hypothesis HLMM the k × k-matrix R − Lα has one eigenvalue 1 and all others have
modulus smaller than ρ1 < 1. Hence, we have

|∆j+k−1| ≤ |δj |∞ ≤ K0 |δ
0|∞ + j ·K0K1 , j = 1, 2, . . . ,

if K0 > 0 is such that |((R−Lα)⊗ In)j| ≤ K0 for j > 0 and if we assume that |Qj| ≤ K1

for all j. This second assumption has to be verified. In fact, with similar techniques as
for RKMs using the results in [7], one finds K1 = K1 hp+1 and ∆i = ∆0 +O(hp+1) , i =
1, . . . , k − 1. The role of Eq. (7) is taken by the relation

L(G(u), t; h) =
k∑

i=0

[αi G(u(ih))− hβi Gx(u(ih)) f(u(ih), s(u(ih))]

= O(hp+1)

(cf. [3]).

Summarizing, we have for j ∈ lN

|G(xj)− εσ(xj , h, ε)| ≤ jh ·Khp +K0 max
0≤i<k

|∆i|

with constants K,K0 independent of j. This, of course, again means at worst a linear
drift (in t = jh) off G(x) − εσ(x, h, ε) = ∆0. For G linear, G(x) = Bx + c, it is easy to
see that the set G(x)− εσ(x, h, ε) = ∆0 is an invariant set of the LMM-map.
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In the DAE case (ε = 0), we thus have analogously to Theorem 2 in the RKM case:

• The LMM-orbit (xj , yj), j ∈ lN, with G(x0) = ∆0 and lying in Mh,0 = M0 =
{(x, y) | x ∈ lRm, y = s0(x)} satisfies

|G(xj)−∆0| ≤ jh ·Khp , yj = s0(xj)(12)

for some constant K independent of j.

• If G is linear, G(x) = Bx+ c, and if in addition Bxi+ c = ∆0, i = 1, . . . , k−1, then

the set M
∆0

0 = {(x, y) |G(x) = ∆0, y = s0(x)} ∈ M0 is an invariant manifold of the
LMM-map (I)h,0.

If we take starting values off M0 satisfying xi − x(ih) = O(hp+1), i = 1, . . . , k − 1, where
x(t) is the solution of Eq. (1)0 with x(0) = x0, G(x0) = ∆0 and/or |yi − s0(xi)| ≤ d,
i = 0, . . . , k − 1, d small enough, then the x-estimate (12) still holds and in y-direction
one has exponential attractivity to M0. For β = 0, M0 is ‘infinitely y-attractive’, i.e.,
yj = s0(xj) for j ≥ k (cf. Paragraph 2.2, Remark 3)).

3.2 RKMs and LMMs applied to the index-2 formulation

While appropriate numerical integration of the index-2 formulation preserves G(x) = 0,
here, the point of interest is the existence of a y-attractive invariant index-1 manifold for
the discrete dynamical system.

a) RKMs. We apply a RKM satisfying Hypothesis HRKM to the DAE of index 2

(1̄)0
ẋ = f(x, y)

0 = G(x)

satisfying Hypothesis H0. Following [2] and [4] we have

X = 11s ⊗ x+ h(A⊗ Im) f(X, Y )

0 = G(X)
(13)

for the stages and

(̄I)h,0
x̄ = x+ h(bT ⊗ Im) f(X, Y )

ȳ = (1− bT A−1 11s) y + (bT A−1 ⊗ In) Y

for one step of the RKM. Introducing the variable z by means of y = s0(x) + z and
similarly for z̄ this is equivalent to

(
$

I)h,0
x̄ = x+ h(bT ⊗ Im) f(X, Y )

z̄ = R(∞) z + (bT A−1 ⊗ In)(Y − 11s ⊗ s0(x)) + s0(x)− s0(x̄) .
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Of course, we have to show that (̄I)h,0 and (
$

I)h,0, respectively, are well defined maps in
phase space, i.e., we have to show that Eq. (13) has a unique solution (X, Y ) given x
appropriately in lRm. This is done in Lemma 3 below. There, we consider an altered
system (Eq. (14)) and show that for all x ∈ lRm it has a unique solution near (11s⊗x, 11s⊗
s0(x)). For our original system (13) this implies the existence of unique solution not
only for x-starting values satisfying G(x) = 0 but also for perturbed values in a O(h2)-
neighbourhood of G(x) = 0. Note that the solution does not depend on the y-starting
value.

Lemma 3 Let ∆ : lRm × lR+ → lRn be a bounded function of class Cr
b .

Then, there are positive constants h1, K such that for h ≤ h1 and x ∈ lRm the non-
linear system

X = 11s ⊗ x+ h(A⊗ Im) f(X, Y )

G(X) = 11s ⊗ (G(x)− h2∆(x, h))
(14)

has a unique solution (X, Y )(x, h), Cr
b with respect to x, satisfying

|X(x, h)− 11s ⊗ x| ≤ Kh , |Y (x, h)− 11s ⊗ s0(x)| ≤ Kh .

Proof: If we introduce Z ∈ lRsn by Y = s0(X) + Z and add the term h
∑s

j=1 aij Gx(Xj)
f(Xj, s0(Xj) + Zj) on both sides of the second equation, Eq. (14) in components (i =
1, . . . , s) takes the following form

Xi = x+ h
s∑

j=1

aij f(Xj, s0(Xj) + Zj)

h
s∑

j=1

aij Gx(Xj) f(Xj, s0(Xj) + Zj) = G(x)−G(Xi)− h2∆(x, h)

+h
s∑

j=1

aij Gx(Xj) f(Xj, s0(Xj) + Zj) .

(15)

Using the first equation of Eq. (15) we find

G(Xi)−G(x) =
∫ 1

0
Gx(x+ τ(Xi − x))dτ · (Xi − x)

= h
s∑

j=1

aij
∫ 1

0
Gx(x+ τ(Xi − x))dτ · f(Xj, s0(Xj) + Zj) .

Hence, the second equation of Eq. (15) is of the form

1

h

s∑

j=1

aijGx(Xj)f(Xj, s0(Xj) + Zj) =
1

h

s∑

j=1

aij
∫ 1

0
[Gx(Xj)−Gx(x+ τ(Xi − x))]dτ ·

· f(Xj, s0(Xj) + Zj)−∆(x, h)

=: Qi(x,X, Z; h) .
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Since the norm of the integrand is bounded by LGx
(|Xj − x| + |Xi − x|) ≤ const · h due

to the first equation of (15) and since ∆ is bounded by assumption, the functions Qi,
i = 1, . . . , s, are bounded for all h small. Hence, back to the ‘big space’ and since the
Runge-Kutta matrix A is invertible by Hypothesis HRKM, Eq. (15) has the form

X = 11s ⊗ x+ h(A⊗ Im) f(X, s0(X) + Z)

diag[Gx(X)] f(X, s0(X) + Z) = h(A−1 ⊗ In)Q(x,X, Z; h)

with Q bounded and of class Cr
b with respect to x,X, Z. By Hypothesis H0 we know

that diag[Gx(X)] f(X, s0(X)) = 0 and that diag[Gx(X)] fy(X, s0(X)) is invertible with
bounded inverse. Hence, for |Z| ≤ d, d small enough, the second equation can be written
as

Z = hC(X,Z)−1(A−1 ⊗ In)Q(x,X, Z; h)

with C(X,Z) = diag[Gx(X)]fy(X, s0(X))+O(|Z|) and C(X,Z)−1 bounded. Considering
the two equations as a fixed point equation (for some map) the contraction principle
implies the existence of a unique solution (X,Z)(x, h) satisfying |X − 11s ⊗ x| ≤ const · h,
|Z| ≤ const · h. The smoothness follows from the implicit function theorem. ⊥

Remark 8): For an x-starting value such that G(x) = h2∆(x, h), Lemma 3 corresponds
to Theorem 4.1 of [2] (cf. also [4], Theorem 7.1). We have given a different proof and we
do not need their assumption Gx(x) f(x, y) = O(h). ,

i) The linear case: We assume that G(x) = Bx + c for the function G and that the
starting values x and y are such that G(x) = 0 and |y − s0(x)| ≤ d, d small enough.
From Lemma 3 with ∆ ≡ 0 it follows that Eq. (13) has a unique solution (X, Y )(x, h)
near (11s ⊗ x, 11s ⊗ s0(x)). It is easy to see that by our assumptions G(X) = 0 implies
g(X, Y ) := diag[Gx(X)] f(X, Y ) = 0 and vice versa. Hence, for G(x) = 0 and |y − s0(x)|
small enough the maps (I)h,0 (i.e., the RKM applied to the index-1 formulation of Eq. (1̄)0)
and (̄I)h,0 create the same (x̄, ȳ) and therefore the same orbit. Moreover, G(xj) = 0 for
all j ≥ 0. Summarizing (cf. Theorem 1), we have the existence of an invariant manifold
for the map (̄I)h,0

Mh,0 = {(x, y) |G(x) = 0, y = σ0(x, h)}

which is attractive in y-direction and satisfies σ0(x, h) = s0(x)+O(hq+1). (Again, Mh,0 =
M0 (y = s0(x)) if asi = bi, i = 1, . . . , s.) Hence, for linear G and x-starting value such
that G(x) = 0 it does not matter if we approximate numerically by an appropriate RKM
the index-2 problem (1)0 or its index-1 formulation (1)0.

ii) The general case: For RKMs applied to Eq. (1)0 which satisfy Hypothesis HRKM and
asi = bi, i = 1, . . . , s, we are also able to prove the existence of an attractive invariant
(‘index-1’) manifold. This is done by first extending the RKM-map to all lRm, applying
the invariant manifold theorems of [5] to this altered map and then taking the restriction
to the subspace G(x) = 0. The result is given in Theorem 4 below and is sketched in
Fig. 7.
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x2

x1

y

Mh,0

G(x) = 0

Mh,0 : y = σ0(x, h)

M0 : y = s0(x)O(hq)

Fig. 7: The invariant manifolds of Eq. (1̄)0 and of the RKM-map (̄I)h,0
with asi = bi, i = 1, . . . , s

Theorem 4 Let Eq. (1̄)0 satisfy HypothesisH0, apply a RKM satisfying Hypothesis HRKM

and asi = bi, i = 1, . . . , s, and assume r < p.
Then there exist positive constants h0, γ, K and a function σ0 : lR

m × (0, h0] → lRn, of
class Cr

b with respect to x, such that for h ≤ h0 the following assertions hold.

i) The set Mh,0 = {(x, y) |G(x) = 0, y = σ0(x, h)} is an invariant manifold for the
RKM-map (̄I)h,0.

ii) Mh,0 is ‘infinitely attractive’, i.e., (x, y) ∈ { |G(x)| ≤ γh2} × lRn implies for the
image (x̄, ȳ) under (̄I)h,0

G(x̄) = 0, ȳ = σ0(x̄, h) .

iii) Mh,0 has a vertical stable foliation implying the existence of an ‘asymptotic phase’
orbit (x̂j , ŷj) with x̂j = xj, j ≥ 0, and ŷj = yj = σ0(xj , h), j ≥ 1.

iv) Closeness to M 0 :
|σ0(x, h)− s0(x)| ≤ Khq .

Proof: i), ii), iii) For x ∈ lRm we consider

X = 11s ⊗ x+ h(A⊗ Im) f(X, Y )

G(X) = 11s ⊗G(x)

x̄ = x+ h(bT ⊗ Im) f(X, Y )

ȳ = (1− bT A−111s)y + (bT A−1 ⊗ In) Y .

(16)
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By means of Lemma 3 with ∆ ≡ 0 we know that Eq. (16) describes a well defined map
from lRm × lRn into itself. Introducing z by y = s0(x) + z and Z by Y = s0(X) + Z, this
map has the form

x̄ = x+ h(bT ⊗ Im) f(X, s0(X) + Z)

z̄ = R(∞) z + (bT A−1 ⊗ In)Z + (bT A−1 ⊗ In)(s0(X)− 11s ⊗ s0(x))

+s0(x)− s0(x̄) .

(17)

By means of Lemma 3 and since R(∞) = 0 by Hypothesis HRKM and asi = bi, i = 1, · · · , s,
we have for every d > 0 that for h small enough Eq. (17) defines a smooth map from
lRm × lRn ∩ {|z| ≤ d} into itself. We apply the invariant manifold theorems of [5] to this
map of the form

x̄ = x+ hF1(x, h)

z̄ = F2(x, h) .

In the domain considered, F1 is invertible with respect to x, i.e., for every x̄, z there is x
such that x̄ = F1(x, z, h). For the ‘lower’ Lipschitz constant of F1 with respect to x we
find Γ11 = 1 +O(h). For the Lipschitz constant of F1 with respect to z we have L12 = 0.
For F2 we have L21 = O(h) and L22 = |R(∞)| = 0. Hence, the conditions B1, B2, B3(r)
of [5] are satisfied and we obtain the existence of an m-dimensional invariant manifold
Mh,0 = {(x, y) | x ∈ lRm, y = σ0(x, h)} for the map (16).

Now restricting the map (16) to the subspace G(x) = 0 it follows immediately since
asi = bi, i = 1, . . . , s, that this subspace is positively invariant under (16). On the other
hand, since in Eq. (16) G(X) = 11s⊗G(x) there is for every x̄ with G(x̄) = 0 a pre-image
x with G(x) = 0 obtained by iteration of x$+1 = x̄ − h(bT ⊗ Im) f(X(x$, h), Y (x$, h)),
) ≥ 0, x0 = x̄. Hence, we have shown the existence of the invariant manifold

Mh,0 = {(x, y) |G(x) = 0, y = σ0(x, h)} ⊂ Mh,0 .

From Lemma 3 we know that for a starting value (x0, y0) with G(x0) = h2∆0 the RKM-
image (x1, y1) exists. Due to asi = bi, i = 1, . . . , s, we have G(x1) = 0. Due to R(∞) = 0
and L12 = 0 we have y1 = σ0(x1, h). Together this gives an infinite attractivity to Mh,0.

The smoothness of σ0 as well as the foliation ofMh,0 follows from the invariant manifold
results applied to Eq. (17). Due to L12 = 0 the foliation is vertical and the asymptotic
phase orbit therefore satisfies x̂j = xj , j ≥ 0. Due to the infinite attractivity in y-direction
we also have ŷj = yj = σ0(xj , h), j ≥ 1. Hence, we have shown Assertions i), ii), iii) of
the theorem.

iv) For the closeness of Mh,0 to M0 we have to estimate the right-hand side of the z-
equation of (17). We consider the nonstiff equation u̇ = f(u, s0(u)) with initial condition
u(0) = x. Applying the given RKM with u0 = u(0) we obtain

U = 11s ⊗ x+ h(A⊗ Im) f(U, s0(U))

ū = x+ h(bT ⊗ Im) f(U, s0(U)) .
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Taking into account the x-equation of (17) (with the corresponding X-equation) we there-
fore find

X − U = O(h)Z and x̄− ū = O(h)Z .(18)

Taking the z-equation of (17) and adding zero appropriately we have

z̄ = R(∞)z + (bTA−1 ⊗ In)Z

+ (bTA−1 ⊗ In)(s0(X)− s0(U)) + s0(ū)− s0(x̄)

+ (bTA−1 ⊗ In)(s0(U)− 11s ⊗ s0(x)) + s0(x)− s0(ū) .

As seen in Paragraph 2.1 the last two terms together can be studied via the singularly
perturbed case of [6] and the limit ε → 0 yields the estimate O(hq+1). Thus, we have
together with Eq. (18)

z̄ = R(∞)z +O(1)Z +O(hq+1) .

It remains to estimate |Z|. Taking the components we have taking into account the
solution (x(t), y(t) = s0(x(t))) of Eq. (10) at the t-values cih

Zi = Yi − s0(Xi) = Yi − s0(x(cih)) + s0(x(cih))− s0(Xi), i = 1, . . . , s .

From [2], Lemma 4.3 and proof (cf. also [4], Lemma 7.4) we have the ‘local error’ estimates

Xi − x(cih) = O(hq+1) , Yi − y(cih) = O(hq) , i = 1, . . . , s ,

implying Zi = O(hq). Hence, we have z̄ = R(∞)z + O(hq) and the invariant manifold
results of [5] give the assertion claimed. ⊥

Remark 9): Having an estimate for the global error of the x-component which is at
least O(hq+1) for jh ≤ const (see, e.g., the results in [2] or [4]) we may estimate for the
y-component for j ≥ 1

|yj − y(jh)| ≤ |yj − σ0(xj , h) | + |σ0(xj , h)− s0(xj)|

+ |s0(xj)− s0(x(jh))|+ |s0(x(jh))− y(jh)|

where (x(t), y(t)) is a solution of (1̄)0 with |x0 − x(0)| ≤ γh2. The first and the last term
on the right-hand side are zero due to the infinite attractivity in y-direction of Mh,0 and
M0, respectively, the third term is of the order of |xj − x(jh)|. Hence, we have

|yj − y(jh)| ≤ |σ0(xj , h)− s0(xj)|+K |xj − x(jh)|

and the x-estimate together with Assertion iv) of the theorem give an estimate O(hq) for
the y-component. ,

In the case of general RKMs (i.e., bi *= asi for at least one i ∈ {1, . . . , s} and Hypothesis
HRKM) we are not able to prove the existence of an index-2 manifold. The y-attractive
index-1 manifold Mh,0 (y0 = σ0(x, h)), however, exists in the following sense. If the
RKM orbit is started wit x such that G(x) = O(h2) then the orbit (xj , yj) approaches
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exponentially the manifold Mh,0 which is O(hq)-close to M0. This holds for all j > 0 such
that |G(xj)| ≤ γh2 for a given γ > 0.

b) LMMs. For LMMs applied to Eq. (1)0 we have (cf. [4])

k∑

i=0

αi xi = h
k∑

i=0

βi f(xi, yi)

0 = G(xk)

(19)

with
∑k

i=0 αi = 0, αk = 1, βk *= 0 by Hypothesis HLMM. The existence of a unique
solution (xk, yk) for h small enough follows from Lemma 5 below. As in the RKM case (cf.
Lemma 3) we again consider an altered system (Eq. (20)) and thus obtain the existence
of a solution of Eq. (19) for xi-values in an O(h2)-neighbourhood of G(x) = 0.

Lemma 5 Let the x-starting values satisfy |xi − x$| ≤ const · h for i, ) = 0, . . . , k − 1,
and let ∆ : lRkn × lR+ → lRn be a bounded function of class Cr

b .
Then, there are positive constants h1, d,K such that for h ≤ h1 and for |yi−s0(xi)| ≤ d,

i = 0, . . . , k − 1, the nonlinear system

k∑

i=0

αi xi = h
k∑

i=0

βi f(xi, yi)

G(xk) = −
k−1∑

i=0

G(xi)− h2∆(x0, . . . , xk−1; h)

(20)

has a unique solution (xk, yk)(x0, · · · , xk−1; y0, . . . , yk−1; h), Cr
b with respect to the x- and

y-arguments, satisfying

∣∣∣xk +
k−1∑

i=0

αi xi

∣∣∣ ≤ K(h+ |β|d) , |yk − s0(−
k−1∑

i=0

αi xi)| ≤ K(h + |β|d) .

Proof: The second equation of (20) is equivalent to

0 =
k−1∑

i=0

αi[G(xk)−G(xi)]− h2∆(21)

where we have skipped the arguments of ∆ for short. We may write

k−1∑

i=0

αi[G(xk)−G(xi)] =
k−1∑

i=0

αi

∫ 1

0
Gx(xi + τ(xk − x1))dτ · (xk − xi) .

Moreover, multiplying the first equation of (20) from the left by Gx(xk) yields with∑k−1
i=0 αi = −1

k−1∑

i=0

αi Gx(xk)xi −
k−1∑

i=0

αi Gx(xk)xk = h
k∑

i=0

βi Gx(xk) f(xi, yi) .
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Adding this equation to (21) and dividing by h2 we thus obtain

1

h

k∑

i=0

βi Gx(xk) f(xi, yi) =
1

h2

k−1∑

i=0

αi

∫ 1

0
[Gx(xi + τ(xk − xi))−Gx(xk)]dτ · (xk − xi)−∆

=: Q(x0, . . . , xk; h) .

We estimate

xk − xi = xk +
k−1∑

$=0

α$ x$ +
k−1∑

$=0

α$[xi − x$] = O(h)

by means of the first equation (20) and by our assumption on |xi − x$|. We therefore
conclude that the function Q is bounded. It remains to show that the nonlinear system

xk = −
k−1∑

i=0

αi xi + h
k∑

i=0

βi f(xi, yi)

βk Gx(xk) f(xk, yk) = −
k−1∑

i=0

βiGx(xi) f(xi, yi) + hQ(x0, . . . , xk; h)

(22)

has a unique solution (xk, yk) near (−
∑k−1

i=0 αixi, s0(−
∑k−1

i=0 αixi)). We introduce the
variables zi by yi = s0(xi) + zi, i = 0, . . . , k, with |zi| ≤ d, i = 0, . . . , k − 1. Since,
by Hypothesis H0, Gx(x)f(x, s0(x)) = 0 and Gx(x)fy(x, s0(x)) is invertible and its in-
verse is bounded for x ∈ lRm we can apply, for |zk| ≤ dk small enough, the Newton-
Kantorovich theorem implying for h and |β|d sufficiently small the existence of a unique
solution (xk, yk)(x0, . . . , xk−1; y0, . . . , yk−1; h) satisfying |xk+

∑k−1
i=0 αi xi| ≤ const·(h+|β|d),

|zk| ≤ const · (h + |β|d) (cf. [7]). The smoothness follows from the implicit function the-
orem.

⊥

Remark 10): i) For xi, i = 0, . . . , k − 1, such that −
∑k−1

i=0 αiG(xi) = h2∆, Lemma 5
corresponds to Theorem 6.1 of [4]. With our type of proof we do not need their assumption
yi − y(ih) = O(h), i = 0, . . . , k − 1, but only |yi − s0(xi)| ≤ d, d small enough (if β *= 0).
If we choose the yi such that yi − s0(xi) = O(h), i = 0, . . . , k − 1, we have

∣∣∣xk +
k−1∑

i=0

αi xi

∣∣∣ ≤ Kh , |yk − s0(xk)| ≤ Kh

as in [4]. For BDF-like methods, i.e., β = 0 in Eq. (19) this estimate holds independently
of the y-starting values yi. In this case, there is no restriction on the yi and the solution
(xk, yk) does not depend on the y-starting values yi at all.

ii) In [4] also LMMs with 0 =
∑k

i=0 βiG(xi) as second equation (in Eq. (19)) are considered.
Lemma 5 yields a solution (xk, yk) of such a method for x-starting values xi such that
−

∑k−1
i=0 (αi −

βi

βk
)G(xi) = h2∆. ,

In the linear case, it is again easy to verify that the maps (I)h,0 and (̄I)h,0 create
the same orbit if G(xi) = 0, i = 0, . . . , k − 1, implying the existence of the y-attractive
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invariant manifold M 0 = {(x, y) |G(x) = 0, y = s0(x)} (for β = 0 and β *= 0) with the
properties already derived in Paragraph 3.1 for (I)h,0.

In the nonlinear case we consider for β = 0 (BDF-like methods)

k∑

i=0

αi xi = hβk f(xk, yk)

G(xk) = −
k−1∑

i=0

αi G(xi) .

(23)

For zk defined by yk = s0(xk)+ zk we know from the proof of Lemma 5 (with ∆ ≡ 0) that
the solution (xk, zk)(x0, . . . , xk−1; h) of Eq. (23) satisfies

xk = −
k−1∑

i=0

αi xi + hβk f(xk, s0(xk) + zk)

zk = hQ(x0, . . . , xk−1; h)

(24)

with Q = O(|Q|) (cf. Eq. (22) for β = 0). For every x0 ∈ lRm and γ > 0 the function Q
is bounded and of class Cr

b with respect to x0, . . . , xk−1 if |xi − x0| ≤ γh, i = 1, . . . , k− 1.
We extend Q to all lRkm by modifying it in the following way: Inside the tube Ωγ/2 =
{X0 ∈ lRkm | x0 ∈ lRm, |xi − x0| ≤

γ
2 h, i = 1, . . . , k − 1} we put Q̂ := Q, outside the

tube Ωγ we put Q̂ = 0 and, in between, Q̂ is taken such that it is Cr
b . The first equation

of (24) may be considered for all X0 ∈ lRkm. Hence, for d and h small enough we have a
smooth map from lRkm × {Z ∈ lRkn | |Z|∞ ≤ d} into itself of the form

X1 = ((R− Lα)⊗ Im)X0 + h(ek ⊗ P̂ (X0; h))

Z1 = (R⊗ In)Z0 + h(ek ⊗ Q̂(X0; h)) .
(25)

As done in [7] we apply the invariant manifold theory of [5] and the analogous construction
yields the existence of an m-dimensional attractive invariant manifold for the modified
map (25) (in the x, y-variables)

Mh,0 = {(x, y) | x ∈ lRm, y = σ0(x, h)}

if started appropriately, i.e., xi = Φi(x0, h), i = 0, . . . , k − 1. The closeness to M0 is
σ0(x, h) − s0(x) = O(h |Q̂|) = O(h|Q|), the attractivity in y-direction is yj − σ0(xj , h) =
zj +σ0(xj , h)−s0(xj) = O(h |Q̂|) for j ≥ k and χk

h,0 = 0 if xi = Φi(x0, h), i = 0, . . . , k−1,

and Mh,0 has a vertical stable foliation (Lh,0
12 = 0, since the O(h)-terms in Eq. (25) do not

depend on Z0). Since on Mh,0 we have xi = Φi(x0, h), xi − x0 = O(h), i = 0, . . . , k− 1, it
follows that for γ large enough, Mh,0 is an invariant manifold for the original map (24).

For the closeness of Mh,0 to M0 we have to get a better estimate for the function Q
established in the proof of Lemma 5. This is done using similar techniques as for RKMs.
As seen in Paragraph 3.1 the solution x(t) of Eq. (1)0 with x(0) = x0 satisfies

k∑

i=0

αiG(x(ih))− h βk Gx(x(kh)) f(x(kh), s0(x(kh))) = O(hp+1) .
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Since G(x(t)) = 0, t ≥ 0, we thus have together with

hβk Gx(xk) f(xk, s0(xk) + zk) = h2 Q(x0, . . . , xk; h)

that

hQ = βk [Gx(xk) f(xk, s0(xk) + zk)−Gx(x(kh)) f(x(kh), s0(x(kh))] +O(hp) .

The term in brackets is of order O(|zk|) +O(|xk − x(kh)|). We estimate

zk = yk − s0(xk) = yk − s0(x(kh)) + s0(x(kh))− s0(xk)

= yk − y(kh) +O(|xk − x(kh)|) .

Since on Mh,0 we have xi = Φi(x0, h) with xi−x(ih) = O(hp+1), i = 0, . . . , k−1, it follows
from the results in [4] that

xk − x(kh) = O(hp) , yk − y(kh) = O(hp) ,

implying hQ = O(hp).

Taking the restriction to the subspace G(x) = 0, i.e., taking G(xi) = 0, i = 0, . . . k−1,
it follows from Eq. (23) that G(xk) = 0 and, hence, that this subspace is positively
invariant under the LMM-map. It is easy to see that this subspace is indeed invariant.
Summarizing we have:

• Invariant manifold of (I)h,0:

Mh,0 = {(x, y) |G(x) = 0, y = σ0(x, h))} ⊂ Mh,0 .

• Closeness to M0:
σ0(x, h)− s0(x) = O(hp) .

• Infinite attractivity in x-direction:

|−
k−1∑

i=0

αi G(xi)| ≤ const · h2 implies G(xj) = 0 for j ≥ k .

• Attractivity in y-direction:

infinite (i.e.,χk
h,0 = 0) if xi = Φi(x0, h) for i = 0, . . . , k − 1 ;

in any case,
|yj − σ0(xj , h)| ≤ Khp for j ≥ k .

• Stable (vertical) foliation and asymptotic phase.
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Remark 11): i) We have shown that also for LMMs with β = 0 the situation of Fig. 7
holds (if started appropriately) but with closeness O(hp) instead of O(hq).

ii) As for RKMs the global error estimate for the x-component which is O(hp) (cf. [4])
immediately gives the estimate O(hp) for the y-component by means of

|yj − y(jh)| ≤ |σ0(xj , h)− s0(xj)|+K |xj − x(jh)| .

,

In the case of general LMMs (i.e., β *= 0 in Eq. (19) and Hypothesis HLMM) the same
invariant manifold result holds as in the BDF-like case (cf. also [7]). The attractivity in
y-direction is |yj − σ(xj, h)| ≤ K χj

h,0 max0≤i<k{|yi − σ0(xi, h)|} for j ≥ k with χh,0 =
max{ρ1, σ1}+O(|β|h) +O(h) < 1 if xi = Φi(x0, h), i = 0, . . . k − 1. The stable fibers are
not vertical anymore.
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