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Switzerland

Research Report No. 99-11 June 1999

Abstract

We review recent algorithmic developments in the boundary element
method (BEM) for large scale engineering calculations. Two classes of al-
gorithms, the clustering and the wavelet-based schemes are compared. Both
have O(N(logN)a) complexity with some small a ≥ 0 and allow in-core simu-
lations with up to N = O(106) DOF on the boundary on serial workstations.
Clustering appears more robust for complex surfaces.

∗∗This work was supported in part under the TMR network “Multiscale Methods in Numerical
Analysis” of the EC by the Swiss National Fund

†Coyote Systems, 2740 Van Ness Ave #210, San Francisco, CA 94109, USA



1 Boundary Element Method

Let Ω ⊂ lR3 be a bounded polyhedron with N0 straight faces Γk and boundary Γ = ∂Ω.
To present our algorithms, we consider the model problem

∆U = 0 in Ω, U = f on Γ . (1.1)

Using the fundamental solution e(x, y), (1.1) can be reduced in various ways to a boundary
integral equation (BIE) for an unknown density u on Γ [3, 19, 21, 28, 43]:

Au = λu+Ku = g on Γ . (1.2)

Here g is related to f , λ = 0 in formulations leading to equations of the first kind, λ "= 0
in indirect methods, based on layer potentials. The integral operator K is given by

(Ku)(x) =

∫

y∈Γ
k(x, y) u(y)dsy, x ∈ Γ , (1.3)

where the kernel k(x, y) is a normal/ tangential derivative of e(x, y) and satisfies for some
s ≥ 0

|Dα
x D

β
y k(x, y)| ≤ C(α, β)

|x− y|s+|α|+|β|
, ∀α, β ∈ lN3

0. (1.4)

Typically k(x, y) is analytic if x "= y and singular at x = y. In most applications, s = 1, 2
or 3 and the “integral” in (1.3) has to be understood as finite part integral if s ≥ 2 (see
[41], [17] for more on such integrals). Many other, more general problems admit a BIE
reformulation (1.2); for a reference, see e.g. [3, 21, 43] (in the case of vector-valued U in
(1.1), the BIE (1.2) will consist of a matrix of integral operators with entries satisfying
(1.3), (1.4)).

Boundary Element Methods (BEM) are discretizations which reduce (1.2) to the linear
system

Au = λM +Ku = g (1.5)

for the unknown solution vector u. Here M ∈ lRN×N is a “mass” matrix, and K ∈ lRN×N

is the stiffness-matrix corresponding to K in (1.3). In BEM, it is obtained by

K = {Kλλ′}λ,λ′∈Λ, Kλλ′ = (Xλ(Yλ′ k))λ,λ′∈Λ (1.6)

where Λ is some index set of cardinality N = |Λ| and Xλ, Yλ are linear functionals
on a suitable function space V on Γ in which (1.2) is well-posed and uniquely solvable.
For example, let {xλ}λ∈Λ be a set of collocation points on Γ and let V N ⊂ V with
V N = span{ϕλ : λ ∈ Λ} be a finite element space on Γ. One may take

Xλϕ := ϕ(xλ), Yλ′ϕ; = ϕ(xλ′) Nyström Method, (1.7a)

Xλϕ := ϕ(xλ), Yλ′ϕ := 〈ϕ,ϕλ′〉 Collocation Method, (1.7b)

Xλϕ := 〈ϕ,ϕλ〉, Yλ′ϕ := 〈ϕ,ϕλ′〉 Galerkin Method (1.7c)

where 〈·, ·〉 is a suitable duality pairing on Γ. (1.7a) is not possible in general if k(x, y) is
singular for x = y, (1.7b), (1.7c) require special numerical integrations which are by now
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completely understood ([17, 38] for (1.7b) and [1, 30, 27, 37] for (1.7c), see also [15] for
the farfield integrals).

Most of the classical BEM algorithms in engineering require manipulation of the full
matrix A leading to operations of O(N2) complexity. The performance of such BEM
algorithms is hence inferior to e.g. FE-multigrid methods applied directly to the PDE
(1.1). Nevertheless, in the last years a large body of literature on the formulation of
BIEs has appeared, in particular the derivation of well-posed variational first-kind BIEs
([21, 43, 28]), inclusive mathematical convergence analysis of discretizations.

We conclude that for the viability of the BEM in industrial problems it is mandatory
to reduce the complexity of u *−→ Au from O(N2) to (essentially) O(N). This reduction
should a) apply for general surfaces Γ of possibly complicated shape, b) be noticeable for
N in the practical range of unknowns and c) be possible for all kernels k(x, y) arising in
applications.

We present in the following two classes of BE-Algorithms, referred to as clustering-,
resp. wavelet algorithms, to achieve these goals. Both replace A in (1.5) by approxi-
mations Ã which can be manipulated in O(N) complexity, while the error ‖A − Ã‖ is
small.

Unless stated otherwise, we assume in the following that {V N} is a finite element
space of piecewise polynomials on a quasiuniform mesh M on Γ of shape regular triangles
of diameter h = O(N− 1

2 ).

2 Cluster Methods

Cluster BEM contains the panel-clustering [18] as well as the multipole techniques [16] as
special cases. The main idea is the approximation of K by

K̃ = N +
∑
σ,τ

XT
σ F στ Y τ (2.1)

with a sparse near-field matrix N ∈ lRN×N and far-field matrices Xσ ∈ lRM×N , Y τ ∈
lRM×N and F στ ∈ lRM×M . The matrices Xσ, F στ , Y τ are never formed explicitly and
u *−→ K̃u is realized as

K̃u = Nu+
∑
σ,τ

Xσ (F στ (Y τ u)) , (2.2)

without direct access to entries of K. The amount of storage used to keep the necessary
information of the far field is of order O(M ′N) with M ′ - N which reduces the O(N2)
complexity. The basic assumption on the kernel k(x, y) underlying cluster methods is its
local approximability by a degenerate kernel. Let D ⊂ lR3 be any domain containing Γ.

Assumption 2.1 Let 0 ≤ η < 1, k: D ×D → Cl a kernel function and I an index set.
Then for all x0, y0 ∈ D, x0 "= y0, and m ∈ lN0 there exists an approximation k̃ of the form

k(x, y) ∼ k̃(x, y; x0, y0, m) :=
∑

(µ,ν)∈Im

κm
(µ,ν)(x0, y0)Xµ(x; x0) Yν(y; y0), Im ⊂ I × I (2.3)
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such that for all x, y ∈ D satisfying

|y − y0|+ |x− x0| ≤ η|y0 − x0| (2.4)

the error is bounded by

|k(x, y)− k̃(x, y; x0, y0, m)| ≤ C e−C(η)m|y − x|−s (2.5)

with C(η) > 0 a decreasing function and C a constant both independent of m.

Examples of kernel approximations k̃ follow:

2.1 Taylor expansion ([18, 22, 35])

Let the kernel function k only depend on the difference of its arguments:

k(x, y) = k(y − x) . (2.6)

We expand k(y − x) formally into a Taylor series centered at y0 − x0 with x0, y0 ∈ lRd:

k(y − x) =
∑

µ∈lN
d

0

1

µ!
(Dµk)(y0 − x0)(y − x− y0 + x0)

µ

=
∑

(ν,µ)∈lN
d

0×lN
d

0

(Dµ+νk)(y0 − x0)
(x0 − x)µ

µ!

(y − y0)ν

ν!

This motivates an approximation (2.3) described by

I := lNd
0, Im := {(µ, ν) ∈ I × I : |µ+ ν| < m} ,
κm
(µ,ν)(x0, y0) := (Dµ+νk)(y0 − x0) ,

Xµ(x, x0) := (x0 − x)µ/µ! , Yν(y, y0) := (y − y0)ν/ν! .

(2.7)

In [18, 19, 20, 22] the error bound (2.5) has been verified for several kernel functions. For
example, (2.5) holds for the fundamental solution of Laplace’s equation in lR3,

k(x, y) =
1

4π
|y − x|−1, x, y ∈ lR3, x "= y (2.8)

with C = 1 and C(η) = log 1
η .

2.2 Multipole expansion [16, 34]

The multipole expansions are a special case of (2.3). They are kernel specific in that the
expansion coefficients must be evaluated analytically (but once and for all) for the kernel
of interest. For the ubiquitous Coulomb-potential k(x, y) = |x− y|−1, we have (2.3) with

Jm := {µ ∈ lN0 × ZZ : |µ2| ≤ µ1, µ1 < m}, Im := {(µ, ν) ∈ (Jm)
2 : µ1 + ν1 < m} (2.9)
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κm
(µ,ν)(x0, y0) := κµ+ν(x0, y0) :=

1

Cµ2+ν2
µ1+ν1 |y0 − x0|µ1+ν1+1

Y µ2+ν2
µ1+ν1

( y0 − x0

|y0 − x0|

)
(2.10)

Xµ(x; x0) := Cµ2

µ1
|x− x0|µ1 Y −µ2

µ1

( x− x0

|x− x0|

)
, Yν(y; y0) := Xν(−y;−y0) (2.11)

with

Cp
( :=

i|p|√
(*− p)!(*+ p)!

, Y p
( (x) := P |p|

( (cos θ) eipφ (2.12)

for x = (cosφ sin θ, sin θ, cos θ)T ∈ S2. The functions Xµ and Yν are solid spherical
harmonics of positive degree whereas the expansion coefficients κm

(µ,ν) are homogeneous
harmonic polynomials of negative degree. Note that the multipole expansion is nothing
else but an efficient representation of the Taylor expansion of |y−x|−1. While for arbitrary
kernel functions k, the index set of a truncated Taylor expansion contains O(m3) indices,
only O(m2) coefficients must be stored to evaluate the Taylor expansion of |y−x|−1 using
the multipole ansatz according to (2.9) - (2.11). For the Helmholtz Equation, Xµ, Yν

should depend on the wavenumber [14, 4], for elasticity [20] give a multipole expansion
and [13] show how to obtain FMM for isotropic elasticity from FMM for the Laplacean.

2.3 Clustering Error

To employ a kernel approximation (2.3) for the construction of K̃ in (2.1), we partition
the set D×D. Let P(D) denote the set of all subsets of D, let řA, čA be Chebys̆ev radius
and center, respectively, and 1A the characteristic function of a set A ⊂ lR3.

Definition 2.1 Subsets σ, τ of D are called clusters. A finite set C ⊂ P(D) × P(D) of
related clusters is called a clustering of D ×D, iff

Xλ(Yλ′(k)) =
∑

(σ,τ)∈C

Xλ(Yλ′(k1σ×τ )).

For each c ∈ C let the relative size ηc be defined by

η(σ,τ) :=






řσ + řτ
‖čσ − čτ‖

, if čσ "= čτ ,

∞ otherwise.

A far field F := FC of C is a subset of {c ∈ C : ηc < 1} and the corresponding near field
N := NC the complement C\FC. Far and near field imply a bipartition of D ×D:

DF :=
⋃

(σ,τ)∈F

σ × τ, DN := (D ×D)\DF . (2.13)

The grain of a far field is defined by ηF := maxc∈F ηc.

In order to define precisely a cluster approximation of K, we introduce the following
notation for the restriction of subsets T of product sets S × S ′ to one of its components:

(T )1 := {s ∈ S : ∃s′ ∈ S ′(s, s′) ∈ T }, (T )2 := {s ∈ S ′ : ∃s ∈ S(s, s′) ∈ T } . (2.14)
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Definition 2.2 Let m ∈ lN0 and F a far field of D×D. Let, in addition, k̃ be an approx-
imation according to Assumption 2.1. Then, a cluster approximation K̃ := K̃(F , m, k̃)
of K is defined by

K̃ := N +
∑

(σ,τ)∈F

XT
σ F στ Y τ (2.15)

with N ∈ lRN×N , Xσ ∈ lR(Im)1×N , Y τ ∈ lR(Im)2×N and F στ ∈ lR(Im)1×(Im)2 given by 1

(N)λλ′ := Xλ (Yλ′(k1DN
)), (Xσ)µ,λ := Xλ(Xµ(·, čσ)1σ), (Y τ )ν,λ′ := Yλ′(Yν(·, čτ)1τ ) ,

(F στ )µ,ν :=

{
κm
(µ,ν)(čσ, čr) if (µ, ν) ∈ Im,

0 otherwise .

Then we have the following error bounds [26, 19, 18].

Theorem 2.1 Suppose the linear functionals Xλ and Yλ satisfy Xλφ ≤ Xλφ′ and Yλφ ≤
Yλφ′, respectively, for all λ ∈ Λ and 0 ≤ φ ≤ φ′ and consider a cluster approximation
K̃(F , m, k̃) of K according to Definition 2.2. Let

ρ := C(ηF)m > 0 (2.16)

with ηF the grain of F and C(·) as in (2.5). Then, the following error bounds are satisfied:

‖K̃ −K‖∞ ≤ C e−ρ MX , ‖K̃ −K‖1 ≤ C e−ρ MY ,

‖K̃ −K‖2 ≤ C e−ρ
√
MXMY

(2.17)

where C is independent of m and Γ, and

MX := max
λ∈Λ

∑
λ′∈Λ

Xλ(Yλ′(
1DF

|y−x|s )), MY := max
λ′∈Λ

∑
λ∈Λ

Xλ(Yλ′(
1DF

|y−x|s )) . (2.18)

One verifies that for (2.17) to be bounded by ε, m in (2.18) must be of the order | log ε|.

Remark 2.1 If k(x, y) = e(x, y), the error in the kernel approximation (2.3) is completely
independent of the surface Γ and its parametrization as well as on the distribution of the
integration points on Γ. If k(x, y) is a derivative of e(x, y), as e.g. k(x, y) = ∂n(y)e(x, y)
in the double layer potential, (2.3) can be derived in two ways: i) by applying ∂n(y) to
an approximation ẽ(x, y) of e 2, and ii) by expanding ∂n(y)e(x, y) directly. We emphasize
that with option i) the constant C in the clustering errors (2.17) is independent of the
complexity of Γ, resp. its parametric representation. This is not so for option ii) and for
the wavelet methods below. Moreover, having a cluster approximation of the single layer
potential only the Y τ matrices have to be recalculated to obtain a cluster approximation
of the double layer potential when using option i).

1Note that identical formulations arise in the presence of numerical integration. In this case, the
functionals Xλ,Yλ′ are suitable quadrature formulas.

2The application of ∂n(y) can then be considered part Yλ′
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2.4 Clustering Algorithms

Essential for the efficiency of the algorithm is (i) the construction of a partition C such
that the near field matrix N is a sparse matrix, i.e., contains only O(N) entries, and
(ii) the fast evaluation of the approximate far field contribution, in particular the fast
evaluation of the matrix vector product

v =
∑

(σ,τ)∈F

XT
σ F στY τ u. (2.19)

The key is a hierarchical organization of clusters. Let P denote the given panelization of
Γ. We subdivide P into two about equally large sets recursively until the subsets contain
O(1) panels. This defines a binary tree with root P. Each node of the tree represents a
subset of P which in turn implies a subset of Γ, i.e. the binary tree defines a hierarchical
decomposition of Γ into clusters.

Let 0 < η < 1. By traversing the tree a clustering C = F ∪N can be constructed:

partition (σ, τ,F ,N ) {
if (η(σ,τ) < η) then

F ← {(σ, τ)} ∪ F
else if (σ is a leaf) or (τ is a leaf) then

N ← {(σ, τ)} ∪N
else if (řσ < řτ ) then

for all children τ ′ of τ partition(σ, τ ′,F ,N )

else

for all children σ′ of σ partition(σ′, τ,F ,N )

}

The grain of the far field F will be bounded by η.

The matrix vector product (2.19) is evaluated in three steps:

1. evaluate for all τ : uτ := Y τu,

2. evaluate for all σ: vσ :=

{
F στuτ for (σ, τ) ∈ F ,

0 otherwise,

3. evaluate v =
∑

σ X
T
σvσ.

The steps 1 and 3 could be accelerated by using so-called shift operations:

Y τ =
∑

τ ′child of τ

Dττ ′Y τ ′, (2.20)

with matrices Dττ ′ , i.e.,

uτ =

{
Y τu for τ a leaf,
∑

τ ′ child of τ Dττ ′uτ ′ otherwise.
(2.21)
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Hence, to evaluate uτ for all τ we only have to assemble matrices Y τ if τ is a leaf. These
matrices are sparse. In the case of the multipole ansatz, for example, they contain only
O(|Jm|) = O(m2) entries. The products Dττ ′uτ ′ are handled by efficient algorithms
without assembling Dττ ′ explicitly [16, 34]. The same holds for step 3. With matrices
Cσσ∗ defined by

XT
σ∗ =

∑
σ child of σ∗

XT
σCσσ∗ , (2.22)

and vectors v̄σ := vσ +Cσσ∗ v̄σ∗ , σ child of σ∗, it follows that

v =
∑

σ

XT
σvσ =

∑

σ a leaf

XT
σ v̄σ. (2.23)

Again, only matrices Xσ for leaves σ must be assembled.

An analysis of the complexity (cf. [26], [18]) shows that using the multipole evaluation
the number of operations necessary to perform the matrix vector product (2.19) is of
order O(m4N), with N the number of unknowns.3 The memory requirements are of order
O(m2N). To ensure that the error of the far field approximation is asymptotically equal
to the order of the discretization error, we have to choose m = O(log N).

2.5 Numerical experiment

Here we present some numerical experiments in order to show the performance of the
method. The goals of the experiments are to investigate the error dependence on the
order m of the cluster expansion, and validation of the O(N(logN)4) complexity of the
algorithm.

We therefore consider the problem (1.1) in the unit shere Ω where the “true” potential
U(x) is given by U(x) = |x|−1 + x1x2 |x|−5 (2.24)

and the boundary condition is ∂nU = f with n(x) the exterior unit normal vector to Γ.

We approximated the unit sphere by planar triangles. Continuous, piecewise linear
polynomials have been used as trial and test functions. The numerical quadrature for the
near field integrals has been done using special quadrature techniques [22, 27].

The results were obtained on a SUN Ultra-Enterprise 4000/5000 on a single processor
(UltraSPARC, 248MHz), 2 GB RAM using the SUN C++ 4.2 Compiler and the class
library Concepts-1.3 for boundary elements.

The linear system of equations was solved using a GMRES solver without any pre-
conditioning. About 30 iterations were necessary to keep the error lower than the dis-
cretization error, independent of the number of unknowns. For our cluster algorithm the
matrix-vector operations for the calculation of the far field contribution have been done
in every iteration step. The necessary information about the Xσ, Y τ and F στ matrices
have been stored in core on the workstation. The quality of the solution has been checked
at a grid of points with distance 0.5 to the surface of the unit sphere.

3With a more sophisticated approach to evaluate the products F στuτ using exponential expansions
this could be reduced to O(m3N) [16].
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Figure 1: (left) CPU-time for matrix assembly (m = 3, 4, 5, 6, 7)(in seconds) versus num-
ber N of panels: standard BEM (dashed line) versus fast algorithm (solid lines)

Figure 2: (right) Relative mean absolute error in a set of points with distance 0.5 from
the surface of the unit sphere: standard BEM (dashed line) versus fast algorithm for
m = 3, 4, 5, 6, 7 (solid lines)

Figure 1 shows the CPU-time for the matrix assembly for the standard BEM (dashed
line) and our fast algorithm (solid lines). The latter depends on the order m of the
multipole expansion. The computations have been done for m = 3 . . . 7. The results are
shown as function of the number of unknowns, i.e., of the resolution. The finest resolution
contains 65538 unknowns, i.e., 131072 panels. The dependence of the CPU-time on the
expansion order m is minor, because N dominates. Compared with the standard method
a speed-up of up to 3 orders of magnitude is realized for the finest resolution.

Figure 2 shows the relative mean absolute error in the potential in exterior points
located at a distance of 0.5 from the surface ∂Ω for various m. The solid lines represent
the cluster-BEM solution for m = 3 . . . 7, the dashed line represents the standard-BEM
solution. Only for m = 6, 7 we observe an almost monotone decreasing error with in-
creasing number of unknowns. This indicates that small values of m corresponding to
low expansion orders produce approximation errors that dominate the total error budget
if the discretization becomes finer. At a certain discretization level m = 5 gives a better
accuracy than m = 7. This can be explained by the influence of the discretization error
which dominates at this discretization level the total error budget.

Figure 3 shows the compression rate as a function of the number of unknowns. A com-
pression factor of 0.01 means that the total of entries to store the necessary information
of the Xσ, F στ , Y τ matrices is equal to 1% of the entries of the dense stiffness matrix A.

In Figure 4 we show the number of necessary matrix entries for the cluster-BEM and
the standard-BEM as a function of the potential error in exterior points. It clearly shows
that the higher the accuracy requirements are the more storage could be saved with the
cluster-BEM.
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Figure 3: (left) Compression of the stiffness matrix for m = 3, 4, 5, 6, 7.

Figure 4: (right) Number of necessary matrix entries as function of the potential error in
exterior points: standard BEM (dashed line) versus fast algorithm (m = 7) (solid line).

3 Wavelet BEM

Wavelet-BEM are collocation or Galerkin BEM (1.7b), (1.7c) where the FE basis {ϕλ :
λ ∈ Λ} of V N has been changed into a wavelet basis {ψλ : λ ∈ Λ}4 The basic idea is
simple: the wavelets have vanishing moments in local surface coordinates and this causes
most entries in the stiffness matrixAψ with respect to the wavelet basis ψ to be negligible.
Let us illustrate this by the simplest surface wavelet.

3.1 Haar Multiwavelets on Γ

We assume each Γk ⊂ Γ to be triangular and generate a dyadic sequence of meshes
{M(

k}0≤(≤L on Γk by halving the sides of each triangle T ∈ M(
k. The corresponding mesh

on Γ is then M( = ∪N0

k=1M(
k with N( = N0 4( triangles T (

j , j = 0, . . . , N(−1. Let ϕ(
j denote

the characteristic function of T (
j , then we may write any piecewise constant function uL

on ML as

uL =
NL−1∑
j=0

{uL
ϕ}j ϕL

j . (3.1)

A wavelet basis for V L = span{ϕL
j } is obtained by adding only “new”, incremental un-

knowns when refining from M( → M(+1. This is illustrated in Fig. 3.1. This concept
can also be described in terms of function spaces on Γ. Let V ( be the space of piecewise
constants on M(. Clearly,

V 0 ⊂ V 1 ⊂ · · · ⊂ V ( ⊂ . . . (3.2)

and the sequence {V (}( is dense in V = L2(Γ). Define W 0 = V 0 and

W ( = {ψ ∈ V ( : 〈ψ,ϕ〉 = 0 ∀ϕ ∈ V (−1}, * = 1, 2, 3, . . . (3.3)

4Since V N was assumed to be a finite element space of piecewise, continuous or discontinuous, poly-
nomials on Γ, V N = span{ψλ : λ ∈ Λ} means that we consider here only spline-wavelets; the fractal, fully
orthogonal Daubecies wavelets (e.g. [12]), could in principle also be used, but do not seem suitable to us
for BEM since they cause difficulties in numerical integration.
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where 〈·, ·〉 denotes the L2-innerproduct on Γ. Then

dimW ( = dimV ( − dimV (−1 = N( −N(−1 = N0(4
( − 4(−1) = 3N0 4

(−1 .

For * = 1 there are 3 shapefunctions ψ1
j on each Γk, the so-called “motherwavelets”, which

are piecewise constant on M1 and have vanishing mean. A basis for W ( is obtained by
replication, i.e. translation and scaling, from the {ψ1

j }. Clearly,

V L = WL ⊕WL−1 ⊗ · · ·⊗W 0 (3.4)

and uL ∈ V L can equivalently be expressed in the basis {ψ(
j}:

uL =
NL−1∑
j=0

{uL
ϕ}j ϕL

j =
N0−1∑
j=0

{u0
ψ}j ψ0

j +
L−1∑
(=0

3N!−1∑
j=0

{u(+1
ψ }j ψ(+1

j . (3.5)

Translation between the coefficient vectors {uL
ϕ} and {u(

ψ}(≤L is achieved in O(NL) op-
erations using the pyramid scheme:

{u(+1
ϕ } = H({u(

ϕ}+G({u(+1
ψ } (3.6)

where

H( = blockdiag










1
1
1
1









∈ lR

N!+1×N! , G( = blockdiag










1 −1 −1
−1 1 −1
−1 −1 1
1 1 1









∈ lR

N!×3N! .

It is clear that higher order, discontinuous wavelets can be generated completely analo-
gously (see [31] for degree 1 multiwavelets on triangles and [7], Section 9.3, for the general
construction valid also on quads). Such wavelets satisfy an analog of Parseval’s equality
in L2(Γ): let u ∈ L2(Γ) be expanded in wavelets:

u =
∑
λ

〈u,ψλ〉ψλ , (3.7)

then ‖u‖2L2(Γ) =
∑
λ

|〈u,ψλ〉|2 . (3.8)

In particular, the Haar multiwavelets are fully orthogonal, i.e.

〈ψλ,ψλ′〉 = δλλ′ ∀λλ′ , (3.9)

and the wavelets of (piecewise) degree p have vanishing moments of order d = p+1, i.e.5)

〈p,ψλ〉 = 0 ∀p ∈ Pd(Γ), |λ| > 0 , (3.10)

where Pd is the set of piecewise polynomials on Γ of total degree < d.

5for curved surfaces Γ, (3.5) must hold for the pullback of ψλ in local coordinates.
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3.2 Other wavelet families

The Haar-type multiwavelets are only suitable for second kind BIEs. For hypersingular
BIEs (1.2) posed in V = H1/2(Γ), evidently discontinuous ψλ are not admissible. Several
continuous, biorthogonal wavelets have been proposed. As a rule, to achieve the analog of
(3.8) in H1/2(Γ) is difficult, since the H1/2(Γ) norm is, unlike the L2(Γ) norm, not additive
on the Γk. The same applies to H−1/2(Γ) - here discontinuous wavelets are admissible,
but one has to have a higher number of vanishing moments than for the Haar wavelets.
Let in (1.4) r = s− 2 the order of A, and assume the vanishing moment condition

〈p,ψλ〉 = 0 ∀p ∈ Pd̃(Γ), |λ| > 0 (3.11)

where ψλ is a spline wavelet of degree < d. In order to achieve O(N)-algorithms d̃ must
satisfy ([39]) d < d̃+ r ⇐⇒ d̃ > d− r (3.12)

If equality holds in (3.12), as in the case of Haar-wavelets for second kind BIEs (d = d̃ =
p+ 1, r = 0), only O(N(logN)a), 0 < a ≤ 2 complexity is achievable.

Biorthogonal spline wavelets satisfying (3.12) for r = −1, 0, 1 are available on lR2 (see
[11], [7], [6]). On polyhedral surfaces, some delicate compatibility conditions at the edges
must be satisfied; this can be done (see [9], [10] for these constructions) at the expense
of a larger support. We also mention [32], [33] for C0-wavelets and collocation of second
kind BIEs. There, in particular, the first fully discrete schemes with nonanalytic surfaces
Γ were obtained. The computational performance of these wavelets on surfaces is yet
open.

3.3 Wavelet BEM

For ease of notation, we combine the indices (*, j) of ψ(
j into a multiindex λ = (*, j),

|λ| = *; then V L = span{ψλ : λ ∈ Λ}. Assume that A in (1.2) is a Fredholm operator
of the second kind, i.e. s ≤ 2 in (1.4). A wavelet version of the classical panel method
can be obtained by letting xλ be the barycenter of the T λ = T (

j ∈ M(, and Xλϕ = ϕ(xλ),
Yλ′ϕ = 〈ϕ,ψλ′〉. In the Galerkin variant also Xλϕ = (ϕ,ψλ), and we denote the resulting
stiffness matrix by AL to emphasize dependence on the level L. The problem (1.5) reads:

AL uL = gL . (3.13)

3.4 Compression

The main effect of using a wavelet basis is the smallness of farfield entries of AL. Let

Uλ = supp Xλ, Uλ′ = supp Yλ′, λ,λ′ ∈ Λ ,

and assume that the Xλ, Yλ′ have vanishing moments:

Xλp = 0 ∀p ∈ Pd̃, Yλp = 0 ∀p ∈ Pd̃′ , (3.14)

where Pd denotes the polynomials of total degree < d in local coordinates. Then

|AL
XY | ≤ C (dλλ′)−s−d̃−d̃′ (3.15)
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whenever dλλ′ := dist(Uλ, Uλ′) ≥ c 2−min(|λ|,|λ′|), i.e. each vanishing moment of either Xλ

or Yλ′ gives one extra order of decay in the farfield. The constant C in (3.15) depends,
in general, on the normalization of the ψλ. The decay estimate (3.15) is then a direct
consequence of (1.4) and (3.14) ([7, 30, 39, 25]). The matrix-compression of AL is:

Ã
L

λ,λ′ :=

{
AL

λ,λ′ if dλλ′ < τλλ′

0 else
(3.16)

where τλλ′ are judiciously chosen truncation parameters 6). For second kind BIEs we have
s = 2 in (1.4), and, for Galerkin BEM with Haar-multiwavelets of degree p, (3.14) holds
with d̃ = d̃′ = p+ 1, and we find [25, 30] the rule

τλλ′ = max{a2−|λ|, a2−|λ′|, a2L−|λ|−|λ′|} (3.17)

which was used in our numerical simulations below. Note that for collocation, or operators
of nonzero order, other truncation parameters have to be selected (see [7, 32, 33, 39] for
more).

The estimate (3.15) indicates that vanishing moments of both, Xλ and Yλ′, contribute
to the compression. Galerkin BEM (1.7c) are preferable from this point of view, since for
the collocation case Xλ(ϕ) = ϕ(xλ) has no vanishing moments at all. This can, however,
be compensated by judicious linear combinations of Dirac’s (see [32], Sect. 3.3 for an
example).

3.5 Compression error estimate

We restrict ourselves to operators A of order zero and to Galerkin-BEM using the discon-
tinuous Haar multiwavelets ψλ of degree p ≥ 0 on triangulations. We have the

Theorem 3.1 [30, 25]: Under the above assumptions, if a in (3.17) is sufficiently large,

the compressed stiffness matrix Ã
L
in (3.16) is stable, i.e. cond(Ã

L
) ≤ C < ∞ for all

L. Moreover, the error in the BEM solution ũL obtained from the compressed matrix Ã
L

can be estimated by

‖u− ũL‖L2(Γ) ≤ C N−s/2
L Lν‖u‖Hs(Γ) = C hs | log h|ν ‖u‖Hs(Γ) (3.18)

for 0 ≤ s ≤ p+1 with ν = 0 if s < p+1, ν = 1 if s = p+1. Moreover, for the approximate
solution ŨL of (1.1) holds: ∀x ∈ Ω ex. C(x) > 0 such that

|U(x)− ŨL(x)| ≤ C(x) h−(s+s̃)| log h|ν(s)+ν(s̃) ‖u‖Hs(Γ)‖g‖H s̃(Γ) (3.19)

where 0 ≤ s, s̃ ≤ p + 1 and g ∈ H s̃(Γ), A∗ϕ = g =⇒ ϕ ∈ H s̃(Γ) and ν(t) = 0 for

0 ≤ t < p+ 1, ν(p+ 1) = 3/2. The compressed stiffness matrix Ã
L
can be obtained using

O(NL(logNL)4) work and O(NL(logNL)2) memory.

6In addition, also certain elements in the near field can be neglected, if the distance between Uλ and
U sing
λ′ = sing supp(Yλ′ ) gets large, see [7], (9.28) and [39].
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There are analogs of the present theorem also for first kind, weakly and hypersingular
BIEs as well as for collocation schemes; see [7, 39]. The estmate (3.19) shows that the
superconvergence of potentials at interior points in Galerkin-BEM is preserved under
compression, provided Au = f and A∗ϕ = g have sufficiently regular solutions for smooth
f and g. This is unrealistic on polyhedra due to edge- and vertex singularities. In many
cases, one has (3.18), (3.19) only with 0 ≤ s, s̃ < 1, which is why the Haar-Galerkin
wavelet with p = 0 is close to optimal if uniform mesh refinement is used. To exploit
higher order wavelets on polyhedra, adaptivitymust come into play. Recent, very technical
results indicate that adaptive wavelet algorithms can be designed (see [5]) which realize
optimal convergence rates at O(N) complexity, but numerical experience has yet to be
gained with these algorithms.

3.6 Numerical Experiments

In this section, we present the results of three numerical experiments obtained with the
described implementation of the multiscale scheme. In a polyhedronΩ ⊂ lR3 we considered
(1.1). The double layer ansatz U(x) = 〈k(x, ·), u〉 where the double layer kernel is given
by

k(x, y) = − 1

4π

〈n(y), y − x〉
|y − x|3 (3.20)

leads with the jump relations to the second kind boundary integral equation

u ∈ L2(Γ) : 〈v, Au〉 = 〈v, f〉 ∀v ∈ L2(Γ) (3.21)

with

(Au)(x) = −1

2
u(x) +

∫

Γ

k(x, y)u(y) dsy (3.22)

defined almost everywhere on Γ. We solved (3.21) on several polyhedral domains with
quite similar performance. Here, we only report the results obtained with a tetrahedron
defined by four equilateral triangles with vertices on the unit sphere (γ ∼ 1) and the right
hand side

f(x) = |x− x0|−1, x0 := (1, 1, 1)T in the exterior of Ω. (3.23)

For the discretization constant test and trial functions (d = 0) were used. We did not
make use of the fact that entries in the stiffness matrix corresponding to panels located
in the same face of the polyhedron Ω vanish. All results were obtained on a SUN Ultra-
Enterprise 4000/5000 on a single processor (UltraSPARC, 248 MHz) and 2 GB RAM
using the SUN C++ 4.2 Compiler.

In the first experiment we kept the parameters a and α = α′ of the thresholds (3.16)
controlling the compression fixed and solved the problem on various levels up to about
260000 unknowns (Table 1). On the finest mesh the compressed matrix consists of only
0.1% of the entries of the dense stiffness matrix. In addition, it can be observed that
the number of iterations used by the solver (GMRes without restart) is almost constant
validating the bounded condition numbers of the compressed matrices.

In Figure 5 the time of assembly and compression is depicted. Here, the upper dashed
line corresponds to the bound O(NL(logNL)4) in Theorem 3.1 [30, 25]. The plot indicates
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level NL a, α time[s] mem[MB] it cpr

2 64 0.3, 1.0 0.1 0.03 16 0.941
3 256 0.3, 1.0 0.8 0.21 18 0.424
4 1024 0.3, 1.0 5.9 1.17 19 0.146
5 4096 0.3, 1.0 36.7 5.80 19 0.045
6 16384 0.3, 1.0 193.2 27.44 18 0.013
7 65536 0.3, 1.0 1045.1 126.29 18 0.004
8 262144 0.3, 1.0 5744.9 570.43 19 0.001

Table 1: First experiment: a, α = threshold parameters, time = time for assembly and
solution, mem = memory required to store the compressed matrix inclusive management
overhead, it = number of iterations, cpr = memory consumption with respect to a dense
matrix.
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Figure 5: (left) Time for assembly and compression of the matrix.

Figure 6: (right) | ‖ul‖0 − ‖u‖0 | versus NL.

that the influence of the higher order logarithmic terms on the computing time seems
to be negligible compared to the O(NL(logNL)2) term illustrated by the lower dashed
line. Roughly speaking, on an average nearly a constant number of operations is used to
evaluate an entry of the stiffness matrix.

In all numerical experiments the time for GMRes accounts only for less than 10% of the
total time shown in the tables. Therefore, with the present method the BEM-paradigm
that most of the work is spent for quadrature is still valid and a speed up similar to the
one for dense matrices can be achieved with the parallelization of the matrix assembly.

Figure 6 and Figure 7 show the behaviour of the L2-error of the density u on the
boundary and the average error in several interior points of the solution U , respectively.
The L2-error is approximated by the difference of the norm of the discrete density and
the norm of the exact density. Since an exact solution is not available we computed
an approximate value by higher order quadrature on a higher level with a parallelized
implementation. According to Theorem 3.1, the expected rate of convergence is deter-
mined by regularity properties of A and its adjoint A∗. From the known edge and vertex
singularities of the Laplacean in polyhedra it can be verified that in the example under
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Figure 7: (left) Error at interior points versus NL.

Figure 8: (right) CPU-Time in sec versus | ‖ul‖0 − ‖u‖0 |.
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Figure 9: (left) Memory versus | ‖ul‖0 − ‖u‖0 |.

Figure 10: (right) Error at interior points versus NL, a = 0.1, 0.2, 0.4, 0.7, 1.0, α = 1.0.

consideration here both operators admit solutions belonging to H1(Γ) for smooth right
hand sides. This means that we have Theorem 3.1 with s = s̃ = 1 and expect essentially
O(N−1/2

L ) convergence in the L2(Γ)-norm and O(N−1
L ) convergence at an interior point

(note that collocation or Nyström schemes do not display this kind of superconvergence
at an interior point and would require H2-regularity on Γ and d = 1 to achieve O(N−1

L )
convergence at an interior point).

Again, the dashed line in Figure 6 illustrates the expected behaviour of essentially
O(N−1/2

L ). For the error in interior points, Figure 7, twice the convergence rate should
be observed, hence essentially O(N−1

L ) (lower dashed line) or, according to Theorem 3.1,
O(N−1

L (logNL)2) (upper dashed line).

Finally, we compared our method with a standard boundary element implementation
generating the fully populated stiffness matrix with an optimized quadrature rule. For
both methods the time and memory used to generate a solution satisfying a given L2-error
are depicted in Figure 8 and Figure 9, respectively, where the dashed line corresponds
to the standard approach. It turns out that already for moderate accuracy, “moderate”
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level NL a, α time[s] mem[MB] it cpr

8 262144 0.1, 1.0 5606.5 424.57 19 0.0008
8 262144 0.2, 1.0 5669.8 490.47 19 0.0009
8 262144 0.4, 1.0 5842.8 672.14 18 0.0013
8 262144 0.7, 1.0 6224.1 1009.25 18 0.0019
8 262144 1.0, 1.0 6778.2 1450.70 18 0.0028

Table 2: Second experiment

level NL a, α time[s] mem[MB] it cpr

8 262144 1.0, 0.2 5702.2 663.75 19 0.0013
8 262144 1.0, 0.4 5774.8 753.93 18 0.0014
8 262144 1.0, 0.6 5944.6 920.13 18 0.0018
8 262144 1.0, 0.8 6256.1 1137.70 18 0.0022
8 262144 1.0, 1.0 6778.2 1450.70 18 0.0028

Table 3: Third experiment.

with respect to our model problem, the wavelet method beats the standard approach:
assuming an error of about 10−4 the wavelet method is 10 times faster. Moreover, in this
case it saves about 98% of the memory. In addition, it can be observed that the memory
consumption is always less than in the standard case although additional information to
recover the structure of the compressed matrix (tags) must be stored.

The second experiment investigates the behaviour of the method when the amount
of compression driven by the parameter a changes (Table 2). The constant number of
iterations shows that even for a high compression the algorithm remains stable. The
convergence rates, in addition, are in all cases preserved as indicated by the error in interior
points shown in Figure 10: when the influence of the coarser meshes, where practically no
compression is possible, vanishes, the lines corresponding to different values of a fan out.
Nevertheless, they finally take the same slope. However, if the amount of compression
is reduced by means of parameter α instead of a, this is not the case as predicted by
Theorem 3.1 and observed in the last experiment (Table 3).

We point out that the influence of the amount of compression on the computing time,
in particular the time of assembly, is small compared to the influence on the memory
consumption (Tables 2,3). The reason for this is that the time to evaluate an entry of the
stiffness matrix depends, via the quadrature order, on the distance of the supports of the
related wavelets whereas the amount of memory to store the value is always the same.
Increasing the thresholds means adding entries to the matrix with more or less distant
support, which can be computed very fast compared to the entries near the diagonal. The
time of solution, however, increases as fast as the memory.

To conclude, we report on an implementation of the matrix assembly using threads
which were assigned to different processors on the SUN Ultra-Enterprise 4000/5000. Each
thread processes rows and columns of the compressed matrix with a local cache. Rows and
columns are assigned cyclically to ensure a static load balance. With this implementation
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level NL a, α
sequential
time[s]

4 processors
time[s] (speed up)

4 1024 0.3, 1.0 5.2 1.3 (4.0)
5 4096 0.3, 1.0 32.3 8.1 (4.0)
6 16384 0.3, 1.0 171.5 42.9 (4.0)
7 65536 0.3, 1.0 933.3 232.6 (4.0)
8 262144 0.3, 1.0 5200.3 1296.1 (4.0)
9 1048576 0.3, 1.0 4102.9

Table 4: Assembly of the system matrix using threads.

the considered problem was solved up to level 9, i.e. with more than a million unknowns,
on four processors. The CPU-times compared to the sequential version are shown in
Table 4. A nearly perfect speed up is observed.
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