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Abstract

A stabilized hp-Finite Element Method (FEM) of Galerkin Least Squares
(GLS) type is analyzed for the Stokes equations in polygonal domains. Con-
trary to the standard Galerkin FEM, this method admits equal-order inter-
polation in the velocity and the pressure, which is very attractive from an
implementational point of view. In conjunction with geometrically refined
meshes and linearly increasing approximation orders it is shown that the hp-
GLSFEM leads to exponential rates of convergence for solutions exhibiting
singularities near corners. To obtain this result a novel hp-interpolant is con-
structed that approximates pressure functions in certain weighted Sobolev
spaces in an H1-conforming way and at exponential rates of convergence on
geometric meshes.
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1. Introduction

The Stokes equations describe the motion of incompressible fluids at moderate val-
ues of the Reynolds number and are form-identical to the equations of isotropic
incompressible elasticity. Despite their linear structure they give the right setting
for studying stability aspects encountered when discretizing the incompressibility
constraint in fluid mechanics problems. Therefore, these equations have become
an important model problem in CFD and the ability to solve Stokes type prob-
lems accurately and efficiently is an inalterable requirement in many engineering
applications.
The classical mixed Galerkin Finite Element Method (FEM) for the Stokes equations
leads to a saddle point problem for which stability is only guaranteed if the velocity
and pressure FE-spaces satisfy the “Babuška-Brezzi” condition [8, 14]. Typically,
this stability condition imposes the use of different polynomial orders for the velocity
and the pressure interpolation (for low order pairs see [8, 14, 26] and the references
there; for high order and spectral elements we refer to [4, 5, 25, 27] and the references
there). Many attractive velocity-pressure combinations such as equal-order spaces
are instable which results in wildely oscillating pressures in computations.
In [19], Hughes, Franca and their co-workers introduced a Galerkin Least Squares
(GLS) approach which allows circumventing the Babuška-Brezzi condition and using
equal order spaces. In this method the standard Galerkin form is perturbed by
adding weighted residuals of the differential equation which results in enhanced
stability properties of the scheme. In [10, 11], Franca, Hughes and Stenberg showed
optimal h-version convergence rates for this GLS approach. The idea of stabilizing
Finite Element Methods by appropriately chosen (and mesh-dependent) weights is
by now widely used in the FE community and has been applied successfully in a
variety of problems in fluid flow, elasticity and continuum mechanics. We mention
here only [7, 9, 11, 19, 28] and the references there. We refer also to the survey
article [10]. All these works are concerned with the h-version of the FEM where
convergence is achieved by decreasing the meshwidth h at a fixed (typically) low
approximation order.
Recently, there have been several attempts to extend stabilized methods to high
order and spectral elements (see e.g. [6, 13, 21] and the references there). Boillat
and Stenberg gave in [6] a complete hp-error analysis of the GLS Finite Element
Method for Stokes flow. They derived error bounds for the pure p-version where
convergence is obtained by increasing the polynomial approximation order on a
fixed quasi-uniform mesh. However, these estimates give only algebraic rates of
convergence and are restricted to smooth solutions which is unrealistic in domains
with corners since there radial corner singularities are present (see e.g. [22]).
In the present work we extend the GLSFEM for Stokes flow discussed in [6, 10, 11]
to hp-FEM on geometric meshes. The main novelties of our work are:

• We consider Stokes flow in non-smooth domains where the solutions exhibit
singularities at conical boundary points. This solution regularity is described
in terms of countably normed, weighted spaces from [17, 18]. To our best
knowledge, we present the first error analysis for the GLSFEM valid for such
singular solutions. The reduced regularity near corners and the continuous



pressure approximations impose several technical difficulties and require a
careful treatment of the elements near vertices of the domain.

• To resolve the corner singularities we employ geometrically refined meshes
combined with linearly increasing approximation orders and show that this
hp-GLSFEM approach leads to exponential rates of convergence. This result
indicates that the performance of the hp-GLSFEM is not downgraded by sin-
gular solution components despite the appearance of stabilization terms of
higher order in the variational formulations.

• An hp-interpolant is constructed that approximates pressure functions in cer-
tain weighted Sobolev spaces in an H1-conforming way and at exponential
rates of convergence on geometric meshes. This result, proved along the lines
of [2, 15, 16, 24], is important from an implementational point of view: In the
hp-GLSFEM all field variables can be interpolated by the sameH1-conforming
FE space without losing the exponential convergence property. We remark
that this approximation theorem implies immediately corresponding results
for the classical Galerkin FEM.

The theoretical results of this paper have been announced in the note [23] and
confirmed numerically in [12]. Here, we give their detailed proof.
The outline of the paper is as follows: In Section 2 we review the Stokes problem and
discuss the regularity of solutions near corners. The GLS discretization is presented
in Section 3. We analyze the stability properties of the method and derive error
bounds valid for solutions exhibiting corner singularities. In Section 4 we prove
exponential rates of convergence in the hp-version of the GLSFEM on geometric
meshes. In Section 4.4 we show that the same result holds true in the standard
Galerkin FEM. The proof of these convergence properties is based on a novel hp-
approximation result whose detailed derivation is presented in Section 5.
Subsequently, standard notations and conventions are followed. We denote by
C,C1, C2, . . . generic constants independent of the polynomial degrees kK , the mesh-
widths hK and the stabilization parameter α.

Acknowledgements: The authors thank Prof. Rolf Stenberg for many helpful
discussions and suggestions and Prof. Klaus Gerdes for the help in implementing
the GLS method in Fortran 90 (see [12]).

2. The Stokes Problem

2.1. The Stokes Equations

Let Ω ⊂ R2 be a polygonal and bounded domain with boundary Γ = ∂Ω. The
Stokes problem is to find a velocity field #u and a pressure p such that

−∆#u +∇p = #f in Ω, (2.1)

∇ · #u = 0 in Ω, (2.2)

#u = #0 on Γ. (2.3)



Here, the right-hand side #f ∈ L2(Ω)2 is an exterior body force per unit mass.
Introducing the spaces

H1
0 (Ω)

2 = {#u ∈ H1(Ω)2 : #u|Γ = #0 in the sense of trace},
L2
0(Ω) = {p ∈ L2(Ω) : (p, 1) = 0}

with (·, ·) denoting the inner product in L2(Ω), L2(Ω)2 or L2(Ω)2×2, the usual mixed
formulation of (2.1)-(2.3) is:
Find (#u, p) ∈ H1

0 (Ω)
2 × L2

0(Ω) such that

B0(#u, p;#v, q) = F0(#v, q) ∀(#v, q) ∈ H1
0 (Ω)

2 × L2
0(Ω) (2.4)

with

B0(#u, p;#v, q) = (∇#u,∇#v)− (∇ · #v, p)− (∇ · #u, q), (2.5)

F0(#v, q) = (#f,#v). (2.6)

The system (2.4) has a unique solution (#u, p) in H1
0 (Ω)

2 × L2
0(Ω) (see [8, 14]).

2.2. Regularity near Corners

We assume that the right-hand side #f in (2.1) is analytic in Ω. Then it follows from
elliptic regularity theory that the exact solution (#u, p) is analytic in Ω\∪M

i=1Ai where
{Ai}Mi=1 denotes the vertices of Ω. Near a vertex Ai there arise corner singularities
which are solution components that are in polar coordinates (r,ϕ) at Ai essentially
of the form

#u(r,ϕ) = rλ#Φ(r,ϕ), p(r,ϕ) = rλ−1Ψ(r,ϕ) (2.7)

for λ ≥ 0 and with #Φ, Ψ analytic. The value of the exponent λ depends only on the
angle of the corner at Ai. Decompositions of the solutions into smooth parts and
corner singularities have been given e.g. in [22].
For closely related elasticity and potential problems I. Babuška and B. Guo described
in [1, 2, 17] elliptic regularity in terms of weighted Sobolev spaces. They showed that
under the analyticity assumption on the data the solutions belong to the Gevrey-
type countably normed Bl

β(Ω) spaces. They are defined as follows:
Denote by A1, . . . AM the vertices of the domain Ω. With each Ai we associate
a weight βi ≥ 0 and store these numbers in the M-tuple β = (β1, . . . , βM). We
define β ± k := (β1 ± k, . . . , βM ± k) and use the shorthand C1 > β > C2 to mean
C1 > βi > C2 for i = 1, . . . ,M . Define a weight function Φβ(x) :=

∑M
i=1 r

∗
i (x)

βi

where r∗i (x) = min{1, |x−Ai|}. For integers m ≥ l ≥ 0 introduce the seminorms

|u|2
Hm,l

β (Ω)
:=

m∑

k=l

‖|Dku|Φβ+k−l‖2L2(Ω).

Here, |Dku|2 =
∑

|α|=k |Dαu|2. Let Hm,l
β (Ω), m ≥ l ≥ 0 integers, be the completion

of the set of all infinitely differentiable functions with respect to the norm

‖u‖2
Hm,l

β (Ω)
:= ‖u‖2Hl−1(Ω) + |u|2

Hm,l
β (Ω)

, l ≥ 1,

‖u‖2
Hm,0

β (Ω)
:=

m∑

k=0

‖|Dku|Φβ+k‖2L2(Ω).



Definition 2.1 Fix an M-tuple β = (β1, . . . , βM) and l ≥ 0. The countably normed
space Bl

β(Ω) consists of all functions u for which u ∈ Hm,l
β (Ω) for all m ≥ l and

‖|Dku|Φβ+k−l‖L2(Ω) ≤ Cd(k−l)(k − l)!, k = l, l + 1, . . .

for some constants C > 0, d ≥ 1 independent of k.

We will also need the weighted spaces Hs,l
β (Ω) for noninteger s = k + θ, 0 < θ < 1,

defined by the K-method of interpolation as

Hk+θ,l
β (Ω) = (Hk,l

β (Ω), Hk+1,l
β (Ω))θ,∞.

If u ∈ Bl
β(Ω), there holds for any k ≥ l that

‖u‖Hk+θ,l
β (Ω) ≤ Cdk+θ−lΓ(k + θ − l + 1).

The Bl
β(Ω) spaces describe the singular behavior as in (2.7) near corners and the

analytic one in the interior. For the Stokes problem (2.1)-(2.3) the corresponding
regularity statement is then (see [18]):
There exist numbers 0 ≤ βi < 1 depending on the angles at Ai, i = 1, . . . ,M , such
that for #f ∈ B0

β(Ω)
2, β < β < 1, there holds

#u ∈ B2
β(Ω)

2, p ∈ B1
β(Ω). (2.8)

Remark that in general B2
β(Ω)

2 +⊂ H2(Ω)2 and B1
β(Ω) +⊂ H1(Ω).

Throughout, we assume that #f ∈ L2(Ω)2 ∩ B0
β(Ω)

2 for β < β < 1.

3. GLS Discretization

3.1. Finite Element Spaces

In order to discretize (2.1)-(2.3) we start with an affine and shape regular mesh
T that partitions Ω into triangular and quadrilateral elements {K} subject to the
following standard assumptions: (i). Ω = ∪K∈T K. (ii). Each elementK is the image
of the reference element K̂ under an affine element mapping FK , K = FK(K̂). K̂ is
either the unit square Q̂ = (0, 1)2 or the unit triangle T̂ = {(x, y) : 0 < x < 1, 0 <
y < 1−x}. (iii). The mesh is regular, i.e. the intersection K∩K ′ of two elements K
and K ′ is either empty, a single vertex or an entire side. (iv). There exist constants
C1, C2 such that C1hK ≤ ρK ≤ C2hK with hK denoting the diameter of K and ρK
the diameter of the largest circle that can be inscribed into K.
If (iii) is not satisfied, the mesh is called irregular and contains hanging nodes. The
meshwidth h of T is h = maxK∈T {hK}. T is quasi-uniform if there are constants
κ1, κ2 > 0 such that κ1h ≤ hK ≤ κ2ρK for all K ∈ T .
The space of polynomials of degree ≤ k on an interval I = (a, b) is denoted Pk(I).
In two dimensions we introduce the reference polynomial spaces

Q̂k = span{x̂κ1

1 x̂κ2

2 : 0 ≤ κ1, κ2 ≤ k},
P̂k = span{x̂κ1

1 x̂κ2

2 : 0 ≤ κ1, κ2, κ1 + κ2 ≤ k}.



For a (triangular or quadrilateral) element K ∈ T we set then

Qk(K) = {q : K → R : q ◦ FK = p|K̂ , p ∈ Q̂k},
Pk(K) = {q : K → R : q ◦ FK = p|K̂ , p ∈ P̂k}.

We define further

Sk(K) =

{
Qk(K) if K is a quadrilateral,
Pk(K) if K is a triangle.

To define the FE spaces we associate with each element K ∈ T a polynomial degree
kK . These degrees are stored in the vector k = {kK : K ∈ T } and we set |k| :=
max{kK : K ∈ T }. The hp-FE spaces are then

Sk,l(T ) = {u ∈ H l(Ω) : u|K ∈ SkK (K) : K ∈ T }, l = 0, 1.

If the polynomial degree kK = k throughout the mesh, we write simply Sk,l(T ).

3.2. GLSFEM with Equal-Order Spaces

Let k be a polynomial degree vector on T . In the GLS method we approximate the
velocities and the pressure by equal-order FE spaces #VN ⊂ H1(Ω)2 andMN ⊂ L2(Ω),
respectively. These spaces are given by

#VN := Sk,1(T )2, MN := Sk,l(T ), l = 0, 1. (3.1)

The index l indicates whether the pressure p ∈ MN is approximated by L2- or
H1-conforming FE-functions. Less formally, these spaces are often called “Sk × Sk

elements”. Throughout, we set #VN,0 := #VN ∩H1
0 (Ω)

2 and MN,0 := MN ∩ L2
0(Ω).

The spaces in (3.1) satisfy the following inverse estimates (see [4, 24]):

Lemma 3.1 There exists a constant Cinv > 0 only depending on the shape regularity
constants of the mesh such that for all #u ∈ #VN and p ∈ MN

Cinv

∑

K∈T

h2
K

k4
K

‖D2#u‖2L2(K) ≤ ‖∇#u‖2L2(Ω), Cinv

∑

K∈T

h2
K

k4
K

‖∇p‖2L2(K) ≤ ‖p‖2L2(Ω).

(3.2)

Definition 3.2 (GLS Finite Element Method) Let #VN and MN be the equal
order spaces in (3.1) with

kK ≥ 2, ∀K ∈ T . (3.3)

Let α be a user-specified stabilization parameter in the range

0 < α ≤ Cinv

2
with Cinv defined in (3.2). (3.4)

The Galerkin Least Squares discretization of (2.1)-(2.3) is then:
Find a discrete velocity field #uN ∈ #VN,0 and a discrete pressure p ∈ MN,0 such that

Bα(#uN , pN ;#v, q) = Fα(#v, q) ∀(#v, q) ∈ #VN,0 ×MN,0



where the perturbed form Bα and the perturbed functional Fα are given by

Bα(#u, p;#v, q) := (∇#u,∇#v)− (∇ · #v, p)− (∇ · #u, q) (3.5)

−α
∑

K∈T

h2
K

k4
K

(−∆#u+∇p,−∆#v +∇q)L2(K),

Fα(#v, q) := (#f,#v)− α
∑

K∈T

h2
K

k4
K

(#f,−∆#v +∇q)L2(K). (3.6)

Remark 3.3 For α = 0 the GLS method in Definition 3.2 coincides with the stan-
dard Galerkin approach which is considered in Section 4.4 ahead.

Remark 3.4 Let (#u, p) ∈ H1
0 (Ω)

2×L2
0(Ω) be the exact solution of (2.1)-(2.3). Since

the right-hand side #f belongs to L2(Ω)2, we have

(−∆#u +∇p)|K = #f |K ∈ L2(K)2, K ∈ T . (3.7)

This implies immediately that the GLSFEM is fully consistent without further reg-
ularity assumptions on the exact solution, that is we have

Bα(#u, p;#v, q) = Fα(#v, q) ∀(#v, q) ∈ #VN,0 ×MN,0. (3.8)

Consequently, there holds the orthogonality property

Bα(#u− #uN , p− pN ;#v, q) = 0 ∀(#v, q) ∈ #VN,0 ×MN,0. (3.9)

3.3. Stability

The following stability proposition is proved in [6] for a constant polynomial degree
distribution where kK = k for all K ∈ T . The extension to variable degree dis-
tributions k is straightforward. Nevertheless, we present the proof for the sake of
completeness.

Proposition 3.5 Assume (3.3), (3.4) and set γ(N)2 := α|k|−2. Then for every
(#u, p) ∈ #VN,0 ×MN,0 there exists (#v, q) ∈ #VN,0 ×MN,0 such that

Bα(#u, p;#v, q) ≥ C(‖#u‖2H1(Ω) + γ(N)2‖p‖2L2(Ω)),

‖#v‖2H1(Ω) + γ(N)2‖q‖2L2(Ω) ≤ C(‖#u‖2H1(Ω) + γ(N)2‖p‖2L2(Ω)).

Remark 3.6 Although this seems to be the best stability estimate for the GLSFEM
known at the moment, it is suboptimal with respect to the approximation order k
since the constant γ(N) enters into the estimate. Hence, error bounds for the pure
p-version GLSFEM fall two powers of k short from being quasioptimal, at least for
the pressure [6]. However, the inf-sup condition in Proposition 3.5 is sufficient to
establish exponential rates of convergence in the hp-FEM.
In addition, it can be seen that the estimate deteriorates for α = 0, in agreement
with the fact that Galerkin FEM with equal-order elements are instable (see Section
4.4 ahead).



Proof : Fix (#u, p) ∈ #VN,0 ×MN,0. We proceed in several steps:

Step 1: We have

Bα(#u, p; #u,−p) ≥ C‖#u‖2H1(Ω) + α
∑

K∈T

h2
K

k4
K

‖∇p‖2L2(K). (3.10)

To see (3.10), we use (3.2) and get

Bα(#u, p; #u,−p) = ‖∇#u‖2L2(Ω) − α
∑

K∈T

h2
K

k4
K

‖∆#u‖2L2(K) + α
∑

K∈T

h2
K

k4
K

‖∇p‖2L2(K)

≥ (1− α

Cinv
)‖∇#u‖2L2(Ω) + α

∑

K∈T

h2
K

k4
K

‖∇p‖2L2(K).

The assertion (3.10) follows with (3.4) and Poincaré’s inequality.

Step 2: There exists #w ∈ #VN,0 such that

‖#w‖H1(Ω) ≤ C‖p‖L2(Ω), (3.11)

Bα(#u, p;−#w, 0) ≥ −C‖#u‖2H1(Ω) + C‖p‖2L2(Ω) − C
∑

K∈T

(
h2
K

k2
K

+ α
h2
K

k4
K

)‖∇p‖2L2(K).

To prove (3.11), we apply Lemma 4.2 in [6] observing (3.3): There exists a #w ∈ #VN,0

such that

‖#w‖H1(Ω) ≤ C‖p‖L2(Ω),

(∇ · #w, p) ≥ ‖p‖2L2(Ω) − C‖p‖L2(Ω)(
∑

K∈T

h2
K

k2
K

‖∇p‖2L2(K))
1
2 .

Thus, using the continuity ofBα, the properties of #w, the Cauchy-Schwarz inequality
and (3.2), (3.4) we arrive at

Bα(#u, p;−#w, 0) = Bα(#u, 0;−#w, 0) +Bα(0, p;−#w, 0)

≥ −C‖#u‖H1(Ω)‖#w‖H1(Ω) + (∇ · #w, p)− α
∑

K∈T

h2
K

k4
K

(∇p,∆#w)L2(K)

≥ −C‖#u‖H1(Ω)‖p‖L2(Ω) + C‖p‖2L2(Ω) − C‖p‖L2(Ω)(
∑

K∈T

h2
K

k2
K

‖∇p‖2L2(K))
1
2

−C‖p‖L2(Ω)(α
∑

K∈T

h2
K

k4
K

‖∇p‖2L2(K))
1
2 .

Above, each of the negative terms is estimated with ab ≤ ε
2a

2 + b2

2ε with suitably
chosen weights ε > 0. This yields (3.11).

Step 3: We prove the assertion. Define (#v, q) = (#u− δ #w,−p) ∈ #VN,0 ×MN,0 where
δ > 0 is still at our disposal. Using Step 1 and Step 2 we obtain

Bα(#u, p;#v, q) ≥ (C1 − δC2)‖#u‖2H1(Ω) + δC3‖p‖2L2(Ω)

+
∑

K∈T

(α
h2
K

k4
K

− C4δ(
h2
K

k2
K

+ α
h2
K

k4
K

))‖∇p‖2L2(K).



Selecting δ = min( C1

2C2
, 1
C4
, α
3C4|k|2

) / α
|k|2 , we get

B(#u, p;#v, q) ≥ C‖#u‖2H1(Ω) + Cα|k|−2‖p‖2L2(Ω). (3.12)

Further,

‖#v‖2H1(Ω) + α|k|−2‖q‖2L2(Ω) ≤ C(‖#u‖2H1(Ω) + δ2‖p‖2L2(Ω) + α|k|−2‖p‖2L2(Ω)). (3.13)

Since δ2 ≤ γ(N)2, the assertion follows from from (3.12) and (3.13). !

Remark 3.7 The GLS discretization in Definition 3.2 has a unique solution due to
Proposition 3.5 and the continuity properties of Bα.

3.4. Error Analysis

To capture singular solution behaviour near the corners we partition the mesh T
into two disjoint sets T0 and T1 where T0 consists of all the elements that abut at a
corner of the domain, i.e.

T0 := {K ∈ T : K ∩ Ai += ∅ for some corner Ai of Ω}, T1 := T \ T0. (3.14)

Throughout, let γ(N) be the stability constant from Proposition 3.5, that is

γ(N)2 := α|k|−2. (3.15)

Lemma 3.8 Assume (2.8), (3.3) and (3.4). Let #uI and pI be arbitrary approxima-
tions in #VN and MN , correspondingly. Then we have

Bα(#u− #uI , p− pI ;#v, q)
2 ≤ Cγ(N)−2(‖#v‖2H1(Ω) + γ(N)2‖q‖2L2(Ω))(E

2
1 + E2

2 + E2
3)

for all (#v, q) ∈ #VN ×MN . Here,

E2
1 = ‖#u− #uI‖2H1(Ω) + ‖p− pI‖2L2(Ω), (3.16)

E2
2 =

∑

K∈T1

h2
K

k4
K

(‖∆(#u− #uI)‖2L2(K) + ‖∇(p− pI)‖2L2(K)), (3.17)

E2
3 =

∑

K∈T0

h2
K

k4
K

‖#f +∆#uI −∇pI‖2L2(K). (3.18)

Remark 3.9 Due to (2.8), #u and p behave analytically in the domain covered by
T1. Therefore, the term E2 containing second order derivatives of #u and first order
derivatives of p is well defined.

Proof : With the inequality of Cauchy-Schwarz we have

|Bα(#u− #uI , p− pI ;#v, q)|
≤ ‖(#u− #uI)‖H1(Ω)‖#v‖H1(Ω) +

√
2‖#v‖H1(Ω)‖p− pI‖L2(Ω)

+
√
2‖#u− #uI‖H1(Ω)‖q‖L2(Ω)

+α
∑

K∈T1

hK

k2
K

‖ −∆(#u− #uI) +∇(p− pI)‖L2(K)
hK

k2
K

‖ −∆#v +∇q‖L2(K)

+α
∑

K∈T0

hK

k2
K

‖#f +∆#uI −∇pI‖L2(K)
hK

k2
K

‖ −∆#v +∇q‖L2(K),



where we used the differential equation in the elements of T0 (see (3.7)). We apply
again Cauchy-Schwarz and the inverse inequalities in (3.2) for the terms ‖ −∆#v +
∇q‖L2(K). Due to (3.4), this results in

|Bα(#u− #uI , p− pI ;#v, q)|2 ≤ C(‖#v‖2H1(Ω) + ‖q‖2L2(Ω))(E
2
1 + E2

2 + E2
3).

Finally, we note that ‖#v‖2H1(Ω)+‖q‖2L2(Ω) ≤ γ(N)−2(‖#v‖2H1(Ω)+γ(N)2‖q‖2L2(Ω)), which
completes the proof. !

Proposition 3.10 Assume (2.8), (3.3) and (3.4). Let (#uN , pN) ∈ #VN,0 ×MN,0 be

the GLSFEM solution. Then we have for any (#uI , pI) ∈ #VN,0 ×MN

‖#u− #uN‖H1(Ω) + γ(N)‖p− pN‖L2(Ω) ≤ Cγ(N)−1(E2
1 + E2

2 + E2
3)

1
2 (3.19)

with E1, E2, E3 defined in (3.16), (3.17) and (3.18), respectively.

Remark 3.11 If (#u, p) ∈ Hs(Ω)2 ×Hs−1(Ω) for some s ≥ 2, we can choose T0 = ∅
and have E3 = 0. Proposition 3.10 then gives optimal convergence rates in the
h-version GLSFEM (cf. [11]). However, in the p-version GLSFEM, the rates from
Proposition 3.10 are suboptimal (cf. Remark 3.6): In the approximation of the
velocity one power of k is lost, whereas the pressure approximation falls two powers
of k short of being optimal. In [6], it is discussed how this p-version result can be
improved in certain situations. Remark that in the presence of reentrant corners the
assumption (#u, p) ∈ H2(Ω)2 × H1(Ω) does not hold true anymore and (2.8) is the
realistic regularity assumption in that case. This requires a careful treatment of the
elements in T0 near the corners.

Proof : Let (#uI , pI) ∈ #VN,0 × MN . Denote by Π the L2-projection of L2(Ω) onto
L2
0(Ω) given by Πp = p − 1

|Ω|

∫
Ω pdx. We decompose pI into pI = p1,I + p2,I where

p2,I = 1
|Ω|

∫
Ω pIdx and p1,I = ΠpI . The inf-sup condition in Proposition 3.5 for

(#uN − #u, pN − p1,I) implies the existence of (#v, q) ∈ #VN,0 ×MN,0 such that

(‖#v‖2H1(Ω) + γ(N)2‖q‖2L2(Ω))
1
2 ≤ C,

(‖#uN − #uI‖2H1(Ω) + γ(N)2‖pN − p1,I‖2L2(Ω))
1
2 ≤ Bα(#uN − #uI , pN − p1,I ;#v, q).

We have Bα(#uN − #uI , pN − p1,I ;#v, q) = Bα(#u− #uI , p− p1,I ;#v, q) due to the Galerkin
orthogonality (3.9). Thus, Lemma 3.8 yields

‖#uN − #uI‖H1(Ω) + γ(N)‖pN − p1,I‖L2(Ω) ≤ Cγ(N)−1(E2
1 + E2

2 + E3)
1
2

with p1,I entering in the terms E1, E2 and E3. Hence, the triangle inequality yields
the desired bound (3.19) for (#uI , p1,I). Since

‖p− p1,I‖L2(Ω) = ‖Π(p− pI)‖L2(Ω) ≤ ‖p− pI‖L2(Ω), ∇p1,I = ∇pI ,

p1,I can be replaced by pI . !



Corollary 3.12 Let (#u, p) satisfy (2.8) with βmax = max{βi} ∈ (0, 1). Let T0

consist only of quadrilateral elements and assume (3.3), (3.4). Then we have for
any (#uI , pI) ∈ #VN,0 ×MN the a-priori estimate

‖#u− #uN‖H1(Ω) + ‖p− pN‖L2(Ω) ≤ Cγ(N)−2(E2
1 + E2

2 + E2
3 )

1
2 (3.20)

with E1, E2 defined in (3.16), (3.17) and

E2
3 :=

∑

K∈T0

h2−2βmax

K (‖#f‖2L2(K) + ‖#uI‖2H2,2
β (K)

+ ‖pI‖2H1,1
β (K)

).

Proof : Let K ∈ T be a quadrilateral element and let r denote the distance to one
of its vertices. Then we claim for β ≥ 0 the weighted inverse inequality

‖π‖2L2(K) ≤ C(β)
k4β
K

h2β
K

∫

K

r2βπ2dx, ∀π ∈ SkK (K). (3.21)

To prove (3.21), we may assume that K = (−1, 1)2 and consider the vertex A =
(−1, 1), the general case follows by a scaling argument. Recall from [24] the one
dimensional result that for all β ≥ 0 holds

∫ 1

−1

q2(x)dx ≤ C(β)k2β

∫ 1

−1

q2(x)(1− x2)βdx, ∀q ∈ Pk((−1, 1)).

A tensor product argument yields then easily
∫

K

π2dxdy ≤ Ck4β
K

∫

K

π2(1− x2)β(1− y2)βdxdy

≤ Ck4β
K (

∫

K

π2(1− x2)2βdxdy +

∫

K

π2(1− y2)2βdxdy). (3.22)

The distance from a point (x, y) to A is given by r2 = (1 + x)2 + (1 + y)2. We
have (1− x2)2β ≤ C(1+ x)2β ≤ r2β and the same estimate holds true for (1− y2)2β.
Referring to (3.22) finishes the proof of (3.21).
Corollary 3.12 is now a direct consequence of Proposition 3.10 and (3.21). !

4. Exponential Rates of Convergence

4.1. Geometric Meshes

In order to resolve singular solution behaviour near corners we introduce meshes
that are geometrically refined towards the vertices {Ai}Mi=1. We define first the basic
geometric meshes on Q̂ = (0, 1)2.

Definition 4.1 Fix n ∈ N0 and σ ∈ (0, 1). On Q̂, the (irregular) geometric mesh
∆̃n,σ with n+1 layers and grading factor σ is created recursively as follows: If n = 0,
∆̃0,σ = {Q̂}. Given ∆̃n,σ for n ≥ 0, ∆̃n+1,σ is generated by subdividing that square
K with 0 ∈ K into four smaller rectangles by dividing its sides in a σ : (1−σ) ratio.
With each ∆̃n,σ a (regular) geometric mesh ∆n,σ can be associated by removing the
hanging nodes by additional triangles.



Examples of basic geometric meshes are shown in Figure 1. The elements {Kij} of

∆̃n,σ are numbered as indicated there. The elements K1j , K2j and K3j constitute
the layer j.

K34

K24

33

11

13

23
22

1232

0

1

1
x̂1

x̂2

∆̃n,σ

K14

0

1

1
x̂1

x̂2

∆n,σ

Figure 1: The geometric meshes ∆̃n,σ and ∆n,σ with n = 3 and σ = 0.5.

Definition 4.2 A geometric mesh Tn,σ in the polygon Ω ⊂ R2 is obtained by map-
ping the basic geometric meshes ∆n,σ from Q̂ affinely to a vicinity of each convex
corner of Ω. At reentrant corners three suitably scaled copies of ∆n,σ are used (as
shown in Figure 2). The remainder of Ω is subdivided with a fixed affine quasi-
uniform and regular partition.

In Figure 2 this local geometric refinement is illustrated. For ease of exposition we
consider only mesh patches that are identically refined with a fixed σ and n, although
different grading factors and numbers of layers may be used for the partition of each
corner patch.



A1

A2

A3

A4

A5 = A0

Figure 2: Local geometric refinement near vertices of Ω.

Definition 4.3 A polynomial degree distribution k on a geometric mesh Tn,σ is
called linear with slope µ > 0 if the elemental polynomial degrees are layerwise
constant in the geometric patches and given by kj := max(2, 2µj3) in layer j, j =
1, . . . , n + 1. In the interior of the domain the elemental polynomial degree is set
constant to max(2, 2µ(n+ 1)3).

4.2. An hp Approximation Result

On geometric meshes Tn,σ a function in Bl
β(Ω) with l > 1 can be approximated in

H l−1(Ω) at an exponential rate of convergence (see [15]). The same result holds
true for l = 1, i.e. a pressure in B1

β(Ω) can be approximated exponentially by
a L2-conforming FE-function in Sk,0(Tn,σ). This has been proved for example in
[20] in the context of boundary element methods for certain values of β. However,
we are mainly interested in continuous pressure functions where MN = Sk,1(Tn,σ).
Therefore, we construct an H1-conforming interpolant that approximates B1

β(Ω)-
functions at exponential rates of convergence in L2(Ω). To do so, we modify the
arguments given in [15, 16, 24] and in the elements abutting on a solution singularity
we use a weighted Poincaré inequality (see [20] where the same inequality has been
established for values of β in (12 , 1)).
Our main result on the hp-approximation in Sk,1(Tn,σ) is:

Theorem 4.4 Let l = 1, 2 and f ∈ Bl
β(Ω) for some β ∈ (0, 1). Let Tn,σ be a

geometric mesh on Ω. Then there exists a µ0 > 0 such that for linearly increasing
polynomial degree vectors k with slope µ ≥ µ0 there is an interpolant Ψl ∈ Sk,1(Tn,σ)
that satisfies

‖f −Ψl‖2
Hl−1(Q̂)

+
∑

K∈(Tn,σ)1

h2
K

k4
K

|f −Ψl|2Hl(K) ≤ C exp(−bN1/3)

with C and b independent of N = dim(Sk,1(Tn,σ)). On the first elements

KA = ∪{K ∈ Tn,σ : K ∩ A += ∅}



near a vertex A the approximant Ψ2|KA
is given by the (piecewise) bilinear nodal

interpolant and Ψ1|KA
= 1

|KA|

∫
KA

fdx. We have

‖Ψl‖Hl,l
β (KA) ≤ C‖f‖Hl,l

β (KA).

Additionally, if f ∈ B2
β(Ω) ∩H1

0 (Ω), the interpolant Ψ2 can be chosen to satisfy the
zero boundary conditions.

The proof of Theorem 4.4 is rather lengthy and technical. We postpone it to Section
5.

4.3. Convergence Results

The next result establishes exponential rates of convergence for the hp-GLSFEM,
irrespective of whether the pressures are approximated by H1- or L2-conforming
spaces.

Theorem 4.5 Assume that the exact solution (#u, p) of the Stokes equations satisfies
(2.8) for some β ∈ (0, 1). Discretize these equations with the GLSFEM using the
equal order spaces in (3.1) with l = 0 or l = 1 on a geometric mesh Tn,σ assuming
(3.3), (3.4). Let (#uN , pN) ∈ #VN,0 ×MN,0 be the discrete solution. Then there exists
µ0 = µ0(σ, β) > 0 such that for linear degree vectors k with slope µ ≥ µ0 there holds
the error estimate

‖#u− #uN‖H1(Ω) + ‖p− pN‖L2(Ω) ≤ C exp(−bN
1
3 )

with constants C, b > 0 independent of N = dim(#VN) ≈ dim(MN) (but depending
on µ, σ, β). Moreover, the constant C depends on the stabilization parameter α as
in (3.20).

Proof : Assume first that MN = Sk,1(Tn,σ). Insert the approximants #uI = #Ψ2 =
(Ψ2,Ψ2) and pI = Ψ1 from Theorem 4.4 into the abstract error bound (3.20). Using
the interpolation properties yields

‖#u− #uN‖2H1(Ω) + ‖p− pN‖2L2(Ω) ≤ C exp(−bN1/3)

+C

M∑

i=1

diam(KAi
)2−2βmax(‖#f‖2L2(KAi

) + ‖#u‖2
H2,2

β (KAi
)
+ ‖p‖2

H1,1
β (KAi

)
).

Here, {Ai}Mi=1 are the vertices of Ω and KAi
:= {K ∈ Tn,σ : K ∩ Ai += ∅}. The

diameters of the sets KAi
are exponentially small, i.e.

diam(KAi
)2−2βmax ≤ Cσ2n(1−βmax) ≤ C exp(−bN1/3).

This proves the assertion if MN = Sk,1(TN,σ).
If now MN = Sk,0(Tn,σ), we have Sk,0(Tn,σ) ⊃ Sk,1(Tn,σ) and the approximant con-
structed in Theorem 4.4 can be employed to bound (3.20) in this case as well. !



Remark 4.6 If the polynomial degree is chosen to be constant throughout the
mesh, i.e. #VN = Sk,1(Tn,σ)2 and MN = Sk,l(Tn,σ), l = 0, 1, exponential convergence
is still obtained by choosing k proportionally to the number n of layers. This is
due to the fact that for k ∼ n the interpolant with linearly increasing polynomial
approximation order constructed in the proof of Theorem 4.4 can still be used in
the error estimate (3.20).

Remark 4.7 The techniques applied in Section 5 to prove Theorem 4.4 allow us
also to establish exponential rates of convergence for geometric meshes with hanging
nodes where the local mesh refinement towards corners is obtained by mapping the
irregular mesh patches ∆̃n,σ. Of course, other geometric refinement strategies are
imaginable.

4.4. A Remark on Galerkin hp-FEM

For α = 0 the GLSFEM in Definition 3.2 results in the Galerkin scheme:
Find (#uN , pN) ∈ #VN,0 ×MN,0 such that

B0(#uN , pN ; v, q) = F0(v, q) ∀(#v, q) ∈ #VN,0 ×MN,0 (4.1)

(with B0 and F0 defined in (2.5), (2.6)).
However, for the equal-order spaces in (3.1) this approach is highly instable (cf.
[5, 8, 14]), since the Babuška-Brezzi stability condition is not satisfied. To obtain
stable discretizations different polynomial orders have to be chosen for the veloci-
ties and the pressure: In [25, 27], e.g., it is shown that “Sk × Sk−2” elements are
stable on geometric meshes with an inf-sup constant γ(N) depending algebraically
on the approximation order k. These elements lead to quasioptimal error estimates
and hence the approximant in Theorem 4.4 yields exponential convergence for this
Galerkin approach as well:

Corollary 4.8 Assume that the exact solution (#u, p) of the Stokes equations satisfies
(2.8) for some β ∈ (0, 1). Discretize these equations with the Galerkin scheme (4.1)
using “Sk × Sk−2” elements, i.e.

#VN = Sk,1(Tn,σ)
2, MN = Sk−2,l(Tn,σ), l = 0, 1,

on a geometric mesh Tn,σ assuming (3.3). Let (#uN , pN) ∈ #VN,0×MN,0 be the discrete
solution. Then there exists µ0 = µ0(σ, β) > 0 such that for linear degree vectors k
with slope µ ≥ µ0 there holds the error estimate

‖#u− #uN‖H1(Ω) + ‖p− pN‖L2(Ω) ≤ C exp(−bN
1
3 )

with constants C, b > 0 independent of N = dim(#VN) ≈ dim(MN) (but depending
on µ, σ, β).

If the polynomial degree is constant throughout the mesh, i.e. #VN = Sk,1(Tn,σ)2 and
MN = Sk−2,l(Tn,σ), l = 0, 1, exponential convergence is still obtained by choosing k
proportionally to the number n of layers.



5. Approximation of Functions in Bl
β(Ω) for l = 1, 2

This section is devoted to the proof of Theorem 4.4. Section 5.1 collects some
auxiliary facts about Bl

β-spaces. In Section 5.2 we show that B1
β-functions can be

approximated continuously at exponential rates of convergence on the basic geomet-
ric meshes. Finally, the proof of Theorem 4.4 is given in Section 5.3.

5.1. Auxiliary Results

In this subsection the spaces Hm,l
β (Ω) are equipped with the weight Φβ(x) = rβ for

some β ∈ [0, 1) with (r, θ) denoting polar coordinates at the origin. We assume the
elements {K} to be affine and shape regular.
We remark that H2,2

β (K) ↪→ C(K) such that point evaluation is allowed for H2,2
β -

functions [3]. For the linear/bilinear interpolant there holds:

Proposition 5.1 Let K be an element with vertex A = 0. Let f ∈ H2,2
β (K) for

some β ∈ [0, 1). Then the linear/bilinear interpolant IKf of f at the vertices of K
satisfies ‖f − IKf‖2H2,2

β (K)
≤ C|f |2

H2,2
β (K)

and

‖f − IKf‖2L2(K) ≤ Ch
2(2−β)
K |f |2

H2,2
β (K)

, ‖f − IKf‖2H1(K) ≤ Ch
2(1−β)
K |f |2

H2,2
β (K)

.

Proof : The proof can be found in [16, 24]. !

Subsequently, we construct an interpolant in H1,1
β (K) satisfying completely anal-

ogous estimates. To this end, we follow the lines of [16, 24], i.e. we establish a
compactness property and then apply a Bramble-Hilbert type argument. We pro-
ceed in three propositions:

Proposition 5.2 Let K̂ be the reference element and let f ∈ H1,1
β (K̂) for some

β ∈ [0, 1). Then we have rβf ∈ H1(K̂) and ‖rβf‖H1(K̂) ≤ C‖f‖H1,1
β (K̂).

Proof : If β = 0, this is trivial. Thus, let β > 0 and assume first K̂ = T̂ .
We set g := rβf . Then ‖g‖L2(T̂ ) ≤ C‖f‖H1,1

β (T̂ ) and it remains to bound D1g. Since

|D1g|2 = (βrβ−1f + rβfr)
2 +

1

r2
(rβfθ)

2 ≤ C{r2(β−1)f 2 + r2β|D1f |2},

it is sufficient to show that ‖rβ−1f‖2
L2(T̂ )

≤ C‖f‖2
H1,1

β (T̂ )
. From the inequality of

Hardy (see [3, Lemma 4.3]) follows the existence of a constant m such that

∫

T̂

r2(β−1)|f −m|2dx ≤ C

∫

T̂

r2β|D1f |2dx, (5.1)

|m|2 ≤ C(‖f‖2
L2(T̂ )

+

∫

T̂

r2β |D1f |2dx). (5.2)



Let S = {(r, θ) : 0 < r < R, 0 < θ < θ0} be a sector containing the triangle T̂ . We
get with (5.1), (5.2)

∫

T̂

r2(β−1)f 2dx ≤ C

∫

T̂

r2(β−1)|f −m|2dx+ C

∫

T̂

r2(β−1)|m|2dx

≤ C

∫

T̂

r2β|D1f |2dx+ C|m|2
∫

S

r2(β−1)dx.

The last integral
∫
S r

2(β−1)dx is bounded for β > 0, which proves the assertion for
the reference triangle.
To obtain the same result for Q̂, we split Q̂ into T̂ and a remainder T1. The assertion
follows now directly from the triangle proof and the fact that dist(0, T1) > 0. !

Proposition 5.3 Let K̂ be the reference element. Then H1,1
β (K̂) is compactly

imbedded into L2(K̂) for every β ∈ [0, 1).

Proof : Note that for β = 0 this is Rellich’s theorem. Let {fj} be a bounded
sequence in H1,1

β (K̂). Define gj := rβfj. By Proposition 5.2, {gj} is bounded in

H1(K̂). Choose s > 1 such that 2βs < 2 (this is possible, since β ∈ [0, 1)) and let
1 ≤ s′ < ∞ be such that 1

s +
1
s′ = 1. By the theorem of Rellich, H1(K̂) is compactly

imbedded into Lr(K̂) for r ∈ [1,∞). So there exists a subsequence (again denoted
by {gj}) which converges to a function g in L2s′(K̂). Define f := r−βg. With the
inequality of Hölder we get

∫

K̂

f 2dx =

∫

K̂

r−2βg2dx ≤ (

∫

K̂

r−2βsdx)
1
s (

∫

K̂

g2s
′

dx)
1

s′ < ∞,

since by construction
∫
K̂ r−2βsdx < ∞. Hence, f ∈ L2(K̂). Analogously, we con-

clude that fj → f in L2(K̂), which finishes the proof. !

Proposition 5.4 Let K be an element with vertex A = 0. Let f ∈ H1,1
β (K) for

some β ∈ [0, 1) and f = 1
|K|

∫
K fdx. Then there holds

‖f − f‖2L2(K) ≤ Ch
2(1−β)
K |f |2

H1,1
β (K)

, ‖f − f‖2
H1,1

β (K)
≤ C|f |2

H1,1
β (K)

.

Proof : Remark that for β = 0 this is Poincaré’s inequality. First, let K be the
reference element. We claim that there exists a constant C > 0 such that

‖f‖H1,1
β (K) ≤ C|f |H1,1

β (K) + C|f |, f ∈ H1,1
β (K). (5.3)

We prove (5.3) by contradiction: If (5.3) is not valid, there exists a sequence {fj}
in H1,1

β (K) such that ‖fj‖H1,1
β (K) = 1 and

|fj|H1,1
β (K) + |fj| → 0 for j → ∞. (5.4)

By Proposition 5.3, H1,1
β (K) is compactly imbedded into L2(K). We can choose a

subsequence (again denoted by {fj}) which is a Cauchy sequence in L2(K). With



(5.4) follows that {fj} is also a Cauchy sequence in H1,1
β (K). H1,1

β (K) is complete

and there exists f ∈ H1,1
β (K) with fj → f in H1,1

β (K). Taking into account (5.4) we
get

|f |H1,1
β (K) ≤ |f − fj|H1,1

β (K) + |fj|H1,1
β (K) → 0, j → ∞,

that is |f |2
H1,1

β (K)
=

∫
K r2β|D1f |2dx = 0. Therefore, |D1f | = 0 and f is constant

on K. Since |fj| → 0 (j → ∞), it follows that f = 0 and f = 0. But this is a
contradiction to 1 = limj→∞ ‖fj‖H1,1

β (K) = ‖f‖H1,1
β (K). We conclude that (5.3) must

be valid.
Applying (5.3) to f − f yields the assertion on the reference element. A scaling
argument finishes the proof. !

Remark 5.5 Proposition 5.4 is a weighted Poincaré inequality. The same result
has been obtained in [20] for values of β in the range β ∈ (12 , 1).

Remark 5.6 Let T be a shape regular and affine mesh and KA = ∪{K ∈ T :
K ∩ A += ∅} be the union of elements abutting on the vertex A = 0. Setting f =

1
|KA|

∫
KA

fdx we get with the same techniques

‖f − f‖L2(KA) ≤ Cdiam(KA)
2(1−β)‖f‖2

H1,1
β (KA)

, ‖f − f‖H1,1
β (KA) ≤ C‖f‖2

H1,1
β (KA)

.

We need the following versions of weighted trace theorems:

Lemma 5.7 Let K be an element with vertex A = 0 and β ∈ [0, 1). Let γ be a side
of K such that 0 +∈ γ. We have:

(i) If f ∈ H1,1
β (K) and f = 1

|K|

∫
K fdx = 0, then ‖f‖2L2(γ) ≤ Ch1−2β

K |f |2
H1,1

β (K)
.

(ii) If f ∈ H2,2
β (K) and f = 0 at the vertices of K, then

‖f‖2L2(γ) ≤ Ch3−2β
K |f |2

H2,2
β (K)

, ‖f‖2H1(γ) ≤ Ch1−2β
K |f |2

H2,2
β (K)

.

If β = 0, γ can be an arbitrary side of K.

Proof : The proof of (ii) can be found in [24]. (i) follows analogously, using Propo-
sition 5.4. !

The next results are concerned with the extension of given polynomial trace functions
into a domain:

Lemma 5.8 The following extensions are possible:

(i) Let K be a triangle or a quadrilateral and let γ be a side of K. Let v
be a polynomial in Pk(γ) which vanishes at the endpoints of γ. Then there
exists V ∈ Sk(K) such that V ≡ v on γ, V ≡ 0 on the other sides of K,
‖V ‖2L2(K) ≤ ChK‖v‖2L2(γ) and ‖V ‖2H1(K) ≤ ChK |v|2H1(γ).



(ii) Let K be a quadrilateral element and let γ be a side of K. Let v be a
polynomial in Pk(γ). Then there exists V ∈ Qk(K) such that V ≡ v on γ,
V ≡ 0 on the side opposite to γ and ‖V ‖2L2(K) ≤ ChK‖v‖2L2(γ). Further, if γ1
is a side adjacent to γ, then ‖V ‖L∞(γ1) ≤ ‖V ‖L∞(γ).

(iii) Let K be a quadrilateral element, γ1 = [A,B] and γ2 = [B,C] two adjacent
sides of K with common endpoint B. Let v1 and v2 be polynomials in Pk(γ1)
and Pk(γ2), respectively. Let v1(A) = v2(C) = 0 and v1(B) = v2(B). Then
there exists a polynomial V in Qk(K) such that V ≡ v1 on γ1, V ≡ v2 on γ2,
V ≡ 0 on the other sides of K and ‖V ‖2L2(K) ≤ ChKk

2(‖v1‖2L2(γ1)
+‖v2‖2L2(γ2)

).

Proof : (i) and (ii) are easy modifications of Lemma 4.55 in [24].
We verify (iii) on the reference square: Let γ1 = {(0, y) : 0 < y < 1} and γ2 =
{(x, 0) : 0 < x < 1}. Define V (x, y) = v1(y)(1− x) + [v2(x)− v2(0)(1 − x)](1 − y).
Surely, V (0, y) = v1(y) and V (x, 0) = v2(x). Further,

∫ 1

0

∫ 1

0

V (x, y)2dxdy ≤ C

∫ 1

0

v21(y)dy + C

∫ 1

0

v22(x)dx+ Cv22(0).

The last term can be bounded using the one-dimensional inverse inequality, i.e.
‖v2‖2L∞(γ2)

≤ Ck2‖v2‖2L2(γ2)
, which yields the desired result. !

5.2. Approximation on the Basic Geometric Meshes

In this subsection we address the continuous approximation of a function f in Bl
β(Q̂),

l = 1, 2, with weight Φβ(x) = |x|β for some β ∈ (0, 1) on a basic geometric mesh

∆n,σ with underlying irregular mesh ∆̃n,σ. Note that if K ∈ ∆n,σ or K ∈ ∆̃n,σ

belongs to layer j, we have

hK =
√
2σn, j = 1,

C1σ
n+2−j ≤ hK ≤ C2σ

n+2−j , 2 ≤ j ≤ n + 1.
(5.5)

The distance to the origin is bounded by

dist(0, K) ≤ Cσn+2−j , 2 ≤ j ≤ n+ 1. (5.6)

Let the polynomial degree vector k on ∆n,σ and ∆̃n,σ be layerwise constant, i.e.
k = {kKij

= kKl
ij
=: kj}n+1

j=1 for some kj ≥ 2.

Lemma 5.9 Let l = 1, 2, f ∈ Bl
β(Q̂) for β ∈ (0, 1) and {kj} be a layerwise constant

polynomial degree distribution. On the elements {Kij} of ∆̃n,σ away from the origin
there is a polynomial ϕKij

of degree kj in each variable such that f = ϕKij
at the

vertices of Kij and

|f−ϕKij
|2Hm(Kij) ≤ Cσ2(n+2−j)(l−m−β) Γ(kj − sj + 1)

Γ(kj + sj + 3− 2m)
(
ρ

2
)2sj‖f‖2

H
sj+3,l

β (Kij)
(5.7)

for any 1 ≤ i ≤ 3, 2 ≤ j ≤ n + 1, 0 ≤ m ≤ 2 and sj ∈ [1, kj]. Above, ρ =
max(1, 1−σ

σ ).



Proof : For l = 2 this is proved in [16, 24]. The proof for l = 1 is analogous. !

Define the auxiliary space Qk,1(∆n,σ) := {f ∈ H1(Ω) : f |K ∈ QkK (K), K ∈ ∆n,σ}.

Theorem 5.10 Let l = 1, 2 and f ∈ Bl
β(Q̂) with weight Φβ(x) = |x|β for β ∈ (0, 1).

Then for every layerwise constant polynomial degree distribution {kj ≥ 2}n+1
j=1 on

∆n,σ with kj+1 ≥ kj there exists an interpolant Ψl ∈ Qk,1(∆n,σ) such that

‖f −Ψl‖2
Hl−1(Q̂)

+
∑

K∈(∆n,σ)1

h2
K

k4
K

|f −Ψl|2Hl(K) ≤ Ck4
2 (5.8)

·(σ2n(1−β)‖f‖2
Hl,l

β (K11)
+

n+1∑

j=2

σ2(n+2−j)(1−β)Γ(kj − sj + 1)

Γ(kj + sj − 1)
(
ρ

2
)2sj‖f‖2

H
sj+3,l

β (Kij)
)

where ρ = max(1, 1−σ
σ ), γ ≥ 0 and sj ∈ [1, kj]. On the first element K11 the approx-

imant Ψ2|K11
is given by the bilinear interpolant in Proposition 5.1 and Ψ1|K11

=
1

|K11|

∫
K11

fdx. Additionally, if f ∈ B2
β(Q̂)∩H1

0 (Q̂), the interpolant Ψ2 can be chosen

to satisfy the zero boundary conditions. (In (5.8) we use the notation in (3.14) with
respect to the vertex A = 0.)

The estimate (5.8) for l = 1 is the main novelty in the result of Theorem 5.10. For
l = 2 estimates of this type can be found e.g. in [15, 16, 24]. We present the proof
for l = 1 in full details and sketch the case l = 2 for the convenience of the reader.

Proof : We investigate the cases l = 1 and l = 2 separately.

1. Approximation of the pressure: We establish (5.8) for a pressure p in B1
β(Ω):

A first approximation of p is given by Lemma 5.9 on the irregular mesh ∆̃n,σ: On
the elements {Kij} away from the origin there exist polynomials ϕKij

of degree kj
on Kij such that p = ϕKij

at the vertices of Kij and such that (5.7) holds with l = 1.
Observing (5.5) yields then

‖p− ϕKij
‖2L2(Kij)

+ h2
Kij

|p− ϕKij
|2H1(Kij)

+ h4
Kij

|p− ϕKij
|2H2(Kij)

≤ Cσ2(n+2−j)(1−β)Γ(kj − sj + 1)

Γ(kj + sj − 1)
(
ρ

2
)2sj‖p‖Hsj+3,1(Kij)

. (5.9)

In the smallest element K11 at the origin we choose ϕK11
:= 1

|K11|

∫
K11

pdx. From
Proposition 5.4 we get

‖p− ϕK11
‖2L2(K11) ≤ Ch

2(1−β)
K11

‖p‖2
H1,1

β (K11)
= Cσ2n(1−β)‖p‖2

H1,1
β (K11)

. (5.10)

The regular geometric mesh ∆n,σ is obtained from ∆̃n,σ by splitting the elements

Kij ∈ ∆̃n,σ for i = 2, 3 and 3 ≤ j ≤ n + 1 into three triangular elements K1
ij , K

2
ij

and K3
ij . We write ϕKl

ij
= ϕKij

|Kl
ij
and remark that ϕKl

ij
∈ Qkj (K l

ij). (In general,

ϕKl
ij
+∈ Pkj (K l

ij).) Note also that C1hKij
≤ hKl

ij
≤ C2hKij

.

Obviously, the elementwise approximation {ϕK : K ∈ ∆n,σ} is discontinuous over
interelement boundaries and, generally, ϕK(Q) += p(Q) at an irregular node Q of K
considered as an element in ∆̃n,σ. We remove the interelement discontinuities and
construct in the following a continuous approximation {ΨK : K ∈ ∆n,σ}:



Assertion 5.11 There exists Ψ = {ΨK}K∈∆n,σ ∈ Qk,1(∆n,σ) with

∑

K∈∆n,σ

‖p−ΨK‖2L2(K) +
∑

K∈(∆n,σ)1

h2
K

k4
K

|p−ΨK |2H1(K) (5.11)

≤ Ck4
2(h

2(1−β)
K11

‖p‖2
H1,1

β (K11)
+

2∑

i=0

∑

K∈(∆̃n,σ)1

h2i
K |p− ϕK |2Hi(K)).

The estimate (5.8) is then a direct consequence of Assertion 5.11, (5.9)-(5.10).

It remains to prove (5.11): We set ΨK11
= ϕK11

and construct in a first step the
approximant Ψ on the first two layers of ∆n,σ near the origin using the notations in
Figure 1:

A

C
γ1

γ2 γ6

γ7γ3

γ5 γ8

γ4

B

D

K32 K22

K11 K12

0 500

Figure 1: The first two layers of ∆n,σ near the origin.

Remember that ϕK32
(B) = ϕK22

(B) = ϕK12
(B) = p(B). Define:

w12 := (ϕK12
− ϕK11

)|γ2 polynomial of degree ≤ k2 on γ2,

w32 := (ϕK32
− ϕK11

)|γ1 polynomial of degree ≤ k2 on γ2.

By Lemma 5.8(ii) there exist polynomials W12 and W32 of degree k2 in each variable
such that

‖W12‖2L2(K12) ≤ ChK12
‖w12‖2L2(γ2), ‖W32‖2L2(K32) ≤ ChK32

‖w32‖2L2(γ1),

W12|γ2 = w12, W32|γ1 = w32, W12 ≡ 0 on γ6 and W32 ≡ 0 on γ5. By definition, there
holds

‖W12‖2L2(K12) ≤ ChK12
‖w12‖2L2(γ2) ≤ ChK12

‖ϕK12
− ϕK11

‖2L2(γ2)

≤ ChK12
‖p− ϕK12

‖2L2(γ2) + ChK12
‖p− ϕK11

‖2L2(γ2).



By Lemma 5.7(ii) with β = 0 we get

‖p− ϕK12
‖2L2(γ2) ≤ Ch3

K12
|p− ϕK12

|2H2(K12).

Moreover, Lemma 5.7(i) gives

‖p− ϕK11
‖2L2(γ2) ≤ h1−2β

K11
‖p− ϕK11

‖2
H1,1

β (K11)
≤ h1−2β

K11
‖p‖H1,1

β (K11)
.

Combining the above estimates and observing (5.5) result in

‖W12‖2L2(K12) ≤ Ch4
K12

|p− ϕK12
|2H2(K12) + h2−2β

K11
‖p‖2

H1,1
β (K11)

. (5.12)

The analogous estimate holds for W32. Define now on the elements K12 and K32:

ΨK12
:= ϕK12

−W12, ΨK32
:= ϕK32

−W32.

There holds ΨK12
|γ2 = ϕK11

|γ2 and ΨK32
|γ1 = ϕK11

|γ1 . Hence, ΨK11
, ΨK12

and ΨK32

are continuous across γ1 and γ2 and ϕK11
(B) = ΨK32

(B) = ΨK12
(B). The triangle

inequality yields

‖p−ΨK12
‖2L2(K12) ≤ C‖p− ϕK12

‖2L2(K12) + C‖W12‖2L2(K12).

Further, with inverse inequalities:

h2
K12

k4
K12

|p−ΨK12
|2H1(K12) ≤ Ch2

K12
|p− ϕK12

|2H1(K12) + C‖W12‖2L2(K12).

From (5.12) we get thus

‖p−ΨK12
‖2L2(K12) +

h2
K12

k4
K12

|p−ΨK12
|2H1(K12) (5.13)

≤ Ch
2(1−β)
K11

‖p‖2
H1,1

β (K11)
+ C

2∑

i=0

h2i
K12

|p− ϕK12
|2Hi(K12)

.

The analogous estimate holds true for Ψ32.
Next, we construct ΨK22

: Define

v3 := (ΨK32
− ϕK22

)|γ3 polynomial of degree ≤ k2 on γ3,

v4 := (ΨK12
− ϕK22

)|γ4 polynomial of degree ≤ k2 on γ4.

We have by construction and the properties of {ϕKij
}, W32 and W12

v3(A) = 0, v4(C) = 0, v3(B) = v4(B) = ϕK11
(B)− ϕK22

(B).

Lemma 5.8(iii) can be applied and yields the existence of a polynomial W22 ∈
Qk2(K22) with W22|γ3 = v3, W22|γ4 = v4, W22 ≡ 0 on γ7, γ8 and

‖W22‖2L2(K22) ≤ Ck2
2hK22

‖v3‖2L2(γ3) + Ck2
2hK22

‖v4‖2L2(γ4). (5.14)



Define on K22: ΨK22
:= ϕK22

+ W22. We have ΨK22
|γ3 = ΨK32

|γ3 and ΨK22
|γ4 =

ΨK12
|γ4, such that by construction ΨK11

, ΨK12
, ΨK22

and ΨK32
are a continuous

approximation of p in the first two layers.
To estimate ‖p−ΨK22

‖L2(K22) we bound ‖W32‖2L2(γ3)
using Lemma 5.8(ii) and inverse

inequalities:

‖W32‖2L2(γ3) ≤ hK22
‖W32‖2L∞(γ3) ≤ hK22

‖W32‖2L∞(γ1)

≤ ChK22

k2
2

hK22

‖W32‖2L2(γ1) = Ck2
2‖W32‖2L2(γ1) = Ck2

2‖w32‖2L2(γ1)

≤ Ck2
2‖ϕK32

− ϕK11
‖2L2(γ1)

≤ Ck2
2‖ϕK32

− p‖2L2(γ1) + Ck2
2‖p− ϕK11

‖2L2(γ1).

With Lemma 5.7(ii) (β = 0) and Lemma 5.7(i) we get

‖W32‖2L2(γ3) ≤ Ck2
2h

3
K32

|p− ϕK32
|2H2(K32) + Ck2

2h
1−2β
K11

‖p‖2
H1,1

β (K11)
. (5.15)

Using again Lemma 5.7(ii) with β = 0 and (5.15) gives

‖v3‖2L2(γ3) = ‖ΨK32
− ϕK22

‖2L2(γ3) = ‖ϕK32
−W32 − ϕK22

‖2L2(γ3)

≤ C‖p− ϕK32
‖2L2(γ3) + C‖p− ϕK22

‖2L2(γ3) + ‖W32‖2L2(γ3)

≤ Ch3
K32

|p− ϕK32
|2H2(K32) + Ch3

K22
|p− ϕK22

|2H2(K22)

+Ck2
2h

3
K32

|p− ϕK32
|2H2(K32) + Ck2

2h
1−2β
K11

‖p− ϕK11
‖2
H1,1

β (K11)
.

We see with (5.5) that

k2
2hK22

‖v3‖2L2(γ3) (5.16)

≤ Ck4
2{h4

K32
|p− ϕK32

|2H2(K32) + h4
K22

|p− ϕK22
|2H2(K22) + h2−2β

K11
‖p‖2

H1,1
β (K11)

}.

The analogous estimate holds true for k2
2hK22

‖v4‖2L2(γ4)
. The desired bound for ΨK22

follows now by the triangle inequality, inverse estimates, (5.14) and (5.16):

‖p−ΨK22
‖2L2(K22) +

h2
K22

k4
K22

|p−ΨK22
|2H1(K22)

≤ C‖p− ϕK22
‖2L2(K22) + Ch2

K22
|p− ϕK22

|2H1(K22) + C‖W22‖2L2(K22)

≤ Ck4
2

{
‖p− ϕK22

‖2L2(K22) + h2
K22

|p− ϕK22
|2H1(K22)

+
3∑

i=1

h4
Ki,2

|p− ϕKi,2
|2H2(Ki,2)

+ h2−2β
K11

‖p− ϕK11
‖2
H1,1

β (K11)

}
. (5.17)

Note that

ΨK32
= ϕK32

on γ5, ΨK22
= ϕK22

on γ7, γ8, ΨK12
= ϕK12

on γ6.

The construction of the continuous approximation Ψ in the elements away from the
origin is analogous to [16]. We present the details for the sake of completeness:



Consider 3 ≤ j ≤ n+ 1 and i = 2, 3. Let vlij be linear on K l
ij (l = 1, 2, 3) such that

vlij(Q) = p(Q)− ϕKij
(Q) = p(Q)− ϕKl

ij
(Q) at the irregular node Q (in ∆̃n,σ),

vlij(P ) = 0 at the other nodes P of K l
ij.

Define ϕ̃Kl
ij
:= ϕKl

ij
+ vlij . ϕ̃Kl

ij
is equal to p at all the vertices of K l

ij . Proposition
5.1 with β = 0 yields

‖p− ϕ̃Kl
ij
‖2L2(Kl

ij)
≤ Ch4

Kij
|p− ϕKl

ij
|2H2(Kl

ij)
, (5.18)

‖p− ϕ̃Kl
ij
‖2H1(Kl

ij)
≤ Ch2

Kij
|p− ϕKl

ij
|2H2(Kl

ij)
, (5.19)

‖p− ϕ̃Kl
ij
‖2H2(Kl

ij)
≤ C|p− ϕKl

ij
|2H2(Kl

ij)
. (5.20)

We have

ϕKij
= p at the vertices of Kij, i = 1, 3 ≤ j ≤ n+ 1,

ϕ̃Kl
ij

= p at the vertices of K l
ij, i = 1, 2, 3 ≤ j ≤ n + 1, l = 1, 2, 3.

The jumps over a common edge of two neighbouring elements can be corrected
without affecting the polynomials {ϕKij

} or {ϕ̃Kl
ij
} on the remaining sides. By

symmetry, we have to consider the 5 correction cases shown in Figure 2 . We
present the details only for the cases 2 and 3, the remaining ones are completely
analogous.

Case 2 (j > 2) Case 3 (j > 2)

Case 4 (j > 2)

Case 5 (j > 2)

Case 1 (j > 3)

K1
2,j−1

K1,j−1

K1,jK1
2,j

K1
2,j

K3
2,j K3

2,j

K2
2,j

K2
2,j

K2
2,j

500

Figure 2: The 5 basic correction cases.

Case 2: ϕK1,j−1
and ϕ̃K2

2j
coincide with p at the vertices of K1,j−1 and K2

2j , respec-
tively. Define

w := (ϕK1,j−1
− ϕ̃K2

2j
)|γ

where γ = K1,j−1 ∩K2
2j . w is a polynomial of degree ≤ kj on γ. By Lemma 5.8(i)

there is a polynomial W in Pkj (K2
2j) ⊆ Qkj(K2

2j) such that W ≡ w on γ, W ≡ 0



on the other sides of K2
2j and ‖W‖2L2(K2

2j)
≤ ChK2j

‖w‖2L2(γ). We get using Lemma

5.7(ii) with β = 0 and (5.20)

‖W‖2L2(K2
2j)

≤ ChK2j
‖ϕK1,j−1

− ϕ̃K2
2j
‖2L2(γ)

≤ ChK2j
‖p− ϕK1,j−1

‖2L2(γ) + ChK2j
‖ϕ̃K2

2j
− p‖2L2(γ)

≤ ChK2j
h3
K1,j−1

|ϕK1,j−1
− p|2H2(K1,j−1)

+ ChK2j
h3
K2j

|ϕ̃K2
2j
− p|2H2(K2

2j)
.

We conclude with (5.5)

‖W‖2L2(K2
2j)

≤ Ch4
K1,j−1

|ϕK1,j−1
− p|2H2(K1,j−1) + Ch4

K2j
|ϕK2j

− p|2H2(K2j). (5.21)

Define
ΨK2

2j
:= ϕ̃K2

2j
+W in K2

2j , ΨK1,j−1
:= ϕK1,j−1

in K1,j−1.

Clearly, ΨK2
2j

= ΨK1,j−1
on γ and we get from (5.18)-(5.20) and (5.21) with the

triangle inequality and inverse inequalities

‖p−ΨK2
2j
‖L2(K2

2j)
+

h2
K2

2j

k4
K2

2j

|p−ΨK2j
|2H1(K2

2j)

≤ C‖p− ϕ̃K2
2j
‖2L2(K2

2j)
+ h2

K2
2j
|p− ϕ̃K2

2j
|H1(K2

2j)
+ C‖W‖2L2(K2

2j)

≤ Ch4
K2j

|p− ϕK2
2j
|2H2(K2

2j)
+ Ch4

1,j−1|ϕK1,j−1
− p|2H2(K1,j−1)

+Ch4
K2j

|ϕK2j
− p|2H2(K2j)

. (5.22)

Case 3: Here, ϕ̃K1
2j

= ϕ̃3
K2j

= p at the endpoints of γ = K1
2j ∩ K3

2j . Define

w := (ϕ̃K1
2j
− ϕ̃K3

2j
)|γ. Since w = v12j − v23j is linear, w ≡ 0 on γ and the piecewise

polynomial {ϕ̃Kl
2j
}l=1,3 is continuous across γ. With ΨK1

2j
= ϕ̃K1

2j
and ΨK3

2j
= ϕ̃K3

2j

there holds (cf. (5.18))

‖p−ΨK1
2j
‖2L2(K2

2j)
+ ‖p−ΨK3

2j
‖2L2(K3

2j)

+
h2
K1

2j

k4
K1

2j

|p−ΨK1
2j
|2H1(K1

2j)
+

h2
K3

2j

k4
K3

2j

|p−ΨK3
2j
|2H1(K3

2j)

≤ Ch4
Kij

|p− ϕK2j
|2H2(K2j). (5.23)

Referring to (5.13), (5.17), (5.22) and (5.23) proves (5.11).

2. Approximation of the velocity: We establish (5.8) for a function u ∈ B2
β(Q̂):

In [16], Guo and Babuška constructed an interpolant Ψ ∈ Qk,1(∆n,σ) that satisfies

‖u−Ψ‖2
H1(Q̂)

≤ r.h.s. of (5.8). (5.24)

We refer also to [24]. The proof of (5.24) is again based on Lemma 5.9, which
provides a discontinuous interpolant on the irregular mesh ∆̃n,σ. Considering the
correction cases in Figure 2 a C0-conforming approximation Ψ is constructed on



∆n,σ. On the first element K11 near the vertex Ψ is the bilinear interpolant in
Proposition 5.1. Moreover, if u ∈ H1

0 (Q̂), Ψ can be constructed in such a way that

the zero boundary conditions are satisfied. The additional terms
∑

K∈(∆n,σ)1

h2
K

k4K
|u−

Ψ|2H2(K) in the left hand side of (5.8) can be controlled with the same techniques
used in the approximation of the pressure.

This finishes the proof of Theorem 5.10. !

An immediate consequence of Theorem 5.10 is (see [15, 16, 24]):

Corollary 5.12 Let l = 1, 2 and f ∈ Bl
β(Q̂) for some β ∈ (0, 1). Then there exists

a µ0 > 0 such that for linearly increasing polynomial degree vectors k with slope
µ ≥ µ0 there is an interpolant Ψl ∈ Sk,1(∆n,σ) that satisfies

‖f −Ψl‖2
Hl−1(Q̂)

+
∑

K∈(∆n,σ)1

h2
K

k4
K

|f −Ψl|2Hl(K) ≤ C exp(−bN1/3)

with C and b independent of N = dim(Sk,1(∆n,σ)). On the first element K11 near
the origin Ψ2|K11

is given by the bilinear interpolant in Proposition 5.1 and we have
Ψ1|K11

= 1
|K11|

∫
K11

fdx. Additionally, if f ∈ B2
β(Q̂)∩H1

0 (Q̂), the interpolant Ψ2 can
be chosen to satisfy the zero boundary conditions.

5.3. Approximation on Polygons: Proof of Theorem 4.4

Proof of Theorem 4.4: Tn,σ is obtained by mapping affinely up to three geometric
mesh patches ∆n,σ to a neighborhood of each corner (cf. Figure 2). Locally, we can
construct Ψ in each of these parallelogram patches according to Corollary 5.12 (a
generalization of Theorem 5.10 or Corollary 5.12 to parallelograms can be established
straightforwardly, cf. [15, 16, 24]). Near a reentrant corner A the approximation Ψ is
constructed over three geometric patches with the techniques presented in the proof
of Theorem 5.10 (the analog of Corollary 5.12 holds true in that case). Here, the
continuous pressure approximation is in the first elements KA = ∪{K : K ∩A += ∅}
near A chosen as Ψ = 1

|KA|

∫
KA

f dx, f ∈ B1
β(Ω) (see also Remark 5.6). In the interior

Ωint of the domain the polynomial approximation order is set to k = 2µ(n+ 1)3 on
a fixed quasi-uniform partition Tq. Bl

β-functions behave analytically away from the
vertices and it follows thus from standard approximation theory that

inf
Ψ∈Sk,1(Tq)

(‖f −Ψ‖2Hl−1(Ωint)
+

∑

K∈Tq

h2
K

k4
K

|f −Ψ|2Hl(K)) ≤ C exp(−bk).

Joining continuously together the local and the interior approximations as in the
proof of Theorem 5.10 gives the desired approximant Ψ.
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