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Abstract

A new class of p version FEM for elliptic problems with microstructure is
developed. Based on arguments from the theory of n-widths, the existence of
subspaces with favourable approximation properties for solution sets of PDEs
is deduced. The construction of such subspaces is addressed for problems
with (patch-wise) periodic microstructure. Families of adapted spectral shape
functions are exhibited which give exponential convergence for smooth data,
independently of the coefficient regularity. Some theoretical results on the
spectral approach in homogenization are presented. Numerical results show
robust exponential convergence in all cases.



1 Microstructure and n-widths

Numerous problems in engineering and the sciences involve media with small-scale features, such as
arrays of rivets, stiffeners, fibers or porous media etc. Typically, the solutions of such problems vary on
multiple scales, e.g. on a large scale which is the size of the domain Ω and on a small scale ε such as the
distance of the spatial inhomogeneities, see Fig. 1. In many cases scale resolution, i.e. the resolution of
the smallest solution scale with numerical methods, is not feasible due to computational expense. This
is particularly so when higher order elements are used.
If the microstructure is periodic the theory of homogenization gives a macroscopic description of the
limit when the small length scale ε tends to zero. The resulting homogenized solution can be easily
computed but does not exhibit the microscale anymore, [5], [6]. This microscale can be recovered
by so-called correctors in homogenization which are in many cases not useful for numerical purposes.
To compute higher order terms in asymptotic homogenization expansions with respect to ε is not an
alternative either because inclusion of these terms need not improve the accuracy at fixed, positive ε
and these terms may not even exist for rough data.

We propose therefore here a different approach designed to overcome the above mentioned pitfalls.
The main idea is to replace the polynomials by function spaces that are, in a sense, adapted to the
coefficients of the elliptic operator. The basic understanding for our approach can be derived from the
theory of n-widths, initiated by Kolmogoroff.

For a linear space X with norm ‖◦‖X and for a subset S ⊂ X the Kolmogoroff n-width is given by

dn(S,X) = inf
Vn

sup
f∈S

inf
g∈Vn

‖f − g‖X , (1.1)

the first infimum being taken over all subspaces Vn ⊂ X of dimension n.
Let Ω ⊂ Rd be a bounded, open set and consider the Dirichlet problem

Lu := −∇ · (A(x)∇u) + a0(x)u = f on Ω, u|∂Ω = 0, (1.2)

where the conductivity matrix A(x) ∈ L∞(Ω)d×d is symmetric positive definite and a0(x) ∈ L∞(Ω) is
uniformly positive at a.e. x ∈ Ω. The variational formulation of (1.2) is: find u ∈ H1

0 (Ω) such that

B(u, v) = F (v) ∀v ∈ H1
0 (Ω) (1.3)

and its Finite Element discretization reads: find un ∈ Vn such that

B(un, v) = F (v) ∀v ∈ Vn. (1.4)

Here Vn ⊂ H1
0 (Ω) is an n-dimensional subspace. The FE-solution un is optimal in the energy norm of

the problem:
‖u− un‖E ≤ inf

v∈Vn

‖u− v‖E . (1.5)

Therefore, efficient FEM are based on the proper design of Vn with respect to the anticipated solution
class S of the problem. The Kolmogoroff n-width dn gives us the best possible rate of convergence in
the energy norm ‖◦‖X = ‖◦‖E achievable with any subspace sequence {Vn}n with dimVn = n. There
holds the following theorem.

Theorem 1.1 Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω and assume that Ω ⊂ G ⊂
Cd with strict inclusions for some open neighborhood G of Ω in Cd. Assume that f ∈ UG, where

UG :=
{

f ∈ L∞(G)| ‖f‖L∞(G) ≤ 1, f holom. in G
}

. (1.6)
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\tex{$\varepsilon$}

Figure 1: Domains with periodic, resp. locally periodic structure.

Assume that A(x) ∈ L∞(Ω)d×d and a0(x) ∈ L∞(Ω) in (1.2) are positive. Then the solution operator
T : H−1(Ω) → H1

0 (Ω) to (1.2) is bijective and we define the set S in (1.1) to be

S = T (UG).

Then there holds
C1 exp(−r1n

1/d) ≤ dn(T (UG), E) ≤ C2 exp(−r2n
1/d), (1.7)

where Ci and ri > 0 depend only on Ω and G and on the ellipticity constants of the bilinear form B(·, ·).

For a proof of this theorem, we refer to [9]. From the proof it is clear that results of the type of
Theorem 1.1 hold for practically all well-posed elliptic boundary value problems. We see in particular
that exponential convergence is achievable even if the coefficients A(x), a0(x) and the boundary ∂Ω are
very irregular. The global regularity of the solution in standard Sobolev spaces is very low in these
cases and standard FEM based on piecewise polynomials will only give poor convergence rates.
The impact of Theorem 1.1 on numerical computation depends, of course, on whether sequences {Vn}n
of subspaces, for which the bounds (1.7) are attained, can be obtained cheaply. Such subspaces are
necessarily problem adapted. Some choices for elliptic problems in two dimensions with stratified quasi
one-dimensional coefficients have been proposed in [2]. Here, we present a methodology for determining
such subspaces for elliptic problems in divergence form with periodic, oscillating coefficients. Such

2



homogenization problems have been well investigated by asymptotic analysis (see, e.g. [5, 6] and the
references there). It turns out, however, that the information on the solution obtained by asymptotic
analysis is insufficient to construct {Vn}n satisfying (1.7) [7]. For the construction of such {Vn}n, we
therefore present first a more general, non-asymptotic approach to homogenization due to [3].

2 Homogenization

2.1 The homogenization problem

We consider now a particular case of (1.2), namely that the coefficients A(x) and a0(x) have the special
form A(x/ε), a0(x/ε), where A(y), a0(y) are 2π- periodic in each variable, i.e.

A(y) = A(y + 2πZd), a0(y) = a0(y + 2πZd),

and ε > 0 is small, i.e. we are in the setting of (classical) homogenization. If A is piecewise constant,
(1.2) models, for example, the matrix and the fibers of a composite or a bi-material mixture. The right
hand side f is assumed to be analytic in Ω (this is essential for exponential convergence, but spectral
convergence results can be proved if the regularity of f is finite [7], [8]). We denote the solution of (1.2)
by uε(x) in order to underline the dependence on ε.

We consider (1.2) on the unbounded domain Ω = Rd and assume that

η*A(x)η ≥ γ|η|2, a0(x) ≥ γ > 0, ∀ η ∈ R
d at a.e. x ∈ R

d,

with the condition lim|x|→∞ uε(x) = 0.
Next, for ν ∈ R and j = 0, 1 we introduce the weighted Sobolev spacesHj

ν(R
d), defined as the completion

of C∞
0 (Rd) with respect to the ‖ · ‖j,ν norm: Hj

ν(R
d) := C∞

0 (Rd)
‖·‖j,ν

, where for u ∈ C∞
0 (Rd) we define

‖u‖2j,ν =

∫

Rd

∑

|k|≤j

|Dku(x)|2e2ν|x| dx. (2.1)

For a variational formulation of (1.2) on Ω = Rd, for each ε > 0 we consider the sesquilinear form
Ψ(ε)[·, ·] : H1

−ν(R
d)×H1

ν (R
d) → C given by

Ψ(ε)[u, v] :=

∫

Rd

A
(x

ε

)

∇xu(x) ·∇xv(x) + a0
(x

ε

)

u(x)v(x) dx. (2.2)

It was shown in [3] that there exists ν0 > 0, such that for all 0 < ν < ν0, f ∈
(

H1
ν (R

d)
)∗

and for all
ε > 0 there exists a unique weak solution uε(x) ∈ H1

−ν(R
d) of the variational problem

Ψ(ε)[uε, v] =< f, v >(H1
ν (R

d))∗×H1
ν(R

d), ∀ v ∈ H1
ν (R

d). (2.3)

The brackets < ·, · >(H1
ν(R

d))∗×H1
ν(R

d) on the right hand side in (2.3) stand for the
(

H1
ν (R

d)
)∗ ×H1

ν (R
d)

duality paring and are the natural extension of the L2 scalar product in Rd (in the sense that H1
ν (R

d) ⊂
L2(Rd) ∼= L2(Rd)∗ ⊂

(

H1
ν (R

d)
)∗
). This means that (1.2) can even be solved when f belongs to a larger

class of functions than L2(Rd), namely to the dual space of H1
ν (R

d). Such functions are for example
polynomials or ei<t, ·>, for t ∈ Cd, |Im t| < ν. Moreover, the solution operator is continuous from
(

H1
ν (R

d)
)∗

into H1
−ν(R

d).
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Consider now the parameter dependent family of bounded linear functionals on H1
ν (R

n) given by
the standard Fourier waves ei<t, ·> ∈

(

H1
ν (R

d)
)∗

parametrized with respect to t ∈ Rd. Then, for each
frequency t ∈ Rd we denote by ψ(x/ε, ε, t) ∈ H1

−ν(R
d) the unique weak solution of (2.3) with respect

to f(·) = ei<t, ·>. It has been shown in [3] that ψ(y, ε, t) = φ(y, ε, t)eiε<t, y>, with φ(y, ε, t) ∈ H1
per(Q̂)

being the solution of the so-called unit cell problem in Q̂ := (−π,π)d: For ε > 0 and t ∈ Cd, find
φ(y, ε, t) ∈ H1

per(Q̂) such that

Φ(ε, t)[φ, v] = ε2(1, v)0, Q̂, ∀ v ∈ H1
per(Q̂). (2.4)

The bilinear form Φ(ε, t)[·, ·] : H1
per(Q̂)×H1

per(Q̂) → C in (2.4) is defined by

Φ(ε, t)[φ, v] =

∫

Q̂

A(y)∇y

(

φ(y)eiε<t, y>
)

·∇y (v(y)eiε<t, y>) + ε2a0(y)φ(y)v(y) dy.

The significance of the unit-cell problem (2.4) lies in the fact that for every f ∈ L2(Rd), the solution
uε(x) of (2.3) has a representation as a (generalized) Fourier-Inversion integral

uε(x) =
1

(2π)d/2

(B)
∫

Rd

f̂(t)ei<t, x>φ
(x

ε
, ε, t

)

dt, (2.5)

with integral kernel ψ(x/ε, ε, t) = φ(x/ε, ε, t)ei<t, x>. The integral in (2.5) has to be understood in the
sense of Bochner integral of Banach space valued function (see [3] for a definition). Henceforth, we

write
∫ (B)

for such integrals. The representation (2.5) will be the basis for our construction of {Vn}n.
We have, see ([7], [8])

Proposition 2.1 There exists δ > 0 depending only on A, a0, ν, such that for any

t ∈ Dδ :=
{

t ∈ C
d : |Im t| < δ

}

and every ε > 0, problem (2.4) admits a unique solution φ(·, ε, t) ∈ H1
per(Q̂). Moreover,

a) for any fixed ε > 0, the kernel φ(·, ε, t) is an analytic H1
per(Q̂)-valued function of t in the strip

Dδ ⊂ Cd,
b) for any (ε, t) in Rd+1, φ(·, ε, t) is real analytic at (ε, t) (with domain of analyticity depending on

(ε, t), however).

Remark 2.2 A very useful regularity property holds for the kernel ψ(·/ε, ε, t). It has been shown in [8]
that ψ(·/ε, ε, t) can be extended as analytic and uniformly bounded function of t in the strip Dδ with
values in H1

−ν(R
d), i.e. ψ(·/ε, ε, t) ∈ A

(

Dδ, H1
−ν(R

d)
)

∩ L∞
(

Dδ, H1
−ν(R

d)
)

, with bounds independent
of ε > 0.

2.2 Approximation on Rd

We return to the question raised in Section 1, i.e. if subspace sequences {Vn}n (possibly depending
on ε) can be found which realize the convergence rates (1.7). One approach would be to incorporate
analytic results from classical homogenization, i.e. an asymptotic expansion of uε(x) as ε → 0 ([5], [6]),
into the FEM. This ”classical homogenization approach” can also be derived from (2.5) (see [3], [8]),
but does not give subspaces Vn which achieve (1.7) [7]. To do so, we must exploit the analytic structure
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of the data f and of the kernel ψ(x/ε, ε, t) in (2.5) indicated in Remark 2.2.
The idea is to approximate the Fourier-Bochner integral (2.5) by a finite sum, which is obtained by
truncating a (generalized) Poisson summation formula.
For N ∈ N and h > 0 define the trapezoidal approximation of (2.5)

uε
N,h(x) = 1[−π

h ,πh ]
d(x)

1

(2π)d/2
hd

∑

k∈Zd
(N)

f̂(kh)φ
(x

ε
, ε, kh

)

ei<kh, x>, (2.6)

where
Z
d
(N) =

{

k ∈ Z
d : |kj | ≤ N, ∀ j = 1, . . . , d

}

.

Definition 2.3 We say a function f fulfills the ’usual assumptions’ if f ∈ L2(Rd), and its Fourier
transformation f̂(·) can be extended to a holomorphic function in the strip Dδ, with δ as in Proposi-
tion 2.1, which satisfies the following growth condition:

|f̂(z)| ≤ Cf e
−α|z|, ∀ z ∈ Dδ, (2.7)

for some positive constants Cf ,α > 0.

Our main result on the trapezoidal approximation (2.6) of the Fourier-Bochner integral (2.5) is (see [8]
for a proof) :

Proposition 2.4 Let us assume that f satisfies the ’usual assumptions’ as in Definition 2.3, L > 0 is
arbitrary and the step size h is given by

h =

(

πδ

αN

)1/2

, N ≥ 4δL2

απ
. (2.8)

Then the error δN (f, h)(·) := uε(·)− uε
N,h(·), with uε

N,h(·) as in (2.6), decays exponentially with respect
to N in the ‖ · ‖0,−2ν , ‖ · ‖H1

−2ν((−L,L)d)-norms:

‖δN(f, h)(·)‖0,−2ν + ‖δN(f, h)(·)‖H1
−2ν ((−L,L)d) ≤ C0Cf

1

αd
e−(παδN/d)1/2, (2.9)

with the constant C0 = C(γ, ν, d,α) independent of ε, N and L.

Remark 2.5 Let VN
ε := Span

{

Reψ
(

·
ε , ε, kh

)

, Imψ
(

·
ε , ε, kh

)

: k ∈ Zd
(N)

}

. Then n = dimVN
ε =

O(Nd), and we see from (2.9) that uε is approximated by VN
ε at a robust (in ε) exponential rate, but

comparing with (1.7) the approximation is not optimal in the sense of n -width.

2.3 Periodic setting

We will now exhibit an example of subspaces where the optimal bound (1.7) can be achieved. In order to
present the ideas clearly, we consider the bounded domain in the periodic setting (non-periodic below).
Let 1/ε ∈ N and Ω = (0, 2π)d be an 1/ε fold repetition of the scaled unit cell Q = εQ̂:

Ω =
⋃

k∈Zd : 0≤ki<1/ε

ε
(

(2k + 1)π + Q̂
)

.
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Likewise A(y) = A(y+2kπ), a0(y) = a0(y+2kπ), ∀ k ∈ Zd and assume that f(x) = f(x+2kπ) ∈ L2(Ω).
Denote by uε the solution of the following problem

uε ∈ H1
per(Ω) : Lεuε = f in Ω, (2.10)

where Lε is the second order, strongly elliptic operator

Lεu = −∇ ·
(

A
(x

ε

)

∇u
)

+ a0
(x

ε

)

u.

Discrete analog of (2.5). Let us denote by fτ the Fourier coefficients of f with respect to the basis
{ei<τ, x>}τ∈Zd ⊂ L2(Ω) :

f(x) =
∑

τ∈Zd

fτe
i<τ, x>. (2.11)

Then, it can be easily seen that

uε(x) =
∑

τ∈Zd

fτφ
(x

ε
, ε, τ

)

ei<τ, x> =
∑

τ∈Zd

fτψ
(x

ε
, ε, τ

)

, (2.12)

where φ(·, ε, t) is as in (2.4) and the series (2.12) converges in the Banach space H1
per(Ω).

Define for µ ∈ N and ε > 0

Ṽµ
ε := Span

{

Reψ
( ·
ε
, ε, τ

)

, Imψ
( ·
ε
, ε, τ

)

, τ ∈ Z
d, 0 ≤ |τ | ≤ µ

}

. (2.13)

Then n = dim (Ṽµ
ε ) = O(µd) and the following approximation result holds

Proposition 2.6 Assume that f ∈ Aper(Ω). Then, for every ε > 0 such that 1/ε ∈ N,

inf
v∈Ṽµ

ε

‖uε − v‖1,Ω ≤ Ce−bµ = Cexp(−bn1/d), (2.14)

where C, b > 0 are independent of ε, µ, depend only on f .

We see that the subspace sequence {Vn}n given by
{

Ṽµ
ε

}

µ
in (2.13) (with n = O(µd)) realizes the

optimal rate in Theorem 1.1.

3 Generalized p-FEM in homogenization

So far, Propositions 2.4, 2.6 indicated that for the model problem

Lεuε := −∇ ·
(

A
(x

ε

)

∇uε(x)
)

+ a0
(x

ε

)

uε(x) = f(x) (3.1)

in either the unbounded domain or the periodic setting, with analytic f , the solution uε can be approx-
imated very well by linear combinations of the kernel ψ(x/ε, ε, t) (resp. φ(x/ε, ε, t)ei<t, x>).
In a general, bounded domain Ω ⊂ Rd we propose to construct therefore generalized FE-spaces
Sp, µ(Ω, T ) which consist of the “usual” piecewise polynomial functions of degree p which are aug-
mented by special, so-called ‘micro’ shape functions of ’degree’ µ derived from the sampled kernel φ.
Clearly, these shape functions are generally not explicitly known and must be computed numerically
by a FE-solution of the unit-cell problem.
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\tex{$2\pi\varepsilon$}

\tex{$\hat Q$}

\tex{$Q = \varepsilon \hat Q$}

Figure 2: Geometric mesh T̂ for unit cell Q̂ with crack.

3.1 Computation of microscale shape functions.

Let ε > 0, t ∈ Cd be given, and T̂ an affine mesh on the unit cell Q̂. Then the FE formulation for the
unit cell-problem (2.4) reads: Find φhp(·, ε, t) ∈ Sp̂, 1

per (Q̂, T̂ ), such that

Φ(ε, t)[φhp, v] = ε2(1, v)0, Q̂, ∀ v ∈ Sp̂, 1
per (Q̂, T̂ ), (3.2)

where the FE space Sp̂, 1
per (Q̂, T̂ ) is defined by

Sp̂, 1
per (Q̂, T̂ ) :=

{

u ∈ H1
per(Q̂) : u

∣

∣

∣

∣

K

∈ S p̂(K), ∀K ∈ T̂
}

(3.3)

and S p̂(K) is the space of polynomials of degree at most p̂ on K. The design of T̂ , p̂ must take
into account regularity of the solution, e.g. if the unit cell problem has a crack, then the solution
φ(y, ε, t) ∈ B2

β(Q̂), the countably normed space [1], and hp-FEM with a geometrical mesh refinement
towards the crack-tips must be employed for the solution of the unit-cell problem. (see Fig. 2).

The kernel φ(·/ε, ε, t) can be directly employed for computational purposes, and we see from (2.9),
(2.14) that collocation of φ(·/ε, ε, t) at various sets of collocation points N = {tj} gives systems of shape
functions with very good approximation properties for elliptic problems with periodic microstructure.

Since φ(y, ε, t) is analytic in t (Proposition 2.1), choosing the collocation points N = {kh, k ∈ Zd
(N)}

with h → 0 as in (2.8) will lead to almost linear dependence of φhp(y, ε, tj), tj ∈ N ; these functions are
therefore unsuitable as basis for p-FEM in numerical computations. We propose here a methodology
to derive a well conditioned set of micro shape functions from the collocated kernels ψ(·/ε, ε, tj), which
is based on ’oversampling + SVD’. As a byproduct, this approach will also reduce the number of micro
shape functions substantially. To this end, we select the collocation points

N := {tj : j = 1, . . . , µ̂} , µ̂ > µ (3.4)

and orthogonalize by SVD the matrix of coefficient vectors of the FE approximations to the φ(y, ε, tj), tj ∈
N . Select thereforeN(y) to be a well conditioned basis of Sp̂, 1

per (Q̂, T̂ ) and denote by Φj(ε) the coefficient

vector of φhp(y, ε, tj) with respect to N(y), i.e. φhp(y, ε, tj) = Φj(ε))N(y). Compute the SVD of the
matrix of coefficient vectors Φj(ε), j = 1, . . . , µ̂

[Φ1(ε), . . . ,Φµ̂(ε)] = Udiag(σ1, . . . ,σµ̂)V
)

7



and define the basis functions

φ̃j

(x

ε
, ε
)

:= U)
j N

(x

ε

)

, j = 1, . . . , µ̂, (3.5)

with U j being the j-th column of U .

Note that Span
{

φ̃j(y, ε) : j = 1, . . . , µ̂
}

= Span {φhp(y, ε, tj) : tj ∈ N}. Define further the micro
space

Mµ
ε = Span

{

φ̃j

(x

ε
, ε
)

: j = 1, . . . , µ+ 1
}

, (3.6)

where µ = 0, . . . , µ∗, µ∗ = inf{j : σj > tol} and tol is a parameter of order of machine precision.

We present in Fig. 3 the shape functions
{

φ̃j(y, ε)
}µ

j=0
obtained by the above procedure, in the one

dimensional case, for ε = 0.001, a0 ≡ 1 and

A(y) =











10 , if |y| ≤ π
2 ,

1 , else .

(3.7)

In this case, we selected the first µ + 1 = 5 shape functions φ̃j(y, ε) corresponding to singular values
σj > 10−10.

!4 !3 !2 !1 0 1 2 3 4
!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

! = 0.001: µ  = 4; 5 linear independent shape functions (orthogonalized by SVD)

Figure 3: φ̃j(·, ε), j = 0, . . . , µ = 4.

Remark 3.1 We see in Fig. 3 that φ̃1(y, ε) ≡ const.

Remark 3.2 In numerical experiments we found this algorithm very robust with respect to the choice
of collocation points. After the SVD the first shape functions associated with the largest singular values
are practically independent of the number and of the choice of tj . The resulting micro shape functions
φ̃j(·, ε) are therefore, at least numerically, hierarchical, and enable hierarchic modeling of problems with
microstructure.
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3.2 Construction of generalized FE spaces.

Let Ω ⊂ Rd be an open, bounded polygonal domain and assume that f ∈ L2(Ω). We denote by uε the
unique weak solution of the following boundary value problem: find uε ∈ H1

0 (Ω), such that

∫

Ω

A
(x

ε

)

∇uε ·∇v + a0
(x

ε

)

uεv dx = (f, v)0,Ω, ∀ v ∈ H1
0 (Ω). (3.8)

It is well known [5], [6] that in homogenization on bounded domains there arise boundary correctors
that are not accounted for in (2.5). In the design of Sp, µ(Ω, T ) we need to account for them. We deal
with this by selecting the (macro) mesh T of the generalized FEM properly. To motivate this selection,
let

Ṽµ
ε := Span

{

ReDα
t ψ

( ·
ε
, ε, 0

)

, α ∈ N
d, |α| = 2k, |α| ≤ µ,

ImDα
t ψ

( ·
ε
, ε, 0

)

, |α| = 2k + 1, |α| ≤ µ

}

, (3.9)

V̂µ
ε := Span

{

Re vεα, α ∈ N
d, |α| = 2k, |α| ≤ µ, (3.10)

Im vεα, |α| = 2k + 1, |α| ≤ µ

}

,

where by Dα
t we denote the partial derivative of order α with respect to t : Dα

t := ∂α1
t1 ∂α2

t2 . . . ∂αd
td ,

|α| = α1 + . . . + αd and vεα ∈ H1(Ω) is the solution of the following boundary value problem with
homogeneous right hand side and inhomogeneous boundary data :

−∇ ·
(

A
(x

ε

)

∇vεα

)

+ a0
(x

ε

)

vεα = 0 in Ω,

vεα

∣

∣

∣

∣

∂Ω

= −Dα
t ψ

( ·
ε
, ε, 0

)

∣

∣

∣

∣

∂Ω

, α ∈ N
d. (3.11)

Set
Vµ
ε =

(

Ṽµ
ε + V̂µ

ε

)

⋂

H1
0 (Ω). (3.12)

Then the following result holds [8, 7] :

Proposition 3.3 Assume that f ∈ A(Ω) and let uε be the solution of (3.8). Then, there exist positive
constants depending on f , but independent of ε and µ, such that

inf
v∈Vµ

ε

‖uε − v‖1,Ω ≤ Ce−bµ. (3.13)

This indicates that ψ(·/ε, ε, t) for small t are most important for problems with smooth data f , since
Dα

t ψ(·/ε, ε, 0) solves (2.2) with f = (ix)α; the space V̂µ
ε is needed here to enforce the boundary con-

ditions. We observe that Ṽµ
ε is spanned by products of ’micro’ shape functions Dα

t φ(·/ε, ε, 0) times
polynomials of degree at most µ. The correctors vεα in (3.11) are solutions of the homogeneous equation
Lεuε = 0 in Ω with inhomogeneous boundary data [5, 6]. The spaces Sp ⊗Mµ

ε approximate solutions
of Lεuε = 0 locally at a spectral rate (see [7] or [8] Proposition 3.12).
Of course, in the O(ε) vicinity of ∂Ω, the structure of the solution is not anymore well described by the
representation (2.5); hence there the subspaces Mµ

ε in (3.6) are expected to have poor approximation

9



\tex{$u=0$}\tex{$n^\top A \nabla u=0$}

\tex{$u=0$} \tex{$u=0$}
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Figure 4: Macro mesh T (bold lines) for cracked panel with crack in each micro-cell (thin lines).
Geometric mesh refinement towards ’macro’ singularity at •.

properties. Accordingly, we compose the finite element mesh T = Tint ∪ Tb ∪ Tsing of three parts : a
quasiuniform ’interior’ part (Tint) and a refined ’boundary’ part consisting of elements abutting at a
corner or at a singularity (Tsing) or elongated elements abutting at the boundary (Tb), see Fig. 4 for an
example. Note that in Tint the element size is independent of ε.
Denote by p = {pK}K∈T a degree vector and define the finite element space

Sp(Ω, T ) =

{

u ∈ H1(Ω) : u

∣

∣

∣

∣

K

∈ SpK (K), ∀K ∈ T
}

,

where SpK (K) is elemental polynomial space. Define the micro degree vector µ = {µK}K∈T . Then let
us introduce the generalized FE-space

Sp, µ(Ω, T ) =

{

u ∈ H1(Ω) : u

∣

∣

∣

∣

K

∈ SpK (K)⊗MµK
ε , ∀K ∈ T

}

(3.14)
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and set S
p, µ
0 (Ω, T ) = Sp, µ(Ω, T ) ∩H1

0 (Ω).
Strictly speaking, Sp, µ(Ω, T ) also depends on T̂ , p̂ used in (3.3) and on the set N of collocation points.
However, if T̂ is sufficiently fine and p̂ in (3.3) sufficiently large, the φhp will converge quasioptimally
and Mµ

ε will practically not depend on T̂ , p̂. We therefore omit T̂ , p̂ in (3.14). Likewise, the collocation
set N is not important (see Remark 3.2) and is also omitted. The vector p = {pK}K∈T we call the
’macro’ polynomial degree, whereas µ = {µK}K∈T is called the ’micro’ degree of the generalized p-FEM.
Therefore, the generalized FE space Sp, µ(Ω, T ) in (3.14) accounts for both scales, ’micro’ and ’macro’.
The ’micro’ degree vector µ is variable; in elements near corner singularities we omit generalized shape
functions :











µK
∼= pK , if K ∈ Tint ∪ Tb,

0 , if K ∈ Tsing.

Note that in the elongated elements near the boundary, but not abutting corners, also µK
∼= pK . This

is necessary to resolve the tangential fine structure of uε. Note further that since M0
ε = Span {1} if

a0 ≡ const (see Remark 3.1), we get that

Sp(Ω, T ) ⊂ Sp, µ(Ω, T ), (3.15)

i.e. we have a generalized p-FEM. Moreover, (3.15) ensures that the spaces Sp, µ(Ω, T ) are dense in
L2(Ω), as pK → ∞. The generalized FE formulation finally reads: find uε

FE ∈ S
p, µ
0 (Ω, T ), such that

∫

Ω

A
(x

ε

)

∇uε ·∇v + a0
(x

ε

)

uεv dx = (f, v)0,Ω, ∀ v ∈ S
p, µ
0 (Ω, T ). (3.16)

4 Numerical Results.

4.1 Set up and basic results

We present here preliminary numerical results obtained with the generalized FEM. The goal of the
experiments is to validate our approach and to get insight on the practical selection of pK and µK ,
as well as on the mesh design. We restrict our numerical examples to problem (3.8) in one dimension
and show the performance of the generalized p-FEM with A(·) as in (3.7) and a0 ≡ 0, on a fixed mesh
T = Tint ∪ Tb with Tb covering 4 periods of length 2πε at each boundary point and only one element
K ∈ Tint. Note that in one dimension Tsing = ∅. As right hand side we choose f(x) = exp(x); the exact
solution is in this case piecewise analytic, but non-polynomial on the microscale.

As ’micro’ shape functions we employ
{

φ̃µ(y, ε)
}

µ
obtained as in (3.4)–(3.7) by solving the unit cell

problem (2.4) with a0 ≡ 1, however. In agreement with Proposition 2.4 we choose the set of collocation
points N = {tj(µ̂) = j/

√
µ̂ : j = 1, . . . , µ̂} corresponding to µ̂ = 64.

Note that computation of the stiffness matrix in (3.16) needs only a fixed number of operations, indepen-
dent of ε. This is due to the periodicity of the coefficients A(·), a0(·) and of the ’micro’ shape functions
φ̃µ(·, ε). In fact, integrals of products of micro shape functions φ̃µ(y, ε)φ̃µ′(y, ε) times monomials up to
degree 2pK over the unit cell Q̂ have to be computed only once.

The goal of the numerical experiments is to show robust (with respect to ε) exponential convergence.
In Fig. 5 we present the relative error of the energy versus ’macro’ polynomial degree pK = p, ∀K ∈ T ,
by increasing ’micro’ degree µ := µK , K ∈ Tint, and for different ε scales varying from ∼= 10−6 up
to ∼= 10−1. We see that taking µ = 0, which corresponds to the case when only macroscopic shape
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functions are used, we do not achieve convergence (only in the case ε ∼= 10−1 a very slow convergence
hardly visible in Figure 5 occurs, since here the scales are resolved, however the low solution regularity
stalls the spectral convergence). For µ > 0 and increasing p we get exponential convergence, however a
saturation occurs at levels depending only on µ. To achieve robust exponential convergence one has to
augment simultaneously the standard polynomial spaces and the number of microscale shape functions.

Fig. 6 shows exponential convergence with respect to the (stronger) W 1,∞(Ω) - norm, namely that
the convergence rate for the stresses

∥

∥

∥

∥

A
(x

ε

) d

dx
(uε − uε

FE)

∥

∥

∥

∥

L∞(−1,1)

is also exponential and independent of ε.

4.2 Jumps in coefficients

Next, we consider the performance of our approach if the coefficient A(·) has a very large jump δ−1 =
Amax/Amin, where Amax := maxy∈Q̂ A(y) and Amin := miny∈Q̂ A(y)

A(y) =











δ−1 , if |y| ≤ π
2 ,

1 , else .

(4.1)

As δ → 0, we found the generalized p-FEM to be stable. Comparing Fig. 7 and Fig. 5 (for δ = 0.1)
we see that the convergence is insensitive to decreasing δ, the error decay is practically the same for
δ = 0.1, 0.01, 0.001, but at fixed µ the error saturation occurs somewhat earlier as δ → 0.

4.3 Singular perturbation and homogenization

Finally, we investigate the performance of our approach if the differential operator Lε = Lε
β in (3.1)

is singularly perturbed, in the sense that the principal part depends additionally on another small
parameter 0 < β << 1 in the following way

Lε
βu

ε
β = −β2∇ ·

(

A
(x

ε

)

∇uε
β(x)

)

+ a0
(x

ε

)

uε
β(x). (4.2)

We have a problem with multiple scales : in the vicinity of each discontinuity of A(x/ε), a boundary
layer of thickness β appears for β < ε. A conventional FEM would thus be required to resolve the
smallest scale β. In our approach, the singular perturbation is taken care of by the unit-cell problem
(2.4), which is, for β/ε << 1, itself singularly perturbed. Fig. 8 shows the {φ̃µ(y, ε)}µ=0,...,3 for (4.2)
and for a0 ≡ 1, A(·) as in (3.7). The layers of thickness O(β/ε) are clearly visible.

The exponential error decay with respect to the ’macro’ (pK = p, ∀K ∈ T ), respectively ’micro’
(µK = µ for K ∈ Tint) degree is shown in Fig. 9 for ε ∼= 10−3 and β ∼= 10−3, β ∼= 10−4, respectively. As
before, in elements near the boundary (K ∈ Tb) we omit the microscale shape functions (i.e. µK = 0),
while in the interior element K ∈ Tint we choose µK = 0, . . . , 3.

Our experiments show clearly that the generalized p-FEM performs equally well for β = 1 and
β = 10−3, 10−4, over a wide range of ε, from β/ε >> 1 to β/ε << 1. We emphasize that asymptotic
expansions for the limiting cases β/ε → 0 or ε/β → 0 differ substantially, as do the limits. The
generalized FEM performs robustly over the whole range of β/ε.
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Figure 7: Exponential rate of convergence for large coefficient jumps
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