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Abstract

A subgrid-scale model for large-eddy simulation is developed and a con-
servative formulation of the filtered compressible Navier-Stokes equations is
derived. We introduce a different way of looking at LES modelling: In contrast
to other approaches, which estimate the subgrid-scale quantities explicitly out
of the instantaneous filtered solution, the residual between the time evolution
of two solutions of the Navier-Stokes equations (without a model) on differ-
ent grids will be used to construct the model. Hence, no subgrid values are
calculated explicitly but only their influence on the resolved scales is mod-
elled. By this approach most of the physical information already included
in the Navier-Stokes equations will be retained and less additional physical
information about the turbulent flow has to be inserted.



1 Introduction

An important issue in large-eddy simulation (LES) is the clear distinction
between grid-scales (GS) and subgrid-scales (SGS). The former are resolved
on the numerical grid, the latter are missing in the numerical flow field and
their effect on the resolved scale motions has to be described by a so-called
SGS model. The definition of GS and SGS was given in the work of Leonard
[7], where he introduced the concept of filtering in space. The filtering is a
convolution of the variables f(!x, t) with a filter function F

Ff ≡ f(!x, t) =
∫

Ω
F (!x− !y;∆)f(!y, t)d!y (1)

where ∆ is a length scale that defines the filter width and F denotes the filter
operator. To ensure the conservation of the filtered variables it is necessary
to impose the normalisation condition

∫

Ω
F (!x)d!x = 1 .

The variable f can now be written as a sum of the filtered grid-scale and
residual subgrid-scale part f = f + f ′. Also the filtering and differentiation
commute for a constant filter width

∂f

∂xi

=
∂f

∂xi

.

This property is essential for LES because it allows to obtain the Navier-
Stokes equations for the filtered variables. For this reason the commutivity
will always be used even if it is not valid! An investigation into this com-
mutation error and its reduction to a term of order O(∆2) can be found in
[11]. However, the filtering does not commute with the non-linear terms of
the Navier-Stokes equations. This leads to the modelling terms in the LES
formulation, which contain the fluctuations between the GS and SGS part.
In general these terms are estimated out of the instantaneous filtered solu-
tion. In section 2 we will introduce a different approach where the model can
be constructed out of the commutation error of two different time evolutions
of the solution.

When dealing with compressible Navier-Stokes equations it is convenient
to introduce the Favre average

f̃ =
ρf

ρ

1



to decouple the filtered terms ρf . This decoupling fails for the filtered prod-
uct

ρfg = ρf̃ g = ρf̃ g̃ + ρ(f̃ g − f̃ g̃)

because the last term on the r. h. s. can not be evaluated out of the filtered
quantities and has to be modelled. By applying the filter to the Navier-Stokes
equations we obtain the equations for the GS quantities

Ut +∇ · F = ∇ ·G+∇ ·H, (2)

with

U =




ρ

ρ!̃u

ρẼ



 , F(U) = U!̃u
T
+





0T

I

!̃u
T



 p ,

G(U,∇U) =




0T

τ

!uT τ + κ(∇T )T



 , H(U) = −ρ




0T

σ
KT + cpρQ

T





and τ = ρν
(
∇!u+ (∇!u)T − 2

3
I∇ · !u

)
. The terms in H contain the fluctua-

tions between the GS and SGS part and have to be modelled:

σ =
(
!̃u!uT − !̃u!̃u

T
)

,K =
(
k̃!u− k̃!̃u

)
,Q =

(
T̃!u− T̃ !̃u

)

with

k =
!uT!u

2
.

For the equation of state we obtain

p = (γ − 1)ρ
(
Ẽ − k̃

)
= ρRT̃ .

By this approach ρẼ is the total energy so that the Navier-Stokes equa-
tions are in conservation form. However, k̃ cannot be obtained from the
filtered variables directly so that the conservation form of the equations will
normally be given up either by considering only an equation for the temper-
ature or neglecting the fluctuations of the kinetic energy in ρẼ following the
arguments of [4] or [8]. Yet, this energy is not a conserved quantity any-
more and as mentioned in [4] the assumptions for the simplification are not

2



always fulfilled. Here the total energy is used and in order to determine k̃ an
additional equation for the subgrid kinetic energy is introduced

ρk̂ = ρ



k̃ −
!̃u
T
!̃u

2



 .

Hence, the equation of state can be evaluated and the system is closed. The
equation for ρk̂ can be derived from the Navier-Stokes equations

(ρk̂)t +∇ · (ρk̂!̃u) +∇ · (ρKT ) + !uT∇p− !̃u
T
∇p = !u ·∇ · τ − !̃u ·∇ · τ + s (3)

where s is a source term which has been introduced additionally and will be
defined in section 2.2. It is obvious that this equation is not in conservation
form, but ρk̂ only occurs in the equation of state and does not affect the
conservative property of the Navier-Stokes equations.

In order to solve the system the unknown subgrid values H have to be
modelled. In general this term is estimated out of the instantaneous filtered
solution. Hence, H depends on the filtering operation, but for most LES
models one assumes that this coupling is very weak and applies the filter and
model independently. Nevertheless, a dependence of the solution on the type
of the filter has been observed, cf. [12] and the “deconvolution” models are
directly based on this coupling, because here, an inverse of the filter operator
is constructed to estimate the unresolved quantities.

Most LES models separate the formulation of the LES problem from
the numerical method used to solve the filtered Navier-Stokes equations.
However, numerical viscosity will be introduced which contributes to the
model and hence contradicts this assumption. The monotone integrated
large-eddy simulation approach (MILES) in [1] even suggests that no explicit
SGS modelling is necessary for this algorithm and the numerical viscosity is
sufficient to describe the energy dissipation. It is clear that the subgrid values
will not be computed explicitly but only their influence on the resolved field is
modelled. This close coupling has some drawbacks. The numerical viscosity
strongly depends on the numerical scheme, its approximation order and the
grid topology, so that the model also changes with these parameters and it is
not clear if the variation of the numerical viscosity coincide with the model
term. On the other hand, the model produces reasonable results for the GS
motion which indicates that the numerical contribution to the model term
cannot just be neglected and should be incorporated into the SGS model.

3



2 Scale-residual model

In [2] it has been shown that the solutions of the Navier-Stokes equations are
quite stable to perturbations within the inertial range but are unstable to
perturbations of the lowest modes, which indicates that the concept of LES
is reasonable. Furthermore, for homogeneous turbulent flows they observed
that the high wave-number information can be recovered almost completely
if some low modes are known exactly over time and the high modes are
obtained by solving for all wave-numbers. In other words, the number of
degrees of freedom of a turbulent solution seems to be much smaller than
one expects out of the resolution requirements for a DNS. As a conclusion
from this result, a LES model should have information about the history of
the low modes. Unfortunately, this information is not available in general.

We consider the non-filtered Navier-Stokes equations which can be for-
mally written as

Vt = NV

where N is a nonlinear operator and V(!x, t) an exact solution. In LES only
the filtered solution is known and a modified operator M which describes
the model term ∇ ·H has to be used to approximate the exact solution

F(V)t ≈ (FV)t = M(FV) .

The modified operator M can be split into the operator for the non-filtered
Navier-Stokes equations N , henceforth standard operator, and a model op-
erator H

M = N +H . (4)

Clearly, the constraint on the operator H is to minimise the error between
the exact and modelled solution, i. e. it has to have a minimal influence on
the low modes of the exact solution. Using (4) the error reads

E = (FN −MF)V = ((FN −NF)−HF)V .

The model operator has to compensate the error which has been introduced
by applying the standard operator to the filtered solution. (FN − NF) is
therefore the “exact” modelling term. The new model uses this term directly
to obtain the model operator. If we filter the LES operator explicitly so that
NFV becomes FNFV we can write the model operator as

FHV = (FN (FKV)− FNF(FKV)) = F(NFK −NF)V , (5)
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where FK is a filtering operator with a filter width equal zero. In (5) only
the standard operator occurs which acts on two solutions with different filter
widths.

Let F1 = F and Fj filter operators with filter widths between these of
FK and F1. Equation (5) can be expanded into a sum of K operators

F1(NFK −NF1)V = F1

K∑

j=1

(NFj+1 −NFj)V . (6)

To construct the approximate model operator we assume that the influ-
ence of each operator gets smaller with smaller filter width and the relation
between adjacent operators is fixed for equally spaced filter widths. These
assumptions are based on the power law in the inertial range. The second
assumption can be formulated as

(NFj+1 −NFj)V = w(NFj −NFj−1)V (7)

with a constant weight w. Applying (7) on (6) and even for one coarser filter
width F0 we obtain

HF1V = F1

K∑

j=1

wj (NF1 −NF0)V , (8)

where the operation F1(NF0V) is interpreted as a local reconstruction of
the evolution of the coarse solution according to the fluctuations of the fine
solution. The mode of operation of the model can be explained as follows:
It builds up a short history of the low modes and, out of the structure of the
wave-number band between coarse and fine solution, the complete high-wave
number information is extrapolated.

Since we are not interested in the error between exact and discretised
solution but only in the difference between approximated DNS and LES
solution, we consider a numerical method which is convergent of order p. Let
ND be the fully discretised operator of this method with the DNS solution
Vn such thatVn+1 = NDV

n. We now consider two solutions on two different
grid levels L0 and L1. Let FL1

be the LES filter operator and FL0
a test filter

which is twice as coarse. If we exchange the operators N through ND in (8)
we obtain as approximated modelling term

HDFL1
Vn = wKwD(NDFL1

−NDFL0
)Vn , (9)

5



with wK =
K∑

j=1

wj and wD is a weight which, in addition, takes the numerical

viscosity into account.
A further question which is often neglected is the filtering in time. If the

maximum time step is used, which is numerically allowed for the convective
part (CFL = O(1)), the time evolution still contains the complete structures
of the filtered solution. Hence, we determine the time step ∆t on L1 and
calculate two steps on this level and one step with time step 2∆t on level
L0. In the filtered Navier-Stokes equations (2) the vector of the conserved
quantitiesU is equal to (FL1

V). Using equation (9) the filtered Navier-Stokes
equations can be written (omitting the subscripts D and setting ω = wKwD)
as

Un+1 = N 2
∆t + ω(N 2

∆t −N 1
2∆t)U

n ,

where ∆t is the time step size and the superscripts denote the number of
operations. Afterwards, this solution is filtered and projected onto the coarse
grid. The efficiency of this model is dependent on the dimension of the
problem. In two dimensions the additional CPU time is about 13% and
in three dimensions about 7%, plus the time for evaluating the additional
equation for ρk̂ on the fine level. Therefore it is comparable with standard
models.

In the limit of laminar flows (without discontinuities) the residual between
the two operators becomes a term of order p+1 and will no longer influence
the solution. The same argument holds in the limit of increasing numerical
resolution, the so-called DNS limit, where the solution is smooth, because,
for the numerical scheme, the resolved field behaves laminar and, again, the
residual will become a term of order p + 1, so that the model switches off
automatically.

2.1 The weighting factors

2.1.1 Derivation of weight wK

As mentioned above, we use the existence of a power law with a fixed decay
α in the inertial range to estimate w. The mean value of a quantity f above
a wave-number n can be approximated as

fnj
=

nK∫

nj

Aν−αdν =
A

α− 1
(n1−α

j − n1−α
K ) , (α > 1) , (10)
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where nj is the highest wave-number resolved for the filter Fj . Combining
equation (10) for two wave-numbers ni and nj (ni < nj) we get

fnj
= fni

(
ni

nj

)α−1

= βfni
. (11)

Now we apply these global properties locally to each cell. Since we consider
in (7) the time evolution of two adjacent ranges we choose w = β and obtain

wK = β
βK − 1

β − 1
. (12)

Since β is constant also wK is fixed. In (11) β describes the ratio of two
subgrid values for different wave-numbers. Since the subgrid kinetic energy
ρk̂ is known on both levels, the ratio of these values can be used to calculate
a dynamic weight wK . To ensure the conservation property the weight has
to be fixed for each time-step, so that the values integrated over the whole
domain Ω will be used to calculate the ratio

β =
∫

Ω

(ρk̂)L1

(ρk̂)L0

d!x .

2.1.2 Derivation of weight wD

In (9) an additional factor wD has been introduced. The theoretical maxi-
mum wave-number of the LES solution which depends on the numerical mesh
is nm = Λ

2∆x
with the reference length Λ and grid spacing ∆x. Due to the

numerical viscosity the scales will be only resolved correctly up to a wave-
number nr. The weight wD takes into account this numerical viscosity of the
high modes between wave-numbers nr and nm. Typical spectrums for two
under-resolved solutions E0 and E1 (here: the numerical viscosity is larger
than the subgrid dissipation) are shown in a log-log plot in figure 1 together
with a fully resolved spectrum EK up to the Kolmogorov wave-number.

The difference between the two scales has to be calculated for our model.
Then, for a fully resolved solution, this difference is equal to the shaded area
I plus III in figure 1

Ω1 =

nm∫

1

2
nm

EK(n)dn .

7



However, due to the numerical viscosity, the value is proportional to the area

Ω2 =

nm∫

1

2
nr

E1dn−

1

2
nm∫

1

2
nr

E0dn

which are the shaded area II plus III of figure 1. The weight wD is set as the
ratio between these areas

wD =
Ω1

Ω2

.

and has to be determined numerically for each method.

nKnr nm
nm

2

nr

2

E(n)

E0

E1

EK

n

I

II

III

Figure 1: Sketch of typical spectra for a DNS (EK) and two under-resolved
solutions (E1 and E0)

2.2 The source term for the subgrid kinetic energy

In equation (3) we will neglect the pressure dilatation term

!uT∇p− !̃u
T
∇p

because it is not easy to model. However, this term is responsible for the
exchange of internal energy and subgrid kinetic energy. To take this effect
into account we have introduced a source term s. In two dimensions it is a

8



sink representing the dissipation that drives the subgrid kinetic energy during
a relaxation time τ to an equilibrium value (ρk̂)eq

s =
(ρk̂)eq − (ρk̂)

τ
.

To estimate the equilibrium value and the relaxation time we use Obuchow’s
theory, where it is assumed that in the inertial range the flux of kinetic
energy is constant and proportional to the cascading kinetic energy divided
by a characteristic local time τ of the cascade. In [13] τ is considered as an
eddy-turnover time

τ =
L

v
,

where L is the size of an eddy and v a typical velocity difference across the
eddy

v = ||u(x)− u(x+ ni|∆!x|)||2 ,

where ni are normal vectors. The length L is related to the size of the
frequency range nm → 2nm and thus, related to the filter width and therefore
to the grid spacing

L = 2|∆!x| .

The cascading kinetic energy itself is given as the difference (ρk̂) − (ρk̂)eq.
To influence the source term by the GS part, we determine the equilibrium
value out of (ρk̂)L0, (ρk̂)L1 and using equations (11) and (12)

(ρk̂)eq = Ceq
ρv2

2

β2

1− β
.

The constant Ceq has to be obtained from comparisons with DNS solutions.
The source term described above is just a sink which accounts for the

backscatter effect and can be applied in this form only to the two-dimensional
case. In three space dimensions the cascading energy transfer from the low
to the high modes is much more important and the source term must be
also a source of subgrid kinetic energy. To obtain this term one can use
a balance argument between total local dissipation and the resolved-scale
viscous dissipation with the local GS energy production (see e. g. [10]).

9



3 Results

The model is validated on a freely decaying two-dimensional compressible
turbulent flow. To obtain a reference solution a two-dimensional DNS is
performed with initial conditions taken from [3] with a Reynolds number of
2000 and a reference Mach number of 0.3. The initial level of compressibility
was chosen as 0.9 and the fluctuating r.m.s. levels of the velocities and
the temperature as 0.1. Since the flow field is randomly initialised with a
prescribed spectrum but uncorrelated phases a DNS with 512× 512 points
was calculated for the period of the acoustic transient (up to t = 2) so that
the correlations are fully developed. This solution was filtered and used as
initial values for the LES and under-resolved DNS calculations.

In the first step we determine wD from two under-resolved DNS solutions.
Therefore, we calculate one time step with a time step size ∆t on a mesh
with 64× 64 and two time steps with ∆t

2
on a mesh with 128× 128 points.

The ratio of the integrals Ω1 to Ω2 yields wD ≈ 0.23 for our second order
method (p = 2), cf. [5], [6], [9]. For α = 3 the fixed weight wK results in

lim
K→∞

wK =
1

3
.

We now examine the behaviour of the model for different grid resolutions.
The residual of the modelling terms between two solutions will be computed
in the L1-norm. We expect that within the inertial range the model term
should be locally of order O(∆t2) which corresponds to a diffusion of subgrid
values and in the DNS limit it should be of O(∆t3) due to the numerical
truncation error. If the LES solution is under-resolved the modelling term
cannot be expected to give a reasonable value and the error will be large. We
perform three successive calculations starting with one time step on a grid
with 32 × 32 points (16 × 16 points for the test-filtered solution). For each
of the following calculations the time step size and the grid spacing will be
bisected and the number of time steps will be doubled. The source term has
been switched off here. Table 1 shows the global order of the modelling term.
For a too coarse resolution (32 × 32) the error is very large but within the
inertial range (64×64 to 128×128) the model gives a second order correction
(global order 1) and tends to a third order term in the DNS limit. Yet, the
LES model is closed and two runs on a grid with 64× 64 points are carried
out. In the first run, we use the constant weight wK and in the second, the
dynamic weight is applied. These solutions will be compared with the DNS

10
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Figure 2: Time evolution of mean values of ρk̂ (constant and dynamic weight
wK)
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Resolution Residual Order
L1 L0 ρu1 ρu2 ρE ρu1 ρu2 ρE

32× 32 16× 16 2.77e-2 3.01e-2 1.91e-1
64× 64 32× 32 2.45e-2 2.57e-2 1.78e-1 0.18 0.23 0.10
128× 128 64× 64 1.34e-2 1.39e-2 1.34e-1 0.88 0.89 0.41
256× 256 128× 128 5.19e-3 5.63e-3 7.67e-2 1.36 1.30 0.81
512× 512 256× 256 1.25e-3 1.42e-3 1.70e-2 2.06 1.99 2.17

Table 1: Global order of modelling term

solution on 512 × 512 (DNS 512) and an under-resolved DNS solution on
64× 64 points (DNS 64).

To check the source term we compare the temporal evolution of the mean
of the turbulent kinetic energy between the LES and the DNS 512 solution
filtered on a 64×64 grid. We have set Ceq = 2.75 in the case of constant wK

and Ceq = 1.75 for the dynamic wK . Figure 2 shows that the source term
gives the qualitatively correct dissipation of the SGS kinetic energy.

The LES should recover the GS values of a filtered DNS solution. There-
fore, we compare the mean value of the GS kinetic energy and the pressure
versus time. For the first run, with constant weight wK , an improvement of
the LES solution compared with the under-resolved solution can be observed.
With the use of the dynamic weight wK in the second run, the LES solution
recovers the kinetic energy very well for the whole simulation (see figure 3).
The reproduction of the pressure is also good up to time 6 but afterwards the
two solutions disperse (see figure 4). Nevertheless, the quality of the solution
of the second run is better than that of the first run.

The spectra of the kinetic energy for the two DNS and the LES solution at
times t = 5 and t = 10 are shown in figures 5 and 6 for both runs. In all cases
the LES solutions recover the spectra up to wave-number nr ≈ 10 for the
whole simulation, while the under-resolved DNS solution gets continuously
worse in time. The overprediction of the spectra of the LES solution between
wave-numbers 10 and 14 is probably a result of the backscatter-effect, where
the SGS kinetic energy forces the GS kinetic energy. The constant value
of nr ≈ 10 indicates that the number of grid points required to resolve one
wave-length is about 7 for this setting, which is a good result for a second
order scheme.

12



2 3 4 5 6 7 8 9 10

0.01

0.015

0.02

0.025

0.03

0.035

0.04 DNS 512
LES 64
DNS 64
Start

t

ρ
k̃

2 3 4 5 6 7 8 9 10

0.01

0.015

0.02

0.025

0.03

0.035

0.04 DNS 512
LES 64
DNS 64
Start

t

ρ
k̃

Figure 3: Time evolution of mean values of ρk̃ (constant and dynamic weight
wK)
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Figure 4: Time evolution of mean values of p (constant and dynamic weight
wK)
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Figure 5: Kinetic energy spectrum at t = 5 (constant and dynamic weight
wK)
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Figure 6: Kinetic energy spectrum at t = 10 (constant and dynamic weight
wK)
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