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The Discontinuous Galerkin Finite Element Method (DGFEM) for the
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order are derived and it is shown that the hp-DGFEM gives spectral conver-
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induced by incompatible initial data or piecewise analytic forcing terms. For
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1. Introduction

The Discontinuous Galerkin Finite Element Method (DGFEM) was originally intro-
duced as a time-stepping method for the numerical solution of ordinary differential
equations (see [7, 10, 19, 23] and the references there for recent developments). In
a series of important papers the DGFEM time discretization technique has been
applied to parabolic partial differential equations by Eriksson, Johnson, Larsson,
Thomée, Wahlbin and their co-workers (cf. [11, 12, 13, 14, 15, 16, 17, 18, 24]). We
refer also to the recent monograph [38] and the references there. Issues such as op-
timal order error estimates, a posteriori error analysis, adaptivity and nonlinearities
have been addressed and the method has reached a certain maturity by now. We
mention also Makridakis and Babuška who establish in [26] the quasioptimality of
the DGFEM in certain mesh-dependent norms.
However, all these works considered the “h-version” DGFEM where the convergence
is achieved by decreasing the time steps ∆t at a fixed (mostly low) approximation
order r. As ∆t → 0, this results typically in algebraic error estimates of the order
O(∆tr) for solutions depending smoothly on t. Error bounds that are explicit in r
can usually not be found in the literature.
In the 1980ies, the p- and hp-versions of the Finite Element Method (FEM) were
introduced by Babuška, Szabó and their co-workers (see the survey articles [3, 4],
the monograph [35] and the references there). In particular, it was shown for elliptic
problems with piecewise analytic solutions that the hp-FEM can achieve exponential
rates of convergence.
Solutions of parabolic problems exhibit similar analyticity properties: After a start-
up singularity induced by incompatibilities of the initial data the solutions are
smoothened and are analytic in time. This behaviour suggests that p- and hp-
version concepts can be applied to discretization methods for parabolic problems.
The p-version approach is to achieve convergence by increasing the polynomial ap-
proximation order r on fixed time steps ∆t, whereas the hp-version combines ju-
diciously h- and p-refinement techniques. An attempt in that direction has been
made by Babuška and Janik in [2]. There, the p- and hp-version of a Petrov-
Galerkin method in time are analyzed. However, severe restrictions on the space
discretizations were required and no exponential convergence results were derived.
In this work we introduce the hp-version of the DGFEM for the temporal discretiza-
tion of parabolic equations. We show for this hp-version approach that spectral and
exponential convergence rates can be obtained.
Complementary to the usual Method of Lines, the hp-DGFEM reduces the original
transient equation to a sequence of stationary problems which have still to be solved
numerically in order to get a fully discrete scheme. Arbitrary variations in the
temporal approximation order r as well as in the time step ∆t are allowed and for
linear parabolic problems the hp-DGFEM is unconditionally stable independently
of the spatial discretization. This is crucial, since hp methods in space require
highly anisotropic meshes for the efficient resolution of layers and fronts which tend
to produce very stringent CFL limitations in explicit time-stepping schemes. The
underlying variational structure of the hp-DGFEM is moreover well suited for a-
posteriori analysis and adaptivity.
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Whereas we employ in the present work a DG approach for the time discretization,
it should be remarked here that DG methods are also successfully applied in spatial
discretizations, particularly in the context of convection-diffusion problems. Recent
results in that direction can be found in [5, 9, 30] and the references there. We refer
also to the survey article [8].
The outline of this paper is as follows: In Section 2 we present our parabolic setting
based on a Gelfand triple of Hilbert spaces and we formulate the DG Finite Element
Method. In Section 3 error estimates that are explicit in r and ∆t are derived and it
is shown that p-version (or spectral) accuracy can be achieved in transient problems
with smooth time dependence.
Often, smooth time dependence may be an unrealistic assumption, since solutions
of parabolic problems can exhibit singular behaviour induced e.g. by incompatible
initial data or by piecewise analytic forcing terms. In Section 4 we analyze the
structure of such singularities and establish bounds on the growth of the solutions’
time derivatives which are explicit in the regularity order and the time. We confine
ourselves to self-adjoint operators and refer to the forthcoming work [34] where these
regularity results are extendend to the non-selfadjoint case by the use of semigroup
theory.
These estimates are crucial in Section 5 where it is proved that the hp-DGFEM
based on geometric time partitions and linearly increasing time approximation orders
results in exponential rates of convergence for solutions of parabolic problems that
are piecewise analytic in time. For fixed approximation orders algebraically graded
time meshes can be employed and for each approximation order we determine in
Section 5 the graded mesh that yields the optimal algebraic convergence rate.
A complete hp discretization in time and space is discussed exemplarily for the heat
equation in Section 6. At each time step a system of possibly singularly perturbed
reaction-diffusion equations is solved. If the hp-Finite Element Methods for these
spatial problems take into account certain mesh design principles using anisotropic
and geometric mesh refinement techniques, exponential rates of convergence in time
and space can be achieved. In Section 6.4 the theoretical results are confirmed in
numerical examples.
Throughout, standard notations and conventions are followed. For two Banach
spaces X, Y we denote by L(X, Y ) the Banach space of all linear and bounded
operators X → Y equipped with the operator norm.
To describe time discretizations we use Bochner spaces of functions which map
a (time) interval I = (a, b) into X : We denote by Lp(I;X), 1 ≤ p ≤ ∞, and
Hk(I;X), 0 ≤ k ∈ R, the corresponding Lebesgue and Sobolev spaces. Ck(I;X) are
the functions that are k times continuously differentiable and D(I;X) are the C∞-
functions with compact support in I. Pr(I;X) denotes the set of all polynomials of
degree ≤ r with coefficients in X , i.e. p(t) ∈ Pr(I;X) if and only if p(t) =

∑r
j=0 xjtj

for some xj ∈ X and t ∈ I. If X = R, the dependence on X is omitted.

2. DGFEM for Abstract Parabolic Problems

We present in Section 2.1 our parabolic setting and formulate in Section 2.2 the
Discontinuous Galerkin Finite Element Methods (DGFEM).
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2.1. Abstract Parabolic Problems

Let X and H be complex, separable Hilbert spaces, with dense injection X
d
↪→ H

and norms ‖ · ‖X and ‖ · ‖H , respectively. Denoting by (·, ·)H the scalar product on
H and identifying H with H∗, the antidual of H , we get the Gelfand triple

X
d
↪→ H ∼= H∗ d

↪→ X∗. (2.1)

We denote by (·, ·)X∗×X the duality pairing in X∗ ×X and by ‖ · ‖X∗ the norm in
X∗. For y ∈ H , x ∈ X we have (y, x)X∗×X = (y, x)H . We assume in addition that

X
d
↪→ H is compactly imbedded. (2.2)

In the triple (2.1) we consider the abstract (linear) parabolic problem

u′(t) + Lu(t) = g(t), t ∈ J = (0, T ), 0 < T < ∞, (2.3)

u(0) = u0. (2.4)

We assume L ∈ L(X,X∗) to be an elliptic “spatial differential” operator given as
(Lu, v)X∗×X = a(u, v) where a : X×X → C is a continuous, coercive and self-adjoint
sesquilinear form with

|a(u, v)| ≤ α‖u‖X‖v‖X , u, v ∈ X, (2.5)

Re a(u, u) ≥ β‖u‖2X, u ∈ X, (2.6)

a(u, v) = a(v, u), ∀u, v ∈ X. (2.7)

L is then an isomorphism in L(X,X∗) with ‖L‖L(X,X∗) ≤ α and ‖L−1‖L(X∗,X) ≤ 1
β .

The standard weak form of (2.3), (2.4) is: Find u ∈ L2(J ;X) ∩ H1(J ;X∗) (which
implies u ∈ C([0, T ];H)) such that u(0) = u0 and

−
∫

J

(u(t), v)Hϕ
′(t)dt+

∫

J

a(u, v)ϕ(t)dt =

∫

J

(g(t), v)X∗×Xϕ(t)dt (2.8)

for all v ∈ X and ϕ ∈ D(J).
Examples of parabolic problems that fit into that framework are the Stokes problem
or the standard heat equation [33].
Concerning the data we assume always at least that u0 ∈ H and g ∈ L2(J ;H). In
that case (2.3), (2.4) has a unique weak solution u ∈ L2(J ;X)∩H1(J ;X∗) and there
holds the a-priori estimate [25]

‖u‖L2(J ;X) + ‖u′‖L2(J ;X∗) ≤ C(‖g‖L2(J ;H) + ‖u0‖H). (2.9)

To describe the smoothness of the initial values we introduce spaces between H and
X defined by the K-method of interpolation [25, 39] as

Hθ = (H,X)θ,2, 0 ≤ θ ≤ 1

(with the usual convention that H0 = H and H1 = X). In Section 4 we investigate
the time analyticity of solutions of (2.3), (2.4) where

u0 ∈ Hθ for some 0 ≤ θ ≤ 1 (2.10)
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and where the function g ∈ L2(J ;H) is analytic as a function on [0, T ] with values
in H , i.e. the time derivatives of g can be controlled by

‖g(l)(t)‖H ≤ Cl!dl, t ∈ [0, T ], l ∈ N0 (2.11)

with C and d independent of l and t.
In the error analysis ahead we need sometimes the assumption

u ∈ C([ε, T ];X), ∀ε > 0. (2.12)

Condition (2.12) holds true if u belongs to H1(J ;X) or if assumption (2.11) on the
right hand side is fulfilled.

Remark 2.1 The compactness assumption (2.2) and the self-adjointness assump-
tion (2.7) are not essential. They allow us in Section 4 to study the time regularity by
convenient Fourier series techniques. However, by means of classical semigroup the-
ory all these regularity results can be generalized to the non-selfadjoint case, where
(2.2) and (2.7) are not valid anymore. These rather technical issues are presented
in the forthcoming work [34].

2.2. DGFEM Discretization

Let M be a partition of J = (0, T ) into M(M) subintervals {Im = (tm−1, tm)}Mm=1.
The time step km is km := tm − tm−1. We define the one-sided limits in H (or X) of
a function u as

u+
m = lim

s→0, s>0
u(tm + s), 0 ≤ m ≤ M − 1, u−

m = lim
s→0, s>0

u(tm − s), 1 ≤ m ≤ M

and set [u]m = u+
m − u−

m, 1 ≤ m ≤ M − 1.
For u, v ∈ L2(Im;X) with u′, v′ ∈ L2(Im;X∗) we have u, v ∈ C(Im;H) and the
one-sided limits exist in H . On the mesh M = {Im}Mm=1 we introduce the space
Cb(M;X) = {u : J → X : u|Im ∈ Cb(Im;X)} of X-valued functions which are
bounded and piecewise continuous. (Cb(Im;X) denotes the bounded continuous
functions on Im.) We define

BDG(u, v) :=
M∑

m=1

∫

Im

{(u′, v)X∗×X + a(u, v)}dt (2.13)

+
M∑

m=2

([u]m−1, v
+
m−1)H + (u+

0 , v
+
0 )H ,

FDG(v) :=
M∑

m=1

∫

Im

(g(t), v)X∗×Xdt+ (u0, v
+
0 )H . (2.14)

It can easily be seen by integration by parts that:

Lemma 2.2 Let u ∈ L2(J ;X)∩H1(J ;X∗) be a weak solution of (2.3), (2.4) in the
sense of (2.8). Then it satisfies BDG(u, v) = FDG(v) for all v ∈ Cb(M;X).
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We associate with each time interval Im an approximation order rm ≥ 0 and store
these temporal orders in the vector r := {rm}Mm=1. The semidiscrete space in which
we want to discretize (2.3), (2.4) in time is

Vr(M;X) = {u : J → X : u|Im ∈ Prm(Im;X), 1 ≤ m ≤ M}. (2.15)

Vr(M;X) is a linear space consisting of piecewise polynomials with coefficients inX .
If r is constant on each time interval, i.e. rm = r for all 1 ≤ m ≤ M , we write simply
Vr(M;X). We set NRDOF(Vr(M;X)) :=

∑M(M)
m=1 (rm+1) for the number of degrees

of freedom of the time discretization. We note in passing that NRDOF(Vr(M;X))
spatial problems must still be discretized to obtain a fully discrete scheme (see
Section 6 ahead). Therefore, NRDOF(Vr(M;X)) can be viewed as a crude measure
for the cost of a given time-stepping scheme.

DGFEM 2.3 Let M = {Im} be a partition of J = (0, T ) and r an approximation
order distribution on M. The DGFEM for (2.3), (2.4) is to find U ∈ Vr(M;X)
such that

BDG(U, V ) = FDG(V )

for all V ∈ Vr(M;X).

Remark 2.4 Note that in the form BDG we have (U ′, V )X∗×X = (U ′, V )H for all
U, V ∈ Vr(M;X).

Remark 2.5 Owing to the discontinuity of the trial and test space the DGFEM
2.3 can be interpreted as implicit time marching scheme, where U is obtained by
solving successively evolution problems on Im for m = 1, . . . ,M with initial values
U−
m−1. More precisely: If U is already given on the time intervals Ik, 1 ≤ k ≤ m−1,

we determine U on Im by solving:
Find U ∈ Prm(Im;X) such that

∫

Im

{(U ′, V )H + a(U, V )}dt+ (U+
m−1, V

+
m−1)H =

∫

Im

(g, V )X∗×Xdt+ (U−
m−1, V

+
m−1)H

(2.16)
for all V ∈ Prm(Im;X). Here we set U−

0 = u0.

Proposition 2.6 The DGFEM 2.3 has a unique solution U ∈ Vr(M;X). If u is
the solution of (2.3), (2.4), we have the Galerkin orthogonality

BDG(u− U, V ) = 0 ∀V ∈ Vr(M;X).

Proof : This is shown using similar arguments as in [38]. !

Lemma 2.7 For all V,W ∈ Vr(M;X) there holds

BDG(V,W ) =
M∑

m=1

∫

Im

(−V,W ′)H + a(V,W )dt

5



−
M−1∑

m=1

(V −
m , [W ]m)H + (V −

M ,W−
M)H , (2.17)

Re BDG(V −W,V −W ) =
M∑

m=1

∫

Im

Re a(V −W,V −W )dt

+
1

2
‖(V −W )+0 ‖2H +

1

2

M−1∑

m=1

‖[V −W ]m‖2H +
1

2
‖(V −W )−M‖2H . (2.18)

Proof : Integration by parts yields

BDG(V,W ) =
M∑

m=1

∫

Im

{−(V,W ′)H + a(V,W )}dt

+
M∑

m=1

(V −
m ,W−

m)H − (V +
m−1,W

+
m−1)H +

M∑

m=2

([V ]m−1,W
+
m−1)H + (V +

0 ,W+
0 )H .

Rearranging the nodal contributions gives the first claim (2.17). To prove (2.18),
we write

BDG(V −W,V −W ) =
1

2
BDG(V −W,V −W ) +

1

2
BDG(V −W,V −W ) =: T1 + T2.

Evaluating T1 with (2.13) and T2 with (2.17) shows the assertion. !

3. hp Error Analysis

In Sections 3.1, 3.2 and 3.3 we derive error estimates for the DGFEM which are
explicit in the time steps km and in the polynomial orders rm. As a consequence, we
establish in Section 3.4 optimal convergence rates for the h- and p-version DGFEM
on quasiuniform temporal partitions. In particular, the obtained bounds show that
the DGFEM gives spectral accuracy for solutions with smooth time dependence.

3.1. Abstract Error Analysis of the DGFEM

First, we introduce a projector and show that it is well defined (we refer also to [38,
p. 185] where the same projector is introduced, but with values in H).

Definition 3.1 Let I = (−1, 1). For a function u ∈ L2(I;X) which is continuous
at t = 1 we define Πru ∈ Pr(I;X), r ∈ N0, via the r + 1 conditions

∫

I

(Πru− u, q)Hdt = 0 ∀q ∈ Pr−1(I;X), Πru(+1) = u(+1) ∈ X. (3.1)

Lemma 3.2 Πr in Definition 3.1 is well defined.

Proof : Assume that u1 and u2 are two polynomials in Pr(I;X) which satisfy (3.1).
Especially, we have u1(1) = u2(1). Denote by Li, i ≥ 0, the Legendre polynomial of
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degree i in P i(I). The difference u1 − u2 can be developed into the series u1 − u2 =∑r
i=0 viLi with vi =

∫
I(u1 − u2)Lidt ∈ X . Fix now k ∈ {0, . . . , r − 1}. From

(3.1) follows that
∫
I(u1 − u2, vLk)Hdt = 0 for all v ∈ X . Using the orthogonality

properties of the Legendre polynomials we get (vk, v)H = 0 for all v ∈ X . Since X
is dense in H , we conclude that vk = 0 in H and thus vk = 0 in X . The difference
u1 − u2 is therefore given by u1 − u2 = vrLr, vr ∈ X . Because of u1(1) = u2(1) we
have vr = 0, which proves the uniqueness of a polynomial satisfying the conditions
in Definition 3.1. The existence follows similarly by setting

Πru =
r−1∑

i=0

uiLi + (u(1)−
r−1∑

i=0

ui)Lr =
r−1∑

i=0

uiLi + (
∞∑

i=r

ui)Lr, (3.2)

where u =
∑∞

i=0 uiLi is the Legendre expansion of u. !

On an arbitrary interval (a, b) with k := b − a > 0 we define Πr
(a,b) via the linear

map Q : (−1, 1) → (a, b), ξ ,→ x = 1
2(a + b+ ξk) as Πr

(a,b)u = [Πr(u ◦Q)] ◦Q−1.

Proposition 3.3 Let u be the exact solution of (2.3), (2.4) and U the semidiscrete
solution of the DGFEM 2.3 in Vr(M;X). Assume (2.12). Let Iu ∈ Vr(M;X) be
the interpolant of u which is defined on each time interval Im as Iu|Im = Πrm

Im(u|Im).
Then there holds

‖u− U‖L2(J ;X) ≤ C(1 +
α

β
)‖u− Iu‖L2(J ;X).

The constant C is in particular independent of T .

Remark 3.4 Due to (2.12) the point values inX used for the intervalwise definition
of I are well defined.

Proof : By Lemma 2.7 and the coercivity condition (2.6) we have

Re BDG(V −W,V −W ) ≥ β

∫

J

‖V −W‖2Xdt

+
1

2
‖(V −W )+0 ‖2H +

1

2

M−1∑

m=1

‖[V −W ]m‖2H +
1

2
‖(V −W )−M‖2H

for all V,W ∈ Vr(M;X). Hence, we get

β

∫

J

‖U − Iu‖2Xdt ≤ Re BDG(U − Iu, U − Iu) ≤ |BDG(u− Iu, U − Iu)|,

where we used in the last step Proposition 2.6. Writing Θ for U − Iu we get with
Lemma 2.7 and the definition of I that

β

∫

J

‖U − Iu‖2Xdt ≤
∫

J

|{−(u− Iu,Θ′)H}+ a(u− Iu,Θ)|dt

+
M−1∑

m=1

|((u− Iu)−m, [Θ]m)H |+ |((u− Iu)−M ,Θ−
M)H |

=

∫

J

|a(u− Iu,Θ)|dt ≤ α

∫

J

‖u− Iu‖X‖Θ‖Xdt.

7



We conclude now with the inequality of Cauchy-Schwarz that
∫
J ‖U − Iu‖2Xdt ≤

α2

β2

∫
J ‖u− Iu‖2Xdt. The assertion follows with the triangle inequality. !

3.2. Properties of the Projector Πr

We analyze the projector Πr in Definition 3.1. Let I = (−1, 1) and denote by
{Li}i≥0, Li ∈ P i(I), the Legendre polynomials on I.

Lemma 3.5 Let u ∈ L2(I;X) be continuous at t = 1 and let u =
∑∞

i=0 uiLi be
the Legendre expansion of u with coefficients ui =

∫
I uLi(t)dt ∈ X. For r ∈ N0 we

denote by P r the L2(I;X)-projection onto Pr(I;X). There holds:

‖u− Πru‖2L2(I;X) ≤ C‖u− P ru‖2L2(I;X) + Cmax(1, r)−1(
∞∑

i=r+1

‖ui‖X)2.

Proof : From (3.2) we have Πru =
∑r−1

i=0 uiLi + (
∑∞

i=r ui)Lr. Therefore,

u−Πru =
∞∑

i=r

uiLi − (
∞∑

i=r

ui)Lr =
∞∑

i=r+1

uiLi − (
∞∑

i=r+1

ui)Lr.

Due to the orthogonality properties of the Legendre polynomials this is u− Πru =
(u− P ru)− (

∑∞
i=r+1 ui)Lr and the assertion follows by the triangle inequality. !

Lemma 3.6 For r ∈ N0 and u ∈ H1(I;X) we have

‖u−Πru‖2L2(I;X) ≤ C{‖u− P ru‖2L2(I;X) +
‖u′‖2L2(I;X)

max(1, r2)
}, (3.3)

‖u−Πru‖2L2(I;X) ≤ C inf
q∈Pr(I;X)

{‖u− q‖2L2(I;X) +
‖u′ − q′‖2L2(I;X)

max(1, r2)
}. (3.4)

Proof : Taking into account Lemma 3.5 the first assertion in (3.3) follows if we prove

∞∑

i=r+1

‖ui‖X ≤
C

max(1, r)
1
2

‖u′‖L2(I;X) (3.5)

where u =
∑∞

i=0 uiLi. We develop u′ into the Legendre series u′ =
∑∞

i=0 biLi with
coefficients bi ∈ X . Then u can be written as u(t) =

∑∞
i=0 bi

∫ t

−1 Li(s)ds + u(−1).

Recall that
∫ t
−1Li(s)ds =

1
2i+1(Li+1(t)− Li−1(t)) for i ≥ 1. Hence,

u = (b0 +
u(−1)

2
)L0 +

∞∑

i=1

bi
2i+ 1

Li+1 −
∞∑

i=1

bi
2i+ 1

Li−1

= (b0 +
u(−1)

2
)L0 +

∞∑

i=2

bi−1

2i− 1
Li −

∞∑

i=0

bi+1

2i+ 3
Li.
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Comparing equal coefficients in the Legendre expansions we get

u0 = b0 +
u(−1)

2
−

b1
3
, u1 = −

b2
5
,

ui =
bi−1

2i− 1
−

bi+1

2i+ 3
, i ≥ 2.

Consequently, we have for r ≥ 1

∞∑

i=r+1

ui =
∞∑

i=r+1

bi−1

2i− 1
−

bi+1

2i+ 3
=

∞∑

i=r

bi
2i+ 1

−
∞∑

i=r+2

bi
2i+ 1

=
br

2r + 1
+

br+1

2r + 3
.

This yields

∞∑

i=r+1

‖ui‖X ≤ C(
‖br‖2X

(2r + 1)2
+

‖br+1‖2X
(2r + 3)2

)
1
2 ≤ Cr−

1
2‖u′‖L2(I;X),

which proves (3.5) and thus (3.3). For r = 0 the inequality (3.5) is established
similarly.
Let now q ∈ Pr(I;X) be arbitrary. Insert u − q into (3.3): The assertion (3.4)
follows from the reproducing properties of the projectors Πr and P r and from the
fact that ‖u− P ru‖L2(I;X) ≤ ‖u− q‖L2(I;X). !

Lemma 3.7 For u ∈ L2(I;X) which is continuous at t = 1 and r ∈ N0 we have

‖Πru‖2L2(I;X) ≤ Cmax(1, r)‖u‖2L2(I;X) +
C

max(1, r)
‖u(+1)‖2X.

Proof : Assume first r ≥ 1. We develop u into the Legendre series u =
∑∞

i=0 uiLi.
Due to (3.2) we have Πru =

∑r−1
i=0 uiLi + (u(1)−

∑r−1
i=0 ui)Lr. Then by the triangle

inequality

‖Πru‖2L2(I;X) ≤
r−1∑

i=0

‖ui‖2X
2

2i+ 1
+

C

max(1, r)
‖u(1)−

r−1∑

i=0

ui‖2X

≤ ‖u‖2L2(I;X) +
C

max(1, r)
‖u(1)‖2X +

C

max(1, r)
(
r−1∑

i=0

‖ui‖X)2.

The last sum can be bounded by

(
r−1∑

i=0

‖ui‖X)2 ≤ (
r−1∑

i=0

‖ui‖2X
2

2i+ 1
)(

r−1∑

i=0

2i+ 1

2
) ≤

2r + 1

2
r‖u‖2L2(I;X),

which proves the assertion. The modifications for r = 0 are obvious. !
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Lemma 3.8 Consider two polynomial degrees 0 ≤ r′ ≤ r. Then we have for func-
tions u ∈ L2(I;X) which are continuous at t = 1:

‖u− Πru‖2L2(I;X) ≤ Cmax(1, r)‖u− Πr′u‖2L2(I;X).

Proof : Applying Lemma 3.7 for u− Πr′u yields

‖Πru−Πr′u‖L2(I;X) ≤ Cmax(1, r)‖u−Πr′u‖L2(I;X).

The assertion follows with the triangle inequality. !

3.3. hp Approximation Results

We recall the following hp approximation result from [35]. There, the proof is pre-
sented for real-valued functions, but the extension to the Bochner spaces considered
here is straightforward.

Proposition 3.9 Let I = (−1, 1) and let u ∈ Hs0+1(I;X) for some integer s0 ∈ N0.
Then there exists q ∈ Pr(I;X), r ∈ N0, such that

‖u′ − q′‖2L2(I;X) ≤ C
(r − s)!

(r + s)!
|u′|2Hs(I;X),

‖u− q‖2L2(I;X) ≤ C
1

max(1, r2)

(r − t)!

(r + t)!
|u′|2Ht(I;X)

for any 0 ≤ s, t ≤ min(r, s0). Additionally, q(±1) = u(±1) if r ≥ 1.

The application of Proposition 3.9 in Lemma 3.6 and scaling gives estimates for Πr
I .

By interpolation these estimates can be extended straightforwardly to noninteger
Sobolev spaces.

Theorem 3.10 Let I = (a, b), k = b − a, r ∈ N0 and u ∈ Hs0+1(I;X) for some
s0 ∈ N0. Then

‖u−Πr
Iu‖2L2(I;X) ≤ C(

k

2
)2(s+1) 1

max(1, r)2
(r − s)!

(r + s)!
‖u(s+1)‖2L2(I;X)

for any integer 0 ≤ s ≤ min(r, s0). Moreover, we get by interpolation

‖u− Πr
Iu‖2L2(I;X) ≤

C

max(1, r)2
Γ(r + 1− s)

Γ(r + 1 + s)
(
k

2
)2(s+1)‖u‖2Hs+1(I;X)

for any real 0 ≤ s ≤ min(r, s0).

Proposition 3.3 and Theorem 3.10 result in hp error estimates for the DGFEM 2.3
which are valid if the exact solution is at least in H1(J ;X):

Theorem 3.11 Let u be the exact solution of (2.3), (2.4) and U the semidiscrete
solution of the DGFEM 2.3 in Vr(M;X). Assume that u|Im ∈ Hs0,m+1(Im;X) for
1 ≤ m ≤ M and s0,m ∈ N0. Then we have

‖u− U‖2L2(J ;X) ≤ C
M∑

m=1

(
km
2
)2(sm+1) max(1, rm)

−2Γ(rm + 1− sm)

Γ(rm + 1 + sm)
‖u‖2Hsm+1(Im;X)

for any 0 ≤ sm ≤ min(rm, s0,m).
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3.4. h- and p-Version DGFEM on Quasiuniform Time Partitions

In the h-version of the DGFEM the approximation order is kept fixed, rm = r,
where r is typically low. The convergence of the semidiscrete DGFEM solutions
U in Vr(M;X) to the exact one is obtained by decreasing the length of the time
steps in a quasi- or non-quasiuniform way. The p-version of the DGFEM on the
other hand uses a fixed temporal partition M which is typically quasiuniform. The
convergence is achieved by letting the time approximation order r → ∞. From
Theorem 3.11 we can easily establish the following convergence rates for the h- and
p-version on quasiuniform time partitions. Remark that Γ(r+1−s)

Γ(r+1+s) ∼ r−2s for r → ∞,

as can be seen from Stirling’s formula [31].

Corollary 3.12 Let M be a time partition with quasiuniform steps where k :=
max{km}/km ≤ τ for a constant τ > 0. Let the approximation order be constant,
rm = r ∈ N0. Let u ∈ Hs0+1(J ;X), s0 ∈ N0, be the exact solution of (2.3), (2.4)
and U the semidiscrete solution of the DGFEM 2.3 in Vr(M;X). Then there holds

‖u− U‖2L2(J ;X) ≤ C
k2{min(s0,r)+1}

r2(s0+1)
‖u‖2Hs0+1(J ;X), (3.6)

where C depends on s0, but is independent of k and r.

Remark 3.13 The error estimates in Corollary 3.12 are uniform in k and r. They
show that the DGFEM converges either as the time steps are reduced (k → 0) or
as the temporal order r is increased (r → ∞). They also show that for smooth
solutions where s0 is large it is more advantageous to increase r than to reduce k
at fixed, low r. The estimates in Corollary 3.12 give algebraic convergence rates in
N = NRDOF(Vr(M;X)), namely ‖u−U‖L2(J ;X) ≤ CN−min(r,s0)−1, if the h-version
is used with a fixed approximation order r (in this case N ∼ 1/k). If the p-version
is employed, we get accordingly ‖u− U‖L2(J ;X) ≤ CN−s0−1 (here N ∼ r).

Remark 3.14 For solutions u which are analytic in J = (0, T ) the p-version results
in exponential rates of convergence. Namely, by standard approximation theory
for analytic functions there holds as a consequence of Proposition 3.3 and Lemma
3.6 that ‖u − U‖2L2(J ;X) ≤ C exp(−br). Therefore, the p-version of the DGFEM is
especially recommended for problems where the exact solution is analytic in time.

4. Time Regularity

In this section we study the analyticity properties of solutions u of (2.3), (2.4). In
Section 4.1 we use Duhamel’s formula to express the evolution operator and we
derive in Section 4.2 bounds on the derivatives of u that are explicit in l and t.

4.1. The Evolution Operator

Due to (2.7) the form (u, v) ,→ a(u, v) is an inner product on X and we can equip X
with the energy norm ‖u‖2E = a(u, u). We have (cf. (2.5), (2.6)) β‖u‖2X ≤ ‖u‖2E ≤

11



α‖u‖2X. The assumption (2.2) implies the existence of sequences {λi}i∈N and {ϕi}i∈N
of real eigenvalues λi > 0 and eigenfunctions ϕi ∈ X of the eigenvalue problem

u ∈ X : a(u, v) = λ(u, v)H, ∀v ∈ X.

We can assume that the eigenvalues λi are non-decreasing and that the eigenfunc-
tions {ϕi} form an orthonormal basis of H . We have

‖u‖2H =
∞∑

i=1

|(u,ϕi)H |2, ‖u‖2E =
∞∑

i=1

λi|(u,ϕi)H |2 (4.1)

for functions u ∈ H and u ∈ X , respectively. We define for t ≥ 0 the linear operator
T (t) on H as

T (t)u =
∞∑

i=1

e−λit(u,ϕi)Hϕi, u ∈ H, t ≥ 0. (4.2)

Obviously, we have the semigroup properties

T (t+ s) = T (t)T (s) for t, s ≥ 0, T (0) = I. (4.3)

In terms of the semigroup T (t) the solution u of (2.3), (2.4) with data u0 ∈ H and
g ∈ L2(J ;H) can be expressed by Duhamel’s formula

u(t) = T (t)u0 +

∫ t

0

T (t− s)g(s)ds, 0 ≤ t ≤ T. (4.4)

Proposition 4.1 There exist constants C1, C2, d1, d2 > 0 such that

‖T (l)(t)‖2L(H,X) ≤ C1d
2l+1
1 Γ(2l + 2)t−(2l+1), ‖T (l)(t)‖2L(X,X) ≤ C2d

2l
2 Γ(2l + 1)t−2l

for all t > 0 and l ∈ N0.

Proof : Let first u be in H and set ui = (u,ϕi)H . We have for l ∈ N0 that
T (l)(t)u(x) =

∑∞
i=1(−λi)le−λituiϕi(x) and get with (4.1)

‖T (l)(t)u‖2E =
∞∑

i=1

λ2l
i e

−2λit|ui|2λi =
∞∑

i=1

λ2l+1
i e−2λit|ui|2.

The function f(λ) = λ2l+1e−2λt takes its maximal value on R+ at λmax = 2l+1
2t . This

gives

‖T (l)(t)u‖2E ≤ f(λmax)‖u‖2H ≤ (2l + 1)2l+1(
1

2
)2l+1t−(2l+1)e−(2l+1)‖u‖2H.

An application of the formula of Stirling [31] yields

(2l + 1)2l+1e−(2l+1) ≤ CΓ(2l + 2)
1√

2l + 1
≤ CΓ(2l + 2),
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which allows us to conclude that

β‖T (l)(t)u‖2X ≤ ‖T (l)(t)u‖2E ≤ C(
1

2
)2l+1Γ(2l + 2)t−(2l+1)‖u‖2H.

This proves the differentiability of T as a function of t > 0 with values in L(H,X)
and the first assertion.
Fix now u ∈ X and set, as before, ui = (u,ϕi)H . We consider only l ≥ 1, the
case l = 0 being completely analogous. We get ‖T (l)(t)u‖2E =

∑∞
i=1 λ

2l
i e

−2λit|ui|2λi.
Define g(λ) = λ2le−2λt. Here, the maximal value is at λmax = 2l

2t , which gives

‖T (l)(t)u‖2E ≤ g(λmax)‖u‖2E ≤ (2l)2l(
1

2
)2lt−2le−2l‖u‖2E.

The second assertion follows again with the formula of Stirling. !

Interpolating the estimates in Proposition 4.1 gives:

Proposition 4.2 There are constants C, d > 0 such that

‖T (l)(t)‖2L(Hθ,X) ≤ Cd2l+1−θΓ(2l + 2− θ)t−(2l+1)+θ

for t > 0, l ∈ N0, 0 ≤ θ ≤ 1.

4.2. Analyticity

We split the solution u of (2.3), (2.4) into u = u1 + u2, where u1 and u2 solve

u′
1 + Lu1 = 0, u1(0) = u0, u′

2 + Lu2 = g, u2(0) = 0. (4.5)

Proposition 4.2 and (4.4) allow us to control u1. It remains to derive analogous
bounds for u2:

Lemma 4.3 Under the analyticity assumption (2.11) we have for u2 in (4.5) the
solution formula u2(t) =

∫ t
0 T (s)g(t− s)ds and there holds

u(l)
2 (t) =

l−1∑

i=0

T (i)(t)g(l−1−i)(0) +

∫ t

0

T (s)g(l)(t− s)ds, l ≥ 1.

Proof : u2 can be represented according to (4.4). The first claim is then a simple
change of variables, the second one is obtained from the first one with an induction
argument. !

Lemma 4.4 Assume (2.11). Then there exist constants C, d > 0 such that

‖u(l)
2 (t)‖X ≤ CdlΓ(l + 1)(t1/2 +

l−1∑

i=0

t−i−1/2)

for l ∈ N0, t > 0. (For l = 0 the last sum is empty.)
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Proof : Because of Lemma 4.3 we have

‖u(l)
2 (t)‖X ≤

l−1∑

i=0

‖T (i)(t)‖L(H,X)‖g(l−1−i)(0)‖H +

∫ t

0

‖T (s)‖L(H,X)‖g(l)(t− s)‖Hds

(4.6)
We first bound the sum. Recall from Proposition 4.2 that for any t > 0, i ∈ N0

‖T (i)(t)‖L(H,X) ≤ Cdi+1/2
1 Γ(2i+ 2)1/2t−i−1/2.

Employing standard properties of the Gamma function [31] we get

Γ(2i+ 2)1/2 ≤ C2i+1/2Γ(i+ 1)1/2Γ(i+ 3/2)1/2 ≤ C2i+1/2(i+ 1)!

and consequently

‖T (i)(t)‖L(H,X) ≤ Cdi+1/2
2 (i+ 1)!t−i−1/2, i ∈ N0. (4.7)

Using (2.11) and (4.7) we conclude

l−1∑

i=0

‖T (i)(t)‖L(H,X)‖g(l−1−i)(0)‖H ≤ Cdl−1+1/2
3

l−1∑

i=0

(i+ 1)!(l − 1− i)!t−i−1/2

≤ Cdl−1/2
3 l!

l−1∑

i=0

(
l

i+ 1

)−1

t−i−1/2 ≤ Cdl−1/2
3 Γ(l + 1)

l−1∑

i=0

t−i−1/2.

Using again (2.11) and (4.7) the integral I in (4.6) can be bounded by

I ≤ Cdl4l!

∫ t

0

s−1/2ds = Cdl4Γ(l + 1)t1/2.

This proves the assertion. !

Proposition 4.5 Assume (2.11). Then there exist constants C, d > 0 such that

‖u(l)
2 (t)‖2X ≤ Cd2lΓ(2l + 2)t−2l+1 for l ∈ N0 and 0 < t ≤ min(1, T ).

Proof : For 0 < t ≤ min(1, T ) we have from Lemma 4.4

‖u(l)
2 (t)‖X ≤ Cdl1Γ(l + 1)(l + 1)t−l+1−1/2 ≤ Cdl2Γ(l + 1)t−l+1/2.

There holds Γ(l + 1)2 ≤ Γ(l + 1)Γ(l + 3/2) = CΓ(2l + 2)2−2(l+1), which finishes the
proof. !

Combining the estimates for u1 and u2 obtained in Proposition 4.2 and Proposition
4.5 results in:

Proposition 4.6 Let u0 ∈ Hθ for 0 ≤ θ ≤ 1 and let g ∈ L2(J ;H) fulfill (2.11).
Then the solution u of (2.3), (2.4) satisfies

‖u(l)(t)‖2X ≤ Cd2lΓ(2l + 2)t−(2l+1)+θ
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for l ∈ N0 and 0 < t ≤ min(1, T ). The constants C and d depend on u0 and g, but
are independent of t and l. Further, if 0 < a < b ≤ min(1, T ), then

∫ b

a

‖u(l)(t)‖2Xdt ≤ Cd2lΓ(2l + 2)a−2l+θ

for all l ∈ N. By interpolation, we get immediately

‖u‖2Hs((a,b);X) ≤ Cd2sΓ(2s+ 3)a−2s+θ (4.8)

for all real numbers s ≥ 1 and 0 < a < b ≤ min(1, T ).

Proposition 4.6 describes the singular temporal structure of the solution at t = 0.
The regularity is given explicitly in terms of t and l (respectively s). However, the
farther away from the origin we move the better the solution is smoothened and
the better it behaves analytically. This is expressed (qualitatively) in the following
proposition. It is a direct consequence of Proposition 4.2 and Lemma 4.4.

Proposition 4.7 Let u0 ∈ H and let g ∈ L2(J ;H) satisfy (2.11). Fix 0 < t0 < T .
Then we have

‖u(l)(t)‖X ≤ Cdll!, l ∈ N0, t0 ≤ t ≤ T

with constants C and d just depending on t0, T , u0 and g. In particular, the solution
u satisfies (2.12).

On the first time interval I1 near t = 0 we approximate in Section 5 the solution u
by a constant polynomial and use the following Hardy-type inequality:

Proposition 4.8 Let u0 ∈ Hθ for some 0 ≤ θ ≤ 1 and let g satisfy (2.11). Then

there holds
∫ k

0 ‖u(t) − u(k)‖2Xdt ≤ Ckθ for any 0 < k ≤ min(1, T ) with a constant
C independent of k. (The point value u(k) ∈ X is well defined due to (2.12).)

Proof : We split the solution u into u1 + u2 as in (4.5). Then:

∫ k

0

‖u− u(k)‖2Xdt ≤ C

∫ k

0

‖u1(t)‖2Xdt+ C

∫ k

0

‖u1(k)‖2Xdt

+C

∫ k

0

‖u2(t)‖2Xdt+ C

∫ k

0

‖u2(k)‖2Xdt =: T1 + T2 + T3 + T4.

We bound first T1: To do so, let S be the operator u0 ,→ Su0 = u1 which maps the
initial condition u0 to the solution u1 of the homogeneous equation in (4.5). By (4.4)
and Proposition 4.2 we see that ‖Su0‖2L2((0,k);X) ≤ Ck‖u0‖2X . Using a-priori estimates

as in (2.9) it can moreover be seen that ‖Su0‖2L2((0,k);X) ≤ ‖Su0‖2L2(J ;X) ≤ C‖u0‖2H
with a constant C independent of k. Interpolating these estimates results in

‖Su0‖2L2((0,k);X) ≤ Ckθ‖u0‖2Hθ
and T1 ≤ Ckθ. (4.9)

To bound T2 we use again (4.4) and Proposition 4.2. We get

T2 ≤ C

∫ k

0

k−1+θ dt ≤ Ckθ. (4.10)
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T3 and T4 are bounded by Proposition 4.5:

T3 ≤ C

∫ k

0

t dt ≤ Ck2, T4 ≤ C

∫ k

0

k dt ≤ Ck2. (4.11)

Combining (4.9), (4.10) and (4.11) proves the assertion. !

5. DGFEM on Geometric and Graded Temporal Meshes

In order to resolve the start-up singularity at t = 0 due to incompatibilities of
the initial data we use time partitions that are refined towards t = 0. In the hp-
version of the DGFEM geometrically refined time meshes and linearly increasing
approximation orders are employed. We prove in Section 5.1 that this combination
of h- and p- refinement leads to exponential rates of convergence.
We show in Section 5.2 that the use of graded meshes in the h-version DGFEM
yields the optimal algebraic convergence rates, independently of the compatibility
of the initial data.

5.1. Exponential Convergence on Geometric Time Meshes

Approximation on basic geometric partitions: We consider (2.3), (2.4) on
J = (0, 1) discretized on geometric temporal partitions.

Definition 5.1 The (basic) geometric partition Mn,σ = {Im}n+1
m=1 of J = (0, 1) with

grading factor σ ∈ (0, 1) and n+ 1 time intervals Im is given by the nodes

t0 = 0, tm = σn−m+1, 1 ≤ m ≤ n+ 1. (5.1)

For 2 ≤ m ≤ n+1 the time steps km = tm− tm−1 satisfy km = λtm−1 with λ = 1−σ
σ .

We adress first the approximation on the intervals {Im}n+1
m=2 away from t = 0. We

choose on each of these intervals Im a polynomial order rm ≥ 1. As before, the
regularity of the solution on Im is measured by the parameter sm ≥ 0.

Lemma 5.2 Fix an interval Im ∈ Mn,σ for 2 ≤ m ≤ n + 1 and set sm = αmrm
with αm ∈ (0, 1). Then there exist constants C, d > 0 such that

‖u−Πrm
Imu‖

2
L2(Im;X) ≤ Cσ(n−m+2)θ((γd)2αm [

(1− αm)1−αm

(1 + αm)1+αm
])rm

with C, d only depending on u0 ∈ Hθ, 0 ≤ θ ≤ 1, and g ∈ L2(J ;H) satisfying
(2.11).

Proof : Since we consider a fixed interval I = Im, 2 ≤ m ≤ n + 1, we omit for
simplicity the subscript m and write r, α, k and s in the calculations. We set also
t = tm−1. Proposition 4.6 and Theorem 3.10 yield

‖u−Πr
I‖2L2(I;X) ≤ C

Γ(r + 1− s)

r2Γ(r + 1 + s)
(
k

2
)2(s+1)‖u‖2Hs+1(I;X)
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≤ C
Γ(r + 1− s)

r2Γ(r + 1 + s)
(
λ

2
)2(s+1)t2s+2‖u‖2Hs+1(I;X)

≤ C(
γd1
2

)2(s+1) Γ(r + 1− s)

r2Γ(r + 1 + s)
Γ(2(s+ 1) + 3)t2s+2t−2s−2+θ

≤ C(
γd2
2

)2s
Γ(r + 1− s)

r2Γ(r + 1 + s)
Γ(2s+ 1)tθ.

Inserting now s = αr we get with Stirling’s formula

Γ(r + 1− s)

Γ(r + 1 + s)
Γ(2s+ 1) ≤ C

(r − s)r−se−(r−s)
√
r − s

(r + s)r+se−(r+s)
√
r + s

(2s)2se−2s
√
s

≤
rr(1−α)

rr(1+α)
(
(1− α)1−α

(1 + α)1+α
)re2s22sα2sr2αre−2s√r ≤ r1/222s[

(1− α)1−α

(1 + α)1+α
]r.

The claim follows. !

To prove exponential convergence in the hp-DGFEM, we start at Proposition 3.3
with the interpolant Iu (which is defined intervalwise in Definition 3.1) and use
Lemma 3.8 to get the error bound

‖u− U‖2L2(J ;X) ≤ Cmax(1, r1)‖u− Π0
I1u‖

2
L2(I1;X) +

n+1∑

m=2

‖u− Πrm
Imu‖

2
L2(Im;X) (5.2)

for all U ∈ Vr(Mn,σ;X) and polynomial vectors r.
We consider orders which increase linearly in time:

Definition 5.3 A polynomial degree vector r = {rm}n+1
m=1 is called linear with slope

µ > 0 on the geometric partition Mn,σ if r1 = 0 and rm = /µm0 for 2 ≤ m ≤ n+1.

Theorem 5.4 Consider the parabolic problem (2.3), (2.4) on J = (0, 1) with initial
value u0 ∈ Hθ for some 0 < θ ≤ 1 and right-hand side g satisfying (2.11). This equa-
tion is discretized in t using the DGFEM 2.3 on a geometric partition Mn,σ. Then
there exists µ0 > 0 such that for all linear polynomial degree vectors r = {rm}n+1

m=1

with slope µ ≥ µ0 the semidiscrete DGFEM solution U obtained in Vr(Mn,σ;X)
satisfies

‖u− U‖2L2(J ;X) ≤ C exp(−bN
1

2 )

with constants C and b independent of N = NRDOF(Vr(Mn,σ;X)).

Proof : Let

µ > max{1,
θ ln(σ)

ln(fmin)
}, (5.3)

where 0 < fmin < 1 is defined below. Set r1 = 0 and rm = /µm0 ≥ 1 for 2 ≤ m ≤
n + 1. As before, sm = αmρm, 2 ≤ m ≤ n + 1, for αm ∈ (0, 1) to be selected. We

17



start with (5.2): In the first interval I1 near the origin we use the estimate derived
in Proposition 4.8 and for I2, . . . , In+1 the one in Lemma 5.2. This yields

‖u− U‖2L2(J ;X) ≤ Cσnθ + C
n+1∑

m=2

σ(n−m+2)θfγ,d(αm)
rm

≤ Cσnθ{1 +
n+1∑

m=2

σ(2−m)θfγ,d(αm)
rm},

where fγ,d(α) = (γd)2α[ (1−α)1−α

(1+α)1+α ]. fγ,d(α) satisfies

0 < inf
0<α<1

fγ,d(α) = fγ,d(αmin) < 1 with αmin =
1√

1 + γ2d2
.

Set fmin = fmin(γ, d) = fγ,d(αmin) and select αm = αmin for 2 ≤ m ≤ n+ 1. Hence,

‖u− U‖2L2(J ;X) ≤ Cσnθ{1 +
n+1∑

m=2

σ(2−m)θf rm
min}. (5.4)

Since

σ(2−m)θf rm
min = σ2θ f

rm
min

σmθ
= σ2θ f

)µm*
min

σmθ
≤ Cσ2θ(

fµ
min

σθ
)m

and fµ
min < σθ by (5.3), we conclude that the sum in (5.4) can be bounded by

n+1∑

m=2

σ(2−m)θf rm
min ≤ Cσ2θ

n+1∑

m=2

qm

with q = fµ
min/σ

θ < 1. We have
∑∞

m=2 q
m < ∞ and therefore

‖u− U‖2L2(J ;X) ≤ Cσσ
nθ.

Observing that N = NRDOF(Vr(Mn,σ;X)) ≤ Cµn2 completes the proof. !

Remark 5.5 If the orders are constant on Mn,σ, i.e. rm = r for all m, and if
r is proportional to the number of layers, i.e. r = /µ(n + 1)0, then exponential
convergence results for all σ ∈ (0, 1),

‖u− U‖L2(J ;X) ≤ C exp(−br).

In this case condition (5.3) on the slope µ > 0 is not necessary.

The hp-version of DGFEM: Consider now (2.3), (2.4) on J = (0, T ) with u0 ∈
Hθ for some 0 < θ ≤ 1 and with right-hand side g satisfying (2.11). The time
discretization by the hp-version of the DGFEM is now the following: In a fixed
interval (0, t0) (0 < t0 ≤ 1) near the origin t = 0 where the exact solution u exhibits
singular behaviour induced by incompatibilities of the initial conditions, we use a
geometrically refined partition Mn,σ as in Definition 5.1. If we select on Mn,σ a
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linearly increasing polynomial approximation order according to Definition 5.3, then
u is approximated on (0, t0) at an exponential rate of convergence (cf. Theorem 5.4).
On the remaining time interval (t0, T ) away from t = 0 the solution u is analytic
due to the smoothing property of parabolic evolution operators (see Proposition 4.7).
Therefore, on (t0, T ) we can use the p-version of the DGFEM to get exponential rates
of convergence, that is we increase the approximation order r on a fixed quasiuniform
partition Mq of (t0, T ). This results in exponential convergence rates on (t0, T ) as
in Remark 3.14: If we choose r on Mq as max(1, /µ(n + 1)0), where n + 1 is the
number of time steps in Mn,σ, we get ‖u − U‖2L2((t0,T );X) ≤ C exp(−bn) with C, b
independent of n. On the left-hand side in Figure 1 the partition of J in the hp-
version is shown schematically. Together we get exponential rates of convergence,
that is

‖u− U‖2L2(J ;X) ≤ C exp(−bN
1
2 ) (5.5)

with constants C and b independent of the N = NRDOF(Vr(M;X)).

0 t0 T

t
Mn,σ Mq

0

t

T

Mn,σMn,σ MqMq

td

Figure 1: Left: The partition of (0, T ) in the hp-version DGFEM: Geometric re-
finement Mn,σ near t = 0 and a quasiuniform refinement Mq after t0. Right: The
partition of (0, T ) for piecewise analytic g: Geometric refinement near t = 0 and
t = td.

Remark 5.6 The exponential convergence results in Theorem 5.4 and (5.5) are
derived under the assumption that the right-hand side g is analytic on J = [0, T ]
(see (2.11)). However, if g is only piecewise analytic, we still get exponential rates of
convergence if we employ time steps that are additionally geometrically refined from
above towards “discontinuities” of g: To illustrate this assume that g is analytic
on J1 = [0, td) and on J2 = [td, T ] (as a function of t with values in H). The
point td separates the analyticity intervals and at td the right-hand side g can be
discontinuous. From the semigroup properties (4.3) and Duhamel’s formula (4.4) it
follows that the solution on the second time interval J2 is precisely the solution of a
parabolic problem on J2 started at td with initial value u(td) and analytic right-hand
side g|J2. Therefore, we can apply the regularity results of Section 4 also for the
second time interval J2.
Based on this observation the corresponding strategy in the hp-DGFEM is the follow-
ing: Firstly, we discretize (2.3), (2.4) on J1 with initial value u0 with a geometrically
refined partition near t = 0 and a linearly increasing degree vector r. Secondly, at
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td we restart again with a geometric partition in J2 = (td, td + T ) as shown in the
right-hand side of Figure 1 to resolve the singular solution behaviour caused by the
discontinuity of the data at t = td. Away from t = 0 and t = td quasiuniform time
steps are employed.

5.2. The h-Version on Graded Time Partitions

It can be seen from the estimates in Remark 3.13 that in the h-version DGFEM
on quasiuniform partitions the best possible convergence rate of N−r−1 is lost if the
solution u is not smooth enough in time, i.e. if s0 < r in (3.6).
In the Finite Element Method one uses graded meshes to compensate this loss of
convergence. We show that the same mechanisms also work for the DGFEM. Assume
for simplicity that T = 1.
A graded temporal mesh M is defined by a grading function h : [0, 1] → [0, 1] which
is strictly increasing and satisfies

h ∈ C0([0, 1]) ∩ C1((0, 1)), h(0) = 0, h(1) = 1. (5.6)

The nodes in M are given by

tm = h(
m

M
), m = 0, . . . ,M(M). (5.7)

Again, M is the number of time steps and N = NRDOF(Vr(M;X)) is then pro-
portional to M , i.e. N = (r + 1)M . We have:

Proposition 5.7 Let u0 ∈ Hθ for some 0 < θ ≤ 1 and let the right-hand side g
satisfy (2.11). Let M be given by a grading function h where additionally h(t) =
o(t

2r+2

θ ) and h′(t)2r+3h(t)−(2r+3)+θ is Riemann integrable on J = (0, 1). Then we
have asymptotically, as M → ∞, for the DGFEM solution U in Vr(M;X)

‖u− U‖2L2(J ;X) ≤ CM−(2r+2)

∫ 1

0

h′(t)2r+3h(t)−(2r+3)+θdt.

Proof : From (5.2) and Theorem 3.10 follows

‖u− U‖2L2(J ;X) ≤ C‖u−Π0
I1‖

2
L2(I1;X) + C

M∑

m=2

k2(r+1)
m

∫ tm

tm−1

‖u(r+1)‖2Xdt (5.8)

with C = C(r). We bound the error contribution on the first element I1 by Propo-
sition 4.8, i.e. ‖u − Π0

I1‖L2(I1;X) ≤ Ckθ
1. On the elements away from t = 0 there

holds
∫ tm
tm−1

‖u(r+1)‖2Xdt = km‖u(r+1)(ξm)‖2X for some ξm = h(xm) ∈ (tm−1, tm). To-

gether with the regularity statements in Proposition 4.6 we conclude that (5.8) can
be estimated by

‖u− U‖2L2(J ;X) ≤ Ckθ
1 + C

M∑

m=2

k2r+3
m ξ−(2r+3)+θ

m . (5.9)
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Since

km = h(
m

M
)− h(

m− 1

M
) =

h′(x̃m)

M
, x̃m ∈ (

m− 1

M
,
m

M
),

we get from (5.9)

‖u− U‖2L2(J ;X) ≤ CM−2r−2(M2r+2h(1/M)θ +
M∑

m=2

h′(x̃m)
2r+3h(xm)

−(2r+3)+θkm).

(5.10)
As M → ∞, we have limM→∞M2r+2h(1/M)θ = limt→0(t−

2r+2

θ h(t))θ = 0. The sum
over all elements away from t = 0 is a Riemann sum. As M → ∞, it approaches
therefore

∫ 1

0 h′(t)2r+3h(t)−(2r+3)+θdt, which finishes the proof. !

Remark 5.8 To prove the assertions in Proposition 5.7 only finite regularity of the
right-hand side g(t) is needed and assumption (2.11) can thus be relaxed.

We cite from [21, Part II, Lemma 2.4] the following result:

Proposition 5.9 Let I be the functional I[h] =
∫ 1

0 h(t)σ−nh′(t)ndt with σ > 0 and
n ∈ N defined for grading functions h as in (5.6). Then I[h] has a unique minimizer
h(t) = t

n
σ with I[h] = (nσ )

n.

Apply Proposition 5.9 with n = 2r + 3 and σ = θ. Then the function h(t) =
t
2r+3

θ minimizes the integral
∫ 1
0 h′(t)2r+3h(t)−(2r+3)+θdt arising in Proposition 5.7. It

can easily be seen that h satisfies the additional assumptions in Proposition 5.7.
Consequently:

Theorem 5.10 Let u be the solution of (2.3), (2.4) with u0 ∈ Hθ for some 0 < θ ≤
1 and right-hand side g satisfying (2.11). Consider the h-version DGFEM at a fixed
approximation order r on the graded time mesh M with M intervals given by the
grading function h(t) = t

2r+3

θ . Let N = NRDOF(Vr(M;X)). Then, as M → ∞ or
N → ∞, there holds for the DGFEM solution U ∈ Vr(M;X)

‖u− U‖L2(J ;X) ≤ CM−(r+1) or ‖u− U‖L2(J ;X) ≤ CN−(r+1)

with C depending only on u0, g and r. The use of this grading function recovers the
optimal h-version convergence rate and minimizes the functional I[h] in Proposition
5.9.

Remark 5.11 The use of graded meshes for non-smooth initial data is also dis-
cussed in [32, Chapter 10]. Depending on the degree of roughness several grid
topologies were introduced which are all refined towards t = 0. The application of
these partitions permitted to recover the optimal h-convergence rates for the Euler
and Trapezoidal Method where r = 0 and r = 1. However, by Proposition 5.9,
h(t) = t

2r+3

θ is optimal for each approximation order r and Theorem 5.10 generalizes
in this sense the results of [32].
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6. hp Discretization in Time and Space

The DGFEM reduces the parabolic equation (2.3), (2.4) in each time step Im to a
coupled elliptic reaction-diffusion system of rm + 1 equations (see Section 6.1). In
order to obtain a fully discrete solution this system has to be solved numerically
which is very costly, particularly for large rm. To overcome these difficulties we
propose in Section 6.2 two decoupling methods that transform the system into rm+1
independent reaction-diffusion equations of the type arising in the backward Euler
scheme. However, the equations are singularly perturbed for small time steps km or
large approximation orders rm and require careful spatial discretizations.
For the case of the heat equation on a domain Ω ⊂ R2 we present in Section 6.3
an hp Finite Element Method (FEM) for the solution of these singularly perturbed
reaction-diffusion equations based on the recent work in [27, 28, 29, 36, 37, 40].
Provided that certain mesh-design principles are observed, the hp-FEM features ex-
ponential rates of convergence that are robust, i.e. independent of the perturbation
parameter. Similar arguments can be applied to general elliptic operators and our
analysis provides sufficient insight for an efficient hp FE-approximation in space.
Finally, we show in conjunction with the hp-version of DGFEM that exponential
rates of convergence in time and space can be obtained.
In Section 6.4 we confirm the theoretical results of the present work in numerical
examples.

6.1. The Spatial Problems

On a generic time step I = (t0, t1) with length k = t1 − t0 > 0 and approximation
order r the DGFEM semiapproximation U |I = U is found by solving the problem
in (2.16). The right-hand side g(t) and the initial condition uinitial are the known
data on the time step.
Let {ϕ̂i}ri=0 and {ψ̂i}ri=0 be two bases of the reference polynomial space Pr((−1, 1))
chosen as normalized Legendre polynomials, i.e.

ϕ̂i = ψ̂i :=
√

i+ 1/2 · Li, i = 0, . . . , r. (6.1)

Here, Li is the usual Legendre polynomial of degree i on (−1, 1). These bases define
transported variants {ϕi}ri=0 and {ψi}ri=0 on Pr((t0, t1)) given by ϕi ◦ Q(t̂) = ϕ̂i(t̂)
and ψi ◦Q(t̂) = ψ̂i(t̂), where Q is the transformation t = Q(t̂) = 1

2(t0+ t1+ t̂k) from
(−1, 1) onto (t0, t1).
In (2.16), the trial polynomial U ∈ Pr(I;X) and the test polynomial V ∈ Pr(I;X)
can uniquely be written as U =

∑r
j=0 ujϕj and V =

∑r
i=0 viψi with coefficients

uj, vi ∈ X . Problem (2.16) is then equivalent to the elliptic system with the following
variational formulation:
Find {uj}rj=0 ⊂ X such that

r∑

i,j=0

{[
∫

I

ϕ′
jψidt+ ϕ+

j (t0)ψ
+
i (t0)](uj, vi)H + [

∫

I

ϕjψidt] a(uj , vi)} (6.2)

=
r∑

i=0

{(
∫

I

gψidt, vi)H + (uinitial, vi)Hψ
+
i (t0)}
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for all {vi}ri=0 ⊂ X .
We introduce the matrices

Âij := Â1
ij + Â2

ij =

∫ 1

−1

ϕ̂′
jψ̂idt̂+ ϕ̂+

j (−1)ψ̂+
i (−1), B̂ij :=

∫ 1

−1

ϕ̂jψ̂idt̂, (6.3)

which are expressed in terms of the bases {ϕ̂i} and {ψ̂i} on (−1, 1) and which are
therefore independent of k. Then (6.2) is to find {uj}rj=0 ⊂ X such that

r∑

i,j=0

Âij(uj, vi)H +
k

2
B̂ija(uj, vi) =

r∑

i=0

k

2
(f̂ 1

i , vi)H + (f̂ 2
i , vi)H ∀{vi}ri=0 ⊂ X.

Here, the right-hand sides f̂ 1
i and f̂ 2

i are defined by

f̂ 1
i (v) = (

∫ 1

−1

[g ◦Q]ψ̂idt̂, v)H, f̂ 2
i (v) = (uinitial, v)Hψ̂

+
i (−1), v ∈ X.

The strong form (observing that B̂ij = δij due to the choice (6.1)) reads

r∑

j=0

{Âijuj +
k

2
δijLuj} =

k

2
f̂ 1
i + f̂ 2

i , i = 0, . . . , r. (6.4)

To obtain a fully discrete approximation of (2.3), (2.4) the system (6.4) has to be
solved numerically by a Finite Element Method. If {UF

j }rj=0 is a FE solution of (6.4)
in X , then UF =

∑r
j=0 U

F
j ϕj approximates U =

∑r
j=0 ujϕj on the time step I. We

get for the error

‖U − UF‖2L2(I;X) =

∫

I

‖
r∑

j=0

(uj − UF
j )ϕj‖2Xdt

=
r∑

j=0

‖uj − UF
j ‖2X(j + 1/2)

∫

I

[Lj ◦Q−1]2dt =
k

2

r∑

j=0

‖uj − UF
j ‖2X ,

where we used the orthogonality properties of the Legendre polynomials. Thus:

Proposition 6.1 Let u be the exact solution of (2.3), (2.4) on J = (0, T ) and let U
be the time discretization of u obtained in Vr(M;X) with the DGFEM 2.3. On each
time interval Im we develop U |Im into U |Im =

∑rm
j=0 um,jϕm,j where {ϕm,j} are the

basis functions (6.1) scaled to Im and where the coefficients {um,j} solve the system
(6.4). Let {UF

m,j} be a Finite Element approximation of (6.4) and let UF ∈ L2(J ;X)
be the fully discrete solution given by UF |Im =

∑rm
j=0U

F
m,jϕm,j. Then we have the

error estimate

‖u− UF‖2L2(J ;X) ≤ C‖u− U‖2L2(J ;X) + C
M(M)∑

m=1

km

rm∑

j=0

‖um,j − UF
m,j‖2X . (6.5)
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The first term in the error estimate (6.5) is the error of the time discretization.
This error can be made exponentially small when the hp-version of the DGFEM is
applied. The second error contribution stems from the spatial discretizations and
will be discussed in more details in the next subsections.

Remark 6.2 In (6.1) we chose normalized Legendre polynomials as basis functions.
However, other choices are possible. The optimal choice of the basis functions would
be the one where the matrices Â and B̂ in (6.3) diagonalize simultaneously. Then
the equations in (6.2) decouple completely and could be solved independently. This
can be done in parallel if each equation is assigned to one processor. Unfortunately,
it does not seem to be possible to find such diagonalizations in R. In Section 6.2 we
present decoupling methods in C.

If the time step k in (6.4) approaches zero, the coefficient of the principal part
tends to zero as well and the system (6.4) becomes singularly perturbed. The same
may happen for large r. In the following lemma we analyze the dependence of the
coefficients in the matrix Â on r.

Lemma 6.3 Let λ ∈ C be an eigenvalue of the matrix Â in (6.3). Then 0 <
Re λ ≤ C1max(1, r2) and 0 < C2 ≤ |λ| ≤ C3max(1, r2) with constants independent
of r ∈ N0.

Proof : Eigenvalues of Â correspond in a one-to-one relation to eigenvalues of the
following variational problem:
Find p ∈ Pr((−1, 1);C), p 2= 0, such that

B(p, q) :=
∫ 1

−1

p′qdt+ p(−1)q(−1) = λ

∫ 1

−1

pqdt (6.6)

for all q ∈ Pr((−1, 1);C).
We proceed now in several steps and assume that r ≥ 1 (the modifications for r = 0
are obvious).

Step (i): There holds
∫ 1

−1

|π(t)|2dt ≤
1

k
|
∫ 1

−1

π(t)dt|2 +
1

2

∫ 1

−1

(1− t2)|π′(t)|2dt (6.7)

for all π(t) ∈ Pr((a, b);C) and r ≥ 0.
To prove (6.7), we denote by {Lk}k≥0 the Legendre polynomials of degree k on
I = (−1, 1). We can develop π and π′ into the series π(t) =

∑r
k=0 akLk(t) and

π′(t) =
∑r

k=1 akL
′
k(t). There holds 2a0 =

∫
I π(t)dt. Since∫

I

L′
k(t)L

′
l(t)(1− t2)dt = l(l + 1)

∫

I

Lk(t)Ll(t)dt

for k, l ≥ 1, the derivatives {L′
k} are orthogonal with respect to (1− t2)dt. We get

∫

I

|π′(t)|2(1− t2)dt+ |
∫

I

π(t)dt|2 =
r∑

k=1

|ak|2
∫

I

L′
k(t)

2(1− t2)dt+ 4|a0|2

=
r∑

k=1

|ak|2k(k + 1)

∫

I

Lk(t)
2dt+ 4|a0|2 ≥ 2

r∑

k=0

|ak|2
∫

I

Lk(t)
2dt = 2

∫

I

|π(t)|2dt.
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This is (6.7).

Step (ii): We show that 0 ≤ Re λ ≤ Cr2 and 0 ≤ |λ| ≤ Cr2: Selecting q = p in
(6.6) yields

Re (

∫ 1

−1

p′pdt+ p(−1)p(−1)) = Re λ ·
∫ 1

−1

|p|2dt.

Integrating by parts the left-hand side gives

1

2
(|p(+1)|2 + |p(−1)|2) = Re λ ·

∫ 1

−1

|p|2dt. (6.8)

By inverse estimates,

1

2
(|p(+1)|2 + |p(−1)|2) ≤ ‖p‖2L∞((−1,1);C) ≤ Cr2‖p‖2L2((−1,1);C).

Therefore, we have 0 ≤ Re λ ≤ Cr2. Analogously, we get

|λ| ≤
∫ 1
−1 |p

′p|dt+ |p(−1)|2
∫ 1
−1 |p|2dt

. (6.9)

By Cauchy-Schwarz and Schmidt’s inverse inequality we have

∫ 1

−1

|p′p|dt ≤ (

∫ 1

−1

|p′|2dt)
1
2 (

∫ 1

−1

|p|2dt)
1
2 ≤ Cr2

∫ 1

−1

|p|2dt (6.10)

and, as before, |p(−1)|2 ≤ Cr2‖p‖2L2((−1,1);C). This implies |λ| ≤ Cr2.

Step (iii): We prove by contradiction that Re λ > 0: If Re λ = 0, we conclude from
(6.8) that an eigenfunction p 2= 0 satisfies p(+1) = p(−1) = 0. We show that then
also p′ ≡ 0 and consequently p ≡ 0, which is not possible:
Selecting q = (1 + t)p′ in (6.6) yields

∫ 1

−1

|p′|2(1 + t)dt = λ

∫ 1

−1

pp′(1 + t)dt.

We may assume
∫ 1

−1 pp
′(1 + t)dt 2= 0 (since otherwise p′ ≡ 0 trivially). Then

0 = Re λ =

∫ 1

−1 |p
′|2(1 + t)dt · Re

∫ 1

−1 pp
′(1 + t)dt

|
∫ 1

−1 pp
′(1 + t)dt|

. (6.11)

Integrating by parts gives Re
∫ 1

−1 pp
′(1 + t)dt = −2

∫ 1

−1 |p|
2dt. From (6.11) we see

that
∫ 1
−1 |p

′|2(1 + t)dt = 0 and therefore p′ ≡ 0.

Step (iv): It remains to establish the lower bound |λ| ≥ C > 0. To do so, we
introduce the norm ‖ · ‖E on Pr((−1, 1);C) by

‖p‖2E =

∫ 1

−1

|p′|2(1 + t)dt+ |p(+1)|2 + |
∫ 1

−1

pdt|2.

25



From (6.7) in Step (i) follows that

∫ 1

−1

|p|2 dt ≤ C|
∫ 1

−1

p dt|2 + C

∫ 1

−1

(1− t2)|p′|2dt

for all polynomials p ∈ Pr((−1, 1);C) with C independent of r. Therefore,

‖p‖L2 ≤ C‖p‖E, C independent of r. (6.12)

We claim that

inf
0+=p

sup
0+=q

Re B(p, q)
‖p‖E‖q‖L2

≥ γ > 0 (6.13)

with a constant γ independent of r. (The infimum and supremum are taken over
all polynomials in Pr((−1, 1);C).) To prove (6.13), fix 0 2= p ∈ Pr((−1, 1);C).
Choosing in (6.6) q = (1 + t)p′ + p(1) + (1− t)

∫ 1

−1 p dt gives

B(p, q) =
∫ 1

−1

|p′|2(1 + t) dt+ p(1)

∫ 1

−1

p′ dt

+(

∫ 1

−1

p dt)

∫ 1

−1

p′(1− t) dt+ p(−1)p(1) + 2p(−1)(

∫ 1

−1

p dt) = ‖p‖2E.

Moreover, since (1 + t)2 ≤ C(1 + t) for −1 ≤ t ≤ 1, we have ‖q‖2L2 ≤ C‖p‖2E. This
shows (6.13).
For an eigenfunction p 2= 0 we conclude using (6.6), (6.13) and (6.12) that

0 < γ ≤ sup
0+=q

Re B(p, q)
‖p‖E‖q‖L2

≤ sup
0+=q

|λ||
∫ 1

−1 pqdt|
‖p‖E‖q‖L2

≤ |λ|
‖p‖L2

‖p‖E
≤ C|λ|.

This is the desired lower bound. !

In the left-hand side of Figure 1 we plot λmin = min{|λ| : λ eigenvalue of Â} and
λmax = max{|λ| : λ eigenvalue of Â} for varying r. The graph is in agreement with
the statements in Lemma 6.3.

6.2. Decoupling

A coupled system of the form (6.2) or (6.4) is costly to solve numerically and can
not be further decoupled in R. However, in C it is possible to transform (6.4) into
upper triangular or diagonal form. This additional gain may be worth to switch
over to complex arithmetic:

Method (i): The Schur Decomposition Theorem [20] guarantees the existence of
a unitary matrix Q in C(r+1)×(r+1) such that Â in (6.3) can be transformed into an
upper triangular matrix T ∈ C(r+1)×(r+1) given by T = QhÂQ. The system (6.4)
transforms into

r∑

j=0

Tijwj +
k

2
δijLwj = r.h.s., i = 0, . . . , r,
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Figure 1: Left: The values of λmin and λmax against the approximation order r.
Right: The norm of the transformation matrix Y in dependence on r.

where (in vector notation) the new unknowns 0w are given by 0w = Qh0u. Since T
is upper triangular, a backward-solve process essentially amounts to the successive
solution of r+1 complex scalar equations, namely Tjjwj+

k
2Lwj = r.h.s., j = 0, . . . , r.

The coefficient Tjj is an eigenvalue λj ∈ C of Â. After rescaling the coefficients, we
get r + 1 scalar reaction-diffusion problems of the form

k

2λj
Lw + w = f, j = 0, . . . r. (6.14)

Equation (6.14) is singularly perturbed for large r or small k (cf. Lemma 6.3).
If {W F

j } are FE-solutions to (6.14), we have with 0UF = Q 0W F that the discretization
error in (6.5) satisfies

∑r
j=0 ‖uj − UF

j ‖2X =
∑r

j=0 ‖wj −W F
j ‖2X due to the unitarity

of the transformation matrix Q.

Method (ii): Numerical experiments show that the matrix Â in (6.3) is diagonaliz-
able in C at least for 0 ≤ r ≤ 100 (a theoretical proof of this fact is lacking): There
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exists a matrix Y ∈ C(r+1)×(r+1) such that Y −1ÂY = diag(λ1, . . . ,λr+1) with pair-
wise complex conjugate eigenvalues {λj}. Unfortunately, the transformation matrix
Y is not unitary anymore and becomes ill-conditioned for large r. Since we expect
r to vary only in a relatively small range in practice, say 0 ≤ r ≤ 10, this seems not
to be a big disadvantage at the moment. The diagonalization process transforms
the system (6.4) into the decoupled system

λjwj +
k

2
Lwj = r.h.s., j = 0, . . . , r

with 0w = Y −10u. As in Method (i), this are r + 1 reaction-diffusion equations of the
form (6.14). However, the matrix l2-norm of Y is not 1 and now depends on r. In
the right-hand side of Figure 1 we plot this norm for increasing r. We calculated
Y numerically using the diagonalization commands in MATLAB 5.2.01. The graph
indicates that the norm of Y depends at most algebraically on r, that is we have
in (6.5)

∑r
j=0 ‖uj − UF

j ‖2X ≤ C(r)
∑r

j=0 ‖wj − W F
j ‖2X with C(r) ≤ Crα for some

0 < α ≤ 1. In fact, Figure 1 suggests α = 1/2.

6.3. hp Discretization in Time and Space

The Finite Element Method for the singular perturbation problems: Both
transformation processes in Section 6.2 require in time step Im the solution of rm +
1 reaction-diffusion equations of the form (6.14). To discuss their discretizations
consider the singularly perturbed model equation

ε2Lw + w = f, (6.15)

where ε ∈ C is a parameter with Re ε > 0 and Re (ε2) > 0 whose modulus |ε| ∈ (0, 1]
can approach zero. The perturbation parameter in (6.14) is ε =

√
km/(2λ),

√
· being

the usual principal branch of the square root taken to be positive on (0,∞). λ is an
eigenvalue of the matrix Â in (6.3). Thus, due to Lemma 6.3 the absolute value of
ε is in the range Ckm ≥ |ε|2 ≥ Ckm/max(1, r2m), where the lower bound is achieved
(see Figure 1).
The weak formulation of (6.15) is

Find w ∈ X such that bε(w, v) := ε2a(w, v) + (w, v)H = f(v) for all v ∈ X . (6.16)

We have

Re bε(w,w) = Re (ε2)Re a(w,w)− Im (ε2)Im a(w,w) + ‖w‖2H , (6.17)

Im bε(w,w) = Im (ε2)Re a(w,w) + Re (ε2)Im a(w,w). (6.18)

The sesquilinear form bε is coercive in the energy norm ‖w‖2ε := |ε|2‖w‖2X + ‖w‖2H.

Lemma 6.4 For ε ∈ C with Re (ε2) > 0 we have |bε(w,w)| ≥
√
2min(1, β)‖w‖2ε.

1MATLAB is a trademark of The MathWorks Inc.
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Proof : From (6.17), (6.18) we get

|bε(w,w)|2 ≥ [(Re ε2)2 + (Im ε2)2](Re a(w,w))2

+[(Re ε2)2 + (Im ε2)2](Im a(w,w))2

+2Re (ε2)Re a(w,w)‖w‖2H − 2Im (ε2)Im a(w,w)‖w‖2H + ‖w‖4H.

Due to (2.7) we have Im a(w,w) = 0 and get with (2.6)

|bε(w,w)|2 ≥ |ε|4(Re a(w,w))2 + 2Re (ε2)Re a(w,w)‖w‖2H + ‖w‖4H
≥ |ε|4β2‖w‖4X + ‖w‖4H ≥ 2min(1, β2)(|ε|2‖w‖2X + ‖w‖2H)2.

This yields the assertion. !

In the Finite Element Method a finite dimensional subspace VN ⊂ X of dimension
N = dim(VN) is chosen, and the finite element solution W F ∈ VN of (6.15) is given
by

bε(W
F , V ) = f(V ) ∀V ∈ VN . (6.19)

Because of Lemma 6.4 problem (6.19) has a unique solution and we have quasiopti-
mality in the energy norm,

‖w −W F‖ε ≤ C inf
V ∈VN

‖w − V ‖ε. (6.20)

The question is then to choose the spaces VN appropriately.

Robust exponential convergence in the hp-FEM: Exemplarily, we discuss in
the following the numerical solution of the spatial problems (6.15) in the case of
the heat equation on a Lipschitz domain Ω ⊂ Rd where L = −∆, H = L2(Ω) and
X = H1

0 (Ω). The singular perturbation problems (6.15) read then

−ε2∆w + w = f in Ω, w = 0 on ∂Ω. (6.21)

The corresponding weak formulation in (6.16) is in this case (recall that the spatial
problems are decoupled in C): Find w ∈ H1

0 (Ω;C) such that

bε(w, v) := ε2
∫

Ω

{∇w∇v + uv}dx =

∫

Ω

fvdx =: f(v) ∀v ∈ H1
0 (Ω;C). (6.22)

The small parameter ε in (6.21) causes difficulties in the convergence of discretiza-
tions due to boundary layers that downgrade the approximation properties of the
standard FEM. Boundary layers are solution components that show a rapid varia-
tion normal to the boundary and a smooth behaviour tangentially to it. In boundary
fitted coordinates they are of the form wBL(ρ, s) = C(s) exp(−ρ/ε) with C(s) (piece-
wise) analytic, ρ denoting the normal distance to the wall and s being the arclength
on ∂Ω. Moreover, in polygonal domains with corners there arise corner singular-
ities. These are solution components which are in polar coordinates (r,ϕ) near a
corner basically of the form wc(r,ϕ) = rαΦ(ϕ) for some α ∈ (0, 1) and some analytic
function Φ.
The efficient resolution of corner singularity or boundary layer phenomena in prob-
lems of the form (6.21) requires properly designed FE spaces VN in (6.20). In the
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hp-FEM context, the combination of anisotropic and geometric mesh refinement
towards the boundaries and the corners with judiciously increased polynomial de-
grees allows one to approximate these solution components at a (robust) exponential
rate of convergence. We mention [1, 22, 35] and the references there for the hp-
approximation of corner singularities and [27, 28, 29, 36, 37, 40] for corresponding
boundary layer approximation results.
We discuss the 2D case for (6.21): Let T be a partition of Ω into quadrilateral
and triangular elements. Assume that for each K ∈ T there is a differentiable and
bijective element mapping FK from the generic reference element K̂ which is either
the unit square (0, 1)2 or the triangle {(x, y) : 0 < y < 1−x} onto K. The FE space
of piecewise mapped polynomials is then defined in the usual way:

VN = Sp,1
0 (T ) = {v ∈ H1

0 (Ω;C) : v|K = πp ◦ F−1
K for some πp in Sp(K̂;C), K ∈ T }.

(6.23)
The polynomial space Sp(K̂;C) is to be understood as the set of all polynomials of
total degree ≤ p if K̂ is the reference triangle and as the set of all polynomials of
degree ≤ p in each variable if K̂ is the unit square.
Assume first that ∂Ω is smooth and no corner singularities are present. In this case,
we use “boundary layer meshes” where needle elements of size O(p|ε|) are inserted
near the boundary (we refer to [28] for the exact definition of admissible meshes).
The interior of the domain is partitioned in a quasiuniform way. On the left-hand
side of Figure 2 we show such a “boundary layer mesh” with the corresponding
anisotropic refinement towards ∂Ω. Note that the needle elements become fatter as
p increases. The subsequent theorem can also be found in [28]:

∂Ω

O(p|ε|)

∂Ω

O(|ε|)

Figure 2: Left: Needle element of size O(p|ε|) are inserted near ∂Ω. Right: Geo-
metric refinement towards the boundary, the smallest layer has width O(|ε|).
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Theorem 6.5 Consider (6.21) in a domain Ω ⊂ R2 with analytic boundary curve
∂Ω. Let the right-hand side f be analytic on Ω. Let W F be the Finite Element
solution of (6.21) in VN = Sp,1

0 (T ), where T is a boundary layer mesh with needle
elements of width O(p|ε|). Then we have robust exponential convergence for the
error, i.e., ‖w −W F‖ε ≤ C exp(−bp) with C, b independent of ε and p.

Remark 6.6 In [28], Theorem 6.5 is proved for real ε ∈ R with ε > 0. Nevertheless,
one can check that all the results there hold true verbatim with ε replaced by |ε|.

Remark 6.7 The width of the needle elements depends on ε as well as on p. In
practice, it may be more convenient to fix a mesh and then increase the polynomial
degree p until the desired accuracy is reached. This can be obtained by the use
of meshes that are refined geometrically (anisotropically) towards the boundary in
such a way that the smallest element has width O(|ε|). If we increase p on such a
fixed mesh, Theorem 6.5 still holds true [28]. In the right-hand side of Figure 2 the
geometric refinement towards ∂Ω is illustrated.

Remark 6.8 The results in Theorem 6.5 are established by means of asymptotic
expansion techniques. If the data f satisfy certain compatibility conditions, the
leading order terms in these expansion series vanish and the strength of the actual
layers in the solutions can then be considerably weaker. In that case the use of the
boundary layer meshes above can possibly lead to an overrefinement in the spatial
discretizations.

Remark 6.9 If the domain Ω ⊂ R2 has corners, the regularity and approximation
theory of equations of the form (6.21) gets more complicated due to the interaction
of corner singularities and boundary layers. At present, a rigorous proof of robust
exponential convergence as in Theorem 6.5 is lacking in the presence of corners.
Nevertheless, in simple model situations [33] it is known that the use of tensor
products of geometrically refined meshes near corners leads the robust exponential
rates of convergence, namely

‖u− UFEM‖ε ≤ C exp(−bN1/3
x ), (6.24)

where Nx = dim(Sp,1
0 (T )) and b, C are independent of ε. The number of layers in

the geometric refinement must be related linearly to p and the smallest layer has
again to be of width O(|ε|). In Figure 3 such geometric boundary layer meshes near
convex and reentrant corners are shown (where we admitted also hanging nodes).

Remark 6.10 If the right-hand side f is piecewise analytic, Theorem 6.5 still holds
true provided that the spatial mesh is correspondingly adapted in the interior of the
domain to resolve interior layers.

Convergence properties of the fully discrete scheme: We consider now the
hp-discretization of (2.3), (2.4) in time and space. To do so, assume that the right-
hand side g is (piecewise) analytic in time and space and that the initial condition
u0 is (piecewise) analytic in space. We emphasize, however, that u0 need not be
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Figure 3: Geometric boundary layer meshes near convex and reentrant corners.

in H1
0(Ω) and incompatibilities of the initial data with the zero Dirichlet boundary

conditions are admitted. Condition (2.10) is then fulfilled for some θ > 0.
We discretize (2.3), (2.4) in time by the hp-DGFEM on a geometric temporal parti-
tion Mn,σ. The smallest singular perturbation parameter εm in the spatial problems
(6.21) on time step Im is of the order

|εm|2 ∼ km/max(1, r2m) = C
σn−m

m2
.

To solve these equations we use for simplicity a fixed geometric spatial boundary
layer mesh T constructed to resolve εmin = minn+1

m=1 |εm|. That is: T is geometrically
refined towards corners and boundaries as in Figure 3. The width of the smallest
mesh layer is O(εmin). The space problems are solved in VN = Sp,1

0 (T ) according
to (6.19). Then all boundary layer and corner singularity phenomena present in
the solutions of the reaction-diffusion equations (6.21) are captured and due to
the analyticity assumption we can expect that all the spatial equations (6.21) are
approximated at a (uniform) exponential rate of convergence (in the energy norm)
as in (6.24), i.e. there holds on each time step Im

km
2r2m

‖∇(wj,m −W F
j,m)‖2L2(Ω) + ‖wj,m −W F

j,m‖2L2(Ω) ≤ C exp(−bN1/3
x ) (6.25)

with Nx = dim(Sp,1
0 (T )), j = 0, . . . , rm, m = 1, . . . ,M . (Recall that here {wj,m}

are the exact solutions and {W F
j,m} the FE approximations of the rm + 1 decoupled

equations on time step Im after transforming the system (6.4) as proposed in (i) or
(ii) of Section 6.2.)
Using (6.25), the properties of the transformations in Section 6.2 and Theorem 5.4,
the full discretization error in (6.5) of Proposition 6.1 becomes

‖u− UF ‖2L2(J ;H1
0 (Ω)) ≤ C exp(−bN

1
2

t ) + C
M∑

m=1

r3m exp(−bN
1
3
x ),
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where Nt = nrdof(Vr(M;H1
0(Ω))), Nx = dim(Sp,1

0 (T )), and C ≤ Crαm if Method
(ii) is employed. Since

∑M
m=1 rm ≤ CNt and rmax = maxMi=1 rm ≤ Nt, we get

‖u− UF‖2L2(J ;H1
0 (Ω)) ≤ C exp(−bN

1
2

t ) + CN3
t exp(−bN1/3

x ).

Since the coefficient in front of exp(−bN1/3
x ) grows algebraically in Nt, it can be

absorbed by the exponential decay in Nx if Nx and Nt are related algebraically, i.e.
Nt ≤ CNβ

x for some β ≥ 0. In that case we get

‖u− UF ‖L2(J ;H1
0 (Ω)) ≤ C exp(−bN

1
2

t ) + C exp(−bN
1
3
x ).

If the domain is in Rd with d ≥ 3, analogous estimates hold true as soon as the
spatial problems can be approximated exponentially as in Theorem 6.5 or (6.24).

Remark 6.11 With time the solutions of (2.3), (2.4) are strongly smoothened and
after a few time steps the boundary layer phemonena actually encountered in the
spatial problems may be considerably weaker than in the discussions above due to
right-hand sides satisfying compatibility conditions as in Remark 6.8. In addition,
for the geometric time meshes Mn,σ the singular parameter |εm|2 = km/max(1, r2m)
is of relatively moderate size after a few steps. Therefore, it is conceivable that
the use of fixed boundary layer meshes leads to an overrefinement in the spatial
discretizations. This can be overcome by coarsening the spatial meshes dynamically
in time which compensates then to a certain extent the additional costs that arise
for r >> 1. The development of such adaptive strategies in a hp-context requires
a rigorous analytic regularity theory in time and space for problems in (2.3), (2.4)
which does not lie within the scope of the present work, and, therefore, we do not
consider such strategies here.
However, the following heuristic argument indicates that for highly incompatible
initial conditions the geometric boundary layer meshes in space are needed in the
first time steps: Consider the heat equation on a domain Ω ⊂ Rd with right-hand
side g = 0 and initial condition u0 = 1. The first DGFEM time step with temporal
approximation order r = 0 amounts in (2.16) to the solution of

Find U ∈ H1
0 (Ω) such that − km∆U + U = 1 in Ω, U = 0 on ∂Ω. (6.26)

For small km problem (6.26) is singularly perturbed and clearly exhibits the previ-
ously discussed boundary layer phenomena due to the incompatibilities of the initial
data u0 with the zero Dirichlet boundary conditions.

6.4. Numerical Experiments

The model problems: In this section we present numerical results for the homo-
geneous heat equation where L = −∆, H = L2(Ω) and X = H1

0 (Ω) obtained for the
one dimensional domain Ω = (0, 1) and the time interval J = (0, 1):

∂

∂t
u(x, t)−

∂2

∂x2
u(x, t) = 0 on (0, 1)× (0, 1), (6.27)

u(0, t) = u(1, t) = 0 on (0, 1), u(x, 0) = u0(x) on (0, 1).
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We investigate the performance of the DGFEM for the following three initial con-
ditions

u1
0(x) = sin(πx), u2

0(x) = x(1− x), u3
0(x) = 1.

The first two initial conditions are compatible with being in H1
0 (Ω), while the third

one is incompatible with the zero boundary conditions in (6.27). u1
0 is an eigen-

function of the Laplacian and the corresponding solution u1 given by u1(x, t) =
sin(πx) exp(−π2t) is arbitrarily smooth in x and t (in fact, u1 analytic on J × Ω).
For the other two initial values the solutions can be represented by Fourier series of
eigenfunctions of the Laplacian, that is

u2(x, t) = 4
∞∑

l=1

1− cos(lπ)

l3π3
exp(−l2π2t) sin(lπx), (6.28)

u3(x, t) = 2
∞∑

l=1

1− cos(lπ)

lπ
exp(−l2π2t) sin(lπx). (6.29)

To determine the time regularity of the solutions u2 and u3 we write a2,l =
1
l3 and

a3,l =
1
l for the size of the Fourier coefficients in the series. We have

‖
∂s

∂ts
ui(x, t)‖2H1

0 (Ω) ≤ C(s)
∞∑

l=1

l2a2i,lπ
4sl4s exp(−2l2π2t)

and get

‖(ui)(s)‖2L2(I;H1
0
(Ω)) ≤ C

∞∑

l=1

a2i,ll
4s. (6.30)

The above sum is finite for s = 5/4− δ in the case i = 2 and for s = 1/4− δ in the
case i = 3, respectively, for any δ > 0.

We discretize (6.27) in time by the DGFEM 2.3. In each time step Im we obtain
the system (6.4) which we decouple by the transformation Method (ii) in Section
6.2. The resulting rm + 1 scalar reaction-diffusion equations of the form (6.21) are
solved by the hp-FEM in (6.19) on meshes which are geometrically refined towards
x = 0 and x = 1. The grading factor on these spatial meshes is 0.15 and the number
of layers is chosen in such a way that the smallest scale εmin is resolved, i.e. the
first layer near x = 0 and x = 1 is of width O(εmin). The polynomial degree in
space is selected to be p = 10 such that the spatial problems are approximated very
accurately and the overall error is dominated by the error of the time discretization.

h-DGFEM: We consider first the h-version of the DGFEM on an equidistant
temporal partition M with a constant approximation order r. M consists of 2i

time steps, i = 0, . . . , 12. The length of each time interval is then k = 2−i. On
the left-hand side in Figure 4 we plot the relative errors in L2(I,H1

0 (Ω)) against
N = NRDOF(Vr(M;H1

0(Ω))) for the DGFEM solution of (6.27) with the initial
condition u0 = u1

0 and 0 ≤ r ≤ 3. The corresponding slopes (−1, −2, −3 and
−4) predicted by Corollary 3.12 and Remark 3.13 can clearly be seen in the error
graphs. The solutions u2 and u3 are not arbitrarily smooth in time anymore and
the h-version convergence rates (for large r) are in that case determined by the
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maximal regularity of the solution (cf. Corollary 3.12). Better results are expected
with graded meshes (see Theorem 5.10). In Figure 5 we show the h-version DGFEM
for the solutions u2 and u3 on quasiuniform and graded meshes. For u2 we choose
the grading function h(t) = t2r+3 and employ the polynomial approximation order
r = 3. The partitions consist still of 2i intervals. In agreement with Corollary 3.12
and Remark 3.13 we get the slope −5/4 for equidistant time steps, whereas the
slope −4 is recovered on the graded time mesh. For u3 we take the grading function
h(t) = t3(2r+3) and depict the performance for r = 0 and r = 1. On equidistant time
meshes we observe the convergence rate N−1/4, both for r = 0 and r = 1, according
to Corollary 3.12. Again, the use of graded meshes yields the best possible rates
with slopes −1 and −2, respectively.
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Figure 4: Convergence rates for the smooth solution u1. Left: h-version DGFEM.
Right: p-version DGFEM (NRDOF = r + 1).

p-DGFEM: In the p-version of the DGFEM the convergence is obtained by in-
creasing the time approximation order r on fixed time intervals. If the solution is
analytic, this results in exponential rates of convergence as in Remark 3.14 and is
shown in the right-hand side of Figure 4 for u0 = u1

0. There, only one time step
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Figure 5: h-version DGFEM on quasiuniform and graded time steps. Left: Results
for u2. Right: Results for u3.

I1 = (0, 1) was used. Such exponential convergence rates can not be expected any-
more for u2 and u3. The performance of the p-version DGFEM for u2 and u3 is
depicted in Figure 6. On the left we used one time step of length 1 and on the right
four time steps of length 0.25. Due to Corollary 3.12 and (6.30) convergence rates
of −1.25 and −0.25 are expected. However, we can see the slope −2.5 for u2 and
−0.5 for u3. This doubling of the convergence rates is well known in the p-version
(cf. [3, 4, 35]) and can be explained if the regularity of the solution is measured in
certain weighted spaces. We refer to [33] for results in this direction.

hp-DGFEM: The hp-DGFEM combines judiciously h- and p-refinement. The time
intervals {Im} are geometrically refined towards the origin on a partition Mn,σ as
in Definition 5.1 and the polynomial degrees {rm} are linearly increasing from layer
to layer (cf. Definition 5.3). In Figure 7 we consider the hp-version for initial data
u0 = u2

0 and u0 = u3
0. We employ a geometrical grading factor σ = 0.2 and set

the approximation order on layer m to rm = /µm0 with a slope µ > 0. The error
graphs clearly show exponential rates of convergence as predicted by Theorem 5.4.
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Figure 6: p-version DGFEM for u2 and u3. Left: Performance with one time step
(NRDOF = r + 1). Right: Performance with four time steps (NRDOF = 4(r + 1)).

The best slope is ≈ 1.5 for u2 and ≈ 0.5 for u3. We conclude from these results that
the optimal slope µ depends on θ of u0 ∈ Hθ. For u3 we obtain a relative error of
about 10−2 with ≈ 50 degrees of freedom. In the h-version approach on a graded
mesh with r = 1 the same accuracy is obtained with ≈ 100 degrees of freedom (see
Figure 5).
In the hp-version of the DGFEM the error can be orders of magnitude smaller when
the grading factor σ is optimally chosen. We address this question numerically in
Figure 8 where we vary σ onMn,σ for u0 = u2

0 and u0 = u3
0 with µ = 1.5 and µ = 0.5,

correspondingly. All the curves show exponential rates of convergence. It can be
seen that σ ≈ 0.15 gives the best results for u2

0 and for u3
0. This is in agreement

to [21] where the optimal grading factor to resolve rα-singularities is shown to be
σ ≈ 0.17, independently of α.
As indicated in Remark 6.11, it may not be necessary to approximate the spatial
problems on boundary layer meshes. To investigate this numerically, we solve them
in Figure 9 with a p-version FEM on a uniform spatial mesh consisting of four
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Figure 7: hp-version DGFEM: Exponential rates of convergence with σ = 0.2. Left:
Results for u2. Right: Results for u3.

elements. The approximation order in space is selected as p = 10 and p = 20.
The error curves show the performance of the hp-DGFEM with σ = 0.2 and with
µ = 1.5 for u2 and µ = 0.5 for u3, respectively, in accordance to Figure 7. The
methods first converge exponentially and then level off as soon as the error in the
space discretization becomes dominant. Whereas the results for u2 are more or
less comparable with the ones in Figure 7 obtained with geometric boundary layer
meshes in space, the error graphs for u3 are clearly better if the spatial equations are
solved on geometric meshes. This indicates that the strength of the layer phenomena
actually present in the spatial problems depends on the compatibility of the initial
data in agreement to the discussion in Remark 6.11. However, the performance on
geometric boundary layer meshes in space seems to be more robust than on uniform
meshes, at the disadvantage of a possible overrefinement.
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Figure 8: hp-version of DGFEM: Varying geometrical grading factors. Left: Results
for u2 (µ = 1.5). Right: Results for u3 (µ = 0.5).
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Figure 9: hp-version of DGFEM: p-version FEM in space on a quasiuniform mesh
with four element. Left: Results for u2. Right: Results for u3.

40



References

[1] I. Babuška and B.Q. Guo: The hp version of the Finite Element Method for domains

with curved boundaries, SIAM J. Numer. Anal. 25 (1988), 837-861.
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[6] J. Bergh and J. Löfström: Interpolation Spaces, Springer Verlag, New York, 1976.
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