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Abstract

Crude closure algorithms based on equilibrium statistical theories are de-
veloped here for prototypical geophysical flows involving barotropic flow over
topography. These crude closure algorithms are developed utilizing the sim-
plest energy-enstrophy statistical theory for flow with topography; in these
algorithms, only a single parameter, the energy, is tracked by the algorithm
and the entire flow structure is predicted through the equilibrium statistical
state. In particular, no explicit parametrization of a sub-grid scale energy
spectrum is utilized in the algorithm. The predictions of the crude closure
algorithm are compared with direct pseudo-spectral numerical simulations of
the barotropic flow equations with random small scale forcing and dissipation
for a variety of random topographies in basin, channel, and periodic geome-
tries. In most situations studied here, the energy is tracked within small
errors by the crude closure while the velocity errors rarely exceed 10% pro-
vided that the enstrophy/energy ratio is not large or growing significantly
in time. Examples are also introduced where the crude closure algorithm
based on the energy enstrophy theory fails; in these circumstances, a crude
closure algorithm based on more sophisticated equilibrium statistical theories
is introduced as a possible remedy.

1Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, USA



1 Introduction

The tendency of turbulent geophysical flows to display two-dimensional behavior and
self-organize into coherent structures has been reported numerous times from phys-
ical observations and numerical simulations ([1, 2]). Various equilibrium statistical
theories have been proposed to provide a mathematical framework underpinning the
well-known emergence of coherent structures in freely evolving two-dimensional flow.
These theories apply to inviscid and unforced flow and attempt to predict the large
time behavior as it approaches statistical equilibrium. Both the infinite number of
degrees of freedom and the infinite number of conserved integrals preclude the direct
use of classical statistical mechanics to two-dimensional flow. As a result various
statistical theories have been proposed, which differ from each other mainly by their
individual choice of conserved quantities and the “discretization” procedure used
to represent the continuum by a countable set of “particles” (spectral representa-
tion, point-vortices, lattice models, etc.) Examples are the energy-enstrophy theory
([3, 4]), the point-vortex theory ([5, 6, 7, 8]), the Miller-Robert theory ([9, 10, 11]),
and a very recent few constraint statistical theory based on extrema of the potential
vorticity ([12, 13]). Each statistical theory yields a different relationship between
the vorticity and the stream function, which defines a coarse-grained (macroscopic)
description of the steady flow at statistical equilibrium, superimposed with local
random fluctuations.

Rigorous theory [14] establishes that the large scale statistical macrostates of the
Miller-Robert theory, involving infinitely many constraints, preserve only the energy,
the circulation, and perhaps the extrema of the typical microstate vorticity. This fact
suggests that, in some contexts, utilizing only a few judicious constraints might be
simpler and more appropriate. Furthermore, real flows are neither inviscid nor freely
evolving, so that such higher order equilibrium statistics based on inviscid dynamics
is rapidly lost in time. Additional evidence is provided by a numerical study in
ref. [14], which shows that for viscous decaying flow, even the simplest statistical
theories accurately describe the overall evolution of the time dependent flow. These
encouraging results lead the authors [15] to devise crude closure algorithms based on
few constraint statistical theories. These algorithms involve the nonlinear evolution
of a few parameters, such as the energy and the circulation. They are designed
through enforcing the following two assumptions:

1) All dissipation of energy and circulation occurs in the large scale statistical
flow.

2) The effect of small scale forcing is to instantaneously change the large scale
statistical structure to a new large scale statistical structure with an adjusted
energy and circulation.

The crude closure algorithms displayed remarkably accurate and robust predictive
ability of the large scale behavior of damped flow driven by small scale random
forcing in a basin, even under harsh conditions where all assumptions underlying
equilibrium statistical theories are clearly violated [15] and without any turbulence
parametrization for the inverse cascade process.
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The development of crude closure models for fluid flows which exhibit organized
large scale structure, such as geophysical flows, remains an important practical is-
sue. Especially the evolution of large scale ocean flow remains a formidable challenge
and necessitates the modeling of unresolved eddy motion. Simulations by Holloway
([16, 17]) indicate that subscale modeling based on statistical mechanics leads to
substantial improvement in model fidelity without incurring the cost of eddy resolu-
tion. Holloway suggests that the unresolved eddies are not a damping of the ocean
circulation but rather a systematic driving force which tends to move the model to
higher entropy states. In contrast, conventional eddy-viscosity models tend to drag
the numerical solution toward a state of rest.

Barotropic flows over topography are the simplest prototype geophysical flows
where even the simplest energy-enstropy statistical theory yields striking predictions
for a “most probable state” mean flow ([4, 18]). The emergence of such states as
averages over large time intervals in damped and driven numerical simulations has
been studied extensively with many interesting results ([1, 19, 20, 21, 22]). Here,
in a complementary direction, we devise and test crude closure algorithms based on
the energy-enstrophy statistical theory where the entire closure is based on a single
predicted evolving parameter, the energy.

In Section 2, we extend crude closure algorithms presented by the authors in [15]
to barotropic flow over topography. The simplest algorithm involves the nonlinear
evolution of a single parameter, the energy, for dynamic closure based on the energy-
enstrophy statistical theory. The crude closure algorithm is tested for damped flow
over random topography, driven by random small scale forcing in three different
domains: the basin, the channel, and periodic geometry. Crude closure based on the
inclusion of a second parameter, the circulation, is also discussed briefly. In Section
3, we test the crude dynamic closure theory developed in Section 2 on solutions
of the barotropic flow equations over random topography defined on a rectangular
domain with stress-free boundary conditions and with strong small scale forcing at
moderately large Reynolds numbers. We test the crude dynamic closure algorithms
under increasingly stringent conditions ranging from freely decaying flows to spin-
up from rest by random forcing with like signed vortices, and finally to random
forcing by vortices with alternating or opposite sign. We compare standard 1282

spectral code numerical simulations with crude dynamic closure based upon only a
single evolving parameter in the energy-enstrophy theory. In all cases the energy
is tracked with such accuracy, that the predicted value can hardly be distinguished
from the exact energy. In Section 4 we perform a study analogous to that in Section 3
but for flow in a channel. The numerical results corroborate the previous results and
demonstrate the ability of the crude dynamic closure to cross violent changes in flow
topology, as the flow reorganizes from a flow regime dominated by topography to a
regime dominated by relative vorticity. Section 5 involves a similar study for flow in
double periodic geometry. Finally in Section 6, we point out the limitations of the
crude closure based on the simple energy-enstrophy theory via a special low-energy
dynamic transition over two-mode layered topography, which the crude closure fails
to predict. Additional results suggest the potential benefit from using a recent
more sophisticated statistical theory ([12, 13]), which involve only a few additional
conserved quantities.
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2 Crude closure dynamics

We consider the barotropic flow equations with damping and driving over topogra-
phy in a two-dimensional region Ω,

∂q

∂t
+ "v ·∇q = P0(∆)ω + F. (1)

Here "v(x, y, t) denotes the velocity, q(x, y, t) the potential vorticity, and ω(x, y, t) the
relative vorticity of the flow. They are related to each other via the stream function
ψ by

"v = ∇⊥ψ =

(

−
∂ψ

∂y
,
∂ψ

∂x

)

, (2)

ω = ∆ψ, (3)

q = ω + h, (4)

where h(x, y) defines the underlying topography. Dissipative effects are incorporated
through the viscous operator P0(∆) defined by

P0(∆)ω = −dω + ν∆ω + νH∆
3ω. (5)

The viscous operator includes the Ekman drag coefficient, d, the Newtonian viscos-
ity coefficient, ν, and the hyperviscosity coefficient, νH . Higher order effects could
easily be incorporated. The first two dissipation mechanisms are radically differ-
ent from each other. While Ekman drag models the effects of boundary layers in
large scale geophysical flows and dissipates energy at all scales equally, Newtonian
viscosity corresponds to molecular or turbulent diffusion and dissipates much more
strongly the smaller scales. Frequently used in geophysical applications, the main
role of hyperviscosity in the present discussion is to guarantee numerical stability
in situations where we set ν = 0 in (5) (see sections 3.3, 4.2, and 5). We choose
the forcing F to mimic a random bombardment of the flow with localized smoothed
vortices of radius r,

F =
∑

j≥1

δ(t− tj)ωr("x− "xj). (6)

The bounded domain Ω stands for the periodic box, the basin, or the channel.
If Ω = [0, 2π) × [0, 2π) is the periodic box (torus), both ψ and h are 2π-periodic
in x and y, and we assume that their integrals over Ω vanish. Alternatively, if
Ω = [0, 2π)× [0, π] is the channel, ψ and h are 2π-periodic in x and satisfy free-slip
boundary conditions at the upper and lower boundaries y = 0, π,

∂2p

∂y2p
ψ(x, y, t) = 0, y = 0, π, p = 0, 1, 2, 3. (7)

Finally, if Ω = [0, π] × [0, π] is the basin, neither ψ nor h are periodic; hence, we
impose free-slip boundary conditions over the entire boundary of Ω,

∂2p

∂n2p
ψ(x, y, t) = 0, p = 0, 1, 2, 3, (8)
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where n is normal to the boundary of Ω. In the absence of topography and Ekman
drag, h(x, y) = 0 and d = 0, the barotropic flow equations (1) reduce to the two-
dimensional Navier-Stokes equations.

At any time t the energy E, the enstrophy E , and the circulation Γ are given by

E(t) =
1

2

∫

− |"v|2 = −
1

2

∫

−ωψ, (9)

E(t) =
1

2

∫

− q2, (10)

Γ(t) =
∫

− q. (11)

Here the horizontal bar across the integral sign indicates normalization with respect
to the area of Ω. In the absence of forcing and vicous effects (F = 0 and P0(∆) ≡ 0),
the barotropic flow equations (1) conserve the energy, the enstrophy, the circulation,
as well as the infinite number of integrals involving any arbitrary nonlinear function
G of the potential vorticity,

∫

−G(q). (12)

Given a subset of conserved quantities what is the most probable flow configura-
tion, q∗, at statistical equilibrium ? Various statistical theories have been proposed
to answer this question. These theories differ from each other through their in-
dividual choice of conserved quantities. Typically, they yield a nonlinear elliptic
mean-field equation, which relates the coarse-grained potential vorticity field, q∗, to
its corresponding stream function ψ∗ via

q∗ = f(ψ∗;E,Γ, . . .), q∗ = ∆ψ∗ + h. (13)

The stream lines of these mean flows are smooth across Ω; they ignore small scale
fluctuations and thus correspond to large-scale coherent structures in the flow. Be-
cause of topography they can contain small scale features, in particular at low energy.
Since equation (13) implies that

∇⊥ψ∗ ·∇q∗ = 0, (14)

any such mean flow is an exact steady-state solution of the inviscid and unforced
barotropic flow equations (1).

2.1 Energy-Enstrophy theories

The simplest non-trivial relation between q∗ and ψ∗ is linear and results from the
energy-enstrophy theory for two-dimensional inviscid flow over topography. This
equilibrium statistical theory starts from a truncated spectral representation of the
equations of motion (1) in the absence of forcing and viscosity. Instead of the infinite
number of conserved integrals in (12), the truncated dynamics then conserve only
the energy and the enstrophy. By maximizing the entropy of this finite dimensional
dynamical system, Salmon, Holloway, and Hendershott [4] derive the mean-field
equation

q∗ = µψ∗, (15)
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where µ is a Lagrange multiplier determined by the energy. Since the integral of
h vanishes, equation (15) has a unique solution for all µ > −λ1, where λ1 > 0 is
the lowest eigenvalue of the Laplacian in Ω – recall that zero is not an eigenvalue
because we have assumed that the integral of ψ vanishes. For a given energy there
are in general multiple stationary solutions of (15) for different values of µ. Yet only
the steady-states that lie on the branch µ > −λ1 are nonlinearly stable and thus
are the most physically relevant; moreover, they minimize the potential enstrophy
for given energy ([19]). Carnevale and Frederiksen [18] show that in the limit of
infinite resolution the canonical equilibrium is statistically sharp and identical to
the nonlinearly stable minimum enstrophy state. In summary, for every value of the
energy E > 0 there is a unique value µ > −λ1, which determines the nonlinearly
stable steady state via (15).

Let us assume that the flow is initially at statistical equilibrium, which is com-
pletely defined by its energy. As time progresses, the flow evolves under the constant
action of small scale forcing and dissipation. With the addition of every new local-
ized vortex, the energy slightly changes, thereby forcing the large scale flow into
a new statistical state with adjusted energy. In the absence of forcing, the energy
decreases because of dissipative effects; we estimate the decay in energy by assuming
that all dissipation occurs in the large scales of the flow. This strategy leads to the
crude closure algorithm, which captures the large-scale behavior of the damped and
driven flow only by tracking the energy without actually solving the fluid equations.

As the flow evolves under the constant bombardment with localized vortices, it
alternates between two extreme flow regimes: a phase of applied forcing and a phase
of pure decay.

Applied forcing

We begin with the addition of a single vortex ω at t = t̄ to the current approximate
state ω̄ of the flow. Let t̄− denote the instant just before and t̄+ the instant right
after the event. Then

ψt̄+ = ψ̄t̄
−

+ ψ, (16)

ωt̄+ = ω̄t̄
−

+ ω. (17)

How much does E increase in time from adding a vortex at t̄ ? By using equations
(16) and (17) in equation (5), we immediately obtain

E(t̄+) = E(t̄−)−
∫

− ψ̄ω −
1

2

∫

−ψω. (18)

Since ψ̄, ω, and ψ are explicitly known, we can evaluate the right-hand sides of (18)
and thus update the energy. This new value of E defines the new state ω̄ of the
approximate solution via (15), with µ uniquely determined by E.

Pure decay

Let ∆t denote the time interval between forcing by two successive random vortices.
Given the approximate solution ω̄ at t = t̄+, we need to determine the evolution
of the approximate dynamics during the decay phase, t̄+ ≤ t < t̄ + ∆t, up to the
instant just before adding the next localized vortex, t = t̄+∆t. To do so, we must
determine the change in energy and circulation in a situation without forcing.

5



Since we do not have simple exact expressions that describe the evolution of E
and Γ we need to estimate their change during decay. At the equilibrium statistical
state defined by the closure algorithm at t̄+, the nonlinear terms in (1) vanish
identically, Thus, we approximate the evolution of q over t̄+ ≤ t < t̄ +∆t by

∂q

∂t
= P0(∆)ω. (19)

The solution reduces to the first-order Taylor approximation

ω̃ = ω̄ + (t− t̄)P0(∆)ω̄,

ψ̃ = ψ̄ + (t− t̄)P0(∆)ψ̄. (20)

To estimate the change in the energy, we remark that

Ė = −
∫

−ψ
∂ω

∂t
.

Since at t = t̄ we have ∂tω = P0(∆)ω, we approximate the change in energy over
(t̄, t̄+∆t) by

Ė = −
∫

− ψ̃P0(∆)ω̃ (21)

= −
∫

− [ψ̄ + (t− t̄)P0(∆)ψ̄][P0(∆)(ω̄ + (t− t̄)P0(∆)ω̄)]. (22)

Integrating in time up to t = t+∆t yields the following estimate for the change in
the energy,

E(t+∆t) = E(t)−∆t
∫

− ψ̄P0(∆)ω̄ −
(∆t)2

2

∫

− [P0(∆)ψ̄][P0(∆)ω̄] (23)

−
(∆t)2

2

∫

− ψ̄[P0(∆)2ω̄]−
(∆t)3

3

∫

− [P0(∆)ψ̄][P0(∆)2ω̄]. (24)

For the sake of clarity, we summarize the crude closure algorithm below.

Crude closure algorithm:

0. At t = 0 match Ē with the energy of the initial flow. This defines the initial
approximate statistical state q̄ = ω̄ + h = µψ̄.

1. Let Ē− denote the current approximate energy, which defines the statistical
state q̄ = µψ̄ at t = t̄−. Compute the change in Ē due to the addition of a
localized vortex ω,

Ē+ = Ē− −
∫

− ψ̄ω −
1

2

∫

−ψω. (25)

This defines the new statistical state ω̄ at t = t̄+ via q̄ = µψ̄ with the energy
Ē+.

6



2. Compute the change in Ē during decay, t̄ < t < t +∆t:

E(t+∆t) = E(t)−∆t
∫

− ψ̄P0(∆)ω̄ −
(∆t)2

2

∫

− [P0(∆)ψ̄][P0(∆)ω̄]

−
(∆t)2

2

∫

− ψ̄[P0(∆)2ω̄]−
(∆t)3

3

∫

− [P0(∆)ψ̄][P0(∆)2ω̄]. (26)

This defines the new statistical state q̄ at t = t̄+∆t.

3. Return to 1.

We emphasize that the crude closure algorithm marches in time independently and
without any knowledge of the solution of (1). It only requires the initial energy
at t = 0, the applied external forcing, and the values of the various dissipation
coefficients.

2.2 More complex few constraint statistical theories

The crude closure algorithm presented in the previous section utilizes mean states,
which are completely determined by the energy. A natural extension consists in
including additional quantities from the infinite number of integrals conserved by
the inviscid and unforced dynamics (12). This leads to a richer family of mean states
and thus can possibly result in a crude closure, which adapts to a wider range of
flow situations.

For example, the statistical theory with both the energy and the circulation has
a mean field equation which reduces to the linear elliptic equation,

∆ψ∗ + h = q∗ = µψ∗ + α. (27)

Here µ and α are Lagrange multipliers uniquely determined by the energy E0 and
the circulation Γ0. Again for each pair (µ,α) there is a unique solution to (27) for
µ > −λ1, the smallest nonzero eigenvalue of the Laplacian in Ω. Thus we have
obtained a richer two-parameter family of statistical states. When the circulation
constraint is absent, α vanishes and we recover the mean-field equation of the energy-
enstrophy theory (15). Since the circulation of any flow in periodic geometry is
identically zero, α = 0 and the one- and two-parameter crude closure algorithms
coincide in this special situation. Although we have implemented and tested the
crude closure based on the above two-parameter family of statistical states, we
omit showing these numerical results here for two reasons. First, in the majority
of numerical experiments the results from the one-parameter crude closure are so
accurate that the additional improvement provided by Γ̄ is negligible. Second, to
accommodate the special flow configurations over layered topography presented in
Section 6, the mean-field equation must be nonlinear, unlike (27).

The addition of the circulation constraint besides the energy to the maximization
of the entropy does not lead to any significant improvement in the performance of
the crude closure. However, the addition of a few judiciously chosen constraints
from the infinite list in [12] might improve the performance of the crude closure
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algorithm significantly. We present such an example in Section 6 below. Following
Turkington [12] and DiBattista, Majda, and Turkington [13], we utilize the extrema
of the potential vorticity as the additional conserved quantities besides the energy.
Let Q+ and Q− denote the maximum and the minimum respectively of the initial
potential vorticity field, where Q = (Q+ − Q−)/2 and Q̄ = (Q+ + Q−)/2 are the
half-width and midpoint of the interval [Q−, Q+] respectively. By repeating the
calculations in [12] and [13], the mean-field equation in this setting becomes

∆ψ + h = q = Q̄ +QL[Q(θψ − γ)], where L[z] = coth z −
1

z
(28)

is the classical Langevin function. Again θ and γ are Lagrange multipliers associated
with the energy and the circulation constraints. In contrast to the mean-field equa-
tion in (27), the mean-field equation in (28) is nonlinear; it involves two additional
parameters, Q+ and Q−. Therefore it yields a richer family of statistical states. To
compute the entropy maximizing probability distribution, ρ∗, for given E0, Γ0, Q+,
and Q−, we use the algorithm developed by Turkington and Whitaker [20]. This
approach is based on the Kuhn-Tucker formulation of the above constrained opti-
mization problem and proceeds by successive linearization of the energy constraint.
DiBattista, Majda, and Turkington [13] extended this procedure to a nonzero mean
flow with beta-effect and explored flow configurations spanned by the entire param-
eter space. In particular they identified the parameter regimes for which the entropy
maximizing flow in a channel without topography bifurcates from a ubiquitous shear
flow to a monopolar vortex. In Section 6 we trivially modify this algorithm for flow
over topography and determine the mean-field potential vorticity, q∗, defined by the
entropy maximizer ρ∗.

2.3 Diagnostics

We shall compare the “exact” (numerical) solution with two types of approximate
statistical states. On the one hand, we shall verify the consistency of the equilibrium
statistical theories in a non-equilibrium regime simply by matching the instantaneous
exact energy E of the flow. Thus, given the exact computed value of E, we compare
the statistical state q∗ = µ∗ψ∗ with the exact solution q, where µ∗ is determined by
E . On the other hand, we shall measure the accuracy of the crude dynamic closure by
comparing the approximate statistical state q̄, defined above by the crude dynamics
algorithm, with the exact solution q. Although one might initially be lead to believe
that the macrostates obtained by matching E to those of the exact solution would
give much better results, we will provide ample numerical evidence that this is not
so. On the contrary, because the evolution of bulk features in the flow, such as the
energy, will prove to be remarkably well-predicted, even under harshest conditions,
by the crude closure algorithm, both error measures based either on accuracy or
on consistency tend to agree extremely well; in fact, it is usually quite difficult to
distinguish between them in any given situation.

To verify the consistency of the equilibrium statistical theory, we need to compare
in a quantitative fashion how close the instantaneous vorticity q and its correspond-
ing stream function ψ come to satisfying (13). We introduce the correlation function
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of f and g

Corr(f, g) = 1−
(f, g)2

‖f‖2 ‖g‖2
, (29)

where (f, g) denotes the L2-inner product on Ω and ‖f‖2 its corresponding L2-norm.
We recall that the correlation satisfies 0 ≤ Corr(f, g) ≤ 1 and that the correlation
is zero if and only if f and g are collinear, that is

Corr(f, g) = 0 ⇐⇒ f(x, y) = c g(x, y), for some constant c )= 0. (30)

Thus we calculate Corr(q,ψ) to measure how well q satisfies (10).
To calculate the accuracy of the crude closure algorithm, we must compare the

exact solution q either with the macrostate q∗, where E is simply matched to the
exact solution, or with the statistical state q̄, which is defined by (9) with Ē deter-
mined by the crude closure algorithm described above. We shall use two different
error measures, the relative L2-error in the vorticity,

Err(q, q∗) =
‖q(t, .)− q∗(t, .)‖2

‖q(t, .)‖2
, (31)

and the relative L2-error in the velocity,

Err("v, "v∗) =
‖"v(t, .)− "v∗(t, .)‖2

‖"v(t, .)‖2
. (32)

Both error measures quantify the relative closeness of either statistical state, q̄ or
q∗, to the exact solution, q. Since we are strongly perturbing the flow with random
localized vortices, we expect larger errors in the vorticity. Indeed (31) is a very
tough measure of the relative closeness between two solutions of (1)–(4) with random
forcing; in particular when ν = 0 there is no inherent dissipative mechanism but
hyperviscosity to remove small scales in the flow.

The following two diagnostic quantities, both enstrophy-energy ratios, will prove
useful in assessing the range of validity of the crude closure:

Λ(t) =

∫

ω2

∫

|∇ψ|2
, (33)

Λq(t) =

∫

q2
∫

|∇ψ|2
. (34)

Note that both Λ and Λq have the units, (length)−2. We use Λ as a measure of the

roughness of the flow, whereas
√

Λq provides an average inverse length scale. In any
given situation, the magnitude of Λq will prove a clear indicator for the performance
of the crude closure, with improved performance at lower values. Although strongly
perturbed flows often produce large relative errors in velocity, the crude closure
algorithm is usually able to track the evolution of bulk features of the flow quite
accurately, as long as Λq is not too big. Large values of Λq indicate little if no inverse
energy cascade and as a result no emergence of large coherent structures.

The large scale Reynolds number, Re, is defined as

Re =
L |"v|max

ν
, (35)

where L = 2π for the torus or the channel, and L = π for the basin.
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2.4 Numerical method

We solve the barotropic flow equations (1) numerically on a 2π-periodic domain with
a pseudo-spectral method. Thus we compute the spatial derivatives "v = ∇⊥ψ and
∇"q in Fourier space, but then evaluate the product "v ·∇"q in physical space. The nu-
merical scheme proceeds in time by using a split-step procedure, where the diffusive
part is handled exactly in Fourier space. The nonlinear convective part is computed
with an explicit fourth-order Runge-Kutta method with adaptive time-stepping, to
ensure stability as the flow accelerates. As the flow decelerates, however, we keep
the time-step δt at least 10 times smaller than the time interval ∆t between two
subsequent localized vortices. For simplicity, we set the time step in the Taylor
approximation equal to the time step of the Runge-Kutta scheme. The value of the
hyperviscosity, νH = 10−7, was found to guarantee numerical stability and effec-
tively remove unresolved features on the 128× 128 grid, which we used in all our
calculations.

While we cannot claim that there is detailed numerical resolution for the small-
est vortices in the computations, their effect on the large scale features of the flow
nevertheless is negligible for the computations presented here. Comparisons of nu-
merical solutions on different grids showed that bulk features of the flow, such as the
energy or the L2-error in velocity, hardly change if we further refine the underlying
grid – see also [15].

Random forcing

The evolution of the dynamics is governed by the external forcing F and is chosen
to mimic a random bombardment of the flow with smoothed small scale vortices,

F (x, y, t) =
∞
∑

j=1

δ(t− tj)ωr("x− "xj). (36)

The smoothed small scale vortex is added at the random location "xj and has support
in a disk of radius rj ,

ωr("x) = A

(

1−
|"x− "xj |2

r2j

)2

, |"x− "xj | ≤ rj, (37)

ωr("x) = 0, |"x− "xj | > rj . (38)

The random locations "xj are uniformly distributed inside Ω within a narrow margin
away from the boundary of Ω. The radii rj of the vortex patches vary randomly
between 4∆x and 8∆x, where ∆x = 2π/128 is the mesh size. We approximate
the temporal delta functions in (36) by the large constant value 1/δt over the time
interval, tj ≤ t ≤ tj + δt, where δt is the current step size. In all calculations the
amplitude |A| of the added vortices remained constant for all time, yet we allow for
a sign change of A. The value of A is either equal to one or to a percentage of the
maximal vorticity of the initial flow configuration. Unless the forcing is identically
zero, the time interval between two subsequent vortices remained constant and equal
to ∆t = 0.1 in all computations. Thus, during a numerical experiment up to t =
1000, the flow has been bombarded with 10, 000 smoothed point vortices, while
the numerical integration has performed at least 100, 000 time steps. The required
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increasingly smaller time steps at higher velocities remain the major obstacle to
long-time numerical experiments at higher Reynolds numbers. In contrast, the crude
closure algorithm is not affected by the Reynolds number; in fact, it tends to perform
better at higher Reynolds number.

Random topography

In Sections 3, 4, and 5, we shall use the random topography,

h(x, y) = H
∑

1≤|!k|≤5

h!k e
i!k·!x, "x = (x, y), "k = (k1, k2), (39)

where

h!k =
H0

|"k|2
eiθ!k , h−!k = h∗

!k
. (40)

Here the constant H0 normalizes the coefficients h!k to ensure that the maximal total
height is H , and the random phase shifts θ!k are chosen from a uniform distribution

in [0, 2π). Due to the decay of the Fourier coefficients like |"k|−2, the topography
is smooth. A medium-sized topography corresponds to H = 1, whereas H = 10
corresponds to a rather tall topography. For random topography in the channel or
basin, we impose the appropriate symmetry condition in (39) to ensure that h(x, y)
vanishes on the boundary of Ω. The random layered topography in Section 6 is
obtained through a one-dimensional expansion in Sine-functions analogous to (39).

3 Topographic flows in a basin

We shall now submit the crude closure dynamics presented in Section 2 for barotropic
flow over topography to a series of successively more stringent tests. The underlying
random topography is chosen according to (39) with H = 1; it is shown in Figure 1
and respects the symmetry imposed by the basin geometry.

3.1 Decaying flow

We begin with a purely decaying flow situation and thus set F = 0 in (1). The
initial flow configuration is set to a perturbed steady state with µ = −1.5. The
perturbation consists of sixteen random vortices, eight rotating clockwise and eight
rotating counter-clockwise, with fixed amplitude equal to 50% of the maximal initial
vorticity, |ω|max * 3.5. The Ekman drag coefficient is set to d = 0 and the viscosity
to ν = 0.01, which results in a Reynolds number Re = 400. Figure 2 depicts selected
snapshots of the potential vorticity at times t = 0, 1, 5, 20, 58, 80. The small-scale
vortices, entrained by the background flow, interact and merge rapidly to form a
large vortex, which spreads to the boundary of the domain. These initial stages
clearly parallel the long-time behavior of solutions to the 2–D Navier-Stokes equa-
tions (without topography) predicted by the theory of selective decay (see Majda
and Holen [14]). Yet, as the flow evolves further in time, small vortex structures
begin to emerge and eventually correlate with the topography.
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Figure 3 provides the explanation to this peculiar long-time behavior of the flow.
During the initial phase of decay the energy, the enstrophy, and the maximal poten-
tial vorticity consistently decrease with time while the circulation clearly remains
negative. The evolution of the flow is dictated by the relative vorticity, ω, which
dominates the potential vorticity q = ω + h. Here topography plays a minor role
and the flow evolution bears resemblance to the Taylor vortex predicted by selective
decay for flow without topography [14]. However, as the relative vorticity decreases
further, the circulation changes sign while both E and |q|max begin to increase again.
During this second phase of pure decay the topography dominates the dynamics of
the potential vorticity. Eventually ω approaches zero which results in the strong
correlation of q and h. This numerical solution exhibits some of the behavior noted
in the classical study from [19].

In Figure 3 we compare the exact (numerical) solution with the approximate
solutions defined by the statistical states. The middle two frames show the relative
errors in the macrostates q∗, obtained by matching the value of the energy from the
exact solution. Both the relative errors in "v and in q lie below 10% until t = 50. At
later times the relative errors increase but this is somewhat misleading since these
flows have nearly zero energy. As expected, the relative error in q is larger than the
relative error in "v.

Next, we explore the accuracy of the approximate solution q̄ determined by the
crude closure algorithm. In the upper left frame of Figure 3, the exact energy, E, and
the approximate energy, Ē, are shown. The two curves can barely be distinguished
from each other, which demonstrates that the crude closure predicts the evolution
of the energy remarkably well. We recall that the crude closure dynamics evolve
independently and without knowledge of the numerical solution, once the energy
of the initial state has been matched at t = 0. Since the statistical states are
completely determined by Ē, which essentially coincides with the exact energy E,
the relative L2-errors of the macrostates obtained via the crude closure dynamics
also coincide with those obtained through direct matching. Thus, the resolved flow
from the numerical solution provides little extra information for bulk features of the
flow as compared with the crude closure algorithm.

3.2 Spin-up of large vortex

Here we consider a numerical experiment radically different from the previous one.
Initially at rest, the flow is bombarded with localized vortices of like negative sign
and constant amplitude |A| = 1. What is the statistical quasi-equilibrium state for
large times with damping and driving?

In our first calculation we set ν = 0.01, so that statistical equilibrium was reached
around t * 500, with a final Reynolds number close to 2200. Since the macrostates
are not defined for zero energy (E → 0 implies µ → ∞), we add a single random
vortex to quiescent flow and use the corresponding energy to initialize the crude
closure algorithm. Then the initial energy at t = 0 is small but positive, typically
E(0) = O(10−4).

Figure 4 depicts snapshots of the potential vorticity during initial and later
stages in the computation, t = 0, 1, 5, 10, 50, 2000. At t = 0 the small vortex added
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ab initio is clearly visible against the contour lines of the topography. The initial
stages of the flow are strongly perturbed and incoherent, yet with time a vortical
super-structure emerges from the turbulent flow with the vorticity concentrated in
the center of the basin. In Figure 5 we see the large increase in energy, as the flow
accelerates due to the incessant bombardment with small vortices up to t = 2000 –
until that time 20,000 random vortices have been added. The circulation, negative
since the flow rotates clockwise, decreases below -5. The two middle frames in
Figure 5 display the errors in velocity and vorticity using the macrostates obtained
by matching the energy of the exact solution. The relative errors, as expected, are
quite large during the initial stages, but rapidly decrease and reach remarkably small
values considering the crude closure being utilized: 2% for the velocity and 5% for
the vorticity. Simultaneously, the correlation is very poor during initial stages but
drops down significantly to values around 0.002 for larger time, while Λω and Λq

stabilize about moderate values, indicative of prevailing large scale structures and
smooth flow features. The lower two frames of Figure 5, which focus on the initial
stages of the flow, emphasize the incoherent initial flow stages governed by rough
small scale interaction with poor correlation and high values of Λω and Λq. Both
Λω and Λq rapidly reach values close to −λ1 = 2.

At this stage we address a remaining crucial issue: is the crude dynamics algo-
rithm able to bridge over the initial chaotic stages of the flow and predict the bulk
features of the emerging super-vortex ? Surprisingly, the answer to this question is
yes. Indeed in the middle two frames in Figure 5, the errors in velocity and vorticity,
obtained with the crude closure algorithm are barely larger than those obtained by
the simple matching procedure.

How much do the results depend on the size of the topography ? To answer this
question we magnify the topography by a factor ten and repeat the previous numer-
ical experiment, with H = 10 in (39). Again, under the constant bombardment with
random like signed vortices, the flow undergoes a transient incoherent state masked
by the dominating topography, while q remains strongly correlated to h. However,
as the flow picks up speed and ω decreases further, the enstrophy reaches zero by
t = 38 and the correlation of q and ψ becomes very poor. At this stage, topography
and relative vorticity compete until the potential vorticity rearranges itself and a
large vortex emerges to fill the basin – see Figure 6. Beyond the initial perturbed
flow configurations, the flow correlates extremely well with the statistical states. In
the middle two frames of Figure 7, we see the remarkable performance of the crude
closure algorithm, with relative errors again about 2% for the velocity and 5% for
the vorticity. Until t = 100 the relative errors in velocity of the macrostates obtained
by matching the exact energy lie slightly below those predicted by the crude closure;
however, at later times the crude closure recovers the same level of accuracy. We
refrain from showing long time simulations as the significant differences from the
previous case with smaller topography occur only during the initial stages of the
simulation.

The wide range of possible parameter settings is well represented by the above
two situations of medium sized and tall topography. If one increases the topography
even further without increasing the forcing, the flow eventually lingers in a low
energy state governed by the underlying topography. As a consequence, the value of
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Λq remains large and the performance of the crude closure is poor due to the small
amount of mixing. In contrast, smaller topography leads to behavior increasingly
similar to that without topography, where the crude closure performs well – see
ref. [15]. Higher Reynolds number flows yield similar results but the flows do not
reach a statistical equilibrium until much larger times. We omit showing results
with combined Newtonian viscosity and Ekman drag, as they are quite similar.

3.3 Forcing by alternating opposite signed vortices

Finally, we attempt to explore the limits of the statistical theory and set ν = 0. The
hyperviscosity remains active with νH = 10−7. By strongly perturbing the flow with
random localized vortices of alternating opposite sign, we attempt to force it out of
the statistical state and test the performance of the crude closure algorithm. Figure
8 displays snapshots of the potential vorticity at times t = 0, 400, 800, 1600. The
initial flow configuration corresponds to the steady state with µ = −1. Since the
initial energy is not zero in this case, the crude closure is well-defined from the start
and no small vortex needs to be added at t = 0. In contrast to the behavior during
pure decay or build-up from zero, the contour lines of the potential vorticity rapidly
concentrate in the center of Ω. Then, by t = 800, a large secondary vortex structure
appears along the boundary of Ω as the main vortex shifts away from the center
and wanders about the basin. As to be expected under such harsh conditions, the
statistical states correlate rather poorly with the evolving flow and lead to errors
around 40% in the velocity. In Figure 9 the strong variations in the maximal velocity
and the constant increase of both Λω and Λq indicate the increasingly strong activity
in the small scales. Surprisingly, the crude closure is able to track bulk features of
the flow, such as the energy, quite accurately and for all time, in spite of poor
correlation and large relative errors in the velocity. Note that the evolution of the
energy predicted by the crude closure departs only slightly from that of the exact
energy around t = 1200 and that the two curves meet again around t = 1500.
Although increasing ν always leads to smoother flows and smaller relative errors,
the net input of energy of the alternating small scale forcing remains marginal and
as a consequence the flow rapidly decays to zero.

4 Topographic flows in a channel

With the clear evidence presented in the previous section for the merit of the crude
closure dynamics in damped and driven flows in a basin, it is natural to ask whether
a similar behavior can be expected in a different geometry. In this section we choose
Ω to be a channel and set h again to be a random topography with H = 1, sampled
according to the prescription in (39) and shown in Figure 10. We remark that due
to our initial assumption that the integrals of ψ and h vanish, neither our numerical
simulation nor the family of statistical states of the energy-enstrophy theory allow
for the most basic pattern in channel flow, namely constant uniform flow.
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4.1 Spin-up from zero

As in the previous section we set the viscosity to ν = 0.01 and bombard the flow,
initially at rest, with localized vortices of like negative sign and constant amplitude
|A| = 1. In Figure 11 we display snapshots of the potential vorticity during initial
and later stages in the simulation, t = 0, 1, 5, 10, 50, 2000. Again at t = 0 the single
small vortex added ab initio is clearly visible against the contour lines of the topog-
raphy. Although initial stages of the flow are strongly perturbed, the flow rapidly
develops two large vortices in opposite direction, which correlate with the dominant
topographic features. Under the incessant bombardment with small vortices, the
flow accelerates further and changes its topology as the counter-clockwise vortex in
the center is torn apart and a large scale shear flow emerges around t = 50. This
shear flow configuration remains stable to small scale perturbation until t = 500,
when the flow reaches a quasi-equilibrium state.

Despite the dramatic change in the flow topology, shown in Figure 11, the crude
closure rapidly bridges over the initial turbulent stages and predicts the emergence
of a shear flow with the same accuracy as for flow in the basin, with relative errors in
the velocity below 2% and in the vorticity around 4%. Final values of the velocity
lie around |"v| = 8.5, which corresponds approximately to a Reynolds number of
Re = 5400. The lower two frames in Figure 12 display the correlation and both Λω

and Λq, again during the initial stages of the simulation until t = 50. We note the
very poor correlation of the flow with the macrostates up to t = 10, paralleled by
very large values in Λω and Λq, which demonstrate the strong vortical activity in
the small scales. As the energy cascades from smaller to larger scales, the ratio of
enstrophy to energy diminishes and coherent structures appear in the evolving flow,
which eventually stabilizes into a large scale shear flow configuration.

4.2 Forcing by alternating opposite signed vortices

Again we attempt to push the crude closure to the limits of statistical theory and
set ν = 0. The initial flow configuration corresponds to the macrostate defined by
µ = −1/2. By strongly perturbing the flow with random vortices of alternating
opposite sign, we attempt to push the flow away from statistical equilibrium. The
small smoothed vortices all have constant amplitude equal to 10% of the initial
maximal relative vorticity. Figure 13 displays snapshots of the potential vorticity at
times t = 0, 400, 800, 2000. Under the incessant bombardment with small smoothed
vortices, a counter-clockwise vortex concentrates in the center of the channel around
t = 400, to be destroyed again by t = 2000. By that time the contour lines of the
dominant vortex have lost their initially smooth character and appear tightly packed.

The rough nature of the flow is apparent from the slow but steady increase in Λω

and Λq, shown in Figure 14, while the maximal potential vorticity triples over the
entire simulation. The increase in Λq demonstrates the absence of an inverse energy
cascade. Indeed the small vortices added by the random forcing accumulate in the
smaller scales of the flow and result in a fivefold increase in the enstrophy, while
we observe little change in the energy. Despite the poor correlation with statistical
states, with relative errors in the velocity as high as 30%, the crude closure algorithm
tracks the evolution of the energy within a few percent.
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5 Topographic flows in periodic geometry

Unlike the two previous geometries, periodic geometry requires the circulation to
vanish for all time. Thus any flow configuration must consist equally of regions
with positive and with negative vorticity, and it is not possible to build a large
scale flow through bombardment with random like signed vortices. To enforce the
zero circulation constraint, we shall add two random vortices of identical strength
but opposite sign at each t̄. Hence the set-up for the numerical experiments in this
section with ν = 0 is comparable to that in sections 3.3 and 4.2. The underlying
random topography, shown in Figure 15, is defined by (39) with H = 1.

We begin with a low energy simulation and set the initial flow to the statistical
steady state defined by µ = −1/2. The amplitude of the small scale forcing is set
to 10% of the initial maximal relative vorticity, |ω|max ≈ 1.5, or equivalently to 30%
of the initial maximal potential vorticity, |q|max = 0.51. As a result of the strong
random forcing – recall that two vortices of opposite sign are added at each t̄ – and
the absence of viscosity, the contour lines of q in Figure 16 appear very perturbed at
later times. Both Λq and Λω remain essentially constant during the entire numerical
experiment, while we observe a slight decrease in energy at later times. The crude
closure tracks the energy quite accurately, while the strongly perturbed flow features
yields relative errors in velocity between 10% and 20%.

Next, we repeat the same numerical experiment but set the initial flow to the
statistical state defined by µ = 5. Here the energy is about 100 times smaller than
in the previous case. In addition, unlike in the previous simulation, the maximal
relative vorticity, |ω|max ≈ 0.35, is smaller than the maximal potential vorticity,
|q|max ≈ 0.66 so we have very weak initial flow dominated by topography. As a
consequence, the amplitude of the forcing, still set to 10% of |ω|max, is only about
5% of |q|max, which results in rather smooth contours in q at later times, shown
in Figure 17. The variations in the evolution of |q|max are also smaller than in the
previous case. The large values in Λq, about fifteen times larger than in the previous
case, indicate the enhanced role of small scale topographic features versus that of
random forcing. As anticipated from the larger values of Λq, the performance of the
crude closure is worse and the algorithm is unable to follow accurately the evolution
of the energy.

6 Layered two-mode topography in the channel

In this last section we restrict ourselves to the following layered two-mode topogra-
phy in the channel,

h(x, y) = H
(

sin y

2
+ sin(2y)

)

. (41)

This peculiar topography differs from previous random topography (39) in two ways:
first, it is layered, that is h = h(y); second, in contrast to the smooth decay of Fourier
coefficients of h in (39), here the second Fourier mode clearly dominates over the
first mode. In general, the performance of the crude closure for flow over layered
topography hardly differs from that over random topography studied in Section 5.
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For instance, if we set ν = 0.01 and H = 1, as in Section 5, and spin up the flow
from zero with like signed vortices of amplitude |A| = 1, both random (layered)
topography, defined by (39) with h = h(y), and the above two-mode topography
lead to similar results. Indeed in both cases the crude closure predicts the eventual
final state of a shear flow, with relative errors in velocity below 10% for flow over
two-mode topography and around 3% for flow over random topography. We refrain
from showing these results, which simply corroborate the findings from our previous
study. Instead, we shall devise special flow situations over two-mode topography
at low energy, which illustrate the shortcomings of the crude closure based on the
energy-enstrophy theory. Although the flows considered in this section are somewhat
atypical and contrived, they demonstrate the potential benefit to be gained from the
use of more sophisticated statistical theories, such as the Langevin theory discussed
in Section 2.3.

6.1 Failure of the crude closure

We now describe a special low energy dynamic transition of the flow over layered
two-mode topography, which the crude closure based on the energy-enstrophy theory
is unable to predict. We let the topography be given by (41) with H = 1 and set
the initial conditions to the steady state defined by (15) with µ = −0.5. Since the
topography is layered and the mean-field equation is linear, the initial condition as
well as any other steady state is necessarily layered. Hence the initial flow, shown
in Figure 18, is a shear flow with slightly negative circulation. We set the viscosity
to ν = 0.01 and choose the amplitude of the forcing |F | = 0.15, about 10% of the
initial maximal vorticity, so that the flow remains in a low energy state, E = O(0.1).
Under the constant bombardment with small clockwise vortices, the energy decays
until t = 20 but then increases to reach a steady value around 0.2, while a clockwise
vortex emerges in the upper half of the channel. Although the crude closure predicts
the initial decrease in energy, it fails to predict the subsequent increase. The crude
closure with only two layered modes attempts to approximate the exact solution
with a strong emerging large scale vortex. During this dynamic transition from a
layered to a vortical flow configuration, we observe a large, fifty-fold increase in Λq.
Since the family of steady states is restricted to zonal shear flows, the crude closure
cannot accommodate the emerging vortex. A possible remedy may be the use of
crude closure based on more sophisticated statistical theories, such as the Langevin
theory discussed in Section 2.3, which yield a richer family of statistical states not
restricted to zonal shear flows.

6.2 Langevin statistical theories

To demonstrate the potential benefit from using more complex statistical theories,
we choose a special situation for which the mean-field potential vorticity, q∗, of the
Langevin statistical theory is not a zonal but instead a vortical flow. Again we set
h to the layered two-mode topography in (41), but with smaller amplitude H = 0.1.
The initial flow configuration is set to the entropy maximizer, q∗, which results
from the Langevin theory for the special parameter choice E = 0.28, Γ = −0.34,
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Q+ = 0.48, and Q− = −1.67 (see Section 2.4). It consists of a large vortex rotating
clockwise, with a tight boundary; it is shown in Figure 19. Both the forcing and
the dissipation are identical to the previous case, |F | = 0.15 and ν = 0.01. Under
the constant bombardment with like signed, small, clockwise vortices, a background
shear rapidly appears which tears apart the initial vortex. By t = 100 the vortex
has completely disintegrated and the flow remains in a shear flow configuration for
all time. Despite the inability of the energy-enstrophy theory to accommodate the
initial vortex, the crude closure easily predicts the increase and long term evolution
of the energy as the flow stabilizes in a shear flow configuration, with relative errors
in the velocity around 5%. Both Λω and Λq rapidly reach their final values close to
one.

Finally, we consider the same initial flow configuration but with ν = 0 and
bombard the flow with alternating opposite signed vortices of amplitude equal to
5% of the maximal initial vorticity. Here the flow remains in a vortical configuration
over the entire time interval until t = 1000. The crude closure predicts the evolution
of the energy without difficulty, despite relative errors in the velocity around 50% due
to the inability of the energy-enstrophy theory to accommodate a vortex over layered
topography. The vortex shifts about the channel, as shown in the top left frame of
Figure 20. Moreover, its overall appearance evolves as its contours become smoother
and stretched out in the zonal direction. We now wish to check the consistency
of the Langevin statistical theory. To do so, we wait for the flow to regain the
center of the channel, around t = 670. Then with the current values of the time
dependent flow E = 0.30, Γ = −0.48, Q+ = 0.21, and Q− = −2.31, we compute the
entropy maximizer of the Langevin statistical theory. The corresponding mean-field
potential vorticity, q∗, is shown in the lower right frame of Figure 20 and compares
favorably with the flow at t = 670, shown above it. In particular we note how the
contours of q∗ are also smooth and slightly stretched in the zonal direction. The
relative error in potential vorticity is 19%, a clear improvement over the 70% relative
error in the layered solution of the energy-enstrophy statistical theory. Although we
have only verified the consistency of the Langevin theory, the crude closure algorithm
could be extended to predict the evolution of the two additional parameters Q+ and
Q−. This last example demonstrates the potential benefit resulting from the use of
more complex statistical theories, such as the Langevin theory.

7 Concluding discussion

The equilibrium states of few constraint statistical theories have proved to be rea-
sonably robust to small scale forcing in a variety of geometries and for a wide range
of underlying topography. By using these equilibrium statistical states, we have de-
vised a simple procedure, the crude closure algorithm, which predicts within a small
error margin the general trend of large scale features of the flow as it evolves under
intense, small scale forcing. Systematic comparison with the full numerical solution
demonstrates that the one-parameter crude closure based on the energy-enstrophy
theory generally tracks with high accuracy the evolution of bulk features of the
flow, such as the energy. We have tested the crude closure for random and layered
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topography in three types of geometry: the basin, the channel, and the periodic
geometry. Typically the crude closure predicts the evolution of the energy within a
few percent, while relative errors in velocity range from 5% to 10%. Exception to
this situation, documented in sections 4, 5, and 6, occur when the energy-enstrophy
ratio is large or increases rapidly in time. As demonstrated in section 6, more so-
phisticated statistical theories, as discussed in Section 2.2, can be used to enrich the
family of statistical states by including additional conserved quantities and prior dis-
tributions. Then the resulting crude closure dynamics accommodate a wider range
of flow regimes at the expense of a more complicated numerical procedure. The
ratio of enstrophy to energy, Λq, has proved a reliable indicator for the performance
of the crude closure, with improved performance at lower values. Large values of Λq

indicate little if no inverse energy cascade and as a result no emergence of large scale
coherent structures. Although strongly perturbed flows often produce large relative
errors in velocity, the crude closure algorithm is able to track the evolution of bulk
features of the flow quite accurately, as long as Λq is not too big. Large values of
Λq correspond either to flow where all the energy resides in the small scales or to
creeping flow dominated by topography, where little mixing occurs. Furthermore,
whenever the flow crosses a rough transition where Λq is large and the correlation
poor, the crude closure is able to predict the general trend of bulk features and re-
cover its original accuracy. However, examples of failure of the crude closure to track
the energy accurately through regimes with large Λq are documented in sections 5
and 6.1.

Given the encouraging results presented in this paper involving crude dynami-
cal closure modeling based on large scale statistical theory, it is important to point
out some limitations of the approach. The most important limitation involves the
requirement of strong mixing or ergodicity of the flow field. This issue was cir-
cumvented here through the use of simple geometry and small scale random forcing
with an essentially uniform distribution of locations. For more realistic geophysical
flows involving large scale forcing and the beta-effect, distinct mixing regions can
emerge through a combination of these effects ([1, 23]). It is very interesting to
devise crude dynamics based on statistical theories which can account for these new
physical effects. The authors are currently pursuing these issues and will report on
them elsewhere in the near future.
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Figure 1: Random topography in the basin.
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Figure 2: Snapshots of the potential vorticity at t = 0, 1, 5, 30, 58, 80 during pure
decay in the basin, with H = 1 and ν = 0.01.
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Figure 3: Comparison with crude closure dynamics during pure decay in the basin,
with H = 1 and ν = 0.01. Top left: energy E (plain) and predicted energy Ē
(+ − +); top right: enstrophy E ; middle left: relative errors in matched velocity
Err("v,"v∗) (plain) and predicted velocity Err("v, "̄v ) (+ − +); middle right: relative
errors in matched potential vorticity Err(q, q∗) (plain) and predicted potential vor-
ticity Err(q, q̄) (+−+); bottom left: circulation Γ; bottom right: potential vorticity
q.
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Figure 4: Snapshots of the potential vorticity at t = 0, 1, 5, 10, 50, 2000, during
spin-up from zero in the basin, with H = 1 and ν = 0.01.
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Figure 5: Comparison with crude closure dynamics during spin-up from zero in the
basin, with H = 1 and ν = 0.01. Top left: energy E (plain) and predicted energy
Ē (+ −+); top right: enstrophy E ; middle left: relative errors in matched velocity
Err("v,"v∗) (plain) and predicted velocity Err("v, "̄v ) (+ − +); middle right: relative
errors in matched potential vorticity Err(q, q∗) (plain) and predicted potential vor-
ticity Err(q, q̄) (+−+); bottom left: correlation Corr(q,ψ); bottom right: Λω (plain)
and Λq (+−+).
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Figure 6: Snapshots of the potential vorticity at t = 0, 5, 10, 38, 80, 200, during
spin-up from zero in the basin, with H = 10 and ν = 0.01.
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Figure 7: Comparison with crude closure dynamics during spin-up from zero in the
basin, with H = 10 and ν = 0.01. Top left: energy E (plain) and predicted energy
Ē (+ −+); top right: enstrophy E ; middle left: relative errors in matched velocity
Err("v,"v∗) (plain) and predicted velocity Err("v, "̄v ) (+ − +); middle right: relative
errors in matched potential vorticity Err(q, q∗) (plain) and predicted potential vor-
ticity Err(q, q̄) (+−+); bottom left: correlation Corr(q,ψ); bottom right: Λω (plain)
and Λq (+−+).
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Figure 8: Snapshots of the potential vorticity at t = 0, 400, 800, 1600, in the basin
during bombardment with localized vortices of alternating sign and amplitude equal
to 10% of initial maximal vorticity.
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Figure 9: Comparison with crude closure dynamics during bombardment with lo-
calized vortices of alternating sign and amplitude equal to 10% of initial maximal
vorticity. Top left: maximal potential vorticity |q|max; top right: Λω (plain) and
Λq (+ − +); bottom left: relative errors in matched velocity Err("v,"v∗) (plain) and
predicted velocity Err("v, "̄v ) (+−+); bottom right: energy E (plain) and predicted
energy Ē (+−+).
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Figure 10: Random topography in the channel.
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Figure 11: Snapshots of the potential vorticity at t = 0, 1, 5, 10, 50, 2000, during
spin-up from zero in the channel, with H = 1 and ν = 0.01.
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Figure 12: Comparison with crude closure dynamics during spin-up from zero in
the channel, with H = 1 and ν = 0.01. Top left: energy E (plain) and predicted
energy Ē (+ − +); top right: enstrophy E ; middle left: relative errors in matched
velocity Err("v,"v∗) (plain) and predicted velocity Err("v, "̄v ) (+ − +); middle right:
relative errors in matched potential vorticity Err(q, q∗) (plain) and predicted poten-
tial vorticity Err(q, q̄) (+ − +); bottom left: correlation Corr(q,ψ); bottom right:
Λω (plain) and Λq (+−+).
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Figure 13: Snapshots of the potential vorticity at t = 0, 400, 800, 2000, in the channel
during bombardment with localized vortices of alternating sign and amplitude equal
to 10% of initial maximal vorticity.
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Figure 14: Comparison with crude closure dynamics during bombardment with
localized vortices of alternating sign and amplitude equal to 10% of initial maximal
vorticity. Top left: maximal potential vorticity |q|max; top right: Λω (plain) and
Λq (+ − +); bottom left: relative errors in matched velocity Err("v,"v∗) (plain) and
predicted velocity Err("v, "̄v ) (+−+); bottom right: energy E (plain) and predicted
energy Ē (+−+).
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Figure 15: Random topography on the torus.
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Figure 16: Comparison with crude closure dynamics during bombardment with
dipolar vortices of amplitude equal to 10% of initial maximal vorticity, with µ0 = −1.
Top: snapshots of potential vorticity at t = 0 and t = 2000; middle left: maximal
potential vorticity |q|max; middle right: Λω (plain) and Λq (+ − +); bottom left:
relative errors in matched velocity Err("v,"v∗) (plain) and predicted velocity Err("v, "̄v )
(+−+); bottom right: energy E (plain) and predicted energy Ē (+−+).
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Figure 17: Comparison with crude closure dynamics during bombardment with
dipolar vortices of amplitude equal to 10% of initial maximal vorticity, with µ0 = 5.
Top: snapshots of potential vorticity at t = 0 and t = 2000; middle left: maximal
potential vorticity |q|max; middle right: Λω (plain) and Λq (+ − +); bottom left:
relative errors in matched velocity Err("v,"v∗) (plain) and predicted velocity Err("v, "̄v )
(+−+); bottom right: energy E (plain) and predicted energy Ē (+−+).
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Figure 18: Comparison with crude closure dynamics during bombardment with
clockwise vortices of amplitude equal to 12% of initial maximal vorticity, with µ0 =
−0.5, over tall, layered, two-mode topography. Top: snapshots of potential vorticity
at t = 0 and t = 200; bottom left: energy E (plain) and predicted energy Ē (+−+);
bottom right: Λω (plain) and Λq (+−+).
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Figure 19: Comparison with crude closure dynamics during bombardment with
clockwise vortices of amplitude equal to 8% of initial maximal vorticity, with low am-
plitude, layered, two-mode topography and the initial conditions set to a Langevin
entropy maximizer. Top: snapshots of potential vorticity at t = 0 and t = 10;
Middle: snapshots of potential vorticity at t = 25 and t = 1000; bottom left: energy
E (plain) and predicted energy Ē (+−+); bottom right: relative errors in matched
velocity Err("v,"v∗) (plain) and predicted velocity Err("v, "̄v ) (+−+).
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Figure 20: Evolution of Langevin mean-field state during bombardment with lo-
calized vortices of alternating sign and amplitude equal to 5% of initial maximal
vorticity, with low amplitude, layered, two-mode topography and the initial condi-
tions set to the Langevin entropy maximizer (see Figure 18). Top: snapshots of
potential vorticity at t = 200 and t = 670; bottom left: energy E (plain) and pre-
dicted energy Ē (+ − +); bottom right: Langevin entropy maximizing mean-field
potential vorticity, q∗, with E, Γ, Q, and Q̄ matched from exact solution at t = 670
(top right). Note: contour lines at identical levels in above three frames.
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