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1 Introduction

Numerous problems in engineering and the sciences involve media with small-scale features,
such as a large number of rivets, stiffeners, fibers etc. In many cases scale resolution, i.e. the
discretization of the small-scale problem features with finite elements, is not feasible, even with
advanced hardware. The derivation of macroscopic models as the small scales tend to zero by
averaging or homogenization is by now well understood and established for periodic structures
(see, e.g. [3, 4, 11]). The averaged equations have smooth coefficients and are therefore well-
suited for Finite-Element discretization. The small-scale features of the solution, however, are
lost in this process. Recovery of such features requires the computation of so-called correctors
which are as difficult to compute as the original problem. Moreover, the averaged equations are
obtained as leading term in asymptotic expansions of the solution as the scale-length ε → 0. In
practice, however, ε > 0 is given and fixed and the asymptotic limit may be a poor description
of the phenomena of interest. Since asymptotic expansions generally do not converge, the
inclusion of higher order terms at fixed ε > 0 into the homogenization process will not improve
the solution, in general. In addition, the homogenization is basically related to a global periodic
pattern of the microstructure.

Some researchers have therefore avoided the use of homogenization techniques. For exam-
ple, finite element multigrid and multiscale techniques have been developed for the resolution
of the small scales (see, e.g. [6]). Such schemes are successful in rather general situations, in
particular in the absence of periodicity. However, they require scale-resolution, i.e. with linear
elements in dimension d at least O(ε−d) degrees of freedom. The multigrid techniques consti-
tute an optimal order process for the solution of the resulting system of equations, but cannot
overcome the requirement of scale resolution. If the scales are resolved, these approaches yield
algebraic convergence rates.

In the present paper, we develop a new p-FE approach for the numerical solution of homo-
genization problems. Its main features are as follows:

a) under the assumption of locally periodic structure, the scale can be resolved with com-
putational work which is bounded independently of ε,

b) for piecewise analytic input data, the method will converge exponentially, independent
of the length scale ε, in particular also at fixed, positive ε.

c) as ε → 0, the numerical solution converges to the homogenized limit with an optimal
rate in ε.

d) the approach applies to general elliptic systems with locally periodic microstructure.
A related algorithm has been used successfully in large scale computations [1].

For the sake of illustration, the approach will be developed and analyzed here for the
classical elliptic problem

−∇ ·
(

a
(x

ε

)

∇u
)

+ a0
(x

ε

)

u = f in Ω, (1.1)

Bu = 0 on ∂Ω. (1.2)

Here Ω is a bounded, connected subset of Rd with boundary ∂Ω and boundary operator B
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which may be either the trace operator or the conormal derivative operator. The problem is
assumed strongly elliptic, i.e. a(ξ), a0(ξ) are positive.

The Finite Element Method (FEM) for (1.1), (1.2) reads: find uεN ∈ VN
ε such that

a(uε, v) =

∫

Ω

{

a
(x

ε

)

∇u ·∇v + a0
(x

ε

)

uv
}

dx = (f, v) ∀v ∈ VN
ε (1.3)

where VN
ε ⊂ H1(Ω) is a subspace of dimension N which carries the essential boundary condi-

tions (if any). The FE-solution uεN is optimal in the energy norm ‖ · ‖E

∀v ∈ VN
ε : ‖uε − uεN‖E ≤ ‖uε − v‖E (1.4)

and the performance of the FEM (1.3) depends strongly on the design of the subspace VN
ε .

The basic idea of our approach is the design of special, ε-dependent subspaces VN
ε which

resolve the microscale with a number of degrees of freedom independent of ε and which give
exponential convergence in N if the right hand side f of the problem is analytic. To this end,
we must assume the coefficients a(ξ), a0(ξ) in (1.1) to be 1-periodic. The subspaces VN

ε will
be built by analyzing the Fourier-Bochner representation from [9, 10] of the solution of (1.1)
on the unbounded domain Rd. We show that asymptotic expansion of the kernel with respect
to ε about ε = 0 reproduces the classical homogenization approach – thus the method is at
least as good as that approach. We obtain subspaces VN

ε by sampling the Fourier-Bochner
kernel for fixed ε > 0 in the frequency domain. We prove that if the sampling points are
properly selected, this yields function systems with exponential convergence independent of
ε > 0. We calculate the ε-dependent shape functions by solving once a parameter-dependent
unit-cell problem with the hp-FEM. Finally, we address the calculation of stiffness matrices
for our ε-dependent shape functions. We show that these matrices can be generated with
work independent of ε. In order to present the ideas in the simplest setting, we concentrate
here on the case d = 1 and globally periodic problems. We hasten to add, however, that all
proofs apply verbatim in dimensions d > 1 [7]. Likewise, the assumption on global periodicity
of the coefficients a, a0 is not restrictive – if the coefficients are only patch-wise periodic, we
may resort to the partition of unity method (PUM) and use VN

ε simply as local approximation
spaces in the PUM (see [2] for more on the theory and applications of the PUM). Finally, we
remark that the algorithms developed here have shown good results also in the non-periodic
setting, see e.g. [1], even though the theoretical results do not apply there.

The outline of this paper is as follows. In Section 2 we present the homogenization problem
on the unbounded domain and introduce the kernel φ(y, ε, t) together with its properties. In
Section 3 we show how the classical homogenization result ε → 0 can be obtained with our
approach and derive also the new spectral homogenization result. Exponential and spectral
convergence results are established.

Section 4 addresses the computational aspects of the kernel and of the stiffness matrices
if the ε-dependent shape functions are used in a p-Version FEM. Computational examples in
full agreement with the theory conclude the paper.
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2 The homogenization problem on R

2.1 Variational setting and representation formula

Based on (1.1), consider the following elliptic, second order equation

− d

dx

(

a
(x

ε

) duε

dx
(x)

)

+ a0
(x

ε

)

uε(x) = f(x) (2.1)

on R, in which a(·) and a0(·) are L∞(R), 2π-periodic functions, ε > 0 is a real parameter and
f ∈ L2(R). It is also assumed that there exist positive constants γ, γ1 > 0 such that

0 < γ ≤ a(ξ), a0(ξ) ≤ γ1, for a.e. ξ ∈ R. (2.2)

Then, it is shown in [9], [10] that (2.1) admits a unique solution uε with the following repre-
sentation:

uε(x) =
1√
2π

(B)
∫

R

f̂(t)eixtφ
(x

ε
, ε, t

)

dt. (2.3)

Here, f̂ represents the Fourier transform of f and the integral is understood as Fourier-Bochner
integral of Banach-space valued functions. The kernel φ(·, ε, t) is the 2π-periodic weak solution
of the so-called unit-cell problem:

− 1

ε2
d

dy

(

a(y)
d

dy

(

φ(y, ε, t)eiεty
)

)

+ a0(y)φ(y, ε, t)e
iεty = eiεty, y ∈ Q, (2.4)

where Q := {y : |y| < π} denotes the fundamental period. To characterize precisely the notion
of solution of (2.1), we introduce the following weighted Sobolev spaces on R:

Definition 2.1 For j = 0, 1 and for any ν ∈ R the weighted Sobolev spaces Hj
ν(R) are defined

to be
Hj

ν(R) = C∞
0 (R;C)

‖·‖j,ν
, (2.5)

where

‖u‖2j,ν =

∫

R

(

j
∑

l=0

∣

∣

∣

∣

dlu

dxl
(x)

∣

∣

∣

∣

2
)

e2ν|x| dx. (2.6)

Let us associate with (2.1) the sesquilinear form Ψ(ε)[·, ·] : H1
−ν(R)×H1

ν (R) → C

Ψ(ε)[u, v] =

∫

R

{

a
(x

ε

) du

dx
(x)

dv

dx
(x) + a0

(x

ε

)

u(x)v(x)

}

dx. (2.7)

Proposition 2.2 There exist positive constants ν0, C and η such that for all ν ∈ (0, ν0) and
all ε > 0,

3



1. |Ψ(ε)[u, v]| ≤ C‖u‖1,−ν‖v‖1,ν ,

2. inf
‖u‖1,−ν=1

sup
‖v‖1,ν=1

|Ψ(ε)[u, v]| ≥ η > 0,

3. sup
u∈H1

−ν(R)
|Ψ(ε)[u, v]| > 0 for all 0 ,= v ∈ H1

ν (R),

4. for all f ∈
(

H1
ν (R)

)∗
, there exists a unique weak solution uε of (2.1), i.e.

uε ∈ H1
−ν(R) : Ψ(ε)[uε, v] =< f, v >(H1

ν )
∗×H1

ν
, ∀ v ∈ H1

ν (R). (2.8)

Moreover, uε admits the integral representation (2.3) and the following a-priori estimate
holds

‖uε‖H1
−ν

≤ (1/η)‖f‖(H1
ν )

∗ .

A proof of these statements is given in [9].
Next, we define

ψ(y, ε, t) := φ(y, ε, t)eitεy . (2.9)

With the above notations, for every t ∈ R the kernel ψ(·/ε, ε, t) ∈ H1
−ν(R) is the unique weak

solution of the problem

Ψ(ε)
[

ψ
( ·
ε
, ε, t

)

, v
]

=< eit(·), v >(H1
ν )

∗×H1
ν
, ∀ v ∈ H1

ν (R). (2.10)

In the remainder of this paper, we will show how the kernels φ(y, ε, t),ψ(y, ε, t) can be used
to design FE-approximations of (1.1), (1.2) which encode the microstructure and coefficient
regularity. A crucial role will be played by the kernels’ analyticity.

2.2 Analyticity of the kernels

It has already been shown in [10] that the kernel φ(·, ε, t) can be continued analytically with
respect to (ε, t) in a neighbourhood Ĝ ⊂ C2 of R2, with values in H1

per(0, 2π), H
1
−ν(R). We

show here that for every fixed ε > 0, φ(·, ε, t) and ψ(·, ε, t) can be continued analytically with
respect to t in a strip neighbourhood of R, and the width of the strip is independent of ε.

For d > 0 let us use the notation

Dd := {t ∈ C such that |Im t| < d}. (2.11)

Then the following theorem holds

Theorem 2.3 For every ν ∈ (0, ν0), the mappings

Dν/2 - t → ψ
( ·
ε
, ε, t

)

∈ H1
−ν(R), (2.12)

Dν/2 - t → φ
( ·
ε
, ε, t

)

∈ H1
−2ν(R), (2.13)
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are holomorphic in Dν/2 with values in the Banach spaces H1
−ν(R), H1

−2ν(R) respectively.
Moreover, for all k ≥ 0, ε > 0 and t ∈ Dν/2 holds

∥

∥

∥

∥

dk

dtk
ψ

( ·
ε
, ε, t

)

∥

∥

∥

∥

1,−ν

≤
√

(2k)!

γνk
√

ν/2
, (2.14)

∥

∥

∥

∥

dk

dtk
φ
( ·
ε
, ε, t

)

∥

∥

∥

∥

1,−2ν

≤ C(1 + |t|) k!

(ν/2)k
. (2.15)

For the Proof of Theorem 2.3 we refer to Appendix A.

3 Finite dimensional approximation in the nonperiodic setting

3.1 Asymptotic approximation of (2.3) (expansion in ε)

3.1.1 Derivation of the expansion

In this section we show how from the kernel φ(y, ε, t) the classical result of homogenization
can be derived.

Since the kernel φ(·, ε, t) is analytic with respect to ε with values in H1
per(−π,π), it can be

expanded in powers of ε, for every fixed t ∈ R, i.e.

φ(·, ε, t) =
∞
∑

k=0

εkφk(·, t). (3.1)

Note that the convergence radius depends on t, and the coefficients φk(·, t) are in H1
per(−π,π)

and depend holomorphically on t. Setting

Φ(ε, t)[φ, v] :=

π
∫

−π

a(y)
d

dy

(

φ(y)eiεyt
) d

dy
(v(y)eiεyt) + ε2a0(y)φ(y)v(y) dy, (3.2)

we may write
Φ(ε, t) = Φ0 + εΦ1(t) + ε2Φ2(t), (3.3)

in which

Φ0[φ, v] :=

π
∫

−π

a(y)
dφ

dy
(y)

dv

dy
(y) dy,

Φ1(t)[φ, v] := i

π
∫

−π

a(y)

(

tφ(y)
dv

dy
(y)− t

dφ

dy
(y)v(y)

)

dy,

Φ2(t)[φ, v] :=

π
∫

−π

(

|t|2a(y) + a0(y)
)

φ(y)v(y) dy,

5



for all φ, v ∈ H1
per(−π,π), t ∈ R. We note that

Φk(t)[φ, v] =
k

∑

k′=0

(it)k
′

Φk;k′[φ, v], (3.4)

with Φk;k′[·, ·] independent of ε and t. Denote by

W 1
per =







φ ∈ H1
per(−π,π) :

π
∫

−π

φ(y) dy = 0







.

Since φ(·, ε, t) is the weak solution of the variational problem

φ(·, ε, t) ∈ H1
per(−π,π) : Φ(ε, t)[φ(·, ε, t), v] = ε2

π
∫

−π

v(y) dy, (3.5)

after substituting the expansion (3.1) into (3.3) and equating like powers of ε, the following
expressions for φk(·, t) can be derived (for the proof we refer to [10] for example)

φk(·, t) =























g0(t), if k = 0

k−1
∑

j=0

gj(t)χk−j(·, t) + gk(t), if k ≥ 1,

(3.6)

where for each k ≥ 1, χk(·, t) ∈ W 1
per is the solution of

Φ0[χk(·, t), v] =











































−Φ1(t)[1, v], if k = 1

−Φ1(t)[χ1(·, t), v] − Φ2(t)[1, v], if k = 2

−Φ1(t)[χk−1(·, t), v] − Φ2(t)[χk−2(·, t), v], if k ≥ 3,

(3.7)

and the gk(t) ∈ C are defined recursively by

gk(t) =































2π

Φ1(t)[χ1, 1] + Φ2(t)[1, 1]
, if k = 0

−g0(t)

2π

k−1
∑

j=0

gj(t) (Φ1(t)[χk+1−j(·, t), 1] + Φ2(t)[χk−j(·, t), 1]) , if k ≥ 1.

(3.8)
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Let now χ1;1(·) ∈ W 1
per be the unique weak solution of

Φ0[χ1;1 + y, v] = 0, ∀ v ∈ W 1
per. (3.9)

Then, χ1;1(·) is a real valued function and it can be deduced directly from the definition of
χ1(·, t) that

χ1(·, t) = itχ1;1(·). (3.10)

Substituting (3.10) in the definition of g0 we get

g0(t) =
1

A|t|2 +A0
, (3.11)

where

A0 =
1

2π

π
∫

−π

a0(y) dy, A =
1

2π
Φ0(χ1;1 + y, y) =

1

2π
Φ0(χ1;1 + y,χ1;1 + y). (3.12)

Replacing in the integral representation (2.3) of uε(x) the kernel φ(·, ε, t) by its asymptotic
expansion (3.1), we get the formal expansion for uε in powers of ε

uε(x) =
∑

k≥0

εkuε(k)(x).

The leading term uε(0)(x) = u(0)(x) is by (3.6) and (3.11) independent of ε and the unique weak
solution of the homogenized differential equation, with constant coefficients A and A0 defined
by the averaging formulas (3.12)

− d

dx

(

A
du(0)
dx

)

+A0u(0)(x) = f(x).

If f satisfies the usual assumptions, the coefficients uε(k)(x), k ≥ 1, may be represented as

Bochner integrals with kernel φk(·/ε, t)

uε(k)(x) =
1√
2π

(B)
∫

R

f̂(t)eixtφk

(x

ε
, t
)

dt. (3.13)

Solving for φ1(·, t) now yields

φ1(·, t) = g0(t)χ1(·, t) + g1(t) = itg0(t)χ1;1(·) + g1(t).

Therefore, by (3.13)

uε(1)(x) =
duε(0)
dx

χ1;1

(x

ε

)

+ ũε(1)(x),

7



where

ũε(1)(x) =
1√
2π

∫

R

f̂(t)g1(t)e
itxdt.

Similarly,

φ2(·, t) = g0(t)χ2(·, t) + g1(t)χ1(·, t) + g2(t)

= g0(t)
(

(it)2χ2;2(·) + χ2;0(·)
)

+ itg1(t)χ1;1(·) + g2(t),

where

Φ0 [χ2;2, v] = −
π

∫

−π

a(y)χ1;1(y)
dv

dy
(y)dy +

π
∫

−π

a(y)
d

dy
(χ1;1 + y) v(y)dy, (3.14)

Φ0 [χ2;0, v] = −
π

∫

−π

a0(y)v(y)dy, ∀ v ∈ W 1
per. (3.15)

Hence,

uε(2)(x) =
d2u(0)
dx2

(x)χ2;2

(x

ε

)

+ u(0)(x)χ2;0

(x

ε

)

+
dũε(1)
dx

(x)χ1;1

(x

ε

)

+ ũε(2)(x),

where

ũε(2)(x) =
1√
2π

∫

R

f̂(t)g2(t)e
itxdt.

By (3.4) and an induction argument it can be directly derived from (3.7) that

χk(·, t) =
[k2 ]
∑

l=0

χk;k−2l(·)(it)k−2l, (3.16)

where χk;j(·) are real valued functions which are independent of ε, t.
Writing Φ1(t)[·, ·] = itΦ1;1[·, ·] and Φ2(t)[·, ·] = (it)2Φ2;2[·, ·] + Φ2;0[·, ·] we can easily find a

recursive system of equations for χk;k−2l(·) :

[ k2 ]
∑

l=0

(it)k−2lΦ0[χk;k−2l, v] = −
[k−1

2 ]
∑

j=0

(it)k−2jΦ1;1[χk−1;k−1−2j, v]

−
[k−2

2 ]
∑

m=0

{

(it)k−2mΦ2;2[χk−2;k−2−2m, v] + (it)k−2−2mΦ2;0[χk−2;k−2−2m, v]
}

.
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Equating like equal powers of it in both sides we get a recursive set of variational problems for
χk;k−2l(·), for k ≥ 1 (χ−1;−1 ≡ 0, χ0;0 ≡ 1) :

Φ0[χk;k−2l, v] =







































−Φ1;1[χk−1;k−1, v]− Φ2;2[χk−2;k−2, v] l = 0,

−Φ1;1[χk−1;k−1−2l, v]− Φ2;2[χk−2;k−2−2l, v]− Φ2;0[χk−2;k−2l, v] 1 ≤ l ≤
[

k
2

]

− 1,

−Φ1;1[χk−1;k−1−2l, v]− Φ2;0[χk−2;k−2l, v] l =
[

k
2

]

, k odd,

−Φ2;0[χk−2;k−2l, v] l =
[

k
2

]

, k even.

(3.17)
Moreover, it can be also seen that

gk(t) = (g0(t))
k+1 p(k)3k (it),

where p(k)j (·) designate a polynomial with real coefficients of degree j.

Proposition 3.1 For k ≥ 0 and any t ∈ R, φk(·, t) ∈ Span {χk−j; k−j−2l(·)}0≤j≤k,0≤2l≤k−j,

with χi;j(·) defined recursively by (3.17) and the convention that χ0;0 ≡ 1.

Proof. By substituting (3.16) in (3.6) we can write for φk(·, t)

φk(·, t) =
k−1
∑

j=0

gj(t)

[ k−j
2 ]

∑

l=0

χk−j;k−j−2l(·)(it)k−j−2l + gk(t) ∈ Span {χk−j; k−j−2l(·)}0≤j≤k,0≤2l≤k−j .

3.1.2 Justification

Taking the Taylor expansion of φ(·, ε, t) with integral representation for the remainder, we can
write

φ(·, ε, t) =
L

∑

k=0

εkφk(·, t) +
εL+1

L!

(B)
∫

(0,1)

(1− s)L
dL+1φ

dεL+1
(·, sε, t) ds

=
L

∑

k=0

εkφk(·, t) +
εL+1

(L+ 1)!

dL+1φ

dεL+1
(·, θ(ε), t),

for some intermediate point 0 < θ(ε) < ε. Therefore,

uε(x) = uε,L(x) +
εL+1

√
2π(L+ 1)!

(B)
∫

R

f̂(t)eixt
dL+1φ

dεL+1

(x

ε
, θ(ε), t

)

dt,
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where uε,L(x) =
∑L

k=0 ε
kuε(k)(x). Assume now that k ≥ 2 and take the k-th derivative with re-

spect to ε in the variational definition (3.5) of φ(·, ε, t). It follows that dkφ
dεk

(·, ε, t) ∈ H1
per(−π,π)

is the weak solution of

Φ

[

1

k!

dkφ

dεk
(·, ε, t), v

]

= −Φ1

[

1

(k − 1)!

dk−1φ

dεk−1
(·, ε, t), v

]

−2 εΦ2

[

1

(k − 1)!

dk−1φ

dεk−1
(·, ε, t), v

]

− Φ2

[

1

(k − 2)!

dk−2φ

dεk−2
(·, ε, t), v

]

+2 δk2

π
∫

−π

v(y) dy,

with δk2 denoting the Kronecker symbol. By an induction argument it can be shown that

∥

∥

∥

∥

1

k!

dkφ

dεk
(·, ε, t)

∥

∥

∥

∥

H1(−π,π)

≤ Cηk(1 + |t|)3k+1 (3.18)

uniformly with t ∈ R, where the constants C > 0, η > 1 are independent of t and k. Assume
now that s > 0 and f ∈ Hs(R). Then,

‖uε − uε,L‖1,−ν ≤ εL+1‖f‖Hs(R)





∫

R

∥

∥

∥

∥

1

(L+ 1)!

dL+1φ

dεL+1

( ·
ε
, θ(ε), t

)

∥

∥

∥

∥

2

1,−ν

(1 + |t|2)−s dt





1/2

.

From the estimate (3.18) it follows that

‖uε − uε,L‖1,−ν ≤ MεL+1ηL+1‖f‖Hs(R), (3.19)

for f sufficiently smooth.
In conclusion, for sufficiently smooth data f and any ε > 0, the solution uε(x) can be

approximated to any order L in ε from the subspace

Span
{

χk;l

(x

ε

)}

where χk;l(y) are the functions arising in the classical homogenization approach (see, e.g. [11]).
One might therefore consider choosing Span{χk;l(y)} as local FE approximation spaces. This
has indeed been tried (see, e.g. [3]) and gives reasonable results in special cases. However,
there are severe disadvantages of this approach: i) the number of χk;l(y) necessary to achieve
an error of order εL grows like L2 (and worse in higher dimensions), ii) in practice, ε > 0 is
given and not at our disposal; therefore, there is no guarantee that at fixed ε > 0 the inclusion
of further terms in the asymptotic expansion will decrease the error, iii) the constant in the
error estimate (3.19) in general increases quickly with L.
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3.2 Spectral approximation of (2.3)

The error estimate (3.19) is in analogy to h-type FEM based on Taylor series expansion of
the exact solution with ε > 0 assuming the role of h (there, we can reduce h, but here we
cannot choose ε > 0, however). Taylor series will, in general, not give error estimates which
are optimal in terms of the polynomial degree of the approximation. We will therefore derive
in the present section a different system of microscale shape functions and establish spectral
approximation results for them.

The main idea is to approximate the Fourier-Bochner integral (2.3) by a finite sum by
truncating a (generalized) Poisson summation formula. To this end, let h > 0 and k be an
integer, and define S(k, h) by

S(k, h)(x) =
sin[π(x− kh)/h]

π(x− kh)/h
. (3.20)

We shall refer to S(k, h) as the k’th Sinc function, with step size h, evaluated at x.

Lemma 3.2

S(k, h)(x) =
1

2π

π/h
∫

−π/h

heikht−ixtdt, (3.21)

and
∫

R

S(k, h)(x)S(l, h)(x)dx =
h2

2π

π/h
∫

−π/h

ei(k−l)htdt = hδk−l. (3.22)

Proof. See, eg., [12], Theorem1.10.1.

Definition 3.3 Assume that X is a Banach space. Then we will denote by

Hp(Dd;X) = { g : Dd → X| g is analytic in Dd and Np(g,Dd;X) < ∞ }, (3.23)

where

Np(g,Dd;X) =



























lim
δ→0+







∫

∂Dd(δ)

‖g(z)‖pX |dz|







1/p

, if 1 ≤ p < ∞

lim
δ→0+

sup
z∈Dd(δ)

‖g(z)‖X , if p = ∞,

and for 0 < δ < 1, Dd(δ) is defined by

Dd(δ) = {z ∈ C : |Re (z)| < 1/δ, |Im (z)| < d(1− δ)}.

11



Definition 3.4 We say, a function f fulfills the ’usual assumptions’, if f ∈ L2(R), and its
Fourier transformation f̂(·) can be extended to a holomorphic function in the strip Dd, with
d = d(ν) = ν/2 and f̂ satisfies the following growth condition :

|f̂(z)| ≤ C(f)e−α|z|, ∀ z ∈ Dd, (3.24)

for some positive constants C(f),α > 0.

Then the following theorem holds :

Theorem 3.5 Under the ’usual assumptions’ on f the mapping

Dd - t → g(t, ·) = gε(t, ·) :=
1√
2π

f̂(t)φ
( ·
ε
, ε, t

)

∈ H1
−2ν(R) (3.25)

is in Hp(Dd;H1
−2ν(R)), for all 1 ≤ p ≤ ∞.

Moreover, there exist C(γ, ν) such that gε(t, ·) satisfies the growth condition:

‖gε(t, ·)‖1,−2ν ≤ C(γ, ν)C(f)

(

1 +
1

α

)

e−
α
2
|t|, ∀ t ∈ Dd, (3.26)

where α and C(f) are as in (3.24).

Proof. Strictly speaking, g in (3.25) depends on ε. However, all estimates which follow will be
robust with respect to ε and we therefore do not write the dependence on ε explicitly.
From the usual assumptions on f and from (2.15) it follows easily that there exists a positive
constant C = C(γ, ν) > 0 such that

‖g(t, ·)‖1,−2ν ≤ C(γ, ν)C(f)(1 + |t|)e−α|t|, ∀ t ∈ Dd. (3.27)

It follows therefore that

‖g(t, ·)‖1,−2ν ≤ C(γ, ν)C(f)

(

1 +
1

α

)

e−
α
2
|t|, ∀ t ∈ Dd. (3.28)

Then, for 1 ≤ p < ∞, we have that

Np(g,Dd;H
1
1,−2ν) =







∫

∂Dd

‖g(z, ·)‖p1,−2ν |dz|







1/p

≤ C(γ, ν)C(f)

(

1 +
1

α

)







∫

∂Dd

e−
pα
2
|z||dz|







1/p

≤ C(γ, ν)C(f)

(

1 +
1

α

)(

8

αp

)1/p

.
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The case p = ∞ is treated analogously.
Let L ≥ 1 and assume in what follows that π/h ≥ 2L, i.e. h ≤ π/(2L). Define, for z ∈ Dd,

C(g, h)(z, x) :=
∞
∑

k=−∞

g(kh, x)S(k, h)(z), CN (g, h)(z, x) :=
N
∑

k=−N

g(kh, x)S(k, h)(z)

in H1
−2ν(R), and set

E(f, h)(z, x) := g(z, x) − C(g, h)(z, x), EN (f, h)(z, x) := g(z, x) − CN (g, h)(z, x) (3.29)

in H1
−2ν(R). Define δ(f, h)(·), δN (f, h)(·) ∈ H1

−2ν(−L,L) ∩H0
−2ν(R) formally as

δ(f, h)(x) = lim
δ→0+

(B)
∫

R

e−δ|t|eixtE(f, h)(t, x) dt, (3.30)

δN (f, h)(x) = lim
δ→0+

(B)
∫

R

e−δ|t|eixtEN (f, h)(t, x) dt. (3.31)

It will be shown that the definitions above make sense, and that the limits in (3.30) and
(3.31) are well defined as Bochner integrals ofH1

−2ν(−L,L), respectively H0
−2ν(R)-valued func-

tions. Notice that the weighted Sobolev spaces H1
−2ν(−L,L) are continuously embedded in

H1(−L,L), and

‖F (·)‖H1(−L,L) ≤ eνL‖F (·)‖H1
−2ν (−L,L), ∀F (·) ∈ H1

−2ν(−L,L). (3.32)

From the properties of the Sinc functions S(k, h)(·) in Lemma 3.2 it will be seen that

δN (f, h)(x) = lim
δ→0

(B)
∫

R

e−δ|t|eixt
{

g(t, x)−
N
∑

k=−N

g(kh, x)S(k, h)(t)

}

dt (3.33)

=































(B)
∫

R

eixtg(t, x) dt − h
N
∑

k=−N

g(kh, x)eikhx , if |x| < π

h
,

∫

R

eixtg(t, x) dt , if |x| > π

h
,

in H0
−2ν(R) ∩ H1

−2ν(−L,L). To this end, define the following trapezoidal approximation of
(2.3)

uεN,h(x) = 1[−π
h ,

π
h ]
(x)

1√
2π

h
N
∑

k=−N

φ
(x

ε
, ε, kh

)

f̂(kh)eikhx

= 1[−π
h
,π
h ]
(x)

1√
2π

h
N
∑

k=−N

ψ
(x

ε
, ε, kh

)

f̂(kh). (3.34)
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Remark 3.6 Since

f̂(−ξ) = f̂(ξ), ψ
( ·
ε
, ε,−ξ

)

= ψ
( ·
ε
, ε, ξ

)

,

it follows that

uεN,h(x) = 1[−π
h ,

π
h ]
(x)

1√
2π

hψ
(x

ε
, ε, 0

)

f̂(0)

+ 21[−π
h ,

π
h ]
(x)

1√
2π

h
N
∑

k=1

{

Reψ
(x

ε
, ε, kh

)

Re f̂(kh) − Imψ
(x

ε
, ε, kh

)

Im f̂(kh)
}

,

and the solution of (2.3) can formally be written as uε(·) = uεN,h(·) + δN (f, h)(·).

3.3 Exponential Convergence

We will now show that (3.34) approximates uε in (2.3) at an exponential rate, independent of
ε. We start with the following result.

Lemma 3.7 Assume that f satisfies the ’usual assumptions’, g is as in (3.25) and z ∈ Dd is
arbitrary. Then holds the representation

E(f, h)(z, x) = g(z, x) − C(g, h)(z, x)

=
sin(πz/h)

2πi

(B)
∫

R

{

g(t− id−, x)

(t− z − id) sin[π(t− id)/h]
− g(t+ id−, x)

(t− z + id) sin[π(t+ id)/h]

}

dt,

where this equality has to be understood as equality between two elements of the Banach space
H1

−2ν(R) and the integral as a Bochner integral of H1
−2ν(R)-valued functions.

Proof. Let 0 < δ < d, let n denote a positive integer, let D(n, δ) denote the region

D(n, δ) =

{

z ∈ C | |Re z| <
(

n+
1

2

)

h, |Im z| < δ

}

(3.35)

and consider, for z = a+ ib ∈ Dd fixed, ζ = ξ + iη, the following Bochner-integral in H1
−2ν(R)

E(n, δ, f)(z, x) =
sin(πz/h)

2πi

(B)
∫

∂D(n,δ)

g(ζ, x)

(ζ − z) sin(πζ/h)
dζ. (3.36)

Then, for n sufficiently large and δ sufficiently close to d, z is in D(n, δ) and |z − ζ| ≥
min

{(

n+ 1
2

)

h− |a|, δ − |b|
}

> 0.
Along the vertical segments of the boundary ∂D(n, δ)

ζ = ±
(

n+
1

2

)

h+ iy
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and therefore | sin(πζ/h)| = cosh(πy/h) ≥ 1. Then, the H1
−2ν-norm of the integral (3.36) along

these segments is bounded by

| sin(πz/h)|
2π

δ
∫

−δ

{
∥

∥g
((

n+ 1
2

)

h+ iy, ·
)
∥

∥

1,−2ν
∣

∣(n+ 1
2)h− a

∣

∣

+

∥

∥g
((

−n− 1
2

)

h+ iy, ·
)
∥

∥

1,−2ν
∣

∣(−n− 1
2)h− a

∣

∣

}

dy

≤ | sin(πz/h)|
2π

(2δ)1/qNp(g,Dd;H
1
−2ν(R))

{

1
∣

∣

(

n+ 1
2

)

h− a
∣

∣

+
1

∣

∣

(

n+ 1
2

)

h+ a
∣

∣

}

,

which tends to zero as n → ∞ (here 1/p+ 1/q = 1). Now, since the following relations hold

sinh(πδ/h) ≤
[

cosh2(πδ/h) − cos2(πt/h)
]1/2

= | sin[π(t± iδ)/h]| ≤ cosh(πδ/h),

and along the horizontal segments of ∂Dd

|z − ζ| = [(a− ξ)2 + (|b|− δ)2]1/2,

the H1
−2ν-norm of the integral along these segments has the bound

| sin(πz/h)|
2π sinh(πδ/h)

Np(g,Dd;H
1
−2ν(R))







∫

R

1

[(a− ξ)2 + (|b|− δ)2]q/2
dξ







1/q

.

This implies that E(n, δ, f)(z, ·) ∈ H1
−2ν(R) admits the representation

E(n, δ, f)(z, ·) = g(z, ·) − sin(πz/h)
n

∑

k=−n

(−1)kg(kh, ·)
π(z − kh)/h

= g(z, ·) −
n

∑

k=−n

sin

[

π
(z − kh)

h

]

π
z − kh

h

g(kh, ·)

= g(z, ·) −
n

∑

k=−n

S(k, h)(z)g(kh, ·).

Also, the limits n → ∞ and δ → d exist in H1
−2ν(R) in both sides and the lemma follows.

Remark 3.8 We do not actually need the strong ’usual assumptions’ on f to deduce the above
integral representation for E(f, h)(z, ·) for z in the strip Dd. These assumptions on f just imply
that the integrand g defined in (3.25) is in Hp(Dd;H1

−2ν(R)), for every 1 ≤ p ≤ ∞, as shown in
Theorem 3.5. For the proof of Lemma 3.7 is sufficient to know that g ∈ Hp(Dd;H1

−2ν(R)), for
some 1 ≤ p ≤ ∞, and such a property on g holds under more general hypothesis on f than the
’usual assumptions’, such as f ∈ Hs

comp(R) for some s > 1. In this case g ∈ H∞(Dd;H1
−2ν(R))

and again the representation in Lemma 3.7 is valid.
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Theorem 3.9 Let f satisfy the ’usual assumptions’ in Definition 3.4 with some α, d > 0 and
let L > 0 be arbitrary. Define

h =

(

πd

αN

)1/2

, (3.37)

and assume N ≥ (4dL2)/(απ), i.e. such that π/h ≥ 2 L.
Then, with E(f, h)(t, ·) as in Lemma 3.7 we have the following representation

δ(f, h)(·) := lim
δ→0+

(B)
∫

R

eit(·)e−δ|t|E(f, h)(t, ·) dt

=

(B)
∫

R

f1(t, ·)g(t − id−, ·) dt+
(B)
∫

R

f2(t, ·)g(t + id−, ·) dt,

in H0
−2ν(R) ∩H1

−2ν(−L,L). Here, the kernels f1 and f2 are defined by

f1(t, x) =











































exd+ixt , if x < −π

h

i

2

e(x−
π
h )(d+it)

sin[π(t− id)/h]
, if − π

h
< x <

π

h

0 , if x >
π

h
,

(3.38)

and

f2(t, x) =











































0 , if x < −π

h

− i

2

e(x+
π
h )(d−it)

sin[π(t+ id)/h]
, if − π

h
< x <

π

h

e−xd+ixt , if x >
π

h
.

(3.39)

Moreover, there exists a constant C = C(γ, ν)C(f) (1 + 1/α)2 (1/α) > 0, which depends on
f,α, d, γ, but is independent of N and L, such that the following bounds

‖δ(f, h)(·)‖0,−2ν + ‖δ(f, h)(·)‖H1
−2ν (−L,L) ≤ Ce−(πdαN)1/2 .

hold.

For the proof of this theorem we refer to Appendix B.
Our main result on the trapezoidal approximation uεN,h(x) of the Fourier-integral (2.3) is :
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Theorem 3.10 Under the assumptions in Theorem 3.9, the error δN (f, h)(·) = uε(·)−uεN,h(·),
with uεN,h(·) as in (3.34), decays exponentially with respect to N and uniformly with respect to
ε in the ‖ · ‖0,−2ν, ‖ · ‖H1

−2ν(−L,L)-norms:

‖δN (f, h)(·)‖0,−2ν + ‖δN (f, h)(·)‖H1
−2ν (−L,L) ≤ C(γ, ν)C(f)

(

1 +
1

α

)2 1

α
e−(παdN)1/2 . (3.40)

The constants C(γ, ν), C(f) are independent of ε, N,L.

Proof. From the definitions (3.30) and (3.31) of δ(f, h)(·) and δN (f, h)(·) and the properties
of the Sinc functions S(k, h)(·) in Lemma 3.2 it follows that

δN (f, h)(·) = δ(f, h)(·) +
∑

|k|>N

lim
δ→0+

(B)
∫

R

e−δ|t|eit(·)g(kh, ·)S(k, h)(t) dt

= δ(f, h)(·) + 1√
2π

1[−π
h ,

π
h ]
(·)

∑

|k|>N

hf̂(kh)φ
( ·
ε
, ε, kh

)

eikh(·), (3.41)

in H0
−2ν(R), respectively

δN (f, h)(·) = δ(f, h)(·) + 1√
2π

∑

|k|>N

hf̂(kh)φ
( ·
ε
, ε, kh

)

eikh(·), (3.42)

in H1
−2ν(−L,L). It follows therefore that

‖δN (f, h)(·)‖0,−2ν ≤ ‖δ(f, h)(·)‖0,−2ν

+
1√
2π

∑

|k|>N

h|f̂(kh)|
∥

∥

∥
φ
( ·
ε
, ε, kh

)

ei(·)kh
∥

∥

∥

0,−2ν

≤ ‖δ(f, h)(·)‖0,−2ν + C
∑

|k|>N

h|f̂(kh)|,

‖δN (f, h)(·)‖H1
−2ν (−L,L) ≤ ‖δ(f, h)(·)‖H1

−2ν (−L,L)

+
1√
2π

∑

|k|>N

h|f̂(kh)|
∥

∥

∥
φ
( ·
ε
, ε, kh

)

ei(·)kh
∥

∥

∥

1,−2ν

≤ ‖δ(f, h)(·)‖H1
−2ν (−L,L) + C

∑

|k|>N

h|f̂(kh)|,

since it has been shown in Lemma A.2 that ‖φ(·/ε, ε, t)ei(·)t‖1,−2ν ≤ C(γ, ν), for all t ∈ Dd ⊂ C,

therefore in particular for all t ∈ R. Since |f̂(kh)| ≤ C(f)e−αkh,

h
∑

|k|>N

|f̂(kh)| ≤ 2C(f)h e−αNh e−αh

1− e−αh
≤ 2C(f)

1

α
e−αNh, (3.43)
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which implies with our choice of h that the sum in (3.41) satisfies the estimate (3.40). It is
therefore enough to show that ‖δ(f, h)(·)‖0,−2ν + ‖δ(f, h)(·)‖H1

−2ν (−L,L) satisfy (3.40), and this

is just the statement of Theorem 3.9.
As a corollary, the following approximation result holds

Corollary 3.11 Let us assume that f satisfies the usual assumptions and that

h =

(

πd

αN

)1/2

, N ≥ 4dL2

απ
. (3.44)

Let
WN

ε := Span
{

Reψ
( ·
ε
, ε, kh

)

, Imψ
( ·
ε
, ε, kh

)

: 0 ≤ k ≤ N
}

. (3.45)

Then

inf
v∈WN

ε

‖uε − v‖H1
−2ν(−L,L),H0

−2ν(R)
≤ C(γ, ν)C(f)

(

1 +
1

α

)2 1

α
e−(παdN)1/2 , (3.46)

where C(f) and α = α(f) are those from Definition 3.4.

3.4 Spectral convergence

In this section we assume that f in (2.1) is in Hs
comp(R). We will show that for any ε > 0 the

solution uε can be approximated by uεN ∈ Span{Re ψ(·/ε, ε, kh), Im ψ(·/ε, ε, kh)}|k|≤N with
respect to ‖ · ‖1,−ν at an algebraic convergence rate independent of ε.

Proposition 3.12 Assume that f in (2.1) is Hs
comp(R) with s > 1 and let supp f ⊂ (−M,M),

with M > 0. Let d := min{1/M, ν/2} and N ≥ 1. Then, for any ε > 0 and all N

inf
v∈WN

ε

‖uε − v‖1,−ν ≤ Cν,sM
1/2N−(s−1)/2‖f‖Hs(R), (3.47)

where Cν,s > 0 is independent of ε, N and M .

Proof. By a density argument it can be assumed that f ∈ C∞
0 (−M,M). It is known then that

the Fourier transform of f can be continued analytically in C and f̂ is uniformly bounded in
a strip of width 1/M . Therefore, the integrand in the Bochner integral representation (2.3) of
uε is analytic in a strip with values in the Banach space H1

−ν(R)

g(t, ·) = f̂(t)ψ
( ·
ε
, ε, t

)

∈ A
(

Dmin{1/M,ν/2};H
1
−ν(R)

)

.

Define d = min{1/M, ν/2}, and let h =
√

d/N . Let us split the solution uε again as

uε(·) =
∑

|k|≤N

1√
2π

h f̂(kh)ψ
( ·
ε
, ε, kh

)

+
∑

|k|≥N+1

1√
2π

h f̂(kh)ψ
( ·
ε
, ε, kh

)

+

(B)
∫

R

g(t, ·) dt − h
∑

k∈Z

g(kh, ·). (3.48)
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We define uεN as the first sum in the right hand side of (3.48). The regularity of f implies that

∣

∣

∣
tαf̂(t)

∣

∣

∣
=

1√
2π

∣

∣

∣

∣

∣

∣

∣

∫

supp f

e−ity d
αf

dyα
(y)

∣

∣

∣

∣

∣

∣

∣

≤ CM1/2‖f‖Hs(R), ∀ t ∈ R, ∀α ≤ s.

It has been shown in Theorem 2.3 that ψ(·/ε, ε, t) is analytic in Dν/2 with values in H1
−ν(R)

and uniformly bounded. Moreover, the norm ‖ψ(·/ε, ε, t)‖L∞(Dν/2;H
1
−ν(R))

is bounded uniformly

with respect to ε. Hence, the second sum in (3.48) satisfies the estimate in (3.47)
∥

∥

∥

∥

∥

∥

∑

|k|≥N+1

1√
2π

h f̂(kh)ψ
( ·
ε
, ε, kh

)

∥

∥

∥

∥

∥

∥

1,−ν

≤ CνM
1/2‖f‖Hs(R)h

∑

|k|≥N+1

(kh)−s

≤ Cν,sM
1/2‖f‖Hs(R)(dN)−(s−1)/2.

It remains to find a similar bound for the remainder in (3.48). Define by

δ(g) =

(B)
∫

R

g(t, ·) dt −
∑

k∈Z

h g(kh, ·).

We can write δ(g) as

δ(g) =

(B)
∫

R

{

g(t, ·) −
∑

k∈Z

g(kh, ·)S(k, h)(t)
}

dt. (3.49)

Since supt∈Dd
‖g(t, ·)‖1,−ν ≤ Cν supt∈Dd

|f̂(t)| ≤ CνM1/2‖f‖Hs(R), by Definition 3.3 g(t, ·) ∈
H∞ (

Dd;H1
−ν(R)

)

. Therefore, as pointed out in Remark 3.8, the integrand in (3.49) can be
written as

g(t, ·) −
∑

k∈Z

g(kh, ·)S(k, h)(t) =

sin(πt/h)

2πi

(B)
∫

R

g(τ − id−, ·)
(τ − t− id) sin[π(τ − id)/h]

− g(τ + id−, ·)
(τ − t+ id) sin[π(τ + id)/h]

dτ. (3.50)

Substituting (3.50) in (3.49), changing the order of integration and integrating with respect to
t first, we get that

δ(g) =

(B)
∫

R

{

i

2

e−π/h(d+iτ)

sin[π(τ − id)/h]
g(τ − id−, ·) − i

2

e−π/h(d−iτ)

sin[π(τ + id)/h]
g(τ + id−, ·)

}

dτ. (3.51)

Taking the ‖ · ‖1,−ν norm of δ(g) in (3.51) we can estimate it as follows

‖δ(g)‖1,−ν ≤ Cν,se
−π

√
dNM1/2‖f‖Hs(R),

and conclude the proof.
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4 Generalized p-FEM in homogenization

4.1 Convergence results

We return to the problem (1.1) on the bounded domain Ω := (−1, 1) : let f(·) ∈ L2(Ω) and
ε > 0 fixed. Denote by uε(·) ∈ H1

0 (Ω) the weak solution of the following boundary value
problem

− d

dx

(

a
(x

ε

) duε

dx
(x)

)

+ a0
(x

ε

)

uε(x) = f(x) in Ω,

uε(−1) = uε(1) = 0. (4.1)

FE-convergence results for (4.1) can be deduced from the unbounded domain case. We start
with a spectral convergence result.

Theorem 4.1 Let f ∈ Hs(Ω) for some s > 1 and consider W̃µ
ε := Wµ

ε ∩H1
0 (Ω), with Wµ

ε as
in (3.45). Then, there exists a constant C > 0 depending only on Ω and s, such that

inf
v∈W̃µ

ε

‖uε − v‖1,Ω ≤ Cµ−(s−1)/2‖f‖s,Ω. (4.2)

Proof.
The proof is based on Proposition 3.12 and on a well known extension result for Sobolev

functions. Indeed, there exist a continuous extension operator Σ : Hs(Ω) → Hs(R), such that
suppΣg ⊂ Ω̃, ∀ g ∈ Hs(Ω), with Ω ⊂ Ω̃ and Ω̃ compactly embedded in R. Let us denote by f
the extension Σf of f . Then, by the continuity of Σ, ‖f‖s,R ≤ C‖f‖s,Ω, with C > 0 a constant
depending only on s,Ω and Ω̃, but independent on f . Let uε ∈ H1

−ν be the solution of (2.1)
corresponding to f . Then, its restriction uε|Ω solves the differential equation in (4.1), but does
not fulfill the boundary conditions. They can be enforced by solving two extra problems (2.1)
with right hand sides f1, f2 ∈ C∞

0 (R), such that

(supp f1 ∪ supp f2) ∩ Ω = ∅. (4.3)

Let uε1, u
ε
2 be the corresponding solutions (on R) of (2.1) with respect to f1, f2. Then, because

of (4.3), their restrictions uε1|Ω, uε2|Ω solve the differential equation in (4.1) with homogeneous
right hand side. Denoting by

uε := uε|Ω + c1u
ε
1|Ω + c2u

ε
2|Ω,

then there exist unique constants c1, c2 ∈ R, such that uε satisfies the homogeneous boundary
conditions in (4.1). Moreover, it can be seen that |c1| + |c2| ≤ Cs, ν‖f‖s,Ω, with the constant
Cs, ν > 0 depending only on s, ν.

By Proposition 3.12, uε, uε
1, u

ε
2 can be approximated in H1

−ν(R) at an algebraic rate of
convergence µ−(s−1)/2 by elements of the FE space Wµ

ε , and therefore their restrictions to Ω
too.

20



No exponential convergence can be proved in this way, since for analytic f ∈ [−1, 1], Σf is
not an analytic function on R anymore; however, the following result shows that if subspaces
are designed corresponding to solution with polynomial right hand side, exponential convergence
is achieved. To this end, associated with the kernel ψ(·, ε, t) as in (2.9), we introduce the FE-
spaces Ṽµ

ε ⊂ H1
0 (−1, 1) :

Vµ
ε := Span

{

Re
dlψ

dtl

( ·
ε
, ε, 0

)

, 0 ≤ l ≤ µ, l = 2k, Im
dlψ

dtl

( ·
ε
, ε, 0

)

, 0 ≤ l ≤ µ, l = 2k + 1

}

,

Ṽµ
ε := (Vµ

ε + Span {vε1, vε2})
⋂

H1
0 (−1, 1), (4.4)

where vε1(·), vε2(·) are the solutions of (4.1) with homogeneous data f = 0 and the following
inhomogeneous boundary conditions:

vε1(−1) = 1, vε1(1) = 0,

vε2(−1) = 0, vε2(1) = 1.

Theorem 4.2 Let f ∈ A([−1, 1]) be analytic in [−1, 1] and let uε be the weak solution of (4.1).
There exist constants C, b > 0, depending only on f , such that for µ ∈ N sufficiently large

inf
v∈Ṽµ

ε

‖uε − v‖H1
0 (−1,1) ≤ Ce−bµ. (4.5)

With other words, the error with respect to the FE-space Ṽµ
ε decays exponentially with respect

to µ.

We will call φ(l)(·/ε, ε, 0), l = 0, 1, 2, . . . the micro-scale shape functions for the generalized
p-FEM and shall denote by µ the microscale order.

Remark 4.3 We observe that Vµ
ε is spanned by products of the “micro” shape functions

dl

dtl
φ
(

x
ε , ε, t

)

∣

∣

∣

∣

t=0

times polynomials of degree at most µ. In particular, we see that increasing the

number of “micro” shape functions must be accompanied by some increase in the macroscopic
polynomial degree p to achieve (4.5). We will address this computationally below.

Before giving the proof of Theorem 4.2 we need the following preparatory lemma.

Lemma 4.4 Let Lk(·), k ∈ N denote the k-th Legendre polynomial, and consider f ∈ A([−1, 1])
and its Legendre series f(x) =

∑∞
k=0 akLk(x). Then,

∞
∑

k=0

2
|ak|2

2k + 1
= ‖f‖2L2(−1,1) (4.6)

and there exist C̃(f), b > 0 such that

‖f − f (p)‖L2(−1,1) ≤ C̃(f)e−bp, (4.7)
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where f (p) is the truncated Legendre series

f (p) :=
p

∑

k=0

akLk. (4.8)

The constant b > 0 depends on the domain of analyticity of f(·).

For a proof of this result see e.g. [5].
Proof of Theorem 4.2. Denoting by φε

(k)(·) the weak solution in H1
0 (−1, 1) of (4.1) which

corresponds to f = Lk, we get that

uε(µ)(·) :=
µ

∑

k=0

akφ
ε
(k)(·) (4.9)

solves (4.1) with the right hand side f (µ). By Lemma 4.4 the error with respect to the exact
solution uε satisfies the following bound

‖uε − uε(µ)‖H1
0
(−1,1) ≤ C(γ)‖f − f (µ)‖L2(−1,1) ≤ C(γ, f)e−bµ. (4.10)

It is therefore enough to show that uε(µ)(·) ∈ Ṽµ
ε . Recall that dl/dtlψ(·/ε, ε, 0) are solutions of

(2.1) corresponding to f = (ix)l. Since ψ(·/ε, ε,−t) = ψ(·/ε, ε, t),

dlψ

dtl

( ·
ε
, ε, 0

)

= Re
dlψ

dtl

( ·
ε
, ε, 0

)

, if l = 2k, k ∈ N,

dlψ

dtl

( ·
ε
, ε, 0

)

= iIm
dlψ

dtl

( ·
ε
, ε, 0

)

, if l = 2k + 1, k ∈ N.

Therefore, (−i)ldl/dtlψ(·/ε, ε, 0) solves (2.1) with f = xl and takes in all cases real values.

4.2 Selection of the micro shape functions

We have seen so far that collocation of the kernel ψ(x/ε, ε, t) at various sets of collocation points
N = {tj}j gives systems of shape functions with very favorable approximation properties for
elliptic problems with microstructure. In the present section, we present a FEM for the solution
of the unit cell problem and a methodology to derive a well conditioned set of shape functions
from the collocated kernels ψ(x/ε, ε, tj ), tj ∈ N . This will be based on the SVD of the matrix
of coefficient vectors of the Finite Element approximations to the φ(y, ε, tj), tj ∈ N .

Let N = {tj : j = 1, . . . , µ̂} be any set of collocation points in C. Given a partition
T of the unit cell Q = (−π,π) into intervals K, for an arbitrary tj ∈ N , compute the FE
approximations

φ̃(y, ε, tj) ∈ Sk,1
per(Q,T ) : Φ(ε, tj)[φ̃, v] = ε2

∫

Q

v(y) dy, ∀ v ∈ Sk,1
per(Q,T ), (4.11)
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where Φ(ε, t)[·, ·] is as in (3.2) and the FE space Sk,1
per (Q,T ) is defined by

Sk,1
per(Q,T ) :=

{

u ∈ H1
per(Q) : u

∣

∣

∣

∣

K

∈ Pk(K), ∀K ∈ T
}

, (4.12)

and Pk(K) is a space of polynomials of degree at most k on K. Since the sesquilinear form
Φ(ε, t)[·, ·] is coercive (in the sense that a G̊arding inequality holds and the unit cell solution

operator is injective), there exists a unique solution φ̃(y, ε, tj) ∈ Sk,1
per(Q,T ) of (4.11).

Several questions arise in practice:
1. How to design the mesh T in Sk,1

per(Q,T ) for the computation of the unit-cell problem?
2. How to choose the collocation points tj?
3. Are the functions φ̃(y, ε, tj) suitable as basis functions for FE calculations?
4. How does Span {φ̃(y, ε, tj) : tj ∈ N} depend on N ?
We have found the following answers:
1. If the coefficient functions a(y), a0(y) in (4.1) are piecewise analytic functions of y, so

are the φ̃(y, ε, tj). Therefore, T is selected such that the elements coincide with pieces of
analyticity of a(·), a0(·).

2. In agreement with Theorem 3.9, we choose tj(µ) = jh where h = 1/
√
µ with j =

0, 1, ..., µ−1. Notice that the values of d and α in (3.37) are generally not available. Therefore,
the choice of tj is to some extent heuristic (see, however, item 4. below).

3. By Theorem 2.3, φ(y, ε, t) is analytic in t at t = 0. As µ increases, the collocation points
tj will cluster near t = 0 (as, e.g. in Wµ

ε ) resulting in almost linear dependence of the shape
functions φ̃(y, ε, tj); these functions are hence not well-suited as basis for a generalized p-FEM.
Some orthogonalization is needed to obtain a well-conditioned basis. In addition, the points
tj(µ) depend on µ meaning that the shape functions φ̃(y, ε, tj(µ)) are not hierarchical.

We propose therefore an oversampling, i.e. to select µ̂ > µ sufficiently large and

N = {tj(µ̂) : j = 1, . . . , µ̂},

and to perform an orthogonalization as follows:

Algorithm 4.5 Let N(y) be a basis of Sk,1
per(Q,T ). Then φ̃(y, ε, tj) = Φj(ε)+N(y), j =

1, . . . , µ̂. Compute the SVD

[Φ1(ε), . . . ,Φµ̂(ε)] = Udiag(σ1, . . . ,σµ̂)V
+

with σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σµ̂ ≥ 0 and set

V̂µ
ε := Span

{

φj

(x

ε
, ε

)

:= U+
j N

(x

ε

)

, j = 1, . . . , µ
}

, (4.13)

with U j being the j-th column of U .

It is clear that this orthogonalization changes only the basis, but not the span of the shape
functions if µ = µ̂. If µ < µ̂, however, the definition (4.13) will change the span. Nevertheless,
if σj < eps for µ < j ≤ µ̂ with eps of the order of machine precision, change will be negligible.
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4. If |kh| ≤ ρ0 < 1, with ρ0 being the radius of convergence of the power series of ψ(·/ε, ε, t)
at t = 0, then the elements Reψ(·/ε, ε, kh), Im ψ(·/ε, ε, kh) of the FE space WN

ε in (3.45) can
be, up to an exponentially decaying remainder e−bµ, approximated by elements in the FE
space Vµ

ε introduced in (4.4), with µ equal to the number of k such that |k|h ≤ ρ0. Since the
kernel ψ(·/ε, ε, t) is analytic in t, for any set of collocation points {tj} which are close to the
origin, Span{ψ(·/ε, ε, tj )} is practically independent on the choice of the collocation points.
Therefore the precise choice of tj will not matter much, as long as with increasing µ they cover
the interval [−√

µ,
√
µ] and are spaced as 1/

√
µ by Theorem 3.10.

We present in Figure 2 the shape functions {φj(y, ε)}µj=1 obtained with Algorithm 4.5
for the case when a0 ≡ 1, a(·) is as in (4.14), ε = 0.001 and based on Theorem 3.10 the
set of collocation points is N = {tj(µ̂) = j/

√
µ̂ : j = 0, . . . , µ̂, µ̂ = 64}. In this case the

number of j such that the corresponding singular values σj > eps = 10−10 is µ = 5. Hence
the orthogonalization has, as a byproduct, also reduced the number of micro shape functions
substantially. We clearly see the low regularity of these shape functions at the jumps of a(·) at
y = ±π/2. Note also that, unlike the kernels φ(y, ε, tj), the φj(y, ε) are piecewise polynomials.

a(y) =











10 if |y| ≤ π

2
,

1 else ,

a0(y) =











1 if |y| ≤ π

2
,

50 else .

(4.14)

Remark 4.6 We see in Figure 2 that φ1(y, ε) ≡ const; this is due to a0 ≡ 1, in fact if a0 ,≡ 1,
then the solution of (4.11) for t = 0 is not the constant function equal to 1. To illustrate this,
we choose a(·) and a0(·) as in (4.14). Our numerical results indicate that in this case we have
φ1(y, ε) = const+O(ε)φ2(y, ε) + h.o.t, see Figure 3.

Remark 4.7 In numerical experiments we found that Algorithm 4.5 is very robust with re-
spect to the choice of collocation points. After the SVD the first shape functions associated
with the largest singular values are practically independent of the number and of the choice of
tj. The shape functions φj(·, ε) resulting from Algorithm 4.5 are therefore, at least numerically,
hierarchical, and enable hierarchic modeling of problems with microstructure.

4.3 Generalized p-FEM

We consider now the problem (1.3) with absolute terms a0 ≡ 1, a0 ≡ 0, respectively. Since
Ṽµ
ε in (4.4) is not available (because the computation of the boundary correctors vε1, v

ε
2 is

as expensive as that of the solution itself), we construct a space S
p, µ
0 (Ω,T ) ⊂ H1

0 (Ω) with
analogous properties:

S
p, µ
0 (Ω,T ) =

{

u ∈ H1
0 (Ω) : u

∣

∣

∣

∣

K

=
pK+1
∑

j=1

µK+1
∑

µ=1

u[K]
j, µν

[K]
j (x)φµ

(x

ε
, ε

)

,

u[K]
j, µ ∈ R, ∀K ∈ T , j = 1, . . . , pK + 1, µ = 1, . . . , µK + 1

}

, (4.15)
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Figure 1: The coefficient a(·).

!4 !3 !2 !1 0 1 2 3 4
!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

! = 0.001: µ = 5 linear independent shape functions (orthogonalized by SVD)

Figure 2: φj(·, ε), j = 1, . . . , 5.

where ν [K]
j (x) = Nj

(

(

F [K]
)−1

(x)
)

, ∀K ∈ T . By F [K] : (−1, 1) → K we denote the linear

mapping with respect to the element K = (xK , xK)

x = F [K](ξ) =
1

2
(1− ξ)xK +

1

2
(1 + ξ)xK , ∀ ξ ∈ (−1, 1),

and {Nj(ξ)} is the standard hierarchical polynomial basis

N1(ξ) = (1− ξ)/2, N2(ξ) = (1 + ξ)/2,
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Figure 3: 102φ1(y, ε) in the case when the absolute term a0(·) is not a constant, but piecewise
constant.

Nj(ξ) =

√

2j − 1

2

ξ
∫

−1

Lj−2(t) dt, ∀ j ≥ 3. (4.16)

By the vector p = {pK}K∈T we denote the ’macro’ polynomial degree of the FE method, and
µ = {µK}K∈T stands for the ’micro’ degree of the spectral approximation.

The FE solution uεFE(x) is defined as usual:

uεFE(·) ∈ S
p, µ
0 (Ω,T ) :

1
∫

−1

a
(x

ε

) duεFE

dx
(x)

dv

dx
(x) dx =

1
∫

−1

f(x)v(x) dx, ∀ v ∈ S
p, µ
0 (Ω,T ).

(4.17)
We see from (4.15) that each element contains products of standard polynomial shape func-
tions (4.16) and the first µK + 1 micro shape functions. We used in all our computations
the orthonormalized micro shape functions φj(y, ε) in (4.13) from the unit cell problem with
absolute term a0 ≡ 1. The mesh T = Tb

⋃

T0 is selected to have the following properties:
- if K ∈ Tb (which means that K is a boundary element and the length of K is O(ε)), then

we choose the standard p - FEM elements, since the microscale is resolved by Tb, i.e. µK = 0
and pK = p; these elements are needed to accommodate the homogeneous boundary conditions
and could be omitted for the Neumann problem.

- if K ∈ T0, then we take µK = µ and pK = p, which corresponds to the PUM using Vµ
ε

as local approximation spaces. With this choice, the FE functions u ∈ S
p, µ
0 (Ω,T ) will provide

excellent approximation properties on the interior elements K ∈ T0 for the elements of Vµ
ε ; it

turns out that the boundary correctors vε1, v
ε
2 are also very well approximated on these elements

by S
p, µ
0 (Ω,T ).
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Remark 4.8 Equivalently, we may choose Tb = ∅ and modify the shape functions φj(y, ε) in
the elements K ∈ T0 abutting at the boundary, see [7] for details.

Remark 4.9 Computation of the stiffness matrix can be done with a fixed number of oper-
ations (independent of ε) exploiting the periodicity of the coefficients a(·), a0(·) and that of
the special shape functions φj(y, ε). We must compute only once integrals of φj(y, ε) and its
derivatives times monomials on the unit cell. This is the reason to use φj(y, ε) times monomials
instead of ψ(y, ε, tj). Full details can be found in [7].

4.4 Numerical results

We implemented the generalized p-FEM described in the previous section for (4.1) with a(·)
as in (4.14) and absolute terms a0 ≡ 1, a0 ≡ 0, respectively. Two different right hand sides
were chosen, namely

f1(x) = 1,

f2(x) = ex. (4.18)

The exact solution uε(x) corresponding to a0 ≡ 0 and f(x) = f1(x) is piecewise cubic, otherwise
uε(x) is piecewise analytic but non-polynomial on the microscale. The goal of the numerical
experiments is to show a) that exponential convergence can be achieved (with subspaces (4.15)),
b) that the performance is indeed independent of ε, c) that the particular choice of the subspace
Span

{

φµ
(

x
ε , ε

)

, µ = 1, . . . , µK + 1
}

needs to take into account only the principal part of the
operator (4.1) and d) to investigate combination of pK and µK necessary to obtain exponential
convergence. Note that our mathematical theory does not allow to draw conclusions on c) and
d).

In all experiments p is increased on a fixed mesh T = T0 ∪ Tb with Tb covering 4 periods
of length 2πε at each boundary point for various values of µ. Figure 4 shows the convergence
of the generalized p-FEM for a0 ≡ 1, f(x) = f2(x) and ε ∼= 10−2. The curves corresponding
to µ = 1 show the error when only macroscopic shape functions, i.e. global polynomials, are
used (recall that a0 ≡ 1 and that φ1(y, ε) ≡ const, see Remark 4.6).

We see that for fixed µ > 1 and increasing p, first exponential convergence is apparent,
however a saturation occurs at a p-level which depends on the micro degree µ. Exponential
convergence requires therefore the joint increase of the micro degree µ with the macro degree
p.

So far, our theory concerned the case when a0 > 0. In practice, however, also the case
a0 = 0 is of interest, for example in diffusion problems. For a0 = 0, our mathematical results
require several technical modifications. Since a change in a0 does not affect the principal part
of the differential operator which strongly influences the shape functions, we investigate next
the performance of shape functions corresponding to a0 = 1 for the problem (4.1) without
absolute term a0.

In Figure 5 we show analogous results for a0 ≡ 0, f(x) = f2(x) (with respect to the same
mesh) and different microscales ε, varying from ∼= 10−6 up to ∼= 10−1. We note that for µ = 1
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Figure 4: Exponential rate of convergence for the FE energy. f(x) = exp(x)

and for ε ∼= 10−1 a very slow convergence is apparent - here the scales are resolved, but the
low solution regularity stalls the spectral convergence. As before, one can see from the results
in Figure 6 that keeping p fixed and increasing µ does not lead to exponential convergence,
in agreement with Remark 4.3. Rather, Figures 4, 5, 6 show again that µ must be increased
together with p to obtain exponential convergence that is robust, i.e. independent of ε.

Comparing in Figure 5 the error plots for several ε and the same fixed value of µ we see
that the saturation level appears to be proportional to some power of ε. This is more clearly
visible in Figure 7 and indicates that our finite elements with the choice µ > 1 can represent
the correctors in classical homogenization theory and are consistent with the homogenized
problem at ε = 0 of higher order in ε.

In Figure 8 we show analogous results for f(x) = f1(x), a0 ≡ 0. Since the exact solution
uε(x) is piecewise cubic, for small ε no change occurs when µ is increased beyond µ = 4, despite
our shape functions being obtained for a0 ≡ 1 rather than for a0 ≡ 0. We conclude that the
micro shapefunctions of the problem (4.1) with a0 = 1 perform equally well if used for the
operator without absolute term.

Finally, in Figure 9 we show the pointwise error
∥

∥

∥

∥

d

dx
(uε − uεFE)

∥

∥

∥

∥

L∞(−1,1)

(4.19)

for f(x) = f2(x) and various ε. We see that the above conclusions apply also to these errors
with respect to the (stronger) W 1,∞-norm.
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A Proof of Theorem 2.3

Lemma A.1 The mapping

Dν/2 := {t ∈ C such that |Im t| < ν/2} - t → G(t) := eitx ∈
(

H1
ν (R)

)∗
(A.1)

is holomorphic in Dν/2 with values in the Banach space
(

H1
ν (R)

)∗
. Moreover, Gk(t) :=

(ix)keitx ∈
(

H1
ν (R)

)∗
is the k−th derivative with respect to t of the

(

H1
ν (R)

)∗
-valued map-

ping G(t) and its norm has the following bound

∀ t ∈ Dν/2 : ‖Gk(t)‖(H1
ν (R))

∗ ≤
√

(2k)!

νk
√

ν/2
, k = 0, 1, 2, ... . (A.2)

Proof. It is sufficient to show that ∀ v ∈ H1
ν (R) the application

Dν/2 - t →< G(t), v >(H1
ν(R))

∗×H1
ν (R)

∈ C (A.3)

is C-differentiable. Let t0 ∈ Dν/2 arbitrary, fixed, and t ∈ Dν/2 such that |t− t0| ≤ ν/4. Then,

∣

∣

∣

∣

1

t− t0
< G(t)−G(t0), v >(H1

ν (R))
∗×H1

ν (R)
− < G1(t0), v >(H1

ν (R))
∗×H1

ν (R)

∣

∣

∣

∣

≤ ‖v‖1,ν





∫

R

∣

∣

∣

∣

eixt − eixt0

t− t0
− ixeixt0

∣

∣

∣

∣

2

e−2ν|x|dx





1/2

≤ C(ν)|t− t0|‖v‖1,ν .

This implies that the limit

lim
t→t0

1

t− t0
< G(t)−G(t0), v >(H1

ν (R))
∗×H1

ν (R)
(A.4)

exists and is equal to < G1(t0), v >(H1
ν (R))

∗×H1
ν (R)

.

Let us take v ∈ H1
ν and estimate | < Gk(t), v >(H1

ν (R))
∗×H1

ν(R)
|:

| < Gk(t), v >(H1
ν(R))

∗×H1
ν(R)

| =

∣

∣

∣

∣

∣

∣

∫

R

(ix)keitxv(x) dx

∣

∣

∣

∣

∣

∣

≤ ‖v‖1,ν





∫

R

|x|2ke2|Im(t) x|e−2ν|x|





1/2

≤ ‖v‖1,ν
√

(2k)!

νk
√

ν/2
.

Now, for t ∈ Dν/2, let ψ
ε
k(t) be the weak solution in H1

−ν(R) of the following problem

Ψ(ε)[ψε
k(t), v] =< Gk(t), v >(H1

ν(R))
∗×H1

ν(R)
, ∀ v ∈ H1

ν (R). (A.5)
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Lemma A.2 The mapping

Dν/2 - t → ψ
( ·
ε
, ε, t

)

∈ H1
−ν(R) (A.6)

is holomorphic in Dν/2 with values in the Banach space H1
−ν(R). Moreover,

ψε
k(t) =

dk

dtk
ψ

( ·
ε
, ε, t

)

, (A.7)

and its norm

‖ψε
k(t)‖1,−ν ≤

√

(2k)!

γνk
√

ν/2
, (A.8)

uniformly with respect to t ∈ Dν/2.

Proof. The proof is similar to that of Lemma A.1 and is based on the fact that

Ψ(ε)
[

ψ
( ·
ε
, ε, t

)

, v
]

=< G(t), v >(H1
ν (R))

∗×H1
ν (R)

(A.9)

and on the properties of the sesquilinear form Ψ(ε)[·, ·] stated in Proposition 2.2. In order to
prove the analyticity of the H1

−ν(R)-valued mapping t → ψ(·/ε, ε, t) in the strip Dν/2, it is
enough to show that for every v ∈ H1

ν (R) the C-valued function

Dν/2 - t → Ψ(ε)
[

ψ
( ·
ε
, ε, t

)

, v
]

∈ C (A.10)

is holomorphic. From the definition of ψε
1 it follows that

lim
t→t0

1

t− t0
Ψ(ε)

[

ψ
( ·
ε
, ε, t

)

− ψ
( ·
ε
, ε, t0

)

, v
]

= lim
t→t0

1

t− t0
< G(t)−G(t0), v >(H1

ν)
∗×H1

ν

=< G1(t0), v >(H1
ν )

∗×H1
ν
= Ψ(ε)[ψε

1(t0), v].

In addition, from (A.2)
∥

∥

∥

∥

dk

dtk
ψ

( ·
ε
, ε, t

)

∥

∥

∥

∥

1,−ν

≤ 1

γ
‖Gk(t)‖(H1

ν )
∗ ≤

√

(2k)!

γνk
√

ν/2
, (A.11)

uniformly with respect to t ∈ Dν/2.

Theorem A.3 For a given ν > 0 there exists a positive d = d(ν) such that the mapping

Dd - t → φ
( ·
ε
, ε, t

)

∈ H1
−2ν(R) (A.12)

is a holomorphic function of t ∈ Dd with values in the Banach space H1
−2ν(R). Moreover,

∥

∥

∥

∥

dk

dtk
φ
( ·
ε
, ε, t

)

∥

∥

∥

∥

1,−2ν

≤ C(1 + |t|) k!

(ν/2)k
, ∀t ∈ Dd, (A.13)

where the constant C > 0 depends on ν, γ, but does not depend on t ∈ Dd.
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Proof. Let d = d(ν) = ν/2 and t0 ∈ Dd arbitrary, fixed. Then, since we can write φ(·/ε, ε, t) =
e−i t(·)ψ(·/ε, ε, t) it follows that in the Banach space H1

−2ν(R) ⊃ H1
−ν(R)

dk

dtk
φ
(x

ε
, ε, t

)

∣

∣

∣

∣

∣

t=t0

=
k

∑

l=0

(−ix)l
(

k

l

)

e−it0xψ(k−l)
(x

ε
, ε, t0

)

. (A.14)

Taking now the ‖ · ‖1,−2ν -norm in both sides we get that
∥

∥

∥

∥

∥

dk

dtk
φ
(x

ε
, ε, t

)

∣

∣

∣

∣

∣

t=t0

∥

∥

∥

∥

∥

1,−2ν

≤

∥

∥

∥

∥

∥

k
∑

l=0

(−ix)l
(

k

l

)

e−it0xψ(k−l)
(x

ε
, ε, t0

)

∥

∥

∥

∥

∥

0,−2ν

+

∥

∥

∥

∥

∥

k
∑

l=0

l (−ix)l−1(−i)

(

k

l

)

e−it0xψ(k−l)
(x

ε
, ε, t0

)

∥

∥

∥

∥

∥

0,−2ν

+

∥

∥

∥

∥

∥

k
∑

l=0

(−ix)l
(

k

l

)

e−it0x d

dx

(

ψ(k−l)
(x

ε
, ε, t0

))

∥

∥

∥

∥

∥

0,−2ν

+

∥

∥

∥

∥

∥

k
∑

l=0

(−ix)l
(

k

l

)

(−it0)e
−it0xψ(k−l)

(x

ε
, ε, t0

)

∥

∥

∥

∥

∥

0,−2ν

.

Let us estimate only the first term of the right hand side, the others can be treated analogously.
∥

∥

∥

∥

∥

k
∑

l=0

(−ix)l
(

k

l

)

e−it0xψ(k−l)
(x

ε
, ε, t0

)

∥

∥

∥

∥

∥

0,−2ν

≤
k

∑

l=0

(

k

l

)





∫

R

|x|2l
∣

∣

∣
ψ(k−l)

(x

ε
, ε, t0

)∣

∣

∣

2
e2|Im(t0)x|e−4ν|x|dx





1/2

≤ C
k

∑

l=0

(

k

l

)(

l

ν/2e

)l (k − l)!

(ν/2)k−l
≤ C

k!

(ν/2)k
.

Here we used that xpe−νx ≤ (p/νe)p, ∀x > 0, p ∈ N and the estimations for the ‖ · ‖1,−ν -
norm of the derivatives with respect to t of ψ(·/ε, ε, t) from Lemma A.2. Summing up all the
estimates it follows that

∥

∥

∥

∥

∥

dk

dtk
φ
(x

ε
, ε, t

)

∣

∣

∣

∣

∣

t=t0

∥

∥

∥

∥

∥

1,−2ν

≤ C(1 + |t0|)
k!

(ν/2)k
. (A.15)

This implies therefore that the series

∞
∑

k=0

(t− t0)k

k!

dk

dtk
φ
(x

ε
, ε, t

)

∣

∣

∣

∣

∣

t=t0

(A.16)

is absolutely convergent in the Banach space H1
−2ν(R) for |t− t0| < ν/2 such that t ∈ Dd.
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B Proof of Theorem 3.9

In this appendix we will present the proof of Theorem 3.9. Our aim is to approximate the
Fourier-Bochner integral

uε(·) =
1√
2π

(B)
∫

R

f̂(t)eit(·)φ
( ·
ε
, ε, t

)

dt =

(B)
∫

R

eit(·)g(t, ·) dt, (B.1)

where

g(t, ·) = 1√
2π

f̂(t)φ
( ·
ε
, ε, t

)

∈ A(Dd;H
1
−2ν(R)).

The integrals in (B.1) have to be understood as Bochner-integrals ofH1
−2ν(R)-valued functions.

Recall that by Theorem 3.5

‖g(t, ·)‖1,−2ν ≤ C(γ, ν)C(f)

(

1 +
1

α

)

e−
α
2
|t| ∀ t ∈ Dd.

Define the approximations

uεN,h(·) := 1[−π
h ,

π
h ]
(·) 1√

2π
h

N
∑

k=−N

f̂(kh)ψ
( ·
ε
, ε, kh

)

(B.2)

and its error
δN (f, h)(·) := uε(·)− uεN,h(·). (B.3)

Proposition B.1 Assume that f ∈ L∞(R2) ∩ L1(R;L∞(R)) and g ∈ H0
−2ν(R). Then

(B)
∫

R

g(·)f(t, ·) dt = g(·)
∫

R

f(t, ·) dt. (B.4)

Proof. Let us verify that the expressions in (B.4) have sense. The Bochner integral is well
defined, since ‖g(·)f(t, ·)‖0,−2ν ≤ ‖g(·)‖0,−2ν‖f(t, ·)‖L∞ and ‖f(t, ·)‖L∞ is, as a function of t,
in L1(R). Then, the right hand side of (B.4) is an element of H0

−2ν(R) since
∫

R

f(t, ·)dt ∈ L∞(R).

We consider two cases:
Case 1: if g ∈ C∞

0 (R), the assertion is obvious.

Case 2: g ∈ H0
−2ν(R) = C∞

0 (R)
‖·‖0,−2ν

, then take (gn)n ⊂ C∞
0 (R), such that gn → g in

H0
−2ν(R), as n → ∞. Then,

∥

∥

∥

∥

∥

∥

∥

(B)
∫

R

(gn − g)(·)f(t, ·) dt

∥

∥

∥

∥

∥

∥

∥

0,−2ν

≤
∫

R

‖gn(·)− g(·)‖0,−2ν‖f(t, ·)‖L∞dt.
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Now, the integrand ‖gn(·)− g(·)‖0,−2ν‖f(t, ·)‖L∞ → 0, as n → ∞, for almost every t ∈ R, and
is bounded by an L1 application C‖f(t, ·)‖L∞ , uniformly with respect to n. It follows therefore
that

(B)
∫

R

gn(·)f(t, ·) dt →
(B)
∫

R

g(·)f(t, ·) dt in H0
−2ν ,

as n → ∞. Since

gn(·)
∫

R

f(t, ·) dt → g(·)
∫

R

f(t, ·) dt in H0
−2ν(R)

as n → ∞ the proposition follows.

Proposition B.2 Assume that f ∈ L∞(R;W 1,∞(−L,L)) ∩ L1(R;W 1,∞(−L,L)) and g ∈
H1

−2ν(R). Then
(B)
∫

R

g(·)f(t, ·) dt = g(·)
∫

R

f(t, ·) dt (B.5)

in H1
−2ν(−L,L).

Proof. First of all, let us convince ourselves that the expressions in (B.5) have sense. The
Bochner integral is well defined, since ‖g(·)f(t, ·)‖H1

−2ν (−L,L) ≤ ‖g(·)‖1,−2ν‖f(t, ·)‖W 1,∞(−L,L),

which is in L1(R) as a function of t. Then, the right hand side of (B.4) is an element of
H1

−2ν(−L,L), since
∫

R

f(t, ·)dt ∈ W 1,∞(−L,L).

As before, we use a density argument :
Case 1: if g ∈ C∞

0 (R), the assertion is obvious.

Case 2: g ∈ H1
−2ν(R) = C∞

0 (R)
‖·‖1,−2ν

, then take (gn)n ⊂ C∞
0 (R), such that gn → g in

H1
−2ν(R), as n → ∞. Then

∥

∥

∥

∥

∥

∥

∥

(B)
∫

R

(gn − g)(·)f(t, ·) dt

∥

∥

∥

∥

∥

∥

∥

H1
−2ν(−L,L)

≤
∫

R

‖gn(·)− g(·)‖1,−2ν‖f(t, ·)‖W 1,∞(−L,L)dt.

Now, the integrand ‖gn(·) − g(·)‖1,−2ν‖f(t, ·)‖W 1,∞(−L,L) → 0, as n → ∞, for almost every
t ∈ R, and is bounded by an L1 with respect to t application C‖f(t, ·)‖W 1,∞(−L,L), for all n.
It follows therefore that

(B)
∫

R

gn(·)f(t, ·) dt →
(B)
∫

R

g(·)f(t, ·) dt in H1
−2ν(−L,L),
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as n → ∞, and the proposition follows since

gn(·)
∫

R

f(t, ·) dt → g(·)
∫

R

f(t, ·) dt in H1
−2ν(−L,L),

as n → ∞.
Recall now that

δN (f, h)(·) = uε(·)− uεN,h(·)

=

(B)
∫

R

eit(·)g(t, ·) dt −
N
∑

k=−N

h1[−π
h ,

π
h ]
(·)g(kh, ·)eikh(·).

Proposition B.3 Let us assume that L ≥ 1 is given, and h = (πd/αN)1/2 satisfies

π

h
≥ 2L,

i.e. N ≥ 4dL2/απ. Then,

lim
δ→0+

g(kh, ·)
∫

R

e−δ|t|eit(·)S(k, h)(t) dt = h1[−π
h ,

π
h ]
(·)g(kh, ·)eikh(·) (B.6)

in H0
−2ν(R) ∩H1

−2ν(−L,L).

Proof. First, let us notice that since g(kh, ·) ∈ H1
−2ν(R) and

Fδ(·) :=
∫

R

e−δ|t|eit(·)S(k, h)(t) dt ∈ W 1,∞(R), (B.7)

F0(·) = F (·) := 1[−π
h ,

π
h ]
(·)heikh(·) ∈ L∞(R) ∩W 1,∞(−L,L), (B.8)

the terms in (B.6) are well defined as elements of H0
−2ν(R) ∩H1

−2ν(−L,L). Then,

Fδ(x) =

∫

R

e−δ|t|eitx
1

2π







π
h

∫

−π
h

heikhτ−iτ tdτ






dt =

h

2π

π
h

∫

−π
h

eikhτ





∫

R

e−δ|t|eitx−iτ t dt



 dτ

=
h

π

π
h

∫

−π
h

eikhτ
δ

δ2 + (x− τ)2
dτ =

h

π

π
h−x
∫

−π
h−x

eikh(s+x) δ

δ2 + s2
ds

=
h

π
eikhx

π
h−x
∫

−π
h−x

eikhs
δ

δ2 + s2
ds =

h

π
eikhx

(π
h−x)/δ
∫

(−π
h−x)/δ

eikhδτ
1

1 + τ2
dτ.
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It the following it will be shown that uniformly with respect to x and δ

|Fδ(x)| ≤ h, ∀ x ∈ R, (B.9)
∣

∣

∣

∣

d

dx
Fδ(x)

∣

∣

∣

∣

≤ h

πL
+ kh2, ∀ x ∈ (−L,L), (B.10)

and

Fδ(x) → 1[−π
h ,

π
h ]
(x)heikhx, as δ → 0+, for a.e. x ∈ R, (B.11)

d

dx
Fδ(x) → d

dx
F (x) = ikh2eikhx, for a.e. x ∈ (−L,L). (B.12)

The assertions (B.9) and (B.11) follow immediately from the representation of Fδ(·):

Fδ(x) =
π

h

π
h

∫

−π
h

eikhτ
δ

δ2 + (x− τ)2
dτ =

h

π
eikhx

(π
h−x)/δ
∫

(−π
h−x)/δ

eikhδτ
1

1 + τ2
dτ. (B.13)

From (B.13) it can be deduced that

d

dx
Fδ(x) =

h

π

π
h

∫

−π
h

eikhτ
−2(x− τ)δ

[δ2 + (x− τ)2]2
dτ =

h

π
eikhx

π
h−x
∫

−π
h
−x

eikhs
2δs

(δ2 + s2)2
ds

=
h

π
eikhx

(π
h−x)/δ
∫

(−π
h−x)/δ

eikhδτ
2τ

δ(1 + τ2)2
dτ

= −h

π
eikhx

1

δ
eikhτδ

1

1 + τ2

∣

∣

∣

∣

τ=(π
h−x)/δ

τ=(−π
h−x)/δ

+
h

π
eikhx

(π
h−x)/δ
∫

(−π
h−x)/δ

eikhδτ ikh
1

1 + τ2
dτ.

It follows therefore that for x ∈ (−L,L) ⊂ [−π/h,π/h],

d

dx
Fδ(x) = −h

π
eikhxeikh(π/h−x) 1/δ

1 + [(π/h− x)/δ]2
+

h

π
eikhxeikh(−π/h−x) 1/δ

1 + [(−π/h− x)/δ]2

+i
kh2

π
eikhx

(π
h−x)/δ
∫

(−π
h−x)/δ

eikhδτ
1

1 + τ2
dτ

= −h

π
eikπ

1/δ

1 + [(π/h − x)/δ]2
+

h

π
e−ikπ 1/δ

1 + [(−π/h − x)/δ]2

+i
kh2

π
eikhx

(π
h−x)/δ
∫

(−π
h−x)/δ

eikhδτ
1

1 + τ2
dτ. (B.14)
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Since |π/h ± x | ≥ L,
1/δ

1 + [(π/h± x)/δ]2
≤ 1/δ

1 + (L/δ)2
→ 0,

as δ → 0+. This will imply that the first two terms in (B.14) converge to 0, as δ → 0+,
uniformly with respect to x ∈ (−L,L). Furthermore, it can be easily seen that the last term in
(B.14) converges to ikh2eikhx, as δ → 0+, and is uniformly with respect to δ and x ∈ (−L,L)
bounded by kh2. Moreover, since

1/δ

1 + (L/δ)2
≤ 1

2L
, ∀ δ > 0,

it follows that
∣

∣

∣

∣

d

dx
Fδ(x)

∣

∣

∣

∣

≤ h

πL
+ kh2, ∀ δ > 0, ∀x ∈ (−L,L).

Then,
lim
δ→0+

‖g(kh, ·)(Fδ (·)− F (·))‖20,−2ν = 0, (B.15)

since

lim
δ→0+

‖g(kh, ·)(Fδ(·)− F (·))‖20,−2ν = lim
δ→0+

∫

R

|g(kh, x)|2e−4ν|x||Fδ(x)− F (x)|2 dx,

which is 0 because of Lebesgue Theorem on dominated convergence. Indeed, the integrand is
in L1(R), converges to 0 for almost every x ∈ R, and is bounded by an integrable function
|2h g(kh, x)e−2ν|x||2.
With similar arguments it can be shown that

lim
δ→0+

‖g(kh, ·)(Fδ(·) − F (·))‖2H1
−2ν (−L,L) = 0, (B.16)

since

‖g(kh, ·)(Fδ(·)− F (·))‖2H1
−2ν (−L,L) ≤

≤
∫

(−L,L)

|g(kh, x)|2e−4ν|x|

[

∣

∣

∣

∣

d

dx
Fδ(x)− F (x)

∣

∣

∣

∣

2

+ |Fδ(x)− F (x)|2
]

dx

+

∫

(−L,L)

∣

∣

∣

∣

d

dx
g(kh, x)

∣

∣

∣

∣

2

e−4ν|x||Fδ(x)− F (x)|2 dx. (B.17)

The integrands in (B.17) are in L1(−L,L), converge to 0 a.e. in (−L,L), as δ → 0+ and are
uniformly (with respect to δ > 0) bounded by an L1(−L,L) function. The Lebesgue Theorem
on dominated convergence implies therefore that

lim
δ→0+

‖g(kh, ·)(Fδ(·) − F (·))‖H1
−2ν (−L,L) = 0. (B.18)
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Now, it follows that

δN (f, h)(·) =
(B)
∫

R

eit(·)g(t, ·) dt −
N
∑

k=−N

lim
δ→0+

g(kh, ·)
∫

R

e−δ|t|eit(·)S(k, h)(t) dt (B.19)

in H0
−2ν(R) ∩H1

−2ν(−L,L). By Propositions B.1, B.2 the errors δN (f, h)(·) can be now inter-
preted as the following Bochner-integrals in H0

−2ν(R), respectively H1
−2ν(−L,L):

δN (f, h)(·) = lim
δ→0+

(B)
∫

R

eit(·)e−δ|t|

(

g(t, ·) −
N
∑

k=−N

g(kh, ·)S(k, h)(t)
)

dt

= lim
δ→0+

(B)
∫

R

eit(·)e−δ|t|

(

g(t, ·) −
∞
∑

k=−∞

g(kh, ·)S(k, h)(t)
)

dt

+
∑

|k|≥N+1

lim
δ→0+

(B)
∫

R

eit(·)e−δ|t|g(kh, ·)S(k, h)(t) dt

= lim
δ→0+

(B)
∫

R

eit(·)e−δ|t|E(f, h)(t, ·) dt +
∑

|k|≥N+1

1[−π
h ,

π
h ]
(·)heikh(·)g(kh, ·),

in H0
−2ν(R), respectively

δN (f, h)(·) = lim
δ→0+

(B)
∫

R

eit(·)e−δ|t|

(

g(t, ·) −
N
∑

k=−N

g(kh, ·)S(k, h)(t)
)

dt

= lim
δ→0+

(B)
∫

R

eit(·)e−δ|t|E(f, h)(t, ·) dt +
∑

|k|≥N+1

heikh(·)g(kh, ·),

in H1
−2ν(−L,L). Now, it has already been shown that

∥

∥

∥

∥

∥

∥

∑

|k|≥N+1

1[−π
h ,

π
h ]
(·)heikh(·)g(kh, ·)

∥

∥

∥

∥

∥

∥

0,−2ν

≤ C(γ, ν)
C(f)

α
e−

√
πdαN , (B.20)

∥

∥

∥

∥

∥

∥

∑

|k|≥N+1

heikh(·)g(kh, ·)

∥

∥

∥

∥

∥

∥

H1
−2ν(−L,L)

≤ C(γ, ν)
C(f)

α
e−

√
πdαN , (B.21)
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if h = (πd/αN)1/2.
It remains to find similar estimates for the ‖ · ‖0,−2ν , ‖ · ‖H1

−2ν (−L,L)-norms of

(B)
∫

R

eit(·)e−δ|t|E(f, h)(t, ·) dt, (B.22)

which are uniform with respect to δ, as δ → 0+.
By Theorem 3.7, E(f, h)(t, ·) has the following representation as Bochner-integral ofH1

−2ν(R)-
valued functions

E(f, h)(t, ·) = sin(πt/h)

2πi

(B)
∫

R

{

g(τ − id−, ·)
(τ − t− id) sin[π(τ − id)/h]

− g(τ + id−, ·)
(τ − t+ id) sin[π(τ + id)/h]

}

dτ,

and
‖E(f, h)(t, ·)‖1,−2ν ≤ C, (B.23)

uniformly with respect to t ∈ R. It follows therefore that

(B)
∫

R

eit(·)e−δ|t|E(f, h)(t, ·) dt =

(B)
∫

(τ,t)∈R2

eit(·)e−δ|t| sin(πt/h)

2πi

{

g(τ − id−, ·)
(τ − t− id) sin[π(τ − id)/h]

− g(τ + id−, ·)
(τ − t+ id) sin[π(τ + id)/h]

}

dτ dt.

Here, the integrals will be alternatively considered as Bochner integrals of H0
−2ν(R), respec-

tively H1
−2ν(−L,L)-valued functions. Now, since the H0

−2ν(R), respectively H1
−2ν(−L,L)-

norms of the integrands are in L1(R2), we can change the order of the integration and we
get

(B)
∫

R

eit(·)e−δ|t|E(f, h)(t, ·) dt =
1

2πi

(B)
∫

R

{

(B)
∫

R

sin(πt/h)
eit(·)e−δ|t|

τ − t− id

g(τ − id−, ·)
sin[π(τ − id)/h]

− sin(πt/h)
eit(·)e−δ|t|

τ − t+ id

g(τ + id−, ·)
sin[π(τ + id)/h]

dt

}

dτ.

We shall restrict ourselves to the first term, the second can be treated in an analogous fashion.
To this end, using Propositions B.1, B.2 we get that

(B)
∫

R

sin(πt/h)
eit(·)e−δ|t|

τ − t− id

g(τ − id−, ·)
sin[π(τ − id)/h]

dt =
g(τ − id−, ·)

sin[π(τ − id)/h]
Fδ(τ, ·) (B.24)
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in H0
−2ν(R) ∩H1

−2ν(−L,L), where

Fδ(τ, ·) :=
∫

R

sin(πt/h)
eit(·)e−δ|t|

τ − t− id
dt. (B.25)

We get therefore that

(B)
∫

R

{

(B)
∫

R

sin(πt/h)
eit(·)e−δ|t|

τ − t− id

g(τ − id−, ·)
sin[π(τ − id)/h]

dt

}

dτ =

(B)
∫

R

g(τ − id−, ·)
sin[π(τ − id)/h]

Fδ(τ, ·) dτ. (B.26)

Assume now that the following hold: for all τ ∈ R

Fδ(τ, x) → F0(τ, x) = F (τ, x), as δ → 0+, a.e. x ∈ R, (B.27)
d

dx
Fδ(τ, x) → d

dx
F (τ, x), as δ → 0+, a.e. x ∈ (−L,L), (B.28)

where

F (τ, x) =



































2πi sin[π(τ − id)/h]eix(τ−id) , if x < −π

h

−πe−i(π/h−x)(τ−id) , if − π

h
< x <

π

h

0 , if x >
π

h
.

Moreover, assume that

|Fδ(τ, x)| ≤ 2π, ∀x ∈ R (B.29)
∣

∣

∣

∣

d

dx
Fδ(τ, x)

∣

∣

∣

∣

≤ C(1 + |τ |) + 1

L
, ∀x ∈ (−L,L), (B.30)

where C > 0 depends on d, h, but does not depend on x ∈ (−L,L), δ or τ . Assuming that
(B.27), (B.28), (B.29), (B.30) hold for Fδ(τ, ·), we claim that

lim
δ→0+

(B)
∫

R

g(τ − id−, ·)
sin[π(τ − id)/h]

Fδ(τ, ·) dτ =

(B)
∫

R

g(τ − id−, ·)
sin[π(τ − id)/h]

F (τ, ·) dτ, (B.31)

in H0
−2ν(R) ∩ H1

−2ν(−L,L). In order to prove (B.31), under the assumptions (B.27), (B.28),
(B.29), (B.30), let us estimate first

∥

∥

∥

∥

g(τ − id−, ·)Fδ(τ, ·)− F (τ, ·)
sin[π(τ − id)/h]

∥

∥

∥

∥

2

0,−2ν

≤
∫

R

e−4ν|x||g(τ − id−, x)|2|Fδ(τ, x)− F (τ, x)|2 dx, (B.32)
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∥

∥

∥

∥

g(τ − id−, ·)Fδ(τ, ·)− F (τ, ·)
sin[π(τ − id)/h]

∥

∥

∥

∥

2

H1
−2ν(−L,L)

≤
∫

(−L,L)

e−4ν|x||g(τ − id−, x)|2
[

|Fδ(τ, x)− F (τ, x)|2 +
∣

∣

∣

∣

d

dx
Fδ(τ, x)−

d

dx
F (τ, x)

∣

∣

∣

∣

2
]

dx

+

∫

(−L,L)

e−4ν|x|
∣

∣

∣

∣

d

dx
g(τ − id−, x)

∣

∣

∣

∣

2

|Fδ(τ, x)− F (τ, x)|2 dx. (B.33)

Now, since the integrands converge to 0, as δ → 0+, for a.e. x ∈ R, respectively for a.e.
x ∈ (−L,L), and are bounded by integrable functions, we conclude by Lebesgue Theorem on
dominated convergence that

∥

∥

∥

∥

g(τ − id−, ·)Fδ(τ, ·) − F (τ, ·)
sin[π(τ − id)/h]

∥

∥

∥

∥

0,−2ν

→ 0, (B.34)

respectively
∥

∥

∥

∥

g(τ − id−, ·)Fδ(τ, ·) − F (τ, ·)
sin[π(τ − id)/h]

∥

∥

∥

∥

H1
−2ν(−L,L)

→ 0, (B.35)

as δ → 0+, for a.e. τ ∈ R. Moreover,
∥

∥

∥

∥

g(τ − id−, ·)Fδ(τ, ·) − F (τ, ·)
sin[π(τ − id)/h]

∥

∥

∥

∥

0,−2ν

≤ C‖g(τ − id−, ·)‖0,−2ν‖Fδ(τ, ·)− F (τ, ·)‖L∞(R)

≤ C(γ, ν)C(f)

(

1 +
1

α

)

e−
α
2
|τ |,

respectively
∥

∥

∥

∥

g(τ − id−, ·)Fδ(τ, ·) − F (τ, ·)
sin[π(τ − id)/h]

∥

∥

∥

∥

H1
−2ν(−L,L)

≤ C‖g(τ − id−, ·)‖1,−2ν‖Fδ(τ, ·)− F (τ, ·)‖W 1,∞(−L,L)

≤ C(γ, ν)C(f)

(

1 +
1

α

)2

e−
α
4
|τ |.

The Lebesgue Theorem on dominated convergence implies therefore that

∫

R

∥

∥

∥

∥

g(τ − id−, ·)
sin[π(τ − id)/h]

(Fδ(τ, ·) − F (τ, ·))
∥

∥

∥

∥

0,−2ν

→ 0, (B.36)

∫

R

∥

∥

∥

∥

g(τ − id−, ·)
sin[π(τ − id)/h]

(Fδ(τ, ·)− F (τ, ·))
∥

∥

∥

∥

H1
−2ν(−L,L)

→ 0, (B.37)
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as δ → 0+, which proves (B.31).
It remains to show (B.27), (B.28), (B.29) and (B.30) for Fδ(τ, ·). As a Fourier transformation
of a L1 function, Fδ(τ, ·) is continuous with respect to x, for all τ ∈ R and all δ > 0. One can
see that

Fδ(τ, ·) = F
(

gδ(t)

τ − t− id

)

(·), (B.38)

where by F we denote the Fourier transformation and

gδ(t) = e−δ|t| sin(πt/h).

Then, Fδ(τ, ·) satisfies the following first order differential equation (in x):

d

dx
Fδ(τ, x)− i(τ − id)Fδ(τ, x) = −iF(gδ)(x) = −

[

δ

δ2 +
(

x+ π
h

)2 − δ

δ2 +
(

x− π
h

)2

]

. (B.39)

Therefore, for every a ∈ R, Fδ(τ, x) admits the following representation

Fδ(τ, x) = Fδ(τ, a)e
−i(τ−id)x −

x
∫

a

e−i(τ−id)(s−x)

[

δ

δ2 +
(

s+ π
h

)2 − δ

δ2 +
(

s− π
h

)2

]

ds. (B.40)

Lemma B.4 Let τ ∈ R and δ > 0 be arbitrary. Then,

lim
|x|→∞

Fδ(τ, x) = 0. (B.41)

Proof. It is enough to show that

lim
|y|→∞

∫

R

e−δ|t| eity

τ − t− id
dt = 0. (B.42)

Let us first notice that

∫

R

e−δ|t| eity

τ − t− id
dt = −2







∞
∫

0

e−δt (τ − id) cos(ty)

t2 + (d+ iτ)2
dt+ i

∞
∫

0

e−δt t sin(ty)

t2 + (d+ iτ)2
dt







. (B.43)

We will show that the second integral converges to 0 as |y| → ∞, because the first one can be
treated in the same fashion.

∞
∫

0

e−δt t sin(ty)

t2 + (d+ iτ)2
dt = −1

y
cos(ty)

te−δt

t2 + (d+ iτ)2

∣

∣

∣

∣

∣

∣

t=∞

t=0

+
1

y

∞
∫

0

cos(ty)e−δt

[

−δ
t

t2 + (d+ iτ)2
+

t2 + (d+ iτ)2 − 2 t2

[t2 + (d+ iτ)2]2

]

dt,

41



which converges to 0 as |y| → ∞.
It follows therefore that

Fδ(τ, x) =

∞
∫

x

e−i(τ−id)(s−x)

[

δ

δ2 +
(

s+ π
h

)2 − δ

δ2 +
(

s− π
h

)2

]

ds, (B.44)

and this implies that |Fδ(τ, x)| ≤ 2π. Moreover, through changes of variables we can rewrite
(B.44) in the following form

Fδ(τ, x) =

∞
∫

(π
h+x)/δ

e−i(τ−id)(δs−x−π/h) 1

1 + s2
ds−

∞
∫

(−π
h+x)/δ

e−i(τ−id)(δs−x+π/h) 1

1 + s2
ds, (B.45)

and now (B.27) and (B.29) follow straightforwardly. In order to show (B.28) and (B.30) we
make use of (B.39):

d

dx
Fδ(τ, x) = i(τ − id)Fδ(τ, x)−

[

δ

δ2 +
(

x+ π
h

)2 − δ

δ2 +
(

x− π
h

)2

]

. (B.46)

Since

δ

δ2 +
(

x± π
h

)2 ≤ δ

δ2 + L2
≤ 1

2L
, ∀x ∈ (−L,L), ∀ δ > 0,

(B.28) and (B.30) are now immediate. With these results, we get that

lim
δ→0+

(B)
∫

R

eit(·)e−δ|t|E(f, h)(t, ·) dt =

(B)
∫

R

f1(t, ·)g(t − id−, ·) dt

+

(B)
∫

R

f2(t, ·)g(t + id−, ·) dt,

in H0
−2ν(R) ∩H1

−2ν(−L,L), where f1(t, ·) and f2(t, ·) are as in (3.38), (3.39). Notice that

‖f1(t, ·)‖L∞(R), ‖f2(t, ·)‖L∞(R) ≤
1

sinh(πd/h)
,

respectively

‖f1(t, ·)‖W 1,∞(−L,L), ‖f2(t, ·)‖W 1,∞(−L,L) ≤ C(d)(1 + |t|) 1

sinh(πd/h)
.
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It follows therefore that

‖δ(f, h)(·)‖0,−2ν ≤
∫

R

‖f1(t, ·)‖L∞ ‖g(t− id−, ·)‖0,−2ν dt

+

∫

R

‖f2(t, ·)‖L∞ ‖g(t+ id−, ·)‖0,−2ν dt,

≤ 1

sinh(πd/h)

∫

R

‖g(t− id−, ·)‖0,−2ν + ‖g(t+ id−, ·)‖0,−2ν dt,

respectively

‖δ(f, h)(·)‖H1
−2ν (−L,L) ≤

∫

R

‖f1(t, ·)‖W 1,∞(−L,L) ‖g(t − id−, ·)‖1,−2ν dt

+

∫

R

‖f2(t, ·)‖W 1,∞(−L,L) ‖g(t+ id−, ·)‖1,−2ν dt,

≤ C(d)

sinh(πd/h)

∫

R

(

‖g(t − id−, ·)‖1,−2ν + ‖g(t + id−, ·)‖1,−2ν
)

(1 + |t|) dt.

This implies that

‖δ(f, h)(·)‖0,−2ν ≤ Ce−(πdαN)1/2
∫

R

‖g(t− id−, ·)‖0,−2ν + ‖g(t+ id−, ·)‖0,−2ν dt

≤ Ce−(πdαN)1/2
∫

R

|f̂(t− id−)|(1 + |t− id|) + f̂(t+ id−)|(1 + |t+ id|) dt

≤ C(γ, ν)C(f)

(

1 +
1

α

)

1

α
e−(πdαN)1/2 ,

respectively

‖δ(f, h)(·)‖H1
−2ν (−L,L) ≤ Ce−(πdαN)1/2

∫

R

(

‖g(t− id−, ·)‖1,−2ν + ‖g(t+ id−, ·)‖1,−2ν
)

(1 + |t|) dt

≤ Ce−(πdαN)1/2
∫

R

(

|f̂(t− id−)|(1 + |t− id|)

+|f̂(t+ id−)|(1 + |t+ id|)
)

(1 + |t|) dt

≤ C(γ, ν)C(f)

(

1 +
1

α

)2 1

α
e−(πdαN)1/2 .

The proof of Theorem 3.9 is now complete.
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Figure 6: Convergence rate for fixed macro polynomial degree p and increasing micro degree
µ. f(x) = f2(x)

10
1

10
2

10
3

10
4

10
5

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

R
e

la
ti
v
e

 e
rr

o
r 

fo
r 

th
e

 e
n

e
rg

y

1/!

1

4

1

2

f(x) = 1

µ = 1
µ = 2
µ = 3

Figure 7: Relative error for the energy versus 1/ε for increasing micro degree µ.

46



1 2 3
10

!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

"macro" polynomial degree p

R
e

la
ti
v
e

 e
rr

o
r 

fo
r 

th
e

 e
n

e
rg

y

f(x) $ 1;  µ = "micro" degree; 4 elements at the boundary; ! # 1E!1

µ  = 1

µ  = 2

µ  = 3

µ  = 4

µ  = 5

1 2 3

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

R
e

la
ti
v
e

 e
rr

o
r 

fo
r 

th
e

 e
n

e
rg

y

"macro" polynomial degree p

f(x) $ 1;  µ = "micro" degree; 4 elements at the boundary; ! # 1E!2

µ  = 1

µ  = 2

µ  = 3

µ  = 4

µ  = 5

1 2 3

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

R
e

la
ti
v
e

 e
rr

o
r 

fo
r 

th
e

 e
n

e
rg

y

"macro" polynomial degree p

f(x) $ 1;  µ = "micro" degree; 4 elements at the boundary; ! # 1E!3

µ  = 1

µ  = 2

µ  = 3

µ  = 4

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

R
e

la
ti
v
e

 e
rr

o
r 

fo
r 

th
e

 e
n

e
rg

y

f(x) = exp(x); µ = "micro" polynomial degree; !# 1E!6

µ  = 1

47



1 2 3 4 5 6 7 8 9
10

!7

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

R
e

la
ti
v
e

 e
rr

o
r 

in
 t

h
e

 L
%

 n
o

rm
 f

o
r 

th
e

 s
tr

e
s
s
e

s

"macro" polynomial degree p

f(x) = exp(x);  µ = "micro" degree; 4 elements at the boundary; ! # 1E!1

µ  = 1

µ  = 2

µ  = 3

µ  = 4

µ  = 5

µ  = 6

1 2 3 4 5 6 7 8 9
10

!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

R
e

la
ti
v
e

 e
rr

o
r 

in
 t

h
e

 L
%

 n
o

rm
 f

o
r 

th
e

 s
tr

e
s
s
e

s

"macro" polynomial degree p

f(x) = exp(x);  µ = "micro" degree; 4 elements at the boundary; ! # 1E!2

µ  = 1

µ  = 2

µ  = 3

µ  = 4

µ  = 5

1 2 3 4 5 6 7 8 9
10

!7

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

R
e

la
ti
v
e

 e
rr

o
r 

in
 t

h
e

 L
%

 n
o

rm
 f

o
r 

th
e

 s
tr

e
s
s
e

s

"macro" polynomial degree p

f(x) = exp(x);  µ = "micro" degree; 4 elements at the boundary; ! # 1E!3

µ  = 1

µ  = 2

µ  = 3

µ  = 4

!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

R
e

la
ti
v
e

 e
rr

o
r 

in
 t

h
e

 L
%

 n
o

rm
 f

o
r 

th
e

 s
tr

e
s
s
e

s

f(x) = exp(x); 4 elements at the boundary; ! # 1E!6

µ  = 1

48



Research Reports

No. Authors Title

99-01 A.M. Matache, I. Babuška,
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