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Abstract

We analyze the hp Streamline Diffusion Finite Element Method (SDFEM)
and the standard Galerkin FEM for one dimensional stationary convection-
diffusion problems. Under the assumption of analyticity of the input data,
a mesh is exhibited on which approximation with continuous piecewise poly-
nomials of degree p allows for resolution of the boundary layer. On such
meshes, both the SDFEM and the Galerkin FEM lead to robust exponential
convergence in the “energy norm” and in the L∞ norm.

Next, we show that even in the case that the boundary layers are not
resolved, robust exponential convergence on compact subsets “upstream” of
the layer can be achieved with the hp-SDFEM. This is possible on sequences
of meshes that would typically be generated by an hp-adaptive scheme.

Detailed numerical experiments confirm our convergence estimates.
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1 Introduction

The Streamline Diffusion Finite Element Method (SDFEM) was introduced by T. Hughes, C. Johnson
and their coworkers to improve the stability of Galerkin Finite Element discretizations of advection
dominated diffusion problems since standard Galerkin FEM were known to produce oscillatory solutions
for these non-selfadjoint problems. In the pioneering papers ([2, 3, 5, 6]), the SDFEM was introduced
and its convergence rate as the meshwidth h of the FE triangulation T tends to zero was analyzed.
In the meantime, numerous papers have appeared showing how the SDFEM can be combined with the
related SUPG techniques [4] to obtain stable discretizations of convection dominated, incompressible flow
problems and of problems with analogous mathematical structure in solid mechanics [16, 17].

All these works considered the h-version FEM where convergence is achieved by refining the mesh T at
fixed, low polynomial degree p. The convergence rates were consequently at best algebraic. In the 1980ies,
the p- and hp-FEM were introduced by I. Babuška and B.A. Szabó and their coworkers, and it was shown
that the hp-FEM achieves exponential convergence for elliptic problems with piecewise analytic solutions
(cf. the survey paper [1] and the references therein).

For singularly perturbed reaction-diffusion problems, it was shown recently in [14, 15, 8, 9] that the hp-
FEM can achieve robust exponential convergence. Analogous to the standard h-version, the main problem
in the convection dominated case is stability.

A rigorous proof of robust exponential convergence for the hp-streamline diffusion and Galerkin FEM
for convection dominated problems in one dimension is the purpose of the present paper. We confine
our analysis to the one-dimensional case since there the asymptotic structure of the exact solution is
known in detail [9]. We prove robust exponential convergence of the hp-SDFEM and hp-Galerkin FEM in
global norms provided that the boundary layers and fronts of the solution are resolved. Whereas in the
h-version FEM this amounts to the use of so-called Shishkin meshes (cf. [11, 12]), in the hp context this
can be achieved very efficiently by inserting just one element of the proper size into the layer (see, e.g.,
[14, 15, 8, 9]). Furthermore, we investigate the behavior of the hp-SDFEM under the assumption that
layers are not resolved which may happen, for example, when the precise location of the layer is unknown.
In this case, we show that the hp-SDFEM leads to robust exponential convergence on compact subsets
upstream of the layer/shock for certain types of mesh sequences. These mesh sequences are those that
would typically be generated by an adaptive scheme that locates the layers and tries to resolve them.
Finally, for a model problem we study numerically the optimal p-dependence of the SDFEM parameter
and find the choice O(hi/

√
p) to give the best performance.

Our theoretical results are in agreement with our numerical experiments which also show that hp-SDFEM
and standard hp-FEM are comparable if all small scale features are resolved. In itself, this is already
known to CFD practitioners. The main impetus for the development of SDFEM and related subgrid
scale models has in fact come from the need for stabilization because of the inability of standard FEM
to resolve all small scales of the flow. The main conclusions of the present work are twofold:

1. hp-FEMs are able to resolve localized small scale features of the solution such as viscous boundary
layers and shock profiles highly accurately at very reasonable cost [14, 8, 9, 15].

2. In the preasymptotic range when small scale features are not resolved, the hp-SDFEM can lead
to robust exponential convergence on compact subsets if the increase of the polynomial degree is
coupled with an appropriate mesh refinement in low order elements towards the layers.

The present work has natural extensions to two and three dimensions as well as to systems—these issues
shall be dealt with elsewhere.

The outline of the paper is as follows. In Sections 1.1, 1.2 we present our model problem and introduce two
types of Streamline Diffusion Methods, the “L2-stabilized” and “bubble-stablized” method. In Section 2
we show that piecewise polynomials on appropriate meshes can resolve small scale features such as layers
and fronts at a robust exponential rate. Section 3 is devoted to a detailed analysis of both the “L2-”
and the “bubble-stabilized” SDFEM; their performance is measured in the global “energy norm”. Our
theoretical results are corroborated by numerical examples in Section 4. Section 4 also contains the
statement that the hp-SDFEM can lead to robust exponential convergence of compact subsets if the
increase of the polynomial degree is coupled with an appropriate mesh refinement towards the layer.
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Section 4 concludes with a numerical investigation of the optimal choice of the SDFEM parameter.

1.1 Model Problem

We consider the one-dimensional convection–diffusion equation

Lεu ≡ −εu′′ + a(x)u′ + b(x)u = f on Ω := (−1, 1), u(±1) = 0. (1.1)

Here the parameter ε ∈ (0, 1] may approach zero, f ∈ L2(Ω), and the coefficients a ∈ W 1,∞(Ω) and
b ∈ L∞(Ω) are assumed to satisfy

a(x) ≥ a > 0 on Ω, (1.2)

b(x) ≥ b ∈ lR on Ω, a2 + 4εb > 0 ∀ε ∈ (0, 1]. (1.3)

Conditions (1.2), (1.3) guarantee that (1.1) does have a unique solution for all ε ∈ (0, 1]. The prototypical
analysis of this paper is performed in Section 3 under the following additional assumption:

b(x)−
1

2
a′(x) ≥ γ > 0 on Ω. (1.4)

Remark 1.1. Condition (1.4) can always be achieved for problems of the form (1.1) by the substitution
u(x) = eωxũ(x) for some bounded, appropriately chosen ω and ε sufficiently small.

A weak formulation of (1.1) reads: Find uε ∈ H1
0 (Ω) such that

Bε(uε, v) := ε

∫

Ω
u′
εv

′ dx+

∫

Ω
(au′

ε + buε)v dx = F (v) :=

∫

Ω
fv dx ∀v ∈ H1

0 (Ω). (1.5)

It is natural to introduce the following “energy norm” on the space H1
0 (Ω)

‖|u|‖2 := ε‖u′‖2L2(Ω) + γ‖u‖2L2(Ω). (1.6)

Proposition 1.2. Under the assumptions (1.2), (1.4) there holds

‖|u|‖2 ≤ Bε(u, u) ∀u ∈ H1
0 (Ω),

|Bε(u, v)| ≤
[
2max (1, ‖a‖L∞(Ω)/

√
γε, ‖b‖L∞(Ω)/γ)

]
‖|u|‖ ‖|v|‖ ∀u, v ∈ H1

0 (Ω).

In particular, therefore, for every f ∈ L2(Ω), there exists a unique solution uε of (1.5).

Proof. For the first estimate, we note that an integration by parts yields
∫

Ω
au′u dx+

∫

Ω
bu2 dx =

∫

Ω

(
b−

1

2
a′
)
u2 dx ≥ γ‖u‖2L2(Ω).

The second estimate follows from the Cauchy-Schwarz inequality.

!

1.2 hp FEM

In the classical Galerkin FEM, the infinite dimensional space H1
0 (Ω) is replaced by finite dimensional

spaces of piecewise polynomials of degree p ≥ 1. In order to make this more precise, we introduce for a
collection of nodes −1 = x0 < x1 < · · · < xN = 1 the notation Ii := (xi−1, xi) and hi = |Ii| = xi − xi−1

for i = 1, . . . , N . The elements Ii form a mesh T = {Ii | i = 1, . . . , N} on Ω. The classical spaces of
piecewise polynomials of degree p are then given by

Sp,1(T ) = {u ∈ H1(Ω) |u|Ii ∈ Πp(Ii), i = 1, . . . , N}, (1.7)

Sp,1
0 (T ) = H1

0 (Ω) ∩ Sp,1(T ), (1.8)
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where Πp(J) denotes the space of all polynomials of degree p on the interval J . We restrict ourselves
here to a uniform polynomial degree distribution for simplicity of exposition—mutatis mutandis the
polynomial degree may vary from element to element.

The standard Galerkin FEM for (1.5) reads:

Find uG ∈ Sp,1
0 (T ) such that Bε(uG, v) = F (v) ∀v ∈ Sp,1

0 (T ). (1.9)

With a given mesh T , let us associate a collection of non-negative numbers (ρi)Ni=1 to be selected and
weight functions di which can be either di ≡ 1 or di(x) = bi(x) where bi is the “quadratic bubble”

bi(x) :=
4

h2
i

(x− xi)(xi+1 − x). (1.10)

For these weights (ρi, di)Ni=1, the SDFEM reads:

Find uSD ∈ Sp,1
0 (T ) such that BSD(uSD, v) = FSD(v) ∀v ∈ Sp,1

0 (T ), (1.11)

where

BSD(u, v) := Bε(u, v) +
N∑

i=1

ρi

∫

Ii

di (−εu′′ + au′ + bu)av′ dx, (1.12)

FSD(v) := F (v) +
N∑

i=1

ρi

∫

Ii

difav
′ dx. (1.13)

If di = 1 for all i, (1.11) will be referred to as the “L2-stabilized” SDFEM whereas (1.11) with the di
given by (1.10) will be called the “bubble-stabilized” SDFEM (cf. Definition 3.1 ahead for the precise
definition). Note that the choice ρi = 0 for all i reduces the SDFEM to the usual Galerkin FEM.

Proposition 1.2 implies that the Galerkin FEM satisfies the inf-sup condition and hence (1.9) is uniquely
solvable. Existence and uniqueness of the SDFEM solution of problem (1.11) is guaranteed, if the bilinear
form BSD is coercive on Sp,1

0 (T ); this will be proved in Theorem 3.5.

2 Polynomial Approximability of the Solution

We prove now that the solution uε of (1.1) can be approximated from the spaces Sp,1
0 (T ) at an exponential

rate, uniformly in ε. To this end, we first recapitulate some regularity results from [9].

2.1 Regularity of the solution uε

Let us consider (1.1) on Ω = (−1, 1) with analytic input data a(x), b(x), f(x) satisfying

‖a(n)‖L∞(Ω) ≤ Caγ
n
a ∀n ∈ lN0, (2.1)

‖b(n)‖L∞(Ω) ≤ Cbγ
n
b ∀n ∈ lN0, (2.2)

‖f (n)‖L∞(Ω) ≤ Cfγ
n
f ∀n ∈ lN0, (2.3)

for some constants Ca, Cb, Cf , γa, γb, γf > 0. The purpose of this subsection is to illuminate the
regularity properties of uε in dependence on the parameter ε. These regularity results are necessary for
the proof of robust exponential convergence of the hp-FEM obtained in the present paper. The proof of
the assertions of this section can be found in [9].

The solution uε of (1.1) is analytic on Ω; however, for small values of ε, it exhibits a boundary layer at the
outflow boundary. This boundary behavior can be characterized with the aid of asymptotic expansions:
For any expansion order M ∈ lN0, we decompose in the standard way into a smooth part wM , a boundary
layer part uBL

M , and a (small) remainder rM :

uε = wM + uBL
M + rM . (2.4)

Concerning these three parts, it was shown in [9] that the following holds true:
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Theorem 2.1. Let uε be the solution of (1.1) and assume that (1.2), (1.3) hold. Then there are constants
C, K depending only on the constants in (2.1)–(2.3) and on the constants a, b, such that

‖u(n)
ε ‖L∞(Ω) ≤ CKn max (n, ε−1)n ∀n ∈ lN0. (2.5)

Furthermore, under the assumption 0 < εMK ≤ 1, the terms in the decomposition (2.4) satisfy

‖w(n)
M ‖L∞(Ω) ≤ CKnn! ∀n ∈ lN0, (2.6)

|
(
uBL
M

)(n)
(x)| ≤ CKn max (n, ε−1)ne−a(1−x)/(2ε) ∀n ∈ lN0, x ∈ I, (2.7)

‖r(n)M ‖L∞(Ω) ≤ Cε1−n(εMK)M n = 0, 1, 2, (2.8)

rM (±1) = 0. (2.9)

2.2 hp-Approximation of boundary layers

As the regularity of the solution uε is now available, we are in position to formulate results for the
approxmation of uε by piecewise polynomials of degree p. We will be interested in robust exponential
approximation of uε by elements of Sp,1

0 (T ). Clearly, as uε exhibits in general a boundary layer at the
outflow boundary x = 1, the mesh T has to be chosen in dependence on ε. The simplest scheme that
leads to robust exponential approximability is the “two-element” approach introduced in [14]. There,
piecewise polynomials of degree p on a mesh with two elements are used where one elements of size O(pε)
is located in the layer therefore able to resolve the boundary layer.

Definition 2.2. For ε > 0, κ > 0, and p ∈ lN define the “two-element mesh” T = Tε,κ,p as

T = {(−1, 1− κpε), (1− κpε, 1)} if κpε < 1,
T = {Ω} if κpε ≥ 1.

In [9] (cf. also [14, 8]) the following theorem was proved.

Theorem 2.3. Let uε be the solution of (1.1) and assume that (1.2), (1.3), (2.1)–(2.3) hold. Then there
are C, σ, κ0 > 0 independent of ε such that for 0 < κ < κ0

inf
πp

{
‖uε − πp‖L∞(Ω) + κpε‖ (uε − πp)

′ ‖L∞(Ω)

}
≤ C(1 + ln p)p2e−σκp

where the infimum is taken over all πp ∈ Sp,1
0 (Tκ,p,ε).

Theorem 2.3 follows from the ensuing Lemma 2.4. The key ingredient is the ability to decompose uε

into a “regular” part ureg and a “singular” part uBL which can be approximated separately by piecewise
polynomials ureg,p, uBL,p ∈ Sp,1(T ) at a robust exponential rate.

Lemma 2.4. There are C, σ, κ0 > 0 depending only on a, b, and f (in particular independent of ε) such
that the following holds. Assume that for every p ∈ lN a mesh T is given such that for some κ ∈ (0,κ0)
we have Sp,1

0 (Tκ,p,ε) ⊂ Sp,1
0 (T ). Then, for each p ∈ lN the solution uε of (1.1) admits a splitting

uε = ureg + uBL

and there is up ∈ Sp,1
0 (T ) with a corresponding splitting

up = ureg,p + uBL,p with ureg,p, uBL,p ∈ Sp,1(T )

such that the errors

ηreg := ureg − ureg,p, ηBL := uBL − uBL,p, η := ηreg + ηBL

satisfy ηreg(±1) = ηBL(±1) = 0 and

‖η′reg‖L∞(Ii) + ‖ηreg‖L∞(Ii) ≤ Chie
−σp, i = 1, . . . , N, (2.10)

‖η(l)BL‖L∞(Ω) ≤ C(κpε)−le−σκp, l = 0, 1, (2.11)

(κp)1/2ε‖η′BL‖L2(Ω) + ‖ηBL‖L2(Ω) ≤ Cε1/2e−σκp, l = 0, 1, (2.12)
N∑

i=1

min

{
1,

hi

ε

}[
(κpε)2‖η′‖2L∞(Ii)

+ ‖η‖2L∞(Ii)

]
≤ Ce−σκp. (2.13)
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Proof. We will only sketch the proof as it is very similar to that in [9, 8]. In particular, κ0 < 1 is chosen
sufficiently small (but independent of p, ε) as in [9, 8]. We will restrict ourselves to the case κpε < 1 as
in the complementary case, one can take the specific splitting ureg = 0, uBL = uε and conclude as in [8]
that we obtain the desired results.

Let therefore κpε < 1. The key idea is to use the asymptotic expansion (2.4) and to choose the expansion
order M proportional to the polynomial degree p. Let 0 < q < 1 and µ := q/K with K of Theorem 2.1
and chooose 1 ≤ M = µκp (strictly speaking, M should be chosen as the integer part of µκp—for
notational convenience, however, we will not pursue this point further). We note that with this choice
of µ, and the assumption κpε < 1, (2.6) gives bounds on the derivatives of wM which are independent of
ε, M . We therefore set ureg := wM , uBL := uBL

M + rM and approximate each term separately. First, for
the approximation of ureg we note that standard piecewise polynomial approximation theory (e.g., the
piecewise Gauss–Lobatto interpolant) gives the existence of the piecewise polynomials ureg,p such that
ηreg = ureg − ureg,p has the properties (2.10).

Let us now turn to the construction of uBL,p, an approximation of uBL := uBL
ε + rM . Equation (2.8)

gives that

‖r(l)M ‖L∞(Ω) ≤ Cε1−l(εMK)M ≤ Cε1−l(εMK)(εMK)M−1 ≤ Cε2−lκp qκp−1

≤ Cε2−le−σκp, l = 0, 1, 2 (2.14)

for some appropriate σ > 0 independent of ε, p. Next, let xn, 1 < n < N be the mesh point xn = 1−κpε.
As κ0 can be chosen sufficiently small, we may assume that 0 ≤ xn. Checking the proof of Theorem 16
of [8] shows that for σ > 0 sufficiently small, the Gauss-Lobatto interpolant πp of uBL

M on [xn, 1] satisfies

‖(uBL
M − πp)

(l)‖L∞([xn,1]) ≤ C(κpε)−le−σp, l = 0, 1. (2.15)

Following an idea of [14], we now define

uBL,p := uBL
M (−1)

(
1−

1 + x

1 + xn

)
on

[-1,xn] πp − uBL
M (xn)

1−x
1−xn

on[xn, 1]. (2.16)

Note that uBL,p ∈ Sp,1(T ) and that, by (2.9) uBL,p(±1) = uBL(±1). Furthermore, we observe that by
(2.7)

|uBL
M (xn)| ≤ Ce−aκp/2, |uBL

M (−1)| ≤ Ce−a/ε ≤ C′εe−a/(2ε) (2.17)

for some C, C′ > 0 independent of ε. Introducing the shorthand

z := uBL
M − uBL,p

and using (2.7), (2.15), (2.17) we have for some σ > 0 independent of ε, p:

κpε‖z′‖L∞(Ii) + ‖z‖L∞(Ii) ≤ C(1 + κp)e−(1−xi)a/(2ε), i = 1, . . . , n (2.18)

κpε‖z′‖L∞(Ii) + ‖z‖L∞(Ii) ≤ Ce−σκp, i = n+ 1, . . . , N. (2.19)

As ‖(ηB)(l)‖L∞(Ω) ≤ ‖(uBL
M − uBL,p)(l)‖L∞(Ω) + ‖r(l)M ‖L∞(Ω), it is now easy to see that (2.11) is satisfied

by combining (2.18), (2.19), and (2.14). One proceeds similarly to obtain (2.12): Combining (2.14) and
(2.19) yields bounds on (xn, 1) and (2.14), (2.16), (2.7) together give bounds on (−1, xn), so that we
obtain, for appropriate C, σ > 0:

(εκp)2‖η′BL‖2L2(xn,1) + ‖ηBL‖2L2(xn,1) ≤ Cκpε e−σκp,

ε2‖η′BL‖2L2(−1,xn) + ‖ηBL‖2L2(−1,xn) ≤ Cεe−σκp.

The desired estimate (2.12) can be obtained easily from these two bounds.

We finally turn to the proof of (2.13). We observe that the expression

S(η) :=

{
N∑

i=1

min {1, hi/ε}
[
(κpε)2‖η′‖2L∞(Ii) + ‖η‖2L∞(Ii)

]}1/2
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defines a norm on W 1,∞(Ω). The triangle inequality therefore gives S(η) ≤ S(ηreg) + S(z) + S(rM ).

Together with the fact that
∑N

i=1 hi = 2, it follows easily from (2.10), (2.14) that S(ηreg) + S(rM )
satisfies the desired estimate. For the remaining term, S(z), we proceed as follows. First, we recall that
n is chosen such that xn = 1− κpε. This implies that

card {i | i ≥ n+ 1, hi ≤ ε} ≤ κpε/ε = κp

and, together with
∑N

i=n+1 hi = κpε, this implies that
∑N

i=n+1 min {1, hi/ε} ≤ 2κp. Hence, upon using
the shorthand

zi := (κpε)2‖z′‖2L∞(Ii)
+ ‖z‖2L∞(Ii)

we get using (2.19)

N∑

i=n+1

min {1, hi/ε}zi ≤ Ce−σκp
N∑

i=n+1

min {1, hi/ε} ≤ Cκpe−σκp.

Finally, from (2.18) we get

n∑

i=1

min {1, hi/ε}zi ≤ C(1 + κp)2
n∑

i=1

min {1, hi/ε}e−a(1−xi)/ε.

A simple calculation shows that there is C > 0 (independent of ε, i) with

e−a(1−xi)/ε min {1, hi/ε}

(∫ xi

xi−1

e−a(1−t)/ε dt

)−1

≤ Cε−1.

Whence

n∑

i=1

min {1, hi/ε}zi ≤ Cε−1
n∑

i=1

∫ xi

xi−1

e−a(1−t)/ε dt ≤ Cε−1

∫ xn

−1
e−a(1−t)/ε dt ≤ Ce−aκp.

Combining these estimates allows us to conclude the proof.

!

3 Analysis of the SDFEM

3.1 Preliminaries and Notation

For the analysis of the SDFEM, it is convenient to introduce the following mesh-dependent semi norm
and full norm:

‖|u|‖2ρ :=
N∑

i=1

ρi‖
√
diau

′‖2L2(Ii)
, (3.1)

‖|u|‖2SD := ‖|u|‖2 + ‖|u|‖2ρ. (3.2)

Here, the functions di are either di ≡ 1 or given by (1.10). For the purpose of our analysis, we will assume
that the weights (ρi, di)Ni=1 are of the following form:

ρi = δihi
1

2p
if

di = bi (given by (1.10))
1

2
√
3p2

ifdi = 1 (3.3)
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where the numbers δi satisfy

0 ≤ δi ≤ δ0 < δ′0 := min

{
1

‖a‖L∞

,
γ√

2‖a‖L∞‖b‖L∞

}
. (3.4)

As we will restrict ourselves in the remainder of the paper mostly to the special cases di = 1 or di = bi
for all i, we introduce the following terminology:

Definition 3.1. Let the pairs (ρi, di)Ni=1 satisfy (3.3).

1. If di = bi for i = 1, . . . , N , then the SDFEM (1.11) is called “bubble-stabilized” SDFEM;

2. if di = 1 for i = 1, . . . , N , then the SDFEM (1.11) is called “L2-stabilized” SDFEM.

The SDFEM (1.11) is said to be “non-degenerate”, if the following “non-degeneracy” condition is satisfied:

ρi is of the form (3.3) and ∃ c, δ > 0 such that hi ≥ cεp =⇒ δi ≥ δ. (3.5)

The Galerkin and the SDFEM errors share the fundamental orthogonality property:

Bε(uε − uG, v) = 0 ∀v ∈ Sp,1
0 (T ), (3.6)

BSD(uε − uSD, v) = 0 ∀v ∈ Sp,1
0 (T ). (3.7)

Remark 3.2. It should be noted that the orthogonality relation (3.7) for the SDFEM holds because of
the assumptions on the data (f ∈ L2(Ω)).

For the analysis of the Galerkin FEM and the SDFEM, it will be more convenient to analyze the error
uε − uSD indirectly by analyzing the difference between the SDFEM solution and a nearby interpolant.
In order to formalize this idea, we introduce

Definition 3.3. A decomposition up = ureg,p + uBL,p ∈ Sp,1
0 (T ) is said to be an admissible splitting,

if ureg,p, uBL,p ∈ Sp,1(T ) and there exists a corresponding decomposition uε = ureg + uBL such that
ureg(±1) = ureg,p(±1), uBL(±1) = uBL,p(±1). Denoting uSD the solution of the SDFEM, we introduce
the functions e, η, ηreg, ηBL as:

e := uSD − (ureg,p + uBL,p) ∈ Sp,1
0 (T ), (3.8)

η := ηreg + ηBL := (ureg − ureg,p) + (uBL − uBL,p) (3.9)

= uε − (ureg,p + uBL,p). (3.10)

For weights (ρi, di) of the form (3.3) and admissible splitting we define for the error η = ηreg + ηBL the
following mesh-dependent norms:

ESD(η) :=

{
N∑

i=1

δ2i
1

ρi + ε

[
ε2‖η′‖2L2(Ii)

+ ‖η‖2L2(Ii)

]}1/2

, (3.11)

ESD,∞(η) :=

{
N∑

i=1

δi
ρi

ρi + ε

[
ε2‖η′‖2L∞(Ii) + ‖η‖2L∞(Ii)

]}1/2

, (3.12)

EG,d(ηreg , ηBL) := min
{{ N∑

i=1

1

ρi + ε
‖d−1/2

i η‖2L2(Ii)

}1/2
;

‖η′reg‖L2(Ω) + ε−1/2‖ηBL‖L2(Ω)

}
. (3.13)

Let us finally note the following standard inverse estimates (cf., e.g., [13]).
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Lemma 3.4. Let Ii ∈ T be an interval of length hi and bi be given by (1.10). Then for all polynomials
πp of degree p ∈ lN there holds for some Cd > 0 independent of p, hi

‖
√
biπ

′
p‖L2(Ii) ≤ 2

√
2
p

hi
‖πp‖L2(Ii), ‖πp‖L2(Ii) ≤ Cdp‖

√
biπp‖L2(Ii),

‖biπ′′
p‖L2(Ii) ≤

2p

hi
‖
√
biπ

′
p‖L2(Ii),

‖π′
p‖L2(Ii) ≤ 2

√
3
p2

hi
‖πp‖L2(II ), ‖πp‖L∞(Ii) ≤

p+ 1√
hi

‖πp‖L2(II ).

For brevity of notation in some of the proofs, it will be convenient to use the following shorthand: For
functions u and elements Ii ⊂ Ω we write

‖u‖Ii := ‖u‖L2(Ii), ‖u‖L∞ := ‖u‖L∞(Ω), ‖u‖ := ‖u‖L2(Ω). (3.14)

3.2 Error estimates in the Energy norm and in the mesh-dependent norm

3.2.1 Stability of the SDFEM

We start by showing that the bilinear form BSD of (1.12) is coercive if the weights (ρi, di)Ni=1 are of the
form (3.3):

Theorem 3.5. Assume that the weights (ρi, di)Ni=1 are of the form (3.3). Then there holds

(1− δ0/δ
′
0)‖|u|‖

2
SD ≤ BSD(u, u) ∀u ∈ Sp,1

0 (T ).

Proof. We will only prove the “bubble-stabilized” case (i.e., di = bi)—the “L2-stabilized” or the general
case begin analogous. For u ∈ Sp,1

0 (T ) we obtain with the Cauchy-Schwarz inequality, the inverse
estimates of Lemma 3.4 and the fact that 0 ≤ di ≤ 1:

N∑

i=1

ρi

∫

Ii

di(Lεu)(au
′) dx =

N∑

i=1

ρi

∫

Ii

−εdiu
′′au′ dx+ ρi

∫

Ii

di(au
′)2 dx+ ρi

∫

Ii

diabu
′u dx

≥
N∑

i=1

−ερi
2p

hi
‖
√
diu

′‖Ii ‖au′‖Ii + ρi
∥∥∥
√
diau

′
∥∥∥
2

Ii
− ρi

2
√
2p

hi
‖a‖L∞‖b‖L∞‖u‖2Ii

≥
N∑

i=1

−εδi‖a‖L∞‖u′‖2Ii + ρi
∥∥∥
√
diau

′
∥∥∥
2

Ii
− δi

√
2‖a‖L∞‖b‖L∞

γ
γ ‖u‖2Ii

Recalling from the proof of Proposition 1.2 that

Bε(u, u) ≥
N∑

i=1

ε‖u′‖2Ii + γ‖u‖2Ii

we obtain a lower bound for BSD(u, u))

BSD(u, u) ≥ min
{
1− δ0‖a‖L∞, 1− δ0

√
2‖a‖L∞‖b‖L∞/γ

}
‖|u|‖2SD,

and the claim of the theorem follows by the definition of δ′0 in (3.4).

!
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3.2.2 Consistency of the SDFEM

Theorem 3.5 guarantees that the SDFEM formulation (1.11) does have a unique solution uSD. For the
error uε − uSD the following estimates hold true (Note that the case ρi = 0, i.e., the case of a pure
Galerkin FEM is not excluded):

Lemma 3.6. let T be any mesh. Then there is a constant C > 0 such that the following holds: For the
“bubble-stabilized” SDFEM (cf. Definition 3.1) and any admissible splitting in the sense of Definition 3.3
there holds:

(1− δ0/δ
′
0)‖|e|‖SD ≤ CK

[
‖|η|‖+ EG,d(ηreg, ηBL) + ESD(η)

]
, (3.15)

where the constant K > 0 depends only a and b and is given in (3.17). For the “L2-stabilized” SDFEM
(cf. Definition 3.1) and any admissible splitting there holds for some C′ > 0 depending only on a and b:

(1 − δ0/δ
′
0)‖|e|‖SD ≤ C′

[
‖|η|‖+ EG,d(ηreg , ηBL) + ESD(η) + ESD,∞(η)

]
. (3.16)

Proof. Let us begin with the first estimate, the “bubble-stabilized” SDFEM. Let up = ureg,p + uBL,p be
any admissible splitting in the sense of Definition 3.3. The orthogonality (3.7) gives

BSD(e, e) = BSD(η, e).

By Theorem 3.5, we obtain therefore

(1− δ0/δ
′
0)‖|e|‖

2
SD ≤ BSD(e, e) = BSD(η, e) =

{
ε

∫

Ω
η′e′ dx+

∫

Ω
bηe dx

}
+

{∫

Ω
aη′e dx

}
+

{
N∑

i=1

ρi

∫

Ii

di (Lεη) ae
′ dx

}

=: S1 + S2 + S3.

Let us estimate each of these three terms. We immediately have

|S1| ≤ max {1, ‖b‖L∞/γ} ‖|η|‖ ‖|e|‖ ≤ CK1 ‖|η|‖ ‖|e|‖SD,

where we set K1 := max {1, ‖b‖L∞/γ}. As e(±1) = 0, an integration by parts yields for S2

S2 =

∫

Ω
aη′e dx = −

∫

Ω
a′ηe dx−

∫

Ω
ηae′ dx.

Hence, we obtain for S2

|S2| ≤ ‖a′‖∞‖η‖ ‖e‖+
N∑

i=1

(
‖d−1/2

i η‖Ii
1

(ρi + ε)1/2

)(
(ρi + ε)1/2‖d1/2i ae′‖Ii

)

≤ ‖a′‖L∞γ−1 ‖|η|‖ ‖|e|‖SD + (1 + ‖a‖L∞)

{
N∑

i=1

1

ρi + ε
‖d−1/2

i η‖2Ii

}1/2

‖|e|‖SD

≤ CK2



‖|η|‖+

{
N∑

i=1

1

ρi + ε
‖d−1/2

i η‖2Ii

}1/2


 ‖|e|‖SD,

where we setK2 := max {1, ‖a′‖L∞/γ, ‖a‖L∞}. We note that the term in curly braces gives the first entry
of the minimum in the definition of EG,d(ηreg, ηBL). In order to get the second entry of that minimum,
we estimate S2 slightly differently: We write η = ηreg + ηBL and integrate by parts to arrive at

S2 =

∫

Ω
aη′rege dx+

∫

Ω
aη′BLe dx =

∫

Ω
aη′rege dx−

∫

Ω
a′ηBLe dx−

∫

Ω
aηBLe

′ dx

|S2| ≤
(
‖a‖∞γ−1/2‖η′reg‖+ ‖a′‖∞γ−1/2‖ηBL‖

)
γ1/2‖e‖+

(
ε−1/2‖a‖L∞‖ηBL‖

)
ε1/2‖e′‖

≤ CK3

(
‖η′reg‖+ ‖ηBL‖+ ε−1/2‖ηBL‖

)
‖|e|‖SD,
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where K3 := (‖a‖L∞ + ‖a′‖L∞)/
√
γ + ‖a‖L∞ . This last estimate on S2 gives the second entry in the

minimum defining EG,d(ηreg, ηBL). We also note that up to now all the estimates are valid for the
“L2-stabilized” SDFEM as well.

Finally, in order to estimate S3, elementwise integration by parts, Lemma 3.4 and the observation that
|d′i| ≤ 4/hi allow us to estimate

∣∣∣∣

∫

Ii

diaη
′ae′ dx

∣∣∣∣ =

∣∣∣∣−
∫

Ii

η
(
dia

2e′
)′

dx

∣∣∣∣ =
∣∣∣∣−

∫

Ii

ηd′ia
2e′ dx−

∫

Ii

ηdi2aa
′e′ dx −

∫

Ii

ηdia
2e′′ dx

∣∣∣∣

≤ ‖η‖Ii
[
4p

hi
Cd

‖a‖2L∞

a
+ 2‖a′‖L∞ +

2p

hi

‖a‖2L∞

a

]
‖
√
diae

′‖Ii ,
∣∣∣∣ε
∫

Ii

diη
′′ae′ dx

∣∣∣∣ =

∣∣∣∣−ε

∫

Ii

η′ (diae
′)
′
dx

∣∣∣∣ =
∣∣∣∣−ε

∫

Ii

η′d′iae
′ dx− ε

∫

Ii

η′dia
′e′ dx− ε

∫

Ii

η′diae
′′ dx

∣∣∣∣

≤ ε‖η′‖Ii
[
4p

hi
Cd

‖a‖L∞

a
+ ‖a′‖L∞ +

2p

hi

‖a‖L∞

a

]
‖
√
diae

′‖Ii ,
∣∣∣∣

∫

Ii

dibηae
′ dx

∣∣∣∣ ≤ ‖b‖L∞‖a‖L∞‖η‖Ii‖
√
die

′‖Ii ≤ 2
√
2
p

hi

‖b‖L∞‖a‖L∞

γ
γ‖η‖Ii.‖e‖Ii

Exploiting that δi‖b‖L∞‖a‖L∞/γ ≤ 1 by (3.4) and setting K4 := max {‖a′‖L∞ , ‖a‖2L∞/a, ‖a‖L∞/a}, we
conclude with the Cauchy-Schwarz inequality for sums

|S3| ≤ CK4

N∑

i=1

(
ρi

p

hi
(ρi + ε)−1/2

[
ε‖η′‖Ii + ‖η‖Ii

]
(ρi + ε)1/2‖

√
diae

′‖Ii + γ‖η‖Ii‖e‖Ii
)

≤ CK4(1 + ‖a‖L∞)
[
ESD(η) + γ1/2‖η‖L2(Ω)

]
‖|e|‖SD

≤ CK4(1 + ‖a‖L∞) [ESD(η) + ‖|η|‖] ‖|e|‖SD.

Upon setting

K := max {K1, K2, K3, K4(1 + ‖a‖L∞)} (3.17)

≤ 1 +
‖b‖L∞ + ‖a′‖L∞

γ
+

‖a‖L∞ + ‖a′‖L∞

√
γ

+

(
‖a′‖L∞ +

‖a‖L∞ + ‖a‖2L∞

a

)
(1 + ‖a‖L∞),

we can conclude the proof of the first estimate.

Let us now turn to the second estimate, the case of the “L2-stabilized” SDFEM. The terms S1, S2

are estimated as above leading immediately to the first two terms in (3.16). The SDFEM term, S3,
however, is estimated differently now as elementwise integration by parts yield additional terms that can
be controlled by the term ESD,∞(ηreg, ηBL). More precisely, we obtain the additional terms

2
N∑

i=1

ρi
[
‖ηa2e′‖L∞(Ii) + ε‖η′ae′‖L∞(Ii)

]

≤ 2
N∑

i=1

ρi
p+ 1√

hi

[
‖a‖2L∞‖η‖L∞(Ii)‖e

′‖Ii + ε‖a‖L∞‖η′‖L∞(Ii)‖e
′‖Ii

]

≤ 2max

{
‖a‖2L∞

a
,
‖a‖L∞

a

} N∑

i=1

ρi
p+ 1√

hi

[
‖η‖L∞(Ii) + ε‖η′‖L∞(Ii)

]
‖ae′‖Ii

≤ C

{
N∑

i=1

ρ2i
(p+ 1)2

hi

1

ρi + ε

[
ε2‖η′‖2L∞(Ii)

+ ‖η‖2L∞(Ii)

]}1/2

‖|e|‖SD

where we appealed to Lemma 3.4 in the first estimate. As ρi = δihi/p2 for the “L2-stabilized” SDFEM,
the expression in curly braces can easily be bounded by CESD,∞(η)‖|e|‖SD.

!
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Lemma 3.6 is formulated such that a variety of results may be obtained from it. Let us first show that
in the case of smooth solutions, the SDFEM (on a quasi uniform mesh) is half a power of h/p away
from being quasi-optimal. For the h version SDFEM, this is a well-known fact; the following corollary
therefore extends this fact to the p version with quasi-uniform meshes:

Theorem 3.7. Let T be a quasi-uniform mesh with mesh width h and let (ρi, di)Ni=1 be the weights of a
non-degenerate “bubble-stabilized” SDFEM (cf. Definition 3.1). Let uε ∈ Hk(Ω), k > 1, be the solution
of (1.1). Then there is C > 0 independent of ε, h, p such that for the solution uSD of (1.11) there holds

‖|uε − uSD|‖2SD ≤ C

[
ε+

h

p

](
h

p

)2(k−1)

‖uε‖2Hk(Ω).

Proof. Let us choose a particular admissible splitting as follows: Set ureg = uε, uBL = 0, uBL,p = 0 and
let ureg,p be an interpolant of uε satisfying

‖(uε − ureg,p)
′‖L2(Ii) ≤ C

(
hi

p

)k−1

‖uε‖Hk(Ii), ‖d−1/2
i (uε − ureg,p)‖L2(Ii) ≤ C

(
hi

p

)k

‖uε‖Hk(Ii)

(3.18)
for some C > 0 depending only on k. Such an interpolant exists, cf. [13]. We obtain therefore from
Theorem 3.6

‖|uε − uSD|‖SD ≤ ‖|η|‖SD + ‖|e|‖SD ≤ ‖|η|‖SD + C [‖|η|‖+ EG,d(ηreg, 0) + ESD(η)] . (3.19)

Using E2
G,d(ηreg, 0) ≤

∑N
i=1(ρi+ ε)−1‖

√
diηreg‖2Ii and observing that (3.5) implies the existence of C > 0

depending only on c, δ of (3.5) such that

1

ρi + ε
≤ C

p

hi
,

1

ρi + ε
≤

1

ε
, (3.20)

we obtain the result by inserting the estimates (3.18) on η = ηreg = uε − ureg,p in (3.19).

!

In the presence of boundary layers, Lemma 3.6 allows us to take advantage of the freedom to choose among
all admissible splittings. In particular, for meshes that “contain” the two-element mesh of Definition 2.2,
we may use the splitting of Lemma 2.4 to obtain robust exponential convergence of the hp-SDFEM as
well as the hp Galerkin FEM:

Theorem 3.8. There is κ0 > 0 depending on a, b, f such that following holds. Assume that there
is c′ > 0 such that for each p ∈ lN there is κ ∈ (0,κ0) with κp ≥ c′ such that the mesh T satisfies
Sp,1
0 (Tε,κ,p) ⊂ Sp,1

0 (T ). Assume furthermore that the weights (ρi, di)Ni=1 fall into one of the following
three categories:

(i) The pure Galerkin FEM, i.e., ρi = 0 for i = 1, . . . , N ;

(ii) the non-degenerate “bubble-stabilized” SDFEM (cf. Definition 3.1);

(iii) the non-degenerate“L2-stabilized” SDFEM (cf. Definition 3.1).

Then the solution uSD of (1.11) exists and there are C, σ > 0 depending only on a, b, f , c′, and δ0, δ′0,
(and on c, δ of (3.5) in the cases (ii), (iii)) such that

‖|uε − uSD|‖ ≤ Cp2e−σκp.

Proof. For any splitting in the sense of Definition 3.3 we can estimate

‖|uε − uSD|‖ ≤ ‖|η|‖+ ‖|e|‖SD

and then apply Lemma 3.6. For case (i), the case of the pure Galerkin FEM, we observe that ESD(η) = 0
for any admissible splitting. Using the splitting uε = ureg,p + uBL,p of Lemma 2.4, we can bound

‖|η|‖+ EG,d(ηreg, ηBL) ≤ ‖|η|‖+ ‖η′reg‖L2(Ω) + ε−1/2‖ηBL‖L2(Ω)
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and therefore the claim of the theorem follows from Lemma 2.4 and Lemma 3.6 and the fact κp ≥ c′. For
cases (ii) and (iii), we first note that the non-degeneracy condition (3.5) implies the existence of C > 0
such that

ESD(η) ≤ CpαESD,∞(η),

where α = 1 for case (ii) and α = 2 for case (iii). Next, we have

ρi
ρi + ε

≤ min {1, ρi/ε} ≤ Cmin {1, hi/ε}

so that we can estimate

ESD(η) + ESD,∞(η) ≤ (1 + Cpα)

(
N∑

i=1

min {1, hi/ε}
[
ε2‖η′‖2L∞(Ii)

+ ‖η‖2L∞(Ii)

]}1/2

.

Using now the fact that κp ≥ c′ > 0, we obtain the desired result by appealing to Lemma 2.4.

!

3.3 L∞ bounds

Let us finally show that in this one-dimensional setting, robust estimate in the L∞ norm easily be
obtained. We begin with the following

Lemma 3.9. Let T be any mesh. Assume that the weights (ρi, di)Ni=1 corresponend to either a non-
degenerate “bubble-stabilized” or a non-degenerate “L2-stabilized” SDFEM. Then there is C > 0 depend-
ing only on c, δ, a such that for all n = 1, . . . , N

‖u‖2L∞(−1,xn) ≤ Cnp

(
n∑

i=1

ρip
α‖
√
diau

′‖2L2(Ii) + ε‖u′‖2L2(Ii)

)

∀u ∈ Sp,1
0 (T ),

where α = 1 in the case of the “L2-stabilized” SDFEM and and α = 2 in the case of the “bubble-stabilized”
SDFEM. In particular, we have

‖u‖2L∞(Ω) ≤ CNp1+α‖|u|‖2SD ∀u ∈ Sp,1
0 (T ).

Proof. For any x ∈ (−1, xn), u ∈ Sp,1
0 (T ) we write

|u(x)| =
∣∣∣∣

∫ x

−1
u′(t) dt

∣∣∣∣ ≤
n∑

i=1

h1/2
i ‖u′‖L2(Ii) ≤

√
n

{
n∑

i=1

hi‖u′‖2L2(Ii)

}1/2

.

In the case of “bubble-stabilization”, the assumptions and Lemma 3.4 allow us to conclude that

hi‖u′‖2L2(Ii) ≤ cεp‖u′‖2L2(Ii)
if hi < cεp

hi‖u′‖2L2(Ii)
≤ ρi

C2

dp
3

a2δ ‖
√
diau′‖2L2(Ii)

if hi ≥ cεp

and the result follows from these estimates. We may proceed similarly in the case of “L2-stabilization”.

!

Remark 3.10. It should be noted that no term involving ‖u‖L2(Ii) appears on the right hand side of
the estimates in Lemma 3.9. One can make use of this observation to get L∞ bounds in the special case
a = 1, b = 0.

Lemma 3.9 allows us immediately to obtain robust convergence in the L∞ norm for the SDFEM if the
mesh “contains” a small element of size O(εp) in the boundary layer:
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Proposition 3.11. Let the assumptions of Theorem 3.8, (ii) or (iii) be satisfied. Then there are constants
C, σ > 0 such that

‖uε − uSD‖L∞(Ω) ≤ C
√
Np7/2e−σκp

Proof. We use the splitting of Theorem 3.8, (ii) (resp. (iii)) and write ‖uε − uSD‖L∞(Ω) ≤ ‖η‖L∞(Ω) +
‖e‖L∞(Ω). The term ‖η‖L∞(Ω) can be estimated using Lemma 2.4 and ‖e‖L∞(Ω) can be estimated by

Cp3/2
√
N‖|e|‖SD using Lemma 3.9. Upon checking the proof of Theorem 3.8, we notice that in fact

‖|e|‖SD ≤ Cp2e−σκp and thus the desired result follows.

!

Let us conclude this section with a proof that also the Galerkin FEM leads to robust exponential
convergence in the L∞ norm, if a true “two-element mesh” is used:

Lemma 3.12. Let κ0 be given as in the statement of Lemma 2.4. Then for each κ ∈ (0,κ0) there are C,
σ > 0 such that for the meshes Tκ,ε,p of Definition 2.2 there holds for the Galerkin solution uG

‖uε − uG‖L∞(Ω) ≤ Cpe−σκp.

Proof. For the splitting of Lemma 2.4 we have

‖uε − uSD‖L∞(Ω) ≤ ‖e‖L∞(Ω) + ‖η‖L∞(Ω).

We note that ‖η‖L∞(Ω) can be estimated in the desired fashion by Lemma 2.4. For ‖e‖L∞(Ω) we consider
the two elements I1 = [−1, 1 − κpε], I2 = [1 − κpε, 1] separately. On the large element I1 with h1 ≥ 1,
we have by Lemma 3.4 and Theorem 3.8

‖e‖L∞(I1) ≤
p+ 1√

h1
‖e‖L2(I1) ≤ Cp ‖|e|‖ ≤ Cpe−σκp.

On the small element I2, we exploit the fact that e(±1) = 0 and obtain

‖e‖L∞(I2) ≤
√
h2‖e′‖L2(I2) = (κpε)1/2‖e′‖L2(I2) ≤ C(κp)1/2e−σκp.

!

3.4 Remarks on the choice of the weights

In our analysis of the “bubble-stabilized” and the “L2-stabilized” SDFEM we assumed that the factors
ρi were of size O(hi/p) or O(hi/p2) as suggested by the inverse estimates of Lemma 3.4. For the “bubble-
stabilized” SDFEM, this choice maximized the power of h/p for smooth solutions (cf. Theorem 3.7).
However, if small scale features like boundary layers are not resolved, then stabilization of the scheme
can be more important than maximizing the exponent of h/p for smooth solutions: In the case that
the layer cannot be solved, Section 4 provides numerical evidence that the proper amount of “extra
stability” can dramatically improve the convergence on compact subsets upstream of the layer. In this
subsection we therefore want to show briefly that other choices of the weights (ρi, di)Ni=1 than those of
(3.3) are possible. These other choices lead to more stable methods in the sense that the bilinear form
BSD is coercive in a stronger mesh dependent norm than the one used so far. We illustrate this for the
“bubble-stabilized” SDFEM—similar results can easily be obtained for the “L2-stabilized” SDFEM.

For some fixed q ∈ (0, 1) and δ0 < 1/‖a‖L∞(Ω), choose ρ0 such that

1− q −
‖b‖2L∞(Ω)

2γ
ρ0 > 0. (3.21)

Let (ρi)Ni=1 ⊂ [0, ρ0] satisfy with Cd of Lemma 3.4

ρi
2
√
2p

hi
≤ δ0if
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2
√
2Cda

−1

(
ε
p2

hi

)
< q ρi ≤ ρ0else(3.22)Then we have the following stability result:

Theorem 3.13. For the factors (ρi)Ni=1 satisfying (3.22) the bilinear form BSD based on the weights
(ρi, bi)Ni=1 satisfies the following: There is C > 0 depending only on a, b, and q, δ0, ρ0 such that

C‖|u|‖2SD ≤ BSD(u, u) ∀u ∈ Sp,1
0 (T ).

Proof. For u ∈ Sp,1
0 (T ) we obtain with the Cauchy-Schwarz inequality

N∑

i=1

ρi

∫

Ii

di(Lεu)(au
′) dx =

N∑

i=1

ρi

∫

Ii

−εdiu
′′au′ dx+ ρi

∫

Ii

di(au
′)2 dx+ ρi

∫

Ii

diabu
′u dx

≥
N∑

i=1

−ερi2
√
2
p

hi
‖u′‖Ii

∥∥∥
√
diau

′
∥∥∥
Ii
+ ρi

(

1− ρi
‖b‖2L∞(Ω)

2γ

)∥∥∥
√
diau

′
∥∥∥
2

Ii
−

γ

2‖b‖2L∞(Ω)

‖bu‖2Ii

≥
N∑

i=1

−ερi2
√
2
p

hi
‖u′‖Ii

∥∥∥
√
diau

′
∥∥∥
Ii
+ ρi

(
1− ρ0‖b‖2L∞(Ω)(2γ)

−1
)∥∥∥

√
diau

′
∥∥∥
2

Ii
−

γ

2
‖u‖2Ii

We estimate

ερi2
√
2 p
hi
‖u′‖Ii‖

√
diau′‖Ii ≤ ρiq‖

√
diau′‖2Ii if

(
εp2/hi

)
2
√
2Cda−1 < q

ερi2
√
2 p
hi
‖u′‖Ii‖

√
diau′‖Ii ≤ εδi‖a‖∞‖u′‖2Ii else.

Recalling from the proof of Proposition 1.2 that Bε(u, u) ≥
∑N

i=1 ε‖u′‖2Ii + γ‖u‖2Ii. we obtain a lower
bound for BSD(u, u))

BSD(u, u) ≥ min
{
1− δ0 ‖a‖∞ , 1− q − ρ0‖b‖2L∞(Ω)/(2γ), γ/2

}
‖|u|‖2SD (3.23)

!

Theorem 3.13 shows that, in order to obtain a coercive bilinear form BSD, a restriction on the factors
ρi to be O(hi/p) has to be placed only for those elements where hi/p2 = O(ε); if hi/p2 >> ε, then the
factors ρi merely have to be bounded. Essentially this means that for very small values of ε (relative to
hi/p2), any choice of the factors ρi leads to a coercive bilinear form BSD. The choice ρi = O(hip−α) for
various α ∈ [0, 2] will be studied numerically in Section 4 ahead.

Remark 3.14. Let us finally point out that the bilinear form of a “bubble-stabilized” SDFEM in the
sense of Definition 3.1 has a coercivity constant that is robust with respect to the size of the function b.
For example, if an implicit Euler scheme for the problem

ut + Lεu = f, u(±1) = 0 (3.24)

is considered, one has to solve in each time step an elliptic boundary value problem of the form

−εu′′
n+1 + au′

n+1 +

(
b+

1

∆t

)
un+1 = f +

un

∆t
. (3.25)

We notice that the differential operator on the left hand side is of the form considered in this paper with
a modified coefficient for the reaction term: b∆t := b+ 1

∆t . We observe that for ∆t → 0

‖b∆t‖L∞ = O(∆t−1), γ∆t = O(∆t−1),
‖b∆t‖L∞

γ∆t
= O(1),

and hence that δ′0 of (3.4) and K of (3.17) can be controlled uniformly in ∆t. For the choice of weights
(3.22), estimate (3.23) shows that one needs to control ρ0‖b∆t‖2L∞/γ∆t which entails a strong coupling
of the step width ∆t and the size of the weights ρi.
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3.5 The case a = 1, b = 0

So far, we assumed we assumed γ > 0. As our numerical examples include the case a = 1, b = 0, we state
here the approximation results corresponding to Theorem 3.8. Theorem 3.15 can be proved in the same
way as Theorem 3.8; for the proof of Theorem 3.16 we refer to [10]. We assume that the factors δi now
satisfy

0 ≤ δi ≤ δ0 < 1 (3.26)

Theorem 3.15. Let a = 1, b = 0 and let the assumptions of Theorem 3.8, (ii) or (iii) be given but that
the factors δi satisfy (3.26) instead of (3.4). Then there are constants C, σ > 0 such that

‖|uε − uSD|‖ ≤ Cp2e−σκp, ‖uε − uSD‖L∞(Ω) ≤ C
√
Np7/2e−σκp.

For the pure Galerkin method, we have

Theorem 3.16. Let a = 1, b = 0 and let the assumptions of Theorem 3.8, (i) be given. Assume
additionally the mesh restricted to (−1, 1 − κpε) is quasi-uniform and that p ≥ 2. Then there are C,
σ > 0 such that the pure Galerkin solution uG satisfies

‖|uε − uG|‖ ≤ Ce−σκp.

4 Computational Experiments

In this section, we illustrate our theoretical findings with numerical examples. Our aims are

1. to illustrate the theoretical results obtained above, in particular the ability of the hp-FEM to resolve
very narrow fronts and layers, leading to the asymptotic exponential convergence with few degrees
of freedom;

2. to compare hp-SDFEM and hp-Galerkin FEM in the preasymptotic phase, i.e., if the small scales of
the solution are not resoled. In particular, we will see that the appropriate choice of mesh sequences
lead to robust exponential convergence on compact subsets for the hp-SDFEM. Furthermore, we
will study numerically the optimal choice of the weights ρi in the pre-asymptotic regime.

We consider two types of problems, the boundary layer case (a > 0) and the case of a turning point
problem which satisfies the crucial assumption (1.4).

4.1 The boundary layer case

We consider for a, b ∈ lR the problem

−εu′′ + au′ + bu = eωx, u(±1) = 0. (4.1)

The exact solution has a boundary layer at the outflow boundary x = 1 and is given by

u(x) = u0(x) + αeλ1(1+x) + βe−λ2(1−x), (4.2)

where

u0(x) =
1

−εω2 + aω + b
eωx,

λ1 =
−2b

a+
√
a2 + 4bε

= O(1), λ2 =
a+

√
a2 + 4bε

2ε
= O(ε−1),

c =
(
1− e2(λ1−λ2)

)−1
= O(1),

α = c
(
u0(1)e

−2λ2 − u0(−1)
)
= O(1), β = c

(
u0(−1)e2λ1 − u0(1)

)
= O(1).

Note that both ‖uε‖L2(Ω) and
√
ε‖u′

ε‖L2(Ω) are O(1) independently of ε. In our numerical experiments,
we will always choose ω = 1, a = 1. We use b = 0 in Sections 4.1.1, 4.2.1 and b = 1 in Section 4.2.2.
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4.1.1 Global SDFEM performance

We consider the model problem (4.1) for a = 1, b = 0, ω = 1. We present numerical results for a
“L2-stabilized” SDFEM, where the weights are of the form (ρi, 1)Ni=1 with

ρi =
1

2
hiif

εp2/hi ≤ 1
4 0 otherwise.

Weremarkatthispointthatthischoiceofthefactors

ρi was made to illustrate our claim on robustness in Section 3.4. We report, however, that the numerical
results are very similar for the choice (ρi, bi)Ni=1 as well as for the “L2-stabilized” and the “bubble-
stabilized” SDFEM in the sense of Definition 3.1.

In our first series of numerical experiments, we resolve the boundary layer with the two-element mesh of
Definition 2.2 with κ = 1, i.e., T1,ε,p. Fig. 2 compares the behavior of the Galerkin and the SDFEM in the
L2 norm and the energy norm ‖|·|‖ (which is

√
ε| · |H1(Ω)) for ε = 10−8 where p ranges from 1 to 27. The

theory of Section 3.5 yields robust exponential convergence in the energy norm for the SDFEM as well as
the Galerkin FEM on this two element mesh. This exponential convergence is visible in the right figure
of Fig. 2. Furthermore, for the SDFEM, we have robust exponential convergence in L∞ (Theorem 3.15)
and thus in L2 (cf. the left figure of Fig. 2); we also observe robust exponential convergence in L2 for
the standard Galerkin FEM, Fig. 2. We note that the qualitative behavior of the schemes is comparable
although the error of the hp-SDFEM is slightly smaller than that of the Galerkin FEM for this problem.

We conclude that the two-element mesh scheme is able to resolve the boundary layer at the outflow
boundary and that no stabilization is required in this case.

Our next experiment is geared towards getting insight in the behavior of the Galerkin method and the
“L2-stabilized” SDFEM, if the boundary layer has not been resolved. To that end, we consider the
performance of the p version on a uniform mesh with h = 0.5 (i.e., 4 elements). Here, p ranges from 1 to
27 and ε = 10−4. The weights are given by (ρi, 1)Ni=1 with

ρi =
1

4

hi

p2
.

Fig. 3 shows the behavior in the L2 and the energy norm ‖|·|‖. The error in the hp-SDFEM is considerably
smaller than that of the Galerkin method, but the rate of convergence of the SDFEM is very poor also—in
the energy norm, no convergence can be observed!

Finally, Fig. 4 shows the performance of a uniform mesh (h = 0.5) augmented by one small element of
size ε in the outflow boundary layer (i.e., the mesh given by the nodes {−1,−0.5, 0, 0.5, 1− ε, 1}). As to
be expected, inserting one small element of size ε greatly alleviates the problems of the standard Galerkin
method (cf. Corollary A.6 of [10] for a detailed analysis). Comparing Fig. 3 with Fig. 4, the error of
the Galerkin FEM is reduced by two orders of magnitude. Nevertheless, both the Galerkin method and
the SDFEM yield poor rates of convergence as the p version on a mesh with one small element of size
ε in the layer cannot resolve the boundary layer properly. Hence, comparing the results with those in
Fig. 2, we see that the proper element length εp in the boundary layer is essential for the boundary layer
resolutions as well as for exponential convergence.

4.2 Local p-SDFEM performance — pollution control

The conclusion of the preceding section is that both Galerkin FEM and SDFEM perform similarly if the
small scale boundary layer is resolved; if the layer is not resolved, then one cannot expect convergence of
either method in the global L2 norm and energy norm. In the context of the h version, it is known that
the SDFEM performs much better on compact subsets upstream of the layers (cf. [7]). One can therefore
view the stabilization of the SDFEM as a means to controll pollution. Similar results can be observed in
a p-version context as well as we will show now.
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Figure 1: sequence of meshes generated by successively halving rightmost element

4.2.1 Local SDFEM performance on geometric mesh sequences

We want to show here that the hp-SDFEM leads to robust exponential convergence on compact supsets if
an increase of the polynomial degree is combined with a mesh refinement towards the layer. We therefore
consider the following scheme: For q ∈ (0, 1) let

p0 ∈ lN be the smallest integer s.t. qp0 < p0ε

and let for each polynomial degree p a geometrically refined mesh with p layers be given by the points

{−1, 1, 1− qi | i = 0, . . . ,min (p, p0)}. (4.3)

On such meshes, we will consider as trial spaces the space Sp,1
0 (T ) (cf. Fig. 1). We note that such mesh

sequences would typically be generated by adaptive schemes that locate and try to resolve the layers. It
can be shown using ideas of [7, 18, 19] (cf. [10] for the details) that the “bubble-stabilized” hp-SDFEM
converges robustly and exponentially on compact subset of Ω for such mesh sequences:

Theorem 4.1. Let a = 1, b = 0, q ∈ (0, 1), ξ ∈ (−1, 1) be fixed. For p ∈ lN consider the meshes T defined
by the nodes (4.3). For a non-degenerate “bubble-stabilized” SDFEM in the sense of Definition 3.1 there
are constants C, σ > 0 independent of ε, p such that

‖uε − uSD‖H1(−1,ξ) ≤ Ce−σp, p = 1, 2, . . .

The following numerical experiments are performed for both the “L2-stabilized” and the “bubble-stabilized”
SDFEM. The refinement factor q is chosen as q = 1/2 and the weights (ρi)Ni=1 are given in both cases by

ρi =
1

4

hi

p
if

ε < 1
4
hi

p 0 otherwise. (4.4)

Again, we point out that choosing the factors (ρ)Ni=1 as O(hi) or O(hi/p2) leads to qualitatively similar
numerical results. For ε = 10−8 and p going from 1 to 22 Figs. 5-8 show the performance of the “L2-
stablized” and the “bubble-stablized” SDFEM in comparison with the Galerkin FEM. Figs. 5, 7 depict
their behavior in global norms (L2 and energy norm) whereas Figs. 6, 8 show the relative error (measured
in the L2 andH1 norm) in the first element I1 = (−1, 0). Figs. 5, 7 illustrate once more that both Galerkin
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FEM and hp-SDFEM do not lead to convergence in the energy norm until the layer is resolved, that is,
qp ≈ εp (for q = 0.5 and ε = 10−8 this happens for p ≈ 22). The behavior of the Galerkin FEM is,
however, completely different from that of the hp-SDFEM if the error on the first element I1 = (−1, 0) is
of interest (cf. Figs. 6, 8). The Galerkin FEM is highly prone to pollution: The local error in I1 cannot
be controlled until p is so large that the smallest element in the layer has width qp ≈ pε. In contrast to
this, the SDFEM is pollution-free as robust exponential convergence on the compact subset (−1, 0) can
be achieved according to Theorem 4.1 and in fact is visible in Figs. 6, 8. It is noteworthy, however, that
the local behavior of the “L2-stabilized” SDFEM is strikingly superior to that of the “bubble-stablized”
SDFEM (cf. also Section 4.2.2 ahead for a comparison of the local performance of the two stabilization
schemes).

4.2.2 Impact of weights ρi on local performance of SDFEM

We have seen in Section 3.4 that especially for very small values of ε (relative to hi/p2) other choices for
the weights ρi are possible than those given by inverse estimates. In the present section, we will explore
these possibilities numerically by studying the performance of the p-version of the SDFEM on compact
subsets in dependence of the choice of the factors (ρi)Ni=1. To that end, we consider the model problem
(4.1) for a = 1, b = 1, ω = 1.

For exponents α given by

α = 0, α = 0.25, α = 0.5, α = 1, α = 1.5, α = 2,

we define the factors (ρi)Ni=1 as

ρi =
1

4
hip

−α. (4.5)

We consider both the “L2-stabilized” SDFEM with weights (ρi, 1)Ni=1 and the “bubble-stablized” SDFEM
with weights (ρi, bi)Ni=1. Our experiments were performed on a fixed uniform mesh with 4 elements (i.e.,
hi = 0.5) for ε = 2 · 10−3 and ε = 10−8. In Figs. 9–12 we report the relative error in the H1 semi norm
on the first element (−1,−1/2) as a function of the polynomial degree p for these various cases. For
comparison purposes, the corresponding performance of the pure Galerkin method is also included. We
mention here that the results using the L2 norm instead of the H1 semi norm on the first element are
qualitatively similar.

Let us consider the case of “L2-stabilization” first (cf. Figs. 9, 10). We notice a great variation in the
performance as the exponent α varies. The choice of α = 0 (i.e., ρi is independent of p), although yielding
fairly accurate solutions, does not seem to lead to a convergent method. If 0 < α ≤ 1.5, then the SDFEM
seems to converge exponentially on (−1,−1/2) with α = 0.5 being the optimal choice for both “large”
values of ε (ε = 2 · 10−3) and small values of ε (ε = 10−8)).

In the case of “bubble-stabilization” (cf. Figs. 11, 12), the difference in performance between the different
choices of α is less pronounced as in the “L2-stabilized” scheme, i.e., the method seems to be more robust
with respect to the choice of the weight. However, the “bubble-stablized” SDFEM is far less accurate
than the “L2-stabilized” SDFEM.

4.3 Turning point problems

Let us now consider a problem with a turning point at x = 0. We consider

−εu′′
ε + axu′

ε + uε = 1 on (−1, 1), a = ±1, (4.6)

uε(±1) = 0. (4.7)
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In the case a = 1, the exact solution has boundary layers at both endpoints ±1; for a = −1, the exact
solution exhibits an internal layer at the turning points x = 0. The exact solutions are given by

uε(x) = 1− exp {(x2 − 1)/(2ε)} for a = 1, (4.8)

uε(x) = 1− c x erf
(
x/

√
2ε
)
−
√
2/π c

√
ε exp {−x2/(2ε)} for a = −1, (4.9)

c :=
(
erf (1/

√
2ε) +

√
2ε/π exp (−1/(2ε))

)−1
≈ 1 for small ε,

erf (x) :=
2√
π

∫ x

0
exp (−t2) dt, erf (x) → 1 for x → ∞.

Equation (4.6) satisfies the crucial assumption (1.4) and upon checking the proof of Theorem 3.6, we see
that the fact that the coefficient a is a polynomial allows us to modify the arguments as to accomodate
the case of (4.6) as well. We consider the “L2-stabilized” SDFEM with weights (ρi, 1)Ni=1 where

ρi =
1

4

hi

p2
.

The solution given by (4.8) (i.e., the case a = 1) has two boundary layers at both endpoints with length
scale O(ε). The structure of the boundary layers is essentially of the form analyzed in Section 2 so that the
approximation results with the “two-element” meshes introduced there apply. In fact, a “three-element”
mesh consisting of two small elements of size pε at the boundary points and one large element in the
middle (that is, the mesh is given by the points {−1,−1+pε, 1−pε, 1}) is well-suited to resolve the layers
in both the Galerkin as well as the SDFEM (cf. Figs. 13 where ε = 10−8).

In the case a = −1, the solution is given by (4.9) and has an internal layer of width O(
√
ε). Again,

the “two-element” ideas of Section 2 can be applied successfully for the approximation of the internal
layer if at least one element of size O(p

√
ε) is introduced at the turning point x = 0. Figs. 14 show

the performance of the Galerkin FEM and the SDFEM for a “four-element” mesh based on the points
{−1,−p

√
ε, 0, p

√
ε, 1} and ε = 10−8. Although the error graphs do not behave monotonically, the overall

convergence of the “four-element” hp-SDFEM shows exponential convergence rates.
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Figure 2: L2 and energy performance of “two-element mesh” for Galerkin FEM and “L2-stabilized”
SDFEM, ε = 10−8;
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Figure 3: L2 and energy performance of p version on uniform mesh with h = 0.5 for Galerkin FEM and
“L2-stabilized” SDFEM, ε = 10−4
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Figure 4: L2 and energy performance of p version on uniform mesh with h = 0.5 + small element size ε,
ε = 10−4
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Figure 5: L2 and energy performance for “hp”-mesh; “L2-stabilized” SDFEM; q = 0.5, ε = 10−8
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Figure 6: L2 and H1 performance on first element (−1, 0) for “hp”-mesh; “L2-stabilized” SDFEM;
q = 0.5, ε = 10−8
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Figure 7: L2 and H1 performance on L2 and energy performance for “hp”-mesh; “bubble-stabilized”
SDFEM; q = 0.5, ε = 10−8
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Figure 8: L2 and H1 performance on first element (−1, 0) for “hp”-mesh; “bubble-stabilized” SDFEM;
q = 0.5, ε = 10−8
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A The case b ≡ 0, a ≡ 1: Global Error Analysis

Appendix A is devoted to the analysis of the special case b ≡ 0, a(x) ≡ 1 for ε > 0. The norm ‖|·|‖ and
the semi norm ‖|·|‖ρ are defined as

‖|u|‖2 := ε‖u′‖2L2(Ω), ‖|u|‖2ρ :=
N∑

i=1

ρi‖
√
diu

′‖2L2(Ii)
, ‖|u|‖2SD := ‖|u|‖2 + ‖|u|‖2ρ. (A.1)

Proceeding as in the proof of Theorem 3.5, we obtain the following stability result:

Theorem A.1. Assume that the weights (ρi, di)Ni=1 are of the form (3.3) with the condition (3.26) re-
placing (3.4). Then there holds

(1− δ0)‖|u|‖2SD ≤ BSD(u, u) ∀u ∈ Sp,1
0 (T ).

Due to the fact that energy norm ‖|·|‖ completely degenerates as ε → 0, the analysis of the Galerkin FEM
is more delicate than that of the SDFEM, and different analyses for these two methods are necessary.
The different behavior of the two methods can be seen already in the following a priori bounds.

Lemma A.2. Let b ≡ 0, a = 1, T be any mesh. Assume the hypotheses of Lemma 3.9. Then there is
C > 0 such that the SDFEM solution uSD satisfies

‖|uSD|‖SD ≤ C
√
Np3/2‖f‖L2(Ω), ‖uSD‖L∞(Ω) ≤ CNp3‖f‖L2(Ω).

In the case of the pure Galerkin method, we have

‖|uG|‖ ≤ Cε−1/2‖f‖L2(Ω).

Proof. The estimate for the Galerkin method is standard. For the SDFEM, we have by Theorem A.1
and the orthogonality relation (3.7)

(1− δ0)‖|uSD|‖2SD ≤ BSD(uG, uG) = FSD(uSD) ≤ ‖f‖L2(Ω)

√
Np3/2‖|uSD|‖SD

by Lemma 3.9. Applying again Lemma 3.9 yields the estimate for uSD.

!

Remark A.3. The factors
√
N , p3/2, p3 in the estimates may not be optimal; however, the main point

of the estimate on uSD is that it is independent of ε in contrast to the estimate for uG. The factor ε−1/2

in the Galerkin estimate seems to be optimal from computational experiments (cf. Figs. 3, 5).

A.1 The SDFEM

Using the same techniques as in the proof of Theorem 3.6, we obtain

Theorem A.4. Let a = 1, b = 0. Assume the weights (ρi, di)Ni=1 are of the form (3.3) with (3.26)
replacing (3.4). Then there is C > 0 such that for any mesh T and any admissible splitting in the sense
of Definition 3.3 there holds:

1. In the case of the “bubble-stabilized” SDFEM (cf. Definition 3.1) there holds

(1− δ0)‖|e|‖SD ≤ C
{
‖|η|‖+ ẼG,d(ηreg) + ε−1/2‖ηBL‖L2 + ESD(η)

}
.

2. For the “L2-stabilized” SDFEM (cf. Definition 3.1) there holds

(1 − δ0)‖|e|‖SD ≤ C
{
‖|η|‖+ ẼG,d(ηreg) + ε−1/2‖ηBL‖L2 + ESD(η) + ESD,∞(η).

}
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Here

ẼG,d(η) =

{
N∑

i=1

(ρi + ε)−1‖
√
diη‖2L2(Ii)

}1/2

.

The first estimate of Theorem A.4 allows us to conclude that Theorem 3.7 holds for the case a ≡ 1, b ≡ 0
as well. We can also obtain from Theorem A.4 robust exponential convergence if we consider meshes that
“contain” the “two-element” mesh of Definition 2.2 under the assumption that the weights ρi satisfy the
non-degeneracy condition (3.5):

Corollary A.5. Let the hypotheses of Theorem A.4 be satisfied and assume additionally that the “non-
degeneracy” condition (3.5) holds. Let κ0 be given by Lemma 2.4. Assume that for some κ ∈ (0,κ0) the
mesh T satisfies Sp,1

0 (Tε,κ,p) ⊂ Sp,1
0 (T ). Denote by uSD the SDFEM solution of (1.11). Then there are

C, σ > 0 depending on κ, δ, δ0, and f , such that

‖|uε − uSD|‖ ≤ Ce−σp, ‖uε − uSD‖L∞(Ω) ≤ C
√
Ne−σp.

Proof. Use the splitting of Lemma 2.4 to obtain the energy norm bound and invoke Lemma 3.9 for the
L∞ bound.

!

A.2 The Galerkin FEM

We consider now the case of the Galerkin FEM, i.e., all ρi vanish. Corollary A.5 does not cover this case
as the non-degeneracy assumption (3.5) was instrumental in controlling the term EG,d(ηreg) robustly
in ε: For the pure Galerkin FEM, this term will introduce an additional factor of ε−1/2 in the final
estimate. The aim of the present section is to show that a more refined analysis allows us to obtain
robust exponential convergence in the ‘energy norm’ ‖|·|‖ for the Galerkin FEM as well.

The analogue of Corollary A.5 reads

Corollary A.6. Assume the same hypotheses as in Corollary A.5. Let uG be the Galerkin solution of
(1.11) with b ≡ 0, a = 1. Then for each κ ∈ (0,κ0) there are C, σ > 0

‖|uε − uG|‖ ≤ Ce−σp
(
1 +

{
N∑

i=1

εh−1
i

}1/2)
.

Remark A.7. Corollary A.6 gives robust exponential convergence in the energy norm ‖|·|‖ for the
Galerkin method for the “two-element” mesh. (h1 = O(1), h2 = O(pε)). This robust exponential
convergence is indeed observed in the numerical experiments of Section 4.

In order to prove this theorem, we need two lemmata, the first of which is standard.

Lemma A.8. Let u be analytic on Ω = [−1, 1]. Denote Pp,Ii the L2 projection of u onto Πp(Ii), the space
of polynomials of degree p ∈ lN0 on Ii. Then there are constants C, σ > 0 such that for each element Ii

‖ (u− Pp,Ii u)
(l) ‖L2(Ii) ≤ Ce−σph3/2−l

i , l = 0, 1,

‖u− Pp,Ii‖L∞(Ii) ≤ Ce−σphi. (A.2)

Lemma A.9. Let u be analytic on Ω = [−1, 1]. Then there are C, σ > 0 depending only on u such that
the following holds. There is up ∈ Sp,1(T ) with u(±1) = up(±1) and

∣∣∣∣

∫

Ω
(u− up)v

′ dx

∣∣∣∣ ≤ Ce−σph1/2
N ‖v′‖L2(IN ) ∀v ∈ Sp,1(T ),

‖(u− up)
(l)‖L2(Ii) ≤ Ce−σph1/2−l

i , l = 0, 1.

Here IN denotes the last element abutting on x = 1.



29

Proof. Denote Lj the jth Legendre polynomial normalized to Lj(1) = 1. Writing mi = (xi−1 +xi)/2, we

set L̃ij(x) := (−1)jLj(2(x −mi)/hi), i = 1, . . . , N . First, choose a discontinuous approximation of u by
polynomials of degree p− 1 on all elements

ũp−1,i := Pp−1,Iiu, i = 1, . . . , N.

Note that
∫
Ii
(u − ũp−1,i)L̃ij dx = 0 for j = 0, . . . , p − 1. Correct the inter-element discontinuities

inductively by setting

α1 := u(−1)− ũp−1,1(−1), up|I1 := ũp−1,1 + α1L̃1p,
αi := up|Ii−1

(xi−1)− ũp−1,i(xi−1), up|Ii := ũp−1,i + αiL̃ip, i = 2, . . . , N − 1,

αN := up|IN−1
(xN−1)− ũp−1,N(xN−1), up|IN := ũp−1,N + αN L̃Np + l(x),

l(x) :=
(
u(1)− ũp−1,N (1)− αN L̃Np(1)

)
.x−xN−1

hN

We observe that up ∈ Sp,1(T ) and that up(±1) = up(±1). Furthermore, by the orthogonality of the
Legendre polynomials, we still have for all elements but the last one
∫

Ii

(u− up)L̃ij dx =

∫

Ii

(u− ũp−1,i)L̃ij dx− αi

∫

Ii

L̃ipL̃ij dx = 0, j = 0, . . . , p− 1, i = 1, . . . , N − 1.

Hence, we conclude ∫

Ω\IN

(u− up)v
′ dx = 0 ∀v ∈ Sp,1(T ).

This yields
∣∣∣∣

∫

Ω
(u− up)v

′ dx

∣∣∣∣ =
∣∣∣∣

∫

IN

(u− up)v
′ dx

∣∣∣∣ ≤ ‖u− up‖L2(IN )‖v′‖L2(IN ) ∀v ∈ Sp,1(T ).

Let us now analyze the difference u− up. As |L̃ip| ≤ 1 and

αi =
(
up|Ii−1

(xi−1)− u(xi−1)
)
+
(
u(xi−1)− ũp−1,i(xi−1)

)
, i = 2, . . . , N,

we obtain with Lemma A.8

|α1| ≤ Ce−σph1

|αi| ≤ ‖u− up‖L∞(Ii−1) + Ce−σphi

≤ Ce−σphi + Ce−σphi−1 + |αi−1|, i = 2, . . . , N.

Inductively, we conclude therefore

|αi| ≤ 2Ce−σp
i∑

j=1

hj ≤ 4Ce−σp, i = 1, . . . , N. (A.3)

This allows us to obtain for (u − up)|Ii = (u − ũp−1,i)− αiL̃ip on all elements but the last one:

‖(u− up)
(l)‖L2(Ii) ≤ Ce−σph3/2−l

i + |αi|Cp2lh1/2−l
i

≤ Ce−σph1/2−l
i , l = 0, 1, i = 1, . . . , N − 1 (A.4)

For the last element IN , we estimate the linear function l(x) by

‖l(l)‖L2(IN ) ≤
(
Ce−σphN + |αN |

)
h1/2−l
N , l = 0, 1,

and therefore we arrive at

‖(u− up)
(l)‖L2(IN ) ≤ Ce−σph1/2−l

N , l = 0, 1.

This concludes the proof of the lemma.

!
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Remark A.10. The element IN in the statement of Lemma A.9 can be replaced by any non-trivial
contiguous submesh abutting on x = 1.

Proof of Corollary A.6: We restrict ourselves here to the case of interest κpε < 1. For any admissible
splitting in the sense of Definition 3.3 we may use the coercivity (Theorem A.1) and the orthogonality
(3.6) to write

C ‖|e|‖2 ≤ Bε(e, e) = Bε(η, e) = ε

∫

Ω
η′e′ dx+

∫

Ω
η′e dx = ε

∫

Ω
η′e′ dx−

∫

Ω
ηe′ dx

by an integration by parts. We split uε = ureg + uBL as in Lemma 2.4. uBL is approximated by uBL,p

as in Lemma 2.4; ureg,p will be chosen below. On writing η = ηreg + ηBL we conclude by exploiting
‖|ηBL|‖ ≤ Ce−σp, ‖ηBL‖L2(Ω) ≤ Cε1/2e−σp

|Bε(ηBL, e)| ≤ Ce−σp ‖|e|‖ .

Let us now turn to Bε(ηreg, e). To that end, let us construct ureg,p as an approximation of ureg (which
is analytic) as given by Lemma A.9, and we obtain

|Bε(ηreg , e)| ≤ ‖|ηreg|‖ ‖|e|‖+ Ch1/2
N e−σpe‖e′‖L2(IN ).

As hN ≤ κpε we therefore arrive at

|Bε(ηreg, e)| ≤ ‖|ηreg|‖ ‖|e|‖+ C(κp)1/2e−σp ‖|e|‖ .

Finally, also by Lemma A.9

‖|ηreg|‖2 =
N∑

i=1

ε‖η′reg‖2L2(Ii)
≤ Ce−2σp

N∑

i=1

ε

hi

which allows us to conclude the proof of Corollary A.6 by means of the triangle inequality.

!

Under extra assumptions on the regularity of the mesh in the region outside the boundary layer, the
term

∑N
i=1 ε/hi in Corollary A.6 can be removed:

Corollary A.11. Let κ0 be given by Theorem 2.4. Assume that for each p ∈ lN, p ≥ 2, there is a mesh
T satisfying the following two conditions: (i) For each p, there is κ ∈ (0,κ0) such that 1− κpε is a mesh
point, and (ii) T restricted to (−1, 1− κpε) is a quasiuniform mesh. (T restricted to (1− κpε, 1) may be
any mesh.) Then there are C, σ > 0 depending only on the domain of analyticity of f and the constant
a such that

‖|uε − uG|‖ ≤ C
(
ε+ (κp)−1/2

)
e−σκp, p ≥ 2.

Proof. Let h be the mesh width of the quasiuniform mesh on [−1, 1 − κpε]. First, we observe that for
p ≥ 2, we may replace the factor hi in (A.2) by h2

i . From Remark A.10, we may assume without loss of
generality that the last element IN = (1 − κpε, 1). Then, upon inspection of the proof of Lemma A.9,
we see that we may replace the

∑i
j=1 hj by

∑i
j=1 h

2
j in (A.3). By the quasi-uniformity of the mesh

restricted to Ω \ IN , we may estimate
∑i

j=1 h
2
j ≤ Ch and hence all the estimates for the coefficients αi,

i = 1, . . . , N − 1 are improved by a factor h. Thus, the estimate (A.4) is improved by a factor h ∼ hi. In

the proof of Corollary A.6, the term
∑N

i=1 ε/hi is due to ‖|η|‖reg. Inserting these improved bounds, we
obtain

‖|η|‖2reg =
N−1∑

i=1

ε‖η′reg‖2L2(Ii)
+ ε‖η′reg‖2L2(IN ) ≤ Ce−2σp

N−1∑

i=1

εhi + Ce−2σpεh−1
N .

As hN = κpε, the claim of the corollary follows.

!
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B The case b ≡ 0, a ≡ 1: Local Error Analysis

The crucial feature of the SDFEM is, of course, that even if layers/fronts are not resolved the SDFEM
still yields good results in certain parts of the computational domain away from the layers/fronts. In
other words, the SDFEM can be viewed as a technique to control pollution.

Our main focus will be on the analysis of the following meshes which results from an hp adaptive scheme
that locates and tries to resolve layers. As the solutions of our model equation (1.1) have a layer at the
outflow boundary x = 1, an adaptive scheme would create a sequence of meshes that are obtained by
successively halving the rightmost element until the element abutting on the boundary has size O(pε),
i.e., the mesh can resolve the boundary layer. Thereafter the mesh is fixed and merely the polynomial
degree p is increased. We formalize this procedure as follows: Fix q ∈ (0, 1). Let

p0 ∈ lN be the smallest integer such that qp0 < p0ε. (B.5)

We consider meshes T with geometric refinement towards the layer determined by the nodes

{−1, 1, 1− qi | i = 0, . . . ,min (p, p0)}, (B.6)

and we will consider as trial spaces the space Sp,1
0 (T ) (cf. Fig. 1) On such meshes, the hp-SDFEM

converges robustly and exponentially on compact subsets of Ω:

Theorem B.1. Let a = 1, b = 0, ξ ∈ (−1, 1) fixed. Consider the meshes T defined by (B.6). Assume that
the weights are of the form (ρi, bi)Ni=1 where the factors (ρi)Ni=1 are of the form (3.3) with (3.4) replaced
by (3.26). Furthermore, assume that the non-degeneracy condition (3.5) holds. Then there are constants
C, σ > 0 independent of ε, p such that

‖uε − uSD‖H1(−1,ξ) ≤ Ce−σp, p = 1, 2, . . .

The proof of Theorem B.1 is the object of the remainder of this section.

Remark B.2. We consider here a “bubble-stabilized” SDFEM. This is not essential here. A similar
result can be obtain for the “L2-stabilized” SDFEM and numerically observed (cf. the numerical results
in Section 4).

B.1 Preliminaries

Our analysis proceeds along the lines of [7]. The idea is to obtain estimates in weighted spaces. To that
end, one proves stability in these weighted spaces (Proposition B.5) and then estimates various error
terms (Lemmata B.8–B.10).

Let T be a mesh whose elements have lengths hi. Let ξ be a fixed mesh point and let λ > 0 be a fixed
number to be chosen sufficiently small below. The weights (ρi, bi)Ni=1 are assumed to of the form (3.3)
with (3.26) in place of (3.4). In order to introduce the piecewise linear weight function ω2, we need to
introduce the functions ψ, ω̃ by

ψ|Ii := ψi :=
δi
hi

, (B.7)

ω̃(x) := 1 if x ≤ ξ

exp

[
−λ

∫ x

ξ
ψ(t) dt

]
ifx ¿ ξ.

(B.8)

Remark B.3. A few remarks concerning the properties of ψ are in order. We have ψihi = δi ≤ δ0.
Furthermore, (ψihi)hi/p = ρi, a relation of which we will make use later on. If δi ≥ δ > 0 for all i, then∫ x
ξ ψ(t) dt measures (up to a constant) the number of elements between ξ and x.
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The weight function ω2 is then finally given as the piecewise linear interpolant of ω̃2.

We note that for all meshes and λ > 0 the function ω̃ is Lipschitz continuous on I and satisfies ω̃′ ≤ 0.
Furthermore, on each element Ii = (xi−1, xi) we have in fact that

ω̃(xi−1)/ω̃(xi) ≤ eλδi , |ω̃′ω̃| ≤ λψ ω̃2.

These properties are shared by the piecewise linear interpolant ω2:

ω′ ≤ 0 on I, ω(xi−1)/ω(xi) ≤ eλδ0 , |ω′ω| ≤ λψeλδ0 ω2. (B.9)

We introduce the following mesh dependent weighted norm

‖|u|‖2SD,ω := ε‖ωu′‖2L2(Ω) + ‖ |ωω′|1/2u‖2L2(Ω) +
N∑

i=1

ρi‖
√
diωu

′‖2L2(Ω). (B.10)

We need the following “superapproximation” result:

Lemma B.4. Let (ρi, bi)Ni=1 be of the form (3.3) with (3.26) in place of (3.4). There is C > 0 depending
only on δ0 such that for all λ ∈ [0, 1], e ∈ Sp,1

0 (T ) there is W ∈ Sp,1
0 (T ) satisfying

‖b−1/2
i ω−1(ω2e−W )‖L2(Ii) ≤ Cλρi‖

√
biωe

′‖L2(Ii), ‖ω−1(ω2e −W )′‖L2(Ii) ≤ Cλδi‖
√
biωe

′‖L2(Ii).

Furthermore, W can be chosen such that ω2e = W at the nodes of T .

Proof. On the reference element (−1, 1), expansion in Legendre series and the orthogonality of the Jacobi
polynomials allow us to estimate for all polynomials ê of degree p:

∫ 1

−1
(1 − x2)p|ê(p)(x)|2 dx ≤

(2p)!

p(p+ 1)

∫ 1

−1
(1− x2)|ê′(x)|2 dx (B.11)

(see, e.g., [13]). Consider now a fixed element Ii. Denote ω̂2, ê the functions corresponding to ω2, e on
the reference element (−1, 1) via the linear mapping. The standard p-version argument (see, e.g., [13])
allows us to construct a polynomial Ŵ of degree p such that Ŵ (±1) = (ω̂2ê)(±1) and

‖(1− x2)−1/2(ω̂2ê − Ŵ )‖2L2(−1,1) ≤
1

(2p)!p(p+ 1)

∫ 1

−1
(1− x2)p

∣∣∣(ω̂2ê)(p+1)
∣∣∣
2
dx,

‖(ω̂2ê− Ŵ )′‖2L2(−1,1) ≤
1

(2p)!

∫ 1

−1
(1− x2)p

∣∣∣(ω̂2ê)(p+1)
∣∣∣
2
dx.

As ω̂2 is a linear function and ê a polynomial of degree p we observe that (ω̂2ê)(p+1) = (p + 1)(ω̂2)′ê(p)

and thus by invoking (B.11)

‖(1− x2)−1/2(ω̂2ê− Ŵ )‖2L2(−1,1) ≤
1

p2
|(ω̂2)′|2

∫ 1

−1
(1− x2)|ê′(x)|2 dx,

‖(ω̂2ê− Ŵ )′‖2L2(−1,1) ≤
p+ 1

p
|(ω̂2)′|2

∫ 1

−1
(1− x2)|ê′(x)|2 dx.

(B.9) implies that |(ω̂2)′| ≤ λeλδ0ψi
hi

2 ω̂
2. Exploiting the fact that ω is of bounded variation on Ii (cf.

(B.9)) we obtain the desired result by a scaling argument.

!
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B.2 Error Analysis

Proposition B.5. Let c > 0 be fixed and T be any mesh with the property that hi ≥ cε for i =
1, . . . , N .Assume the weights (ρi, bi)Ni=1 are of the form (3.3) with satisfy (3.26) replacing (3.4). Then
there are λ0, γ > 0 depending only on c and δ0 such that for all 0 ≤ λ ≤ λ0

BSD(u,ω2u) ≥ γ‖|u|‖2SD,ω ∀u ∈ Sp,1
0 (T ).

Proof. We have

BSD(u,ω2u) = ε

∫

Ω
u′(ω2u)′ dx+

∫

Ω
u′(ω2u) dx+

N∑

i=1

ρi

∫

Ii

di(−εu′′ + u′)(ω2u)′ dx.

We estimate each of these terms separately. An integration by parts yields for the second term

∫

Ω
u′ω2u dx =

1

2

∫

Ω

(
u2
)′
ω2 dx = −

∫

Ω
u2ωω′ dx = ‖ |ωω′|1/2u‖2L2(Ω).

Cauchy’s inequality together with the assumption that hi ≥ cε for all i (implying ψε ≤ δ0/c) allows us
to estimate the first term by

ε

∫

Ω
u′(ω2u)′ dx = ε

∫

Ω
|u′|2ω2 dx+ ε

∫

Ω
(ω2)′uu′ dx

≥ ε‖ωu′‖2L2(Ω) −
[
1

τ
‖ |ωω′|1/2u‖2L2(Ω) + τε2λeλδ0‖ψ1/2ωu′‖2L2(Ω)

]

≥ ε‖ωu′‖2L2(Ω) −
[
1

τ
‖ |ωω′|1/2u‖2L2(Ω) + τελeλδ0

δ0
c
‖ωu′‖2L2(Ω)

]

for any τ > 0 which we will choose sufficiently large below. For the SDFEM terms, we estimate, using
the bounds (B.9)

N∑

i=1

ρi

∫

Ii

diu
′(ω2u)′ dx ≥

M∑

i=1

ρi‖
√
diωu

′‖2L2(Ii) −
N∑

i=1

[
1

τ
‖ |ωω′|1/2u‖2L2(Ii) + ρ2i τλe

λδ0ψi‖
√
diωu

′‖2L2(Ii)

]

for any τ > 0 to be chosen sufficiently large below. We note that ρiψi ≤ δ20 . Using Lemma 3.4 and again
(B.9) we bound furthermore

∣∣∣∣∣

N∑

i=1

ρi

∫

Ii

−diεu
′′(ω2u)′ dx

∣∣∣∣∣

≤
N∑

i=1

ερi
2p

hi
eλδ0‖ωu′‖2L2(Ii)

+
1

τ
‖ |ωω′|1/2u‖2L2(Ii)

+ τ

(
2pρi
hi

)2

ε2ψiλe
λδ0‖

√
diωu

′‖2L2(Ii)

≤
N∑

i=1

ε(δie
λδ0)‖ωu′‖2L2(Ii)

+
1

τ
‖ |ωω′|1/2u‖2L2(Ii)

+ τδ2i ε
δi
c
λeλδ0‖ωu′‖2L2(Ii)

for any τ > 0. We obtain the desired result by first choosing τ > 3 and then choosing λ0 suffiently small.

!

Remark B.6. Checking the proof of Proposition B.5 shows that the result also holds true for λ = 0
and that in fact in that case the additional assumption hi ≥ cε can be removed. Hence the result of
Theorem A.4 is contained as a special case.

The stability estimate allows us to formulate the following error estimate for the solution in terms of the
weighted norms ‖|·|‖SD,ω:
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Proposition B.7. Under the assumptions of Proposition B.5 there are λ0 > 0, C > 0 such that for all
λ ∈ [0,λ0] and for any admissible splitting in the sense of Definition 3.3 there holds

‖|e|‖2SD,ω ≤ C
{∣∣BSD(e,ω2e−W )

∣∣+
∣∣BSD(η,ω2e)

∣∣+
∣∣BSD(η,ω2e−W )

∣∣} ∀W ∈ Sp,1
0 (T ).

Proof. This is just an application of the Galerkin orthogonality (3.7)

γ‖|e|‖2SD,ω ≤ BSD(e,ω2e) = BSD(e,ω2e −W ) +BSD(η,W )

= BSD(e,ω2e−W ) +BSD(η,W − ω2e) +BSD(η,ω2e).

!

Lemma B.8. Let T be any mesh and assume that the weights (ρi, bi)Ni=1 are of the form (3.3) with (3.26)
replacing (3.4). Then there is C > 0 depending only on δ0 such that for all λ ∈ [0, 1]

∣∣BSD(e,ω2e−W )
∣∣ ≤ Cλ ‖|e|‖2SD,ω ∀e ∈ Sp,1

0 (T ),

where, for each e ∈ Sp,1
0 (T ) the function W ∈ Sp,1

0 (T ) is given by Lemma B.4.

Proof. We write

BSD(e,ω2e−W ) = ε

∫

Ω
e′(ω2e −W )′ dx+

∫

Ω
e′(ω2e−W ) +

N∑

i=1

ρi

∫

Ii

(−εe′′ + e′)(ω2e−W )′ dx.

The first term can be estimated in the desired fashion immediately by invoking Lemma B.4. For the
second term, we also use Lemma B.4 to arrive at

∣∣∣∣

∫

Ω
e′(ω2e−W ) dx

∣∣∣∣ ≤
N∑

i=1

‖
√
diωe

′‖IiCλρi‖
√
diωe

′‖Ii ≤ Cλ‖|e|‖2SD,ω.

Finally, for the SDFEM terms we use Lemmata 3.4, B.4, and the bounds (B.9) to get

ρi

∣∣∣∣

∫

Ii

di(−εe′′ + e′)(ω2e−W )′ dx

∣∣∣∣ ≤ ρi
[
ε‖
√
diωe

′′‖Ii + ‖
√
diωe

′‖Ii
]
Cλδi‖

√
diωe

′‖Ii

≤ Cλδ0

[
eλδ0ε(ρi

2p

hi
)‖ωe′‖2Ii + ρi‖ωe′‖2Ii

]

As ρi(2p/hi) ≤ δ0 we obtain the desired result.

!

In order to formulate the next two lemmata, we need to introduce some weighted mesh-dependent norms
on H1(Ω) which are analogous to ‖|·|‖, (3.11),(3.13):

Eω(η) :=
{
ε‖ωη′‖2L2(Ω) + ‖ |ω′ω|1/2η‖2L2(Ω) + ε2‖ |ω′ω|1/2η′‖2L2(Ω)

}1/2
,

ESD,ω(η) :=
{ N∑

i=1

ρi
p2

h2
i

[
ε2‖ωη′‖2L2(Ii) + ‖ωη‖2L2(Ii)

]}1/2
,

EG,ω(η) :=
{ N∑

i=1

p2

ρi + ε
‖ωη‖2L2(Ii)

}1/2
.

Lemma B.9. Under the same hypotheses as in Lemma B.8 there exists C > 0 depending only on δ0 such
that for all λ ∈ [0, 1]

∣∣BSD(η,ω2e)
∣∣ ≤ C‖|e|‖SD,ω [Eω(η) + EG,ω(η) + ESD,ω(η)] ∀e ∈ Sp,1

0 (T ), η ∈ H1
0 (Ω).
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Proof. We start again by recalling that

BSD(η,ω2e) = ε

∫

Ω
η′(ω2e)′ dx+

∫

Ω
η′ω2e dx+

N∑

i=1

ρi

∫

Ii

di(−εη′′ + η′)(ω2e)′ dx.

The Cauchy-Schwarz inequality allows us to estimate the first term by

ε‖ωη′‖L2(Ω)‖ωe′‖L2(Ω) + 2ε‖ |ωω′|1/2η′‖L2(Ω)‖ |ωω′|1/2e‖L2(Ω)

which yields the term Eω(η)‖|e|‖SD,ω. For the second term, we integrate by parts and obtain by splitting
the integral into sums over elements and using the Cauchy-Schwarz inequality for sums:

2‖ |ωω′|1/2η‖L2(Ω)‖ |ωω|1/2e‖L2(Ω) +

{
N∑

i=1

‖ωη‖2Ii
p2

ρi + ε

}1/2{ N∑

i=1

‖ωe′‖2Ii
ρi + ε

p2

}1/2

which yields the term (Eω(η) + EG,ω(η))‖|e|‖SD,ω after an application of Lemma 3.4 and an invocation
of (B.9). Let us now turn to the third term. An integration by parts on the element level gives

∣∣∣∣

∫

Ii

di(−εη′′ + η′)(ω2e)′ dx

∣∣∣∣ ≤ ‖ − εη′ + η‖L2(Ii)

[
4

hi
‖ω2e′‖L2(Ii) + ‖di(ω2e)′′‖L2(Ii)

]
.

Observing that ω2e′ is a polynomial of degree p, we may invoke Lemma 3.4 to estimate

‖ω2e′‖L2(Ii) ≤ Cdp‖
√
diω

2e′‖L2(Ii), ‖di(ω2e′)′‖L2(Ii) ≤ 2p/hi‖
√
diω

2e′‖L2(Ii)

and furthermore make use of (B.9) to arrive at

∣∣∣∣

∫

Ii

di(−εη′′ + η′)(ω2e)′ dx

∣∣∣∣ ≤ C‖ω(−εη′ + η)‖L2(Ii)
p

hi
‖
√
diωe

′‖L2(Ii).

Hence, we obtain the term ESD,ω(η)‖|e|‖SD,ω by using the Cauchy inequality for sums.

!

Finally, we have the following lemma:

Lemma B.10. Under the assumptions of Lemma B.8 there is C > 0 depending only on δ0 such that for
all λ ∈ [0, 1]

∣∣BSD(η,ω2e−W )
∣∣ ≤ Cλ‖|e|‖SD,ω [Eω(η) + EG,ω(η) + ESD,ω(η)] ∀e ∈ Sp,1

0 (T ), η ∈ H1
0 (Ω).

Here, for each e ∈ Sp,1
0 (T ) the function W ∈ Sp,1

0 (T ) is given by Lemma B.4.

Proof. The proof is essentially a repetition of the preceding proof and an application of Lemma B.4.

!

Lemma 2.4 made crucial use of the assumption that a “two-element”mesh is a submesh in order to resolve
the boundary layer. In the present context, we cannot make this assumption. For our approximation
result on compact subsets upstream of the layer we therefore need the following result:

Proposition B.11. Let c, c̃ > 0 be fixed. Let N ≥ 3 and let T = {Ii}Ni=1 be a mesh such that the length of
the rightmost element IN satisfies hN ≥ cpε and such that there is a meshpoint xM with −1 < xM ≤ 1− c̃.
Then there are constants C, σ > 0 depending only on the coefficients of (1.1) and c, c̃ > 0 such that the
splitting uε = ureg + uBL of Lemma 2.4 satisfies the following:

1. ureg can be approximated by piecewise polynomials of degree p such that the assertions of Lemma 2.4
about ηreg hold true verbatim.
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2. Denoting by uBL,p the piecewise linear function uBL,p given by the conditions uBL(±1) = uBL,p(±1),
uBL,p(xN−1) = 0, we have for ηBL := uBL − uBL,p

‖η(l)BL‖L2(−1,xN−1) ≤ Cε1/2−le−σp, l = 0, 1,

‖η(l)BL‖L∞(−1,xN−1) ≤ Cε−le−σp, l = 0, 1,

‖η(l)BL‖L∞(xN−1,1) ≤ C
{
ε−l + h−l

N

}
, l = 0, 1,

‖η(l)BL‖L2(xN−1,1) ≤ C
{
ε1/2−l + h1/2−l

N

}
, l = 0, 1,

‖η(l)BL‖L∞(−1,xM ) ≤ Ce−σp, l = 0, 1.

Proof. The assertions about ηBL follow by estimating uBL and uBL,p separately. Note that both uBL

and uBL,p are exponentially small (in 1/ε) on (−1, xM ) ⊂ (−1, 1− c̃).

!

Proof of Theorem B.1: By possibly making ξ slightly larger, we may assume that ξ is a mesh point
ξ = 1− σp1 for some fixed p1. We may restrict ourselves to the case p ≥ p1.

Let us first consider the pre-asymptotic case, i.e., p ≤ p0. Choosing λ sufficiently small, we obtain from
Propositions B.5, B.7, and Lemmata B.8– B.10 that there is C > 0 such that for any admissible splitting
in the sense of Definition 3.3

‖|e|‖SD,ω ≤ C [Eω(η) + EG,ω(η) + ESD,ω(η)] . (B.12)

Let us now see that we may choose the admissible splitting such that

Eω(η) + EG,ω(η) + ESD,ω(η) ≤ Ce−σp (B.13)

some C, σ > 0 independent of ε, p. To that end, let the admissible splitting up = ureg,p + uBL,p

be given by Proposition B.11. Estimating ω ≤ 1, ρi + ε ≥ Chi/p for some C > 0 (which follows
from (3.5)), and ε/hi ≤ C (which follows from the assumption p ≤ p0), we get by Proposition B.11
Eω(ηreg)+ESD,ω(ηreg)+EG,ω(ηreg) ≤ Ce−σp for some σ > 0. Let us now obtain corresponding estimates
for ηBL. As noted in Remark B.3 we have

ω|IN ≤ e−λc̃(p−p1) (B.14)

for some c̃ > 0 (c̃ depends only on c of (3.5) and δ). Using this bound, estimating ω ≤ 1 on Ω \ IN , and
recalling that ρi ≤ δ0hi we get Eω(ηBL) +ESD,ω(ηBL)+EG,ω(ηBL) ≤ Ce−σp for some suitable σ > 0 by
Proposition B.11. Hence ‖|e|‖SD,ω ≤ Ce−σp. As ω ≡ 1 on the p1 +1 elements that comprise (−1, ξ), this
implies with Lemma 3.9

‖e‖L∞(−1,ξ) ≤ Cp3/2(p1 + 1)‖|e|‖SD,ω ≤ Ce−σp.

after suitably adjusting σ. Together with the triangle inequality, we finally obtain

‖uε − uSD‖L∞(−1,ξ) ≤ Ce−σp

In the asymptotic case, i.e., p ≥ p0, we obtain directly from Corollary A.5 (noting that the number of
elements can be bounded by p+ 2)

‖uε − uSD‖L∞(−1,ξ) ≤ Ce−σp

for some σ > 0. This gives the desired estimate for k = 0. For k = 1, we proceed in the standard fashion:
The splitting up = ureg,p + uBL,p of Proposition B.11 satisfies on (−1, ξ)

‖uε − up‖H1(−1,ξ) ≤ Ce−σp
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for some C, σ > 0. Hence, using the fact that the mesh restricted to (−1, ξ) is fixed the inverse estimates
of Lemma 3.4 yield

‖uε − uSD‖H1(−1,ξ) ≤ ‖uε − up‖H1(−1,ξ) + Cp2‖uε − uSD‖L∞(−1,ξ)

and the result follows.

!

Remark B.12. The proof of Theorem B.1 relies on Lemma 3.9 which exploits heavily the fact that we
restrict our attention to 1-d. This was done for notational convenience only. Choosing the weight function
ω so that ω′ω 1= 0 on (−1, ξ) would allow us to estimate ‖uε − uSD‖L2(−1,ξ) directly from ‖|e|‖SD,ω and
hence there is no need to appeal to Lemma 3.9. For example, one could choose the weight function ω̃ as
ω̃(x) =

∫ x
ξ ψ(t) dt where the function ψ is given by (B.7) for x > ξ and by −δi for x ∈ Ii with x < ξ.

Remark B.13. We note that in the proof of Theorem B.1 we only made use of the fact that ω ≤ 1 on
the whole element and that ω is exponentially small (in p) on the last element. Exploiting the decay
properties of ω on the elements between ξ and 1 would allow us to let the polynomial degree go down
linearly from p to 1 on the O(p) elements between ξ and IN and the assertions (B.13) still hold true.

Theorem B.1 concentrates on a compact subset (−1, ξ). However, the techniques developed for the proof
of Theorem B.1 also yield estimates on variable sets (−1, ξp) where ξp → 1 as p → ∞. Prototypical may
be the following

Corollary B.14. Let the mesh T satisfy the assumptions as in Theorem B.1. Fix α ∈ (0, 1). For each
p ∈ lN choose j ∈ lN as the integer part of αp and set ξp := 1 − qj. Then for ε sufficiently small, there
are C, σ > 0 independent of ε, p such that

‖uε − uSD‖L∞(−1,ξp) ≤ C exp(−σp)

Proof. For p ≥ p0 the statement follows from the proof of Theorem B.1. Let us consider the pre-
asymptotic range p ≤ p0. We choose the weight function ω as in (B.8) with ξ replaced with ξp and
check that the estimates of (B.14) hold true with the constants C, c̃ depending additionally on α. Hence
we obtain with the same arguments as in the proof (B.13) that Eω(η), EG,ω(η), ESD,ω(η) can now be
bounded by C exp(−σp). We may then conclude the proof by repeating the arguments of the proof of
Theorem B.1.

!
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