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1 Introduction

We consider elastic wave scattering by a complicated scattering region in an unbounded elas-
tic medium in three dimensions. The scatterer may contain cracks, holes, inhomogeneities,
and nonlinearities. To treat the scattering problem numerically, we surround the scatterer
by an artificial boundary B, and we denote by Ω the computational domain inside B. On B
we seek a boundary condition which ensures that the solution of the problem in Ω coincides
with the restriction to Ω of the solution of the original problem in the unbounded region.
Such an exact boundary condition is nonreflecting because it ensures that B will not intro-
duce any spurious reflections. See Grote and Keller [1], [2], [3] for nonreflecting boundary
conditions for the scalar wave equation and for Maxwell’s equations, and Keller and Givoli
[4] and Givoli and Keller [5] for the Helmholtz equation and time-harmonic two-dimensional
elastodynamics.

Usually various approximate boundary conditions are used on B, which are local dif-
ferential operators on B (Givoli [6]). Well-known examples are the Clayton and Engquist
[7], Engquist and Majda [8] [9], and the Bayliss and Turkel [10] conditions. Earlier Lind-
man [11] devised a non-local absorbing boundary condition for the scalar wave equation. It
requires solving the inhomogeneous wave equation on the artificial boundary a number of
times. Randall [12] [13] extended it to the elastic wave equation. Higdon [14] showed that
any local boundary condition involving a differential operator eliminates spurious reflections
at certain angles of incidence but not at others. Wolf and Song [15] developed an improved
version of Higdon’s boundary condition specifically geared to the finite element method.

A different approach to eliminating reflection has been to append an artificial transition
layer outside B, which is supposed to absorb outgoing waves. Two popular methods for
doing this, the mapping technique [16] and the perfectly matched layer method [17], were
adapted recently to the absorbtion of elastic waves, and they yielded comparable results [18].

Neither the local boundary conditions nor the use of absorbing layers leads to complete
absorption of waves at all angles of incidence. Although most approximate boundary condi-
tions perform well at nearly normal incidence, their performance degrades rapidly as grazing
incidence is approached. In complex situations the scattered waves arrive at the artificial
boundary from all interior angles and at all frequencies, so these methods then yield some
spurious reflection. Moreover, errors due to spurious reflection accumulate with time and
prevent accurate long-time integration. Thus it is often necessary to move B far from the
region of interest, or to use a thick absorbing layer, to reduce the amount of reflection below
a few percent and to achieve high accuracy. Unless accuracy as low as two significant digits
is acceptable, both procedures become expensive in computer storage and in execution time.
Moreover, due to limitations in available memory it may not be possible to achieve a desired
accuracy. In the presence of nonlinearity, such as plastic deformation, any type of spurious
reflection can lead to dramatic changes in the qualitative behavior of the solution inside the
computational domain. To be sure that numerical results are valid in such situations, it is
imperative to use a numerical method which ensures convergence to the true solution as the
underlying mesh is refined. Another difficulty is that when discretized and combined with
a numerical scheme in the interior, approximate boundary conditions can result in ill-posed
formulations [19].
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Some of these difficulties are avoided by an exact nonreflecting boundary condition for
the wave equation proposed by Ting and Miksis [20]. It is based on a Kirchhoff integral
representation of the solution on B and requires storing the solution at a surface inside B for
the length of time it takes a wave to propagate across Ω. To update the solution value at any
point on the two-dimensional artificial boundary B requires a two-dimensional convolution
in time and space. Therefore using this boundary condition may be more expensive than
using the numerical scheme itself inside Ω.

It is to avoid the various difficulties mentioned above that we have derived a new exact
nonreflecting boundary condition. It applies in the special case when B is a sphere. First,
in Section 2 we decompose the wave field into a compressional wave and two shear waves.
Next, we show in Section 2.1 how the boundary condition we derived previously for the scalar
wave equation [1] extends to one of the purely tangential shear waves. It does not extend to
the two other waves, which are not orthogonal to each other and which do not travel at the
same speed. In Sections 2.2 and 2.3 we show how to circumvent this difficulty. In Section
2.4 this leads to a novel coupled system of ordinary differential equations, which determines
certain required auxilliary quantities. In Section 2.5 we state the final form of the exact
nonreflecting boundary condition. It is local in time and involves only first derivatives of the
displacement; hence it is well-suited for numerical implementation. To conclude we show
that the solution inside Ω with this boundary condition imposed on B has a unique solution,
which coincides with the restriction to Ω of the solution in the unbounded domain.

2 Derivation of an exact nonreflecting boundary

condition

We choose B to be a sphere of radius R. In Bext, the region outside B, the medium is assumed
to be linear, homogeneous, and isotropic, with constant density ρ and Lamé constants λ and
µ. In addition, we assume that at t = 0 the scattered field is confined to the computational
domain Ω, which is in the interior of B. In Bext the displacement u satisfies the elastic wave
equation [21] [22],

∂2u

∂t2
− c2p∇∇ · u+ c2s ∇×∇× u = 0,(2.1)

with initial conditions

u = 0,
∂u

∂t
= 0, t = 0.(2.2)

Here cp and cs are the propagation speeds of compressional waves and shear waves, respec-
tively,

c2p =
λ+ 2µ

ρ
, c2s =

µ

ρ
, cp > cs.(2.3)

In Bext compressional waves and shear waves propagate independently of each other and
at different speeds, so we decompose u into fields of these two types. Such a decomposition
occurs naturally when we split u into a field with vanishing curl and a field with vanishing
divergence:

u = ∇ϕ+Ψ, ∇ ·Ψ = 0.(2.4)
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We introduce (2.4) into (2.1) and conclude that

∂2ϕ

∂t2
− c2p∆ϕ = 0,(2.5)

∂2Ψ

∂t2
+ c2s ∇×∇×Ψ = 0.(2.6)

The potential ϕ of the irrotational wave field ∇ϕ satifies the scalar wave equation (2.5); it
describes compressional waves propagating with speed cp. The solenoidal field Ψ satisfies
the vector wave equation (2.6); it describes shear waves propagating with speed cs. From
(2.6) we observe that if ∇ · Ψ and ∇ · ∂tΨ vanish at t = 0, ∇ · Ψ will remain zero for all
time. Since u and ∂tu vanish outside B at t = 0, ∇ ·Ψ is identically zero outside B for all
time.

Next, we introduce the polar coordinates r, ϑ, φ and the unit vectors r̂, ϑ̂, φ̂. We let
Ynm denote the nm-th spherical harmonic

Ynm(ϑ,φ) =

√

√

√

√

(2n+ 1)(n− |m|)!

4π(n+ |m|)!
P |m|
n (cosϑ)eimφ, n ≥ 0, |m| ≤ n.(2.7)

The Ynm are orthonormal with respect to the L2 inner product on the unit sphere. If the
problem considered is real, it is advantageous to use the real spherical harmonics, given by
the real and imaginary parts of (2.19) with a modified normalization constant. In Bext the
general solution of (2.5) is

ϕ(r,ϑ,φ, t) =
∑

n≥0

∑

|m|≤n

hnm(r, t) Ynm(ϑ,φ), r ≥ R.(2.8)

Here the Fourier coefficients hnm satisfy

Ln[hnm; cp] ≡

(

1

c2p

∂2

∂t2
−

∂2

∂r2
−

2

r

∂

∂r
+

n(n + 1)

r2

)

hnm = 0.(2.9)

Next, we need to construct the general solution of (2.6) in Bext. Following [23], p. 170,
we let Unm and Vnm denote the vector spherical harmonics

Unm(ϑ,φ) =
r∇Ynm

√

n(n+ 1)
=

1
√

n(n + 1)

[

∂Ynm

∂ϑ
ϑ̂+

1

sinϑ

∂Ynm

∂φ
φ̂

]

, n ≥ 1(2.10)

Vnm(ϑ,φ) = r̂ ×Unm =
1

√

n(n+ 1)

[

−1

sinϑ

∂Ynm

∂φ
ϑ̂+

∂Ynm

∂ϑ
φ̂

]

, n ≥ 1.(2.11)

They form an orthonormal basis for the space of tangential L2 fields on the unit sphere with
respect to the L2 inner product [23]. They also satisfy the following useful equations for any
f(r) ∈ C1:

∇× (f(r)Vnm) = −

√

n(n + 1)f(r)

r
Ynmr̂ −

1

r

∂(rf)

∂r
Unm,(2.12)
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r̂ ×∇× (f(r)Vnm) = −
1

r

∂(rf(r))

∂r
Vnm,(2.13)

r̂ ×∇× (f(r)Ynmr̂) =

√

n(n + 1)f(r)

r
Unm,(2.14)

∇ · (f(r)Unm) = −

√

n(n+ 1)f(r)

r
Ynm.(2.15)

In Bext the general solution of (2.6) consists of a sum of independent, orthogonal, divergence-
free shear modes,

Ψ(r,ϑ,φ, t) =
∑

n≥1

∑

|m|≤n

{fnm(r, t)Vnm(ϑ,φ) +∇× [gnm(r, t)Vnm(ϑ,φ)]} .(2.16)

Here the Fourier coefficients fnm and gnm satisfy the scalar wave equation

Ln[fnm; cs] = 0, Ln[gnm; cs] = 0, r ≥ R,(2.17)

with Ln defined by (2.9) with cp replaced by cs.
By adding the two solutions (2.8) and (2.16) we obtain the general solution of (2.1) in

Bext:
u(r,ϑ,φ, t) =

∑

n≥0

∑

|m|≤n

unm(r,ϑ,φ, t), r ≥ R.(2.18)

Each multipole field unm is given by

unm(r,ϑ,φ, t) = fnm(r, t)Vnm(ϑ,φ) +∇× [gnm(r, t)Vnm(ϑ,φ)]

+ ∇[hnm(r, t)Ynm(ϑ,φ)].(2.19)

Thus fnm and gnm determine the two independent shear modes, and hnm determines the
compressional mode. For n = 0, both Vnm and Unm vanish, so a solution independent of ϑ
and φ consists of a single compressional mode u(r, t) = ∂rh00(r, t)r̂.

Next, we use (2.12) in (2.19) to calculate the three orthogonal components of unm,

unm = fnmVnm +





√

n(n+ 1)hnm

r
−

1

r

∂(rgnm)

∂r



Unm

+





∂hnm

∂r
−

√

n(n + 1)gnm

r



Ynmr̂.(2.20)

Equation (2.20) shows that fnmVnm is orthogonal to the two other modes; thus, fnm
can be computed easily from u via fnm = (u,Vnm). In addition, if either gnm or hnm is
zero, the other coefficient can be obtained by computing either (u,Unm) or (r̂ · u, Ynm). In
general, however, both gnm and hnm are nonzero. Therefore knowledge of u on B does not
suffice to determine fnm and hnm through inner products over B because of the presence of
(unknown) radial derivatives in (2.20). In contrast, in the absence of compressional modes
(hnm = 0), which corresponds to Maxwell’s equations, knowledge of the field on B is sufficient
to compute its representation in terms of potentials via inner products over B [3].
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For time dependent elastic waves in three space dimensions, the shear mode gnm and the
compressional mode hnm are inextricably linked and are not orthogonal to each other. Only
in very special situations, such as (single frequency) harmonic or static waves ([24], Chapter
13.3), is it possible to construct mutually orthogonal modes through linear combinations of
shear and compressional waves.

2.1 Exact boundary condition for (u,Vnm)

In this section we derive the exact nonreflecting boundary condition for the mode ampli-
tude fnm(r, t) = (u,Vnm). The analysis follows closely that for the scalar wave equation
(see [1],[2]). The real difficulty in the elastic case is the determination of exact boundary
conditions for gnm and hnm, which we do in Sections 2.2 and 2.3.

In Lemma 3.2 [1] it was shown that if fnm satisfies the scalar wave equation (2.17), then
Gn[fnm] satisfies the one-dimensional wave equation,

1

c2s

∂2

∂t2
Gn[fnm]−

∂2

∂r2
Gn[fnm] = 0, r ≥ R.(2.21)

Here the integral operator Gn[v] is defined as

Gn[v](r, t) ≡



















rv(r, t) if n = 0

r
∫ ∞

r

(s2 − r2)n−1v(s, t)

(2s)n−1(n− 1)!
ds if n ≥ 1.

(2.22)

Since the initial data fnm and ∂tfnm have compact support and since the speed of propagation
is finite, at any fixed time fnm(r, t) vanishes for r sufficiently large. Therefore the integral
in (2.22) with v replaced by fnm exists. Moreover, at t = 0, both Gn[fnm] and ∂tGn[fnm]
vanish outside B, which together with (2.21) imply that

(

∂

∂r
+

1

cs

∂

∂t

)

Gn[fnm] = 0, r ≥ R.(2.23)

Since Gn[fnm](r, t) is not known, (2.23) cannot be used directly in a numerical scheme.
Therefore we shall recast the exact boundary condition (2.23) in terms of fnm, and ultimately
in terms of the displacement field u.

To derive the exact boundary condition for fnm, we multiply (2.20) by r, take the inner
product with Vnm, and use Lemma 1 in the Appendix to obtain

r fnm(r, t) =
n
∑

j=0

γnj
rj

(

−
∂

∂r

)n−j

Gn[fnm](r, t).(2.24)

Next, we apply ∂r + c−1
s ∂t to (2.24) and use (2.23) to replace −∂rGn[fnm] by c−1

s ∂tGn[fnm].
This yields

(

∂

∂r
+

1

cs

∂

∂t

)

[r fnm(r, t)] = −
1

r

n
∑

j=1

j γnj
rj cn−j

s

(

∂

∂t

)n−j

Gn[fnm](r, t), r = R.(2.25)
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Equation (2.25) is an exact nonreflecting boundary condition for fnm on B, but it involves
time derivatives of Gn[fnm] up to order n−1. We note that a crucial consequence of applying
∂r + c−1

s ∂t to (2.24) is the elimination of the n-th derivative of Gn[fnm], the term with j = 0
in (2.24). To compute the time derivatives of Gn[fnm] up to order n− 1 at r = R, we again
use (2.23) in (2.24). The result is

1

cns

∂n

∂tn
Gn[fnm](r, t) = −

n
∑

j=1

γnj
rj cn−j

s

(

∂

∂t

)n−j

Gn[fnm](r, t) + r fnm(r, t), r = R.(2.26)

Here we have used the fact that γn0 = 1. Equation (2.26) is an n-th order ordinary differential
equation for Gn[fnm](R, t).

To simplify the notation, we define the n-component vector function ψf
nm(t) = {ψf,j

nm(t)}
by

ψf,j
nm(t) =

γnj
R γn1c

n−j
s

(

∂

∂t

)n−j

Gn[fnm](R, t), j = 1, . . . , n.(2.27)

In addition, we let dn = {djn} denote the constant n-component vector

djn =
n(n+ 1)j

2Rj
, j = 1, . . . , n.(2.28)

With these new variables the exact nonreflecting boundary condition (2.25) reduces to

(

∂

∂r
+

1

cs

∂

∂t

)

(ru,Vnm)|r=R = −dn ·ψ
f
nm(t).(2.29)

Next, we note that by definition of ψf,j
nm(t) we have

1

cs

d

dt
ψf,j

nm =
γnj

γn,j−1

ψf,j−1
nm =

(n+ j)(n+ 1− j)

2j
ψf,j−1

nm , 2 ≤ j ≤ n.(2.30)

Since fnm and ∂tfnm vanish identically for r ≥ R at t = 0, so do Gn[fnm] and all its time
derivatives up to order n− 1. This implies that ψf

nm is equal to zero at t = 0. Therefore we
rewrite (2.26) as the linear first-order ordinary differential equation

1

cs

d

dt
ψf

nm(t) = Anψ
f
nm(t) + (u |r=R ,Vnm)en, ψf

nm(0) = 0.(2.31)

Here en = {ejn} is the constant n-component unit vector

en = [1, 0, . . . , 0]%,(2.32)

and An = {Aij
n } is the constant n× n matrix

Aij
n =











−n(n + 1)/(2Rj) if i = 1,
(n+ i)(n + 1− i)/(2i) if i = j + 1,
0 otherwise.

(2.33)
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The exact nonreflecting boundary condition on (u,Vnm) at B is given by (2.29). It
involves only first derivatives of u and the function ψf

nm(t). This function can be computed
by solving the linear first-order differential equation (2.31) concurrently with solving the
problem for u. The boundary condition (2.29) is local in time since past values of u are not
required to apply it at time t. The necessary information from the past is contained implicitly
in ψf

nm(t). The scaling of Gn[fnm] by γnj in (2.27) has removed the large coefficients which
appear in (2.25) and (2.26).

2.2 Exact boundary condition for (u,Unm)

We shall now derive the exact boundary condition for the second tangential component,
(u,Unm). To begin we multiply (2.20) by r, take the inner product with Unm, and use
Lemmas 1 and 2 (Appendix) to obtain

(ru,Unm) =
√

n(n+ 1)hnm − ∂r(rgnm),

=
n+1
∑

j=0

βnj

rj
(−∂r)

n+1−jGn[gnm] +
√

n(n + 1)
n
∑

j=0

γnj
rj+1

(−∂r)
n−jGn[hnm].(2.34)

Both gnm and hnm satisfy the scalar wave equation (2.9) with propagation speeds cs and cp
respectively. Therefore an argument similar to that used in the previous section for Gn[fnm]
yields the exact boundary conditions for gnm and hnm:

(

∂

∂r
+

1

cs

∂

∂t

)

Gn[gnm] = 0,(2.35)

(

∂

∂r
+

1

cp

∂

∂t

)

Gn[hnm] = 0, r ≥ R.(2.36)

Now we shall construct a differential operator which annihilates the highest derivatives of
Gn[gnm] and Gn[hnm] in (2.34). The two different speeds of propagation preclude a straight-
forward extension of the argument used before. Again we apply ∂r + c−1

s ∂t to (2.34). We
also use (2.36) to get

(

∂

∂r
+

1

cs

∂

∂t

)

Gn[hnm] =
(

cp
cs

− 1
)

1

cp

∂

∂t
Gn[hnm].(2.37)

Then we use (2.37) and (2.35) to obtain

(

∂

∂r
+

1

cs

∂

∂t

)

(ru,Unm) = −
n+1
∑

j=1

j βnj

rj+1cn+1−j
s

(

∂

∂t

)n+1−j

Gn[gnm]

+
√

n(n + 1)
n+1
∑

j=0

γnj(cp/cs − 1)− j γn,j−1

rj+1cn+1−j
p

(

∂

∂t

)n+1−j

Gn[hnm].(2.38)

Here we have defined γn,n+1 = 0.
In (2.38) we have succeeded in removing the (n + 1)-st derivative of Gn[gnm], but we

have introduced an (n + 1)-st derivative of Gn[hnm]. We now seek a differential operator
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which will annihilate it. This operator must not affect the Vnm-component of unm, must

not depend on n, and must produce a term in
√

n(n+ 1)Unm when applied to unm. To find
such a differential operator, we recall (2.14) and apply it to the r-component of unm:

r r̂ ×∇× ((r̂ · unm)r̂) =
[

√

n(n+ 1) ∂rhnm − n(n + 1)
gnm
r

]

Unm.(2.39)

The differential operator on the left of (2.39) fulfills all the requirements listed above; for
instance, it does not affect the Vnm-component of unm since it only acts upon the radial
component. Next, we take the inner product of (2.39) with Unm and evaluate the right side
of the resulting expression by using Lemmas 1 and 3 (Appendix). After replacing radial by
time derivatives according to (2.35) and (2.36), we obtain

r (r̂ ×∇× ((r̂ · u)r̂),Unm) = −
√

n(n + 1)
n+1
∑

j=0

βnj + γn,j−1

rj+1 cn+1−j
p

(

∂

∂t

)n+1−j

Gn[hnm]

− n(n+ 1)
n+1
∑

j=1

γn,j−1

rj+1 cn+1−j
s

(

∂

∂t

)n+1−j

Gn[gnm].(2.40)

We recall that by definition γn,−1 = 0, and γn0 = βn0 = 1. Thus, upon comparison of the
terms with j = 0 in (2.38) and (2.40), we find that they are identical but for a factor of
−(cp/cs − 1). Therefore, when (2.40) is multiplied by cp/cs − 1 and added to (2.38), the two
(n+ 1)-st derivatives of Gn[hnm] cancel. This results in

(

∂

∂r
+

1

cs

∂

∂t

)

(ru,Unm) + r
(

cp
cs

− 1
)

(r̂ ×∇× ((r̂ · u)r̂),Unm) =

−
√

n(n+ 1)
n+1
∑

j=1

jγn,j−1cp/cs
rj+1 cn+1−j

p

(

∂

∂t

)n+1−j

Gn[hnm](2.41)

−
n+1
∑

j=1

jβnj + (cp/cs − 1)n(n+ 1)γn,j−1

rj+1 cn+1−j
s

(

∂

∂t

)n+1−j

Gn[gnm].

The exact boundary condition on (u,Unm) is obtained by setting r = R in (2.41). It
involves the time derivatives of Gn[gnm] and Gn[hnm] on B up to order n. In Section 2.4 we
shall derive ordinary differential equations which determine them.

To simplify the notation, we define the n + 1 component vector functions ψg
nm(t) =

{ψg,j
nm(t)} and ψh

nm(t) = {ψh,j
nm(t)} by

ψg,j
nm(t) =

βnj

R βn1c
n+1−j
s

(

∂

∂t

)n+1−j

Gn[gnm](R, t), j = 1, . . . , n+ 1,(2.42)

ψh,j
nm(t) =

βnj

R βn1c
n+1−j
p

(

∂

∂t

)n+1−j

Gn[hnm](R, t), j = 1, . . . , n+ 1.(2.43)

In addition, we let pn = {pjn} and qn = {qjn} denote the constant n + 1 component vectors

pjn =

√

n(n + 1) j γn,j−1βn1cp/cs

βnjRj
, j = 1, . . . , n+ 1,(2.44)
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qjn =
(cp/cs − 1)n(n+ 1)γn,j−1 + jβnj

Rjβnj

βn1, j = 1, . . . , n+ 1.(2.45)

With these new variables we can write the boundary condition (2.41) with r = R as

(

∂

∂r
+

1

cs

∂

∂t

)

(ru,Unm) + R
(

cp
cs

− 1
)

(r̂ ×∇× ((r̂ · u)r̂),Unm)

= −pn ·ψ
h
nm(t)− qn ·ψ

g
nm(t), r = R.(2.46)

2.3 Exact boundary condition for (r̂ · u, Ynm)

To derive an exact boundary condition on (r̂ ·u, Ynm) we parallel the procedure employed in
the previous section. First we multiply (2.20) by r, take the inner product with Ynmr̂, and
use Lemmas 1 and 3 (Appendix) to evaluate the right side of the result:

(r r̂ · u, Ynm) = r∂rhnm −
√

n(n + 1)gnm

= −
n+1
∑

j=0

βnj + γn,j−1

rj
(−∂r)

n+1−jGn[hnm]−
√

n(n + 1)
n
∑

j=0

γnj
rj+1

(−∂r)
n−jGn[gnm].(2.47)

We apply ∂r + c−1
p ∂t to (2.47) to eliminate the highest derivative of Gn[hnm]. To simplify the

resulting expression, we use (2.35) to get

(

∂

∂r
+

1

cp

∂

∂t

)

Gn[gnm] = −

(

1−
cs
cp

)

1

cs

∂

∂t
Gn[gnm].(2.48)

This relation together with (2.36) yields

(

∂

∂r
+

1

cp

∂

∂t

)

(r r̂ · u, Ynm) =
n+1
∑

j=1

j (βnj + γn,j−1)

rj+1cn+1−j
p

(

∂

∂t

)n+1−j

Gn[hnm]

+
√

n(n+ 1)
n+1
∑

j=0

γnj(1− cs/cp) + j γn,j−1

rj+1cn+1−j
s

(

∂

∂t

)n+1−j

Gn[gnm].(2.49)

We recall that by definition γn,n+1 = 0.
Although we have succeeded in removing the (n+1)-st derivative of Gn[hnm] from (2.49),

we have introduced an (n+1)-st derivative ofGn[gnm], the term with j = 0 in the second sum.
To annihilate it we construct a differential operator which does not affect the Vnm component

of unm, does not depend on n, and introduces a term of the form
√

n(n+ 1) Ynmr̂. To do

so, we recall (2.15) and apply it to utan = (0, uϑ, uφ), the tangential part of u = (ur, uϑ, uφ).
Since ∇ · Vnm = 0, we immediately obtain

r∇ · utan
nm =





√

n(n + 1)

r
∂r(rgnm)−

n(n + 1)

r
hnm



Ynm.(2.50)
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Next we take the inner product of (2.50) with Ynm and evaluate the right side of the result by
using Lemmas 1 and 2 in the Appendix. After replacing radial by time derivatives according
to (2.35) and (2.36), we obtain

(

r∇ · utan, Ynm

)

= −
√

n(n + 1)
n+1
∑

j=0

βnj

rj+1 cn+1−j
s

(

∂

∂t

)n+1−j

Gn[gnm]

− n(n + 1)
n+1
∑

j=1

γn,j−1

rj+1 cn+1−j
p

(

∂

∂t

)n+1−j

Gn[hnm].(2.51)

We recall that by definition γn,−1 = 0, and γn0 = βn0 = 1. Thus, upon comparison of the
two terms with j = 0 in (2.49) and (2.51), we find that they are identical but for a factor
of −(1 − cs/cp). Therefore, when we multiply (2.51) by 1 − cs/cp and add the resulting
expression to (2.49), the two (n + 1)-st order derivatives of Gn[gnm] cancel, yielding

(

∂

∂r
+

1

cp

∂

∂t

)

(r r̂ · u, Ynm) + r

(

1−
cs
cp

)

(

∇ · utan, Ynm

)

=

√

n(n+ 1)
n+1
∑

j=1

γn,j−1(1 + (j − 1)cs/cp)

rj+1 cn+1−j
s

(

∂

∂t

)n+1−j

Gn[gnm](2.52)

−
n+1
∑

j=1

jβnj − (n(n+ 1)(1− cs/cp)− j)γn,j−1

rj+1 cn+1−j
p

(

∂

∂t

)n+1−j

Gn[hnm].

We set r = R in (2.52); this yields an exact boundary condition on (r̂ · u, Ynm) at B. It
involves the time derivatives of Gn[gnm] and Gn[hnm] at B up to order n. In Section 2.4
we shall derive ordinary differential equations for them. To simplify (2.52) we make use
of the n + 1 component vector functions ψg

nm(t) and ψh
nm(t) defined by (2.42) and (2.43),

respectively. In addition, we let an = {ajn} and bn = {bjn} denote the constant n + 1
component vectors

ajn =
j − ((1− cs/cp)n(n+ 1)− j)γn,j−1/βnj

Rj
, j = 1, . . . , n+ 1,(2.53)

bjn =

√

n(n + 1) (1 + (j − 1)cs/cp)γn,j−1

βnjRj
, j = 1, . . . , n+ 1.(2.54)

With these new variables we can write the boundary condition (2.52) with r = R as

(

∂

∂r
+

1

cp

∂

∂t

)

(r r̂ · u, Ynm) + R

(

1−
cs
cp

)

(

∇ · utan, Ynm

)

= an ·ψ
h
nm(t) + bn ·ψ

g
nm(t), r = R.(2.55)

2.4 Ordinary differential equations for ψg
nm(t) and ψh

nm(t)

The exact boundary conditions for (u,Unm) and (r̂ · u, Ynm) in (2.46) and (2.55) involve
ψg

nm(t) and ψh
nm(t). We wish to calculate them without using past values of u. The modes
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with amplitudes gnm and hnm are linked and are not orthogonal. Therefore we cannot derive
two independent ordinary differential equations for ψg

nm(t) and ψh
nm(t). Instead, we shall

derive a coupled system of two ordinary differential equations.
When we use (2.35) and (2.36) to replace radial by time derivatives and set r = R in

(2.34), we obtain

1

cn+1
s

∂n+1

∂tn+1
Gn[gnm] = −

n+1
∑

j=1

βnj

Rjcn+1−j
s

∂n+1−j

∂tn+1−j
Gn[gnm]

−
√

n(n + 1)
n+1
∑

j=1

γnj
Rjcn+1−j

p

∂n+1−j

∂tn+1−j
Gn[hnm] +R(u,Unm), r = R.(2.56)

Here we have used the fact that βn0 = 1. Equation (2.56) is an (n+ 1)-st order ordinary
differential equation for Gn[gnm] at r = R. It determines ψg,1

nm, since by definition of ψg
nm(t)

in (2.42),
1

cs

d

dt
ψg,1

nm(t) =
1

R cns

∂n

∂tn
Gn[gnm](R, t).(2.57)

Moreover, we have
1

cs

d

dt
ψg,j

nm =
βnj

βn,j−1

ψg,j−1
nm , 2 ≤ j ≤ n+ 1.(2.58)

To further simplify the notation, we define the constant n + 1 component vector zn = {zjn}
by

zjn =

√

n(n + 1)γn,j−1βn1

βnjRj
, j = 1, . . . , n+ 1.(2.59)

Next, we note that βn1 = n(n+1)/2 and we let Sn = {Sij
n } denote the constant (n+1)×(n+1)

matrix

Sij
n =











−n(n + 1)/(2Rj) if i = 1,
βni/βn,j if i = j + 1,
0 otherwise.

(2.60)

With this new notation and the definition of ψh
nm(t) in (2.43) we can combine (2.56) and

(2.58) into the single first-order ordinary differential equation

1

cs

d

dt
ψg

nm(t) = Snψ
g
nm(t) + [(u|r=R ,Unm)− zn ·ψ

h
nm(t)]en+1.(2.61)

Here en+1 is the n + 1 constant unit vector defined in (2.32).
We now proceed in a similar fashion to derive an ordinary differential equation for ψh

nm(t).
First, we use (2.35) and (2.36) to replace radial by time derivatives and set r = R in (2.47).
This yields

1

cn+1
p

∂n+1

∂tn+1
Gn[hnm] = −

n+1
∑

j=1

βnj + γn,j−1

Rjcn+1−j
p

∂n+1−j

∂tn+1−j
Gn[hnm]

−
√

n(n + 1)
n+1
∑

j=1

γn,j−1

Rjcn+1−j
s

∂n+1−j

∂tn+1−j
Gn[gnm]−R(r̂ · u, Ynm), r = R.(2.62)
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Equation (2.62) is an (n + 1)-st order ordinary differential equation for Gn[hnm] at r = R,
which determines ψh,1

nm. Indeed, by definition of ψh
nm(t) in (2.43),

1

cp

d

dt
ψh,1

nm(t) =
1

R cnp

∂n

∂tn
Gn[hnm](R, t).(2.63)

The remaining n components of ψh,j
nm(t), 2 ≤ j ≤ n + 1, are determined by (2.58) with cs

replaced by cp, Gn[gnm] by Gn[hnm], and ψg,j
nm by ψh,j

nm. Again we simplify the notation by
introducing the constant n+ 1× n+ 1 matrix T n = {T ij

n }

T ij
n =











−n(n + 1)(1 + γn,j−1/βnj)/(2Rj) if i = 1,
βni/βn,j if i = j + 1,
0 otherwise.

(2.64)

With this new notation and the definition of ψg
nm(t) in (2.42) we obtain the first-order

ordinary differential equation

1

cp

d

dt
ψh

nm(t) = T nψ
h
nm(t)− [( r̂ · u|r=R , Ynm) + zn ·ψ

g
nm(t)]en+1.(2.65)

3 Exact nonreflecting boundary condition for u

Here we gather the various boundary conditions obtained in Section 2 and combine them
into an exact nonreflecting boundary condition for the full time-dependent three-dimensional
displacement field u. For the radial component of the boundary condition, we multiply (2.55)
by Ynm and sum over n and m to obtain

(

∂

∂r
+

1

cp

∂

∂t

)

(r r̂ · u) + R

(

1−
cs
cp

)

∇ · utan

=
∑

n≥0

∑

|m|≤n

[an ·ψ
h
nm(t) + bn ·ψ

g
nm(t)]Ynm, r = R.(3.1)

For the tangential components, we first multiply (2.29) by Vnm and (2.46) by Unm and sum
over n and m. Then we add the two resulting expressions and conclude by orthogonality of
Vnm and Unm that

(

∂

∂r
+

1

cs

∂

∂t

)

(rutan) +R
(

cp
cs

− 1
)

(r̂ ×∇× ((r̂ · u)r̂))

= −
∑

n≥1

∑

|m|≤n

dn ·ψ
f
nm(t)Vnm −

∑

n≥1

∑

|m|≤n

[pn ·ψ
h
nm(t) + qn ·ψ

g
nm(t)]Unm, r = R.(3.2)

We recall that utan and r̂(r̂ · u) stand for

utan =







0
uϑ

uφ





 , (r̂ · u)r̂ =







ur

0
0





 ,(3.3)
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where u = (ur, uϑ, uφ). The functions ψf
nm(t), ψ

g
nm(t), and ψh

nm(t), satisfy the following first
order, linear, ordinary differential equations

1

cs

d

dt
ψf

nm(t) = Anψ
f
nm(t) + (u |r=R ,Vnm)en, ψf

nm(0) = 0,(3.4)

1

cs

d

dt
ψg

nm(t) = Snψ
g
nm(t) + [(u|r=R ,Unm)− zn ·ψ

h
nm(t)]en+1, ψg

nm(0) = 0,(3.5)

1

cp

d

dt
ψh

nm(t) = T nψ
h
nm(t)− [( r̂ · u|r=R , Ynm) + zn ·ψ

g
nm(t)]en+1, ψh

nm(0) = 0.(3.6)

Only inner products of u with spherical harmonics appear on the right sides of (3.4)–(3.6),
and no derivatives of u normal to B appear. The boundary functions ψf

nm(t), ψ
g
nm(t), and

ψh
nm(t), can be computed concurrently with the numerical solution u inside Ω. Since the

ψ’s satisfy ordinary differential equations, the boundary condition is local in time. It does
not require saving past values of u.

Finally, we combine (3.1) and (3.2) into a single exact nonreflecting boundary condition
for u at B:

∂u

∂r
+

u

R
+

1

cs

∂utan

∂t
+

r̂

cp

∂(r̂ · u)

∂t

+
(

cp
cs

− 1
)

(r̂ ×∇× ((r̂ · u)r̂)) +

(

1−
cs
cp

)

∇ · utanr̂

= −
1

R

∑

n≥1

∑

|m|≤n

dn ·ψ
f
nm(t)Vnm −

1

R

∑

n≥1

∑

|m|≤n

[pn ·ψ
h
nm(t) + qn ·ψ

g
nm(t)]Unm(3.7)

+
1

R

∑

n≥0

∑

|m|≤n

[an ·ψ
h
nm(t) + bn ·ψ

g
nm(t)]Ynmr̂, r = R.

The boundary condition (3.7) relates normal derivatives of normal and tangential compo-
nents of u to tangential and time derivatives of u. In fact radial derivatives of the displace-
ment u appear only in the first term in (3.7), namely ∂ru. All the other terms involve only
tangential and time derivatives of u.

For numerical computation the sums over n on the right of (3.7) need to be truncated
at some finite value N . Then most of the work involved in applying the boundary condition
results from computing the inner products over B in (3.4)–(3.6) and the right-hand sides of
(3.7). To compute the inner products it is not necessary to compute O(N2) inner products
over the entire sphere. Since the spherical harmonics Ynm separate in θ and φ, it is sufficient
to compute O(N) inner products in φ, and then to compute O(N2) one-dimensional inner
products in θ over [0, π]. The same method can be used to calculate the sums over n and m
on the right of (3.7).

It remains to show that the displacement field u in Ω with the boundary condition (3.7)
imposed at B coincides with the restriction to Ω of the solution in the unbounded domain.
To be specific, we consider the following model problem:

Find u in IR3 × [0, T ) with T > 0 or T = ∞ satisfying

∂2u

∂t2
− c2p∇∇ · u+ c2s ∇×∇× u = f , in IR3 × (0, T ),(3.8)
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with initial conditions

u(x, 0) = u0(x),
∂

∂t
u(x, 0) = u̇0(x), x ∈ IR3.(3.9)

Here cp = cp(x), cs = cs(x), and f = f (x, t,u,∇u) may be nonlinear in Ω. However,
outside B, cs and cp are constant while u0, u̇0, and f are identically zero. Hence in Bext the
scattered field u(x, t) satisfies (2.1) with initial conditions (2.2), and u is continuous across
B. We shall now prove the following theorem:

Theorem 1 Suppose that the initial value problem (3.8) and (3.9) has a unique smooth
solution. Then so does the initial boundary value problem (3.8) and (3.9) in Ω× [0, T ) with
(3.7) imposed on B. The two solutions coincide in Ω.

Proof

The existence of the solution to (3.8) and (3.9) in Ω with (3.7) imposed on B is immediate,
since the restriction to Ω of the solution in the unbounded domain satisfies (3.8), (3.9), and
(3.7) by construction. To prove uniqueness, we let u1 and u2 be two solutions of (3.8)
and (3.9) in Ω with (3.7) imposed on B. Next, let vi, i = 1, 2, be the unique solutions of
(2.1)–(2.3) with the boundary conditions

vi(x, t) = ui(x, t) on ‖x‖ = R, t > 0, i = 1, 2.(3.10)

Let wi = ui in Ω and wi = vi outside Ω. Then by (3.10), both w1 and w2 are continous
across B, so that their time derivatives and tangential derivatives are continous on B. Since
ui and vi satisfy second order partial differential equations, we only need to show that
the normal derivative of wi is continuous across B to show that wi is a smooth solution
of (3.8) and (3.9) in the entire unbounded domain. In the derivation of the nonreflecting
boundary condition (3.7), only the fact that the solution satisfied the homogeneous elastic
wave equation (2.1) outside B with zero initial conditions was used. Thus, vi satisfies (3.7),
with ui replaced by vi, and ψf,i

nm, ψ
g,i
nm, and ψh,i

nm replaced by other functions ηf,i
nm, η

g,i
nm,

and ηh,i
nm, respectively. Since ui = vi at r = R, it follows that ψf,i

nm, ψ
g,i
nm, ψ

h,i
nm and ηf,i

nm,
ηg,i
nm, η

h,i
nm satisfy the same ordinary differential equations (3.4)–(3.6) and initial conditions;

therefore they coincide for all time. Moreover, all the terms in (3.7) but ∂ru involve only
tangential and time derivatives of ui and vi, which coincide. Therefore (3.7) implies that

∂ui

∂r
|r=R−

=
∂vi

∂r
|r=R+ , i = 1, 2.(3.11)

In other words, the normal derivative of wi is continuous across r = R. This implies that
both w1 and w2 are smooth solutions of the initial value problem in the infinite domain.
By the hypothesis of the theorem, this problem has a unique solution. Therefore w1 ≡ w2,
which completes the proof.

!
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4 Conclusion

We have derived (3.7), an exact nonreflecting boundary condition for the time dependent
elastic wave equation in three space dimensions, when the artificial boundary is a sphere.
Because this boundary condition is exact, the artificial boundary can be brought in as close
as desired to the scatterer without loss of accuracy. The condition is local in time. It contains
first derivatives of u and inner products with spherical harmonics of the displacement on
the artificial boundary. Therefore it can be combined easily with any standard numerical
scheme in the interior, such as a finite difference or a finite element method.

The derivation of (3.7) employs the elastic wave equation and the initial conditions outside
the spherical boundary r = R. It does not make use of any differential equation or initial
condition in the interior region r < R. Therefore it applies no matter what equations or
conditions are imposed upon the solution in the region r < R. In particular, it applies to
scattering problems with obstacles, inhomogeneities, or nonlinearity confined to the interior
region.
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Appendix

Lemma 1 Let Gn[u](r, t) be defined by (2.22). Then

r u(r, t) =
n
∑

j=0

γnj
rj

(

−
∂

∂r

)n−j

Gn[u](r, t),(4.1)

where

γnj =
(n+ j)!

(n− j)!j!2j
, 0 ≤ j ≤ n.(4.2)

Proof

See [1], Lemma 7.1. Note that the definition of Gn used in (2.22) differs from that used
in [1] by a factor of (−1)n.

!

Lemma 2 Let Gn[u](r, t) be defined by (2.22). Then

∂

∂r
(r u(r, t)) = −

n+1
∑

j=0

βnj

rj

(

−
∂

∂r

)n+1−j

Gn[u](r, t),(4.3)

where

βnj =































1, if j = 0

γnj + (j − 1)γn,j−1, if 1 ≤ j ≤ n,

n γnn, if j = n+ 1.

(4.4)

Proof

For n = 0, (2.22) shows that G0[u] = ru, and the result follows immediately from (4.4),
since β00 = 1 and β01 = 0.

For n ≥ 1, we use Lemma 1 above to obtain

∂r(ru) =
n
∑

j=0

∂

∂r

{

γnj
rj

(−∂r)
n−jGn[u]

}

.(4.5)

We evaluate (4.5), which yields

∂r(ru) = −(−∂r)
n+1Gn[u]−

n γnn
rn+1

Gn[u]

−
n
∑

j=1

γnj + (j − 1)γn,j−1

rj
(−∂r)

n+1−jGn[u].(4.6)

The first two terms on the right of (4.6) correspond to the two terms j = 0 and j = n+1 of
the sum in (4.3), whereas the sum in (4.6) correponds to those terms with 1 ≤ j ≤ n. Now
the result follows immediately by definition of βnj .
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!

A direct consequence of the two Lemmas above is:

Lemma 3 Let Gn[u](r, t) be defined by (2.22), γnj by (4.2), βnj (4.4), and for all n ≥ 0 set

γn,−1 = 0.(4.7)

Then
∂

∂r
(u(r, t)) = −

n+1
∑

j=0

βn,j + γn,j−1

rj+1

(

−
∂

∂r

)n+1−j

Gn[u](r, t),(4.8)

Proof

We rewrite ∂ru as r−1∂r(ru)− r−2(ru) and apply Lemma 2 to the first term and Lemma
1 to the second term.

!
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