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Eidgenössische Technische Hochschule

CH-8092 Zürich
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1 Introduction

The Orr-Sommerfeld equation, hereafter referred to as OSE, occurs in hydrodynamic sta-
bility theory of shear flows of viscous, Newtonian, incompressible fluids. The instability
of such flows has been and continues to be one of the most constantly pursued topics in
fluid mechanics. The above mentioned flows may exist under various physical conditions,
for instance flows in a pipe or a channel, flows of superposed immiscible fluids, wakes, jets,
plumes and free streams. These flows may be laminar or turbulent and the transition from
the former to the latter is closely related to the above mentioned instability. The actual flow
problem to be solved is physically a highly idealized one. The basic flow is assumed to be an
exact solution to the steady state Navier Stokes equations, while it does not change in the
flow direction and depends only on the distance from the walls. The disturbances imposed
on the basic flow (with profile U) have the form of travelling waves (with wavenumber a > 0)
whose amplification with respect to time, not with respect to the distance travelled in the
flow direction, is investigated in the framework of (linearized) modelling equations. The task
is to determine the complex eigenvalues λ = !λ+ i"λ of the OSE since the real part of the
temporal growth rate of the disturbances is given by ea!λt and amplifies perturbations, i.e.,
those with "λ > 0, become unbounded and make the flow unstable.
Both analytical (see, e.g., [5], [14], [19]) and numerical approaches have been made to solve
the Orr-Sommerfeld eigenvalue problem. Finite Difference Methods (FDMs) were among
the first by which the discretization of the OS eigenvalue problems were implemented (cf.,
e.g., [23], [7], [13]).
Spectral Methods implemented in the late 50’s suffered from similar disadvantages as the
FDM’s did: the size of the matrices and the accuracy of the results were limited by computer
speed and memory size (see, e.g., [3]). Moreover, so-called spurious modes, eigenvalues
with large positive imaginary parts which are not at all related to the OSE, occured even
in regimes where the flow is known to be stable (see, e.g., [6], [15], [16]). Nevertheless,
further investigations in linear instability theory using Spectral Methods were made, but
seldom spectral orders p of several hundreds were employed. However, contrary to classical
problems like the Bénard- or Taylor-Problem, where indeed only low to moderate spectral
orders suffice to achieve excellent results, the Orr-Sommerfeld problem at high Reynolds
numbers Re mandates the use of large spectral orders p (several hundreds to thousands)
to guarantee scale resolution and reliable approximations of the eigenvalues. This need for
scale resolution has been noted experimentally in, e.g., [4] and we shall give a rigorous proof
below.
Almost all calculations aimed at finding the least stable eigenvalue for plane Poiseuille flow
and the critical Reynolds number, and difficulties in performing calculations with sufficient
accuracy are a commonly reported issue. In 1971, Orszag [18] used expansions in Chebyshev
polynomials and a Tau-Method to transform the OSE into a matrix equation of the form
Bx = λCx which was then solved by using the QR-algorithm. Orszag found his results due to
the special properties of the Chebyshev polynomials to be more accurate than those obtained
previously. Since then, most subsequent spectral techniques for the OSE employed the Tau
discretization and Chebyshev polynomials, for which fast transform methods are available.
The eigenvalue problem resulting from such a spectral discretization has the unfortunate
property that the matrices B and C are relatively fully occupied and that C is in general
singular. The singularity of C (which is due the way the boundary conditions are accounted
for in the Tau-method) might account for the appearance of the spurious eigenvalues (see [4]).
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The Galerkin Spectral Method proposed in the present paper avoids some of the difficulties
Chebyshev-Tau methods encounter. Our main results are the following:

1. The use of a Galerkin formulation allows for a rigorous convergence analysis for the
eigenvalues; we show in particular that reliable results can only be expected under the
assumption of scale resolution, that is, that Re/p2 is sufficiently small.

2. New analytic regularity results for the eigenfunctions of the OSE (with analytic profile
U) are presented that are explicit in Re and λ; these regularity results allow for a proof
of exponential convergence.

3. No spurious eigenvalues occur and for the mass matrix C there holds that −iC is
positive definite.

4. For plane Poiseuille flow, the stiffness and mass matrices B, C are sparse with band-
widths 6 and 4, respectively; hence, iterative methods for the matrix eigenvalue problem
may be very efficient and this opens to the way to the use of very large spectral orders,
[12].

5. For polynomial profiles U , the stiffness and mass matrices B, C can be calculated
explicitly and stably thereby avoiding quadrature errors.

6. Numerical experiments with spectral orders up to p = 1000 confirm our convergence
analysis and illustrate the necessity of scale resolution to obtain reliable results.

1.1 Notation and Problem Formulation

We set Ω = (−1, 1) and denote by L2(Ω) the Hilbert space of square integrable complex-
valued functions functions with the usual inner product (φ,ψ)0 :=

∫ 1

−1 φ(x)ψ(x) dx. The
norm induced by (·, ·)0 is denoted by ‖ · ‖0. Next, we define for smooth functions φ and
k ∈ N the following semi-norms and norms:

|φ|2k := ‖Dkφ‖20, ‖φ‖2k :=
k∑

n=0

|φ|2n.

Here, the operator D denotes differentiation. The Sobolev spaces Hk(Ω), Hk
0 (Ω) are then

defined in the usual way (see, e.g., [1]). We recall here that ‖ · ‖k and | · |k are equivalent
norms on Hk

0 (Ω).
A pair (λ,φ) ∈ C×H2

0 (Ω), φ '= 0, is an eigenpair of the Orr-Sommerfeld equation if

(D2 − a2)2φ = iaRe(U − λ)(D2 − a2)φ− iaRe (D2U)φ. (1)

Here, a > 0 is the wavenumber, i =
√
−1, and, since we are interested in large Reynolds

numbers Re, we assume Re ≥ 1. Concerning the flow profile U , a real-valued function, we
make the assumption that U ∈ C2(Ω). Multiplying (1) by a test function ψ ∈ H2

0 (Ω) and
integrating by parts yields the variational formulation of the eigenvalue problem (1):

find (λ,φ) ∈ C×H2
0 (Ω) s.t. b(φ,ψ) = λiaRe c(φ,ψ) ∀ψ ∈ H2

0 (Ω). (2)
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Here, the continuous sesquilinear forms b and c, defined on H2
0 (Ω)×H2

0 (Ω) are given by

b(φ,ψ) := b4(φ,ψ) + iaRe b2(φ,ψ),

b4(φ,ψ) := ((D2 − a2)φ, (D2 − a2)ψ)0,

b2(φ,ψ) := ((D2U)φ,ψ)0 − (U(D2 − a2)φ,ψ)0,

c(φ,ψ) := −((D2 − a2)φ,ψ)0.

2 p-FEM Galerkin discretization

To treat (2) numerically, the infinite dimensional space H2
0 (Ω) is replaced by finite dimen-

sional spaces VN ⊂ H2
0 (Ω) of dimension N ∈ N giving rise to the discrete eigenvalue problem

in variational form

find (λ,φ) ∈ C× VN \ {0} s.t. b(φ,ψ) = λiaRe c(φ,ψ) ∀ψ ∈ VN . (3)

If φ1, . . . ,φN is a basis of VN ⊂ H2
0 (Ω), then (3) can be formulated as a generalized matrix

eigenvalue problem

find (λ,φ) ∈ C× (CN \ 0) s.t. Bφ = λCφ (4)

where the matrices B, C ∈ CN×N are given by

Bij = b(φj,φi), Cij = iaRe c(φj,φi), 1 ≤ i, j ≤ N. (5)

We note that (4) does have indeed N eigenvalues as the matrix −iC is positive definite (cf.
Lemma 3.3 for the detailed argument) and hence the pair (B,C) is a regular pair in the
sense of [22].
Contrary to the classical Chebyshev-Tau spectral approach, our choice of the spaces VN and
the basis functions {φi}Ni=1 will lead to sparse matrices B and C whose additional feature
is that they are as well-conditioned as can be expected from discretizing a fourth-order
equation. It should also be pointed out that the mass matrixC is invertible as−iC is positive
definite. This is in marked contrast to the classical Chebyshev-Tau spectral approach where
the mass matrix is not invertible due to the way the boundary conditions are enforced; the
appearance of spurious eigenvalues in the Chebyshev-Tau method is sometimes attributed
to the fact that the mass matrix is singular, [4]. In agreement with our theory below, we do
not observe any spurious eigenvalues.

2.1 The subspace VN

We denote by Pp(Ω) the polynomials of degree p on Ω and set

VN := Pp(Ω) ∩H2
0 (Ω).

The numerical properties such as conditioning and round-off sensitivity of the matrix eigen-
value problem (4) depend strongly on the choice of the basis for VN .
We denote by Li, i ∈ N0, the Legendre polynomials on (−1, 1) normalized such that Li(1) = 1
(cf., e.g., [9]). For p ≥ 4 we set for i = 1, . . . , p− 3

φi(z) :=

√
2i+ 3

2

∫ z

−1

∫ η

−1

Li+1(z) dzdη =

√
2i+ 3

2

∫ z

−1

(z − η)Li+1(η) dη. (6)
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It is easy to check that the functions φi, i = 1, . . . , p− 3 are linearly independent and span
the space Pp(Ω) ∩H2

0 (Ω). Thus

VN = span{φi}, i = 1, . . . , p− 3, dimVN = p− 3. (7)

2.2 Structure of the discrete problem

For convenience, we will first state some results concerning the Legendre polynomials. In the
calculation of the stiffness and the mass matrix, essential use will be made of the following
properties of the Legendre polynomials:

Lemma 2.1 The Legendre polynomials have the following properties:

a) (2i+ 1)Li = D(Li+1 − Li−1), i = 1, 2, . . . ,

b) (Li, Lj)0 =

∫ 1

−1

Li(z)Lj(z) dz =

{
2

2i+1 , i = j

0, i '= j,

c)Li(−1) = (−1)i, Li(1) = 1,

d)

∫ z

−1

Li+1(η) dη =
1

2(i+ 1) + 1
(Li+2(z)− Li(z)) ,

Lemma 2.2 The shape functions φi defined in (6) satisfy

a)φi(z) =

√
2i+ 3

2

1

(2i+ 3)(2i+ 5)
(Li+3(z)− Li+1(z))

−
√

2i+ 3

2

1

(2i+ 1)(2i+ 3)
(Li+1(z)− Li−1(z)) ,

b)Dφi(z) =
1

√
2(2i+ 3)

(Li+2(z)− Li(z)) ,

c)D2φi(z)=

√
2i+ 3

2
Li+1(z).

Proof: In all cases the results are obtained by straightforward calculation using integration
by parts, Lemma 2.1, and the Leibniz rule. %

The stiffness matrix B and the mass matrix C are given by

Bij = b(φj ,φi) = T1ij − 2a2T2ij + a4T3ij + iaReT4ij − iaReT5ij + ia3ReT6ij , (8)

Cij = iaRe c(φj,φi) = −iaRe(T2ij − a2T3ij), (9)

where, for shorthand, T1ij := (D2φj, D2φi)0, T2ij := (D2φj ,φi)0, T3ij := (φj,φi)0, T4ij :=
(φjD2U,φi)0, T5ij := (UD2φj ,φi)0 T6ij := (Uφj,φi)0. Combining the orthogonality prop-
erties of the Legendre polynomials collected in Lemma 2.1 with the properties of the shape
functions φi listed in Lemma 2.2 it is easy to prove the following assertions concerning the
bandwidths of the matrices T1, . . . ,T6 (cf. [11] for the detailed arguments).

Proposition 2.3 The matrix T1 is the identity matrix, T2 has bandwidth 2 and T3 has
bandwidth 4. If the profile U ∈ Pk(Ω) for some k ∈ N, then the matrices T4, T5, and T6

are also banded with bandwidths k + 2, k + 2, and k + 4, respectively.
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Remark 2.4 The bands of the matrices T2 and T3 are not even fully populated as every
other diagonal is zero.

The application of Proposition 2.3 to the classical plane Poiseuille flow problem reads as
follows.

Corollary 2.5 In the case of plane Poiseuille flow, U(z) = 1 − z2, the stiffness matrix B

has bandwidth 6 and the mass matrix C has bandwidth 4. Furthermore, every other diagonal
in the band is zero.

Using Lemmata 2.1, 2.2 all entries Bij, Cij can be computed explicitly thereby avoiding
quadrature errors, [11].

2.3 Conditioning of the stiffness and mass matrices

We equip the space CN with the norm ‖φ‖2l2 :=
∑N

i=1 |φi
|2 for φ ∈ CN . This norm induces

in the standard way the norm ‖ · ‖l2 on the space of complex N ×N matrices via ‖A‖l2 :=
max{‖Aφ‖l2 | φ ∈ CN , ‖φ‖l2 = 1}. With this notation, we can formulate the following
proposition.

Proposition 2.6 Let the matrices B, C be given by (8), (9) where the basis functions ϕi

are given by (6). Then there is C > 0 depending only on the parameter a and the profile U
such that

‖B‖l2 ≤ CRe, ‖C‖l2 ≤ CRe, ‖C−1‖l2 ≤ C
p4

Re
.

Proof: For the sake of brevity, we will only prove the bound for ‖C−1‖l2 as the other
estimates are proved analogously. We start by observing that Lemmata 2.2, 2.1 allow us to
conclude that the map

F :
(
C

N , ‖ · ‖l2
)

→ (VN , | · |2)

ψ /→ F (ψ) :=
N∑

i=1

ψ
i
φi

is an isometric isomorphism, i.e., |F (ψ)|2 = ‖ψ‖l2 for all ψ ∈ CN . We have for any ψ ∈ CN

‖Cψ‖l2 = sup
θ∈CN

∣∣θTCψ
∣∣

‖θ‖l2
= sup

θ∈VN

|iaRe c(ψ, θ)|
|θ|2

≥ Re a min {1, a2}
‖ψ‖21
|ψ|2

where we wrote ψ = F (ψ), θ = F (θ) and used Lemma 3.3 ahead. From the standard inverse
estimate (cf., e.g., [20])

‖ψ‖2 ≤ Cp2‖ψ‖1
valid for all polynomials ψ of degree p, we therefore obtain

‖Cψ‖l2 ≥ C
Re

p4
|ψ|22
|ψ|2

= C
Re

p4
‖ψ‖l2.

Whence the assertion ‖C−1‖l2 ≤ Cp4/Re. %
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One way to solve the matrix eigenvalue problem (4) is to use the QZ algorithm. The QZ
algorithm (cf., e.g., [8]) produces two orthogonal matrices Q, Z such that QTBZ = T,
QTCZ = S where the matrices T, S are upper triangular. The eigenvalues λi of the problem
(4) are then given by λi = tii/sii. One source of round-off sensitivity is therefore the size of
the diagonal entries sii. The final proposition of this section gives bounds on these entries:

Proposition 2.7 Let Q, Z be orthogonal matrices such that S = QTCZ is upper triangular.
There are C1, C2 > 0 depending only the parameter a and the profile U such that the diagonal
entries sii of S satisfy

C1
Re

p4
≤ |sii| ≤ C2Re, i = 1, . . . , N.

Proof: For the upper bound, we observe that

|sij | ≤ ‖S‖l2 = ‖C‖l2, 1 ≤ i, j ≤ N,

where the last equality follows from the fact that Q, Z are orthogonal matrices. Proposi-
tion 2.6 now gives the upper bound. For the lower bound, we exploit the fact that if S is an
invertible upper triangular matrix, so is S−1 and that the diagonal entries of S−1 are given
by 1/sii. Therefore,

|1/sii| ≤ ‖S−1‖l2 = ‖C−1‖l2, i = 1, . . . , N.

Hence appealing again to Proposition 2.6 allows us to conclude the argument. %

3 Convergence Analysis

The main theoretical result of the paper is

Theorem 3.1 Let the profile U ∈ C2(Ω). Let λ ∈ C be an eigenvalue of (1) whose algebraic
multiplicity m ∈ N coincides with the geometric multiplicity. Let λN,j, j = 1, . . . , m, be the
numerical eigenvalues that converge to λ. Then there are constants Cλ, C ′

λ > 0 depending
on λ, Re ≥ 1, a > 0, and U such that under the assumption of scale resolution

Re

p2
≤ Cλ (10)

there holds

|λ− λN,j| ≤ C ′
λ

(
Re(1 + |λ|)

p2

)2

, j = 1, . . . , m. (11)

If the profile U is analytic on Ω, then there are γ, γ′ > 0 depending only on U and a > 0
such that under the assumption of scale resolution, (10), there holds

|λ− λN,j| ≤ C ′
λ exp

[√
Re(γ′ + |λ|)− γp

]
, j = 1, . . . , m. (12)

It is worth stressing that the constants γ, γ′ in (12) are independent of Re and λ.
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Remark 3.2 The assumption that the algebraic multiplicity coincides with the geometric
multiplicity is made for convenience only. If the ascent of the eigenvalue is greater than 1,
convergence of the numerical eigenvalues is still guaranteed, albeit at a reduced rate; cf. [21].
The constants Cλ, C ′

λ depend on the resolvent of the operator T (to be defined in the proof
below) in the neighborhood of the eigenvalue λ. As T depends on Re, the constants Cλ, C ′

λ

do depend on Re as well. Without additional a priori knowledge about the spectrum of the
OSE, the general theory of [21] on which the present analysis is based does not lead to sharp
estimates on these two constants.

The rest of this section is devoted to the proof of Theorem 3.1.

3.1 Preliminaries

For Re ≥ 1 it will be convenient to introduce the norm ‖ ·‖2,Re on H2(Ω) which is equivalent
to the standard norm ‖ · ‖2:

‖φ‖22,Re := |φ|22 +Re‖φ‖21.

We will denote by H2
0,Re(Ω) the space H2

0 (Ω) equipped with the norm ‖ · ‖2,Re.

Lemma 3.3 Let Re ≥ 1. Then there are C1, C2, C3 > 0 depending only on a > 0 and the
profile U such that for all φ, ψ ∈ H2

0 (Ω):

![b(φ,φ)] ≥ |φ|22 −
1

2
C1aRe‖φ‖21,

|b(φ,ψ)| ≤ C2‖φ‖2,Re‖ψ‖2,Re,

c(φ,φ) = ‖φ‖21 + a2‖φ‖20,
|c(φ,ψ)| ≤ C3‖φ‖1‖ψ‖1.

Proof: Follows immediately by some integration by parts and the Cauchy-Schwarz inequal-
ity. %

Lemma 3.4 With C1 of Lemma 3.3 there holds: The pair (λ,φ) ∈ C×H2
0 (Ω) is an eigenpair

of (2) if and only if (λ̃,φ) ∈ C×H2
0 (Ω)\{0} with λ̃ = λ−iC1 is an eigenpair of the eigenvalue

problem

b̃(φ,ψ) := b(φ,ψ) + C1aRe c(φ,ψ) = λ̃ iaRe c(φ,ψ) ∀ψ ∈ H2
0 (Ω). (13)

Furthermore, in the discrete case, the pair (λ,φ) ∈ C×VN \ {0} is an eigenpair of (3) if and
only if (λ̃,φ) ∈ C× VN with λ̃ = λ− iC1 is an eigenpair of

b̃(φ,ψ) := b(φ,ψ) + C1aRe c(φ,ψ) = λ̃ iaRe c(φ,ψ) ∀ψ ∈ VN . (14)

Moreover, there are C, C ′ > 0 depending only on a > 0 and U such that for all φ, ψ ∈ H2
0 (Ω)

![̃b(φ,φ)] ≥ C‖φ‖22,Re,∣∣̃b(φ,ψ)
∣∣ ≤ C ′‖φ‖2,Re‖ψ‖2,Re.
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Proof: The first two assertions are obvious. The assertions about b̃ follow from Lemma 3.3.
%

Lemma 3.4 allows us to consider the eigenvalue convergence for the eigenvalue problem (13)
instead of (2). As b̃ satisfies an inf-sup condition by Lemma 3.4, the general approximation
theory for eigenvalue problems of [21] can be applied. We will therefore perform the conver-
gence analysis for (13) and (14) instead of (2), (3). The next subsection is devoted to the more
detailed application of the general theory developed in [21] to the present Orr-Sommerfeld
problem.

3.2 Abstract Convergence Results

In order to recast the variationally posed eigenvalue problem (13) in a more convenient form,
we define the operator T : H2

0(Ω) → H2
0 (Ω) and its “dual” T∗ : H2

0 (Ω) → H2
0 (Ω) by

b̃(Tφ,ψ) = iaRe c(φ,ψ) ∀ψ ∈ H2
0(Ω), (15)

b̃(φ, T∗ψ) = iaRe c(φ,ψ) ∀φ ∈ H2
0 (Ω). (16)

The operators T , T∗ are well-defined bounded linear operators and in fact compact:

Lemma 3.5 Let T , T∗ be defined by (15), (16). Then there is C > 0 depending only on
a > 0 and U such that for Re ≥ 1 and for all φ ∈ H2

0 (Ω)

‖Tφ‖2,Re ≤ C‖φ‖2,Re, |Tφ|4 ≤ CRe‖φ‖2,Re,
‖T∗φ‖2,Re ≤ C‖φ‖2,Re, |T∗φ|4 ≤ CRe‖φ‖2,Re.

Proof: As the sesquilinear form b̃ satisfies an inf-sup condition by Lemma 3.4, the operators
T and T∗ are well-defined bounded linear operators. For the bounds on these operators, we
will only show the estimates for T as those for T∗ are completely analogous. From Lemma 3.4
we obtain immediately

C ′‖Tφ‖22,Re ≤ |̃b(Tφ, Tφ)| = aRe |c(φ, Tφ)| ≤ aRe ‖φ‖1‖Tφ‖1

and hence the first estimate. For the second inequality, we integrate the defining equation
for T by parts to discover that Tφ satisfies the following fourth order equation

(D2−a2)2Tφ = iaReU(D2−a2)Tφ− iaRe(D2U) Tφ+C1aRe (D2−a2)Tφ− iaRe (D2−a2)φ

from which we can easily deduce the claim. %

As the operators T and T∗ are compact their spectrum is discrete and only the origin is a
possible point of accumulation. It is easy to see that (λ̃,φ) is an eigenpair of (13) if and only
if (λ̃−1,φ) is an eigenpair of the operator T . Furthermore, λ̃−1 is an eigenvalue of T iff it is
an eigenvalue of T∗.
Next, we define the projection PN : H2

0 (Ω) → VN by

b̃(PNφ,ψ) = b̃(φ,ψ) ∀ψ ∈ VN .

Again, PN is well-defined by the fact that b̃ satisfies an inf-sup condition. We observe
that the discrete eigenvalue problem (14) is related to the operator T as follows: The pair
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(λ̃,φ) ∈ C× VN is an eigenpair of (14) if and only if (λ̃−1,φ) is an eigenpair of the compact
operator

TN := PNT. (17)

We are now in a position to quote from [21] a theorem that allows us quantify the difference
between the eigenvalues of T and TN :

Theorem 3.6 Let λ̃ be an eigenvalue of (13) whose algebraic multiplicity m ∈ N coincides
with its geometric multiplicity. Define

M(λ̃) := {φ ∈ H2
0 (Ω) | λ̃Tφ = φ, ‖φ‖2,Re = 1},

M∗(λ̃) := {φ ∈ H2
0 (Ω) | λ̃T∗φ = φ, ‖φ‖2,Re = 1},

ε(λ̃) := sup
φ∈M(λ̃)

inf
v∈VN

‖φ− v‖2,Re,

ε∗(λ̃) := sup
φ∈M∗(λ̃)

inf
v∈VN

‖φ− v‖2,Re.

Let λ̃N,1, . . . , λ̃N,m be eigenvalues of (14) converging to λ̃. Under the assumption

‖T − TN‖2,Re ≤ Cλ̃ (18)

with Cλ̃ > 0 sufficiently small (depending only T and λ̃) there is C > 0 independent of p
such that

|λ̃− λ̃N,j| ≤ Cε(λ̃)ε∗(λ̃), j = 1, . . . , m.

Proof: See Chap. II, Sec. 8 of [21]. %

It is therefore important to obtain bounds for the best approximation problems ε(λ̃), ε∗(λ̃).
This will be done in Section 3.4. The remainder of this subsection is devoted to the analysis
of ‖T −TN‖2,Re. We start with a lemma about the approximation properties of the projector
PN :

Lemma 3.7 There is C > 0 independent of Re ≥ 1, p, such that

‖(I − PN)u‖2,Re ≤ Cp−2

[

1 +

√
Re

p

]

|u|4 ∀u ∈ H4(Ω) ∩H2
0 (Ω).

Proof: From standard theory (cf., e.g., [2]) there holds with C, C ′ of Lemma 3.4 (which are
independent of Re)

‖φ− PNφ‖2,Re ≤
(
1 +

C ′

C

)
inf

ψ∈VN

‖u− ψ‖2,Re. (19)

The result follows now by combining (19) with standard spectral approximation results as
can be found in, e.g., [20]. %

We obtain therefore

Theorem 3.8 Let T , TN be defined by (15), (17). Then there is C > 0 depending only on
a > 0, U such that for all Re ≥ 1 there holds

‖T − TN‖2,Re ≤ C
Re

p2

[

1 +

√
Re

p

]

.
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Proof: We observe that T − TN = (I − PN)T . Hence, for all u ∈ H2
0,Re(Ω) we get by

combining Lemmata 3.5, 3.7

‖(I − PN)Tu‖2,Re ≤ Cp−2

[

1 +

√
Re

p

]

|Tu|4 ≤ Cp−2

[

1 +

√
Re

p

]

Re‖u‖2,Re

and hence the claim. %

We note at this point already that the assumption (10) together with Theorem 3.8 guar-
antees that (18) is satisfied. The next subsection clarifies the regularity properties of the
eigenfunctions of T and T∗. These regularity results will then enable us to estimate ε(λ̃),
ε∗(λ̃), thereby allowing us to conclude the proof of Theorem 3.1 in Section 3.4.

3.3 Regularity of the Eigenfunctions

Lemma 3.9 Assume that U ∈ C2(Ω) and Re ≥ 1. Then there is C > 0 depending only
on a > 0 and the profile U such that for each eigenpair (λ̃−1,φ) of T and each eigenpair
(λ̃−1,φ∗) of T∗ there holds

|φ|4 ≤ CRe|λ̃|‖φ‖2,Re, |φ∗|4 ≤ CRe|λ̃|‖φ∗‖2,Re.

Proof: For eigenpairs (λ̃−1,φ) of T there holds λ̃Tφ = φ. Appealing to Lemma 3.5 allows
us to obtain the first estimate. The second one is obtained in the same manner. %

If the profile is analytic, we can estimate the growth of the derivatives:

Lemma 3.10 Assume that Re ≥ 1 and that U is analytic on Ω, i.e., there CU , γ > 0 such
that

‖DnU‖L∞(Ω) ≤ CUγ
nn! ∀n ∈ N0.

Then each eigenfunction φ of (13) is analytic on Ω. Moreover, there are C, K > 0 depending
only on the profile U and the parameter a > 0 such that for all eigenpairs (λ̃,φ) of (13) there
holds

‖Dn+2φ‖0 ≤ CKn max {n,R}n‖φ‖2,Re ∀n ∈ N0, (20)

where

R :=
√
Re(1 + |λ̃|). (21)

Proof: Choosing C and K sufficiently large guarantees that (20) holds for n = 0 and n = 2
by Lemma 3.9. Let us now see that it holds for n = 1 as well: We have

‖φ‖H4(Ω) ≤ C [|φ|4 + ‖φ‖2] ≤ C(Re(1 + |λ̃|))‖φ‖2,Re

by Lemma 3.9. This estimate together with the interpolation estimate

‖φ‖3 ≤ C
[
ε‖φ‖4 + ε−1‖φ‖2

]
∀ε > 0

with ε = (Re(1 + |λ̃|))−1/2 yields the desired bounds for n = 1. We will now proceed by
induction on n. For n ≥ 3 we therefore assume that (20) holds for 0 ≤ ν ≤ n − 1. We
observe now that φ satisfies the following equation:

D4φ =
[
iaRe(U − λ̃− C1i) + 2a2

]
D2φ+

[
−ia3Re(U − λ̃− C1i)− iaReD2U − a4

]
φ (22)
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with C1 of Lemma 3.4. Introducing the shorthand

b1 =
[
iaRe(U − λ̃− C1i) + 2a2

]
, b2 =

[
−ia3Re(U − λ̃− C1i)− iaReD2U − a4

]
,

we obtain by differentiating (22) n− 2 times from Leibniz’s rule:

Dn+2φ =
n−2∑

ν=0

(
n− 2

ν

)
Dνb1D

n−νφ+
n−2∑

ν=0

(
n− 2

ν

)
Dνb2D

n−2−νφ. (23)

The assumptions on U give the existence of CB, B > 0 depending on CU , γ > 0 such that

‖bj‖L∞(Ω) ≤ CB Re (1 + |λ̃|), j = 1, 2

‖Dνbj‖L∞(Ω) ≤ CBRe ν!Bν , ν ≥ 1, j = 1, 2.

The remainder of the proof follows the standard induction procedure—we refer to the proof
of Theorem 1 of [17] where a similar calculation is carried out in detail. %

3.4 Proof of Theorem 3.1

We start by quoting the following lemma which can be extracted from the proof of Theo-
rem 16 of [17]:

Lemma 3.11 Let φ be analytic on Ω and satisfy, for some C, K, and R > 0

‖Dnφ‖0 ≤ CKn max (n,R)n ∀n ∈ N0.

Then there is a polynomial v of degree p ≥ 3 with v(±1) = φ(±1), v′(±1) = φ′(±1), such
that

‖φ− v‖2 ≤ C ′eRe−γp

for some C ′, γ > 0 depending only on C, K.

Let us now turn to the proof of (11), (12). We observe that the assumption of scale resolution,
(10), follows from combining the condition on ‖T−TN‖2,Re of Theorem 3.6 with Theorem 3.8.
Next, if U ∈ C2(Ω), we can bound by Lemmata 3.7, 3.9

ε(λ̃)ε∗(λ̃) ≤ sup
φ∈M(λ̃)

‖φ− PNφ‖2,Re sup
φ∗∈M∗(λ̃)

‖φ∗ − PNφ
∗‖2,Re

≤ C

(
Re|λ̃|
p2

[

1 +

√
Re

p

])2

‖φ‖2,Re

which yields (11) after observing that λ̃ and λ differ by the constant iC1. For (12), we
observe that ε∗(λ̃) ≤ 1 and that from Lemmata 3.10, 3.11 we have

ε(λ̃) ≤ C
√
Re e

√
Re(1+|λ̃|)e−γp

for some γ > 0 depending only U and a > 0. Whence (12).
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4 Numerical Results

The aim of our numerical examples is to corroborate our convergence result Theorem 3.1 by
considering the case of plane Poiseuille flow, i.e., the profile U is given by

U(z) = 1− z2 and we choose a = 1 (24)

in (1). The spaces VN are given by (6); due to the structure of the profile U , the entries of
B and C can be evaluated exactly. The matrix eigenvalue problem (4) is solved with the
QZ algorithm in Matlab, i.e., the calculations are performed in Fortran double precision (16
digits/64 bit arithmetic).
The profile U is an analytic function and hence we have exponential rates of the convergence
for the eigenvalues (cf. (12) in Theorem 3.1). This exponential convergence behavior is
demonstrated in Fig. 1 where the convergence of the least stable eigenvalue, i.e., the eigen-
value with the largest (positive) imaginary part, is plotted against the polynomial degree p.
As the value of the exact eigenvalue is unknown, a high order (p = 500) approximation is
taken as the reference value. A more detailed numerical convergence study of the behavior of
the 5 least stable modes for Re = 1.E4 and Re = 2.7E4 can be found in [11]—in particular,
the Spectral Galerkin Method was able to reproduce the 32 least stable eigenvalues listed in
the literature, [18, 4].
(12) in Theorem 3.1 suggests that we can expect convergence of the eigenvalues of size |λ|
only if the assumption of scale resolution,

√
Re(1 + |λ|)− γp is “sufficiently small”, (25)

is met, i.e., that Re(1 + |λ|)/p2 is sufficiently small. Our next experiments show that this
assumption is indeed necessary. For Re = 2.7E4 Fig. 2 shows the eigenvalue distribution
for p = 200, 300, 400, and 500. We notice that there is a “stem” (the so-called S-branch; cf.
[5] for the standard notation of the branches of the eigenvalue distribution) whose elements
have real part 2/3. As p increases, this stem becomes longer. The S-branch consists of those
modes which are “transported” with the mean bulk velocity, which for plane Poiseuille flow
is evaluated exactly to 2/3 (cf., e.g., [10]). Eigenfunctions with numerical eigenvalues with
large negative imaginary part and real part deviating considerably from 2/3 have therefore
to be considered as underresolved. Hence, it is physically meaningful to take the “length”
of the S-branch as a measure of the numerical scale resolution and we define the numerical
length of the S-branch as

L(N) := −min{"λN,i |"λN,i ≤ −1 and |!λN,i − 2/3| < τ}, τ = 0.01. (26)

In Fig. 3 the numerical length L(N) of the S-branch is plotted versus the polynomial degree
p for Re = 2.7E4. We observe in Fig. 3 a behavior

L(N) ∼ p2. (27)

Next, we fix p = 500 and compute the numerical length L(N) of the S-branch as a function
of the Reynolds number Re in Fig. 4. There, we obtain

L(N) ∼ Re−1. (28)

Combining (27), (28), we therefore have the empirical relation
√

ReL(N) ∼ p. (29)
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As the numerical length of the S-branch is essentially the magnitude of the largest “trust-
worthy” eigenvalue, (29) coincides with (25). The assumption of scale resolution (25) is
therefore an essential condition to guarantee the convergence of the discrete eigenvalue to
the continuous eigenvalues.
It should be mentioned, however, that for p = 500 the results for Re = 105 do not seem very
reliable: Although our technical definition of the numerical length of the S-branch yields
a value of L(N) that fits the law (28), a comparison between the results for p = 500 and
Re = 105 in Fig. 5 and those for p = 1000 in Fig. 6 shows a significant discrepancy between
these two numerical spectra.
It has been observed in the literature that Tau discretizations at large Reynolds numbers
are very sensitive to finite precision arithmetic. In contrast, the present Spectral Galerkin
Method seems to be more robust in this respect. To illustrate this, we compare our 64
bit arithmetic results for the two cases Re = 27000/p = 200 and Re = 27000/p = 500 in
Figs. 7, 8 with those of [4] (cf. Figs. 2–5 of [4]). At 64 bit arithmetic, the Tau discretization
produces—instead of a well-defined Branch-Point from which the S-branch emanates— a
triangular region of numerical eigenvalues. This triangular region is entirely due to round-off
problems as 128 bit calculations remove this triangular region and the expected well-defined
Branch-Point emerges. In contrast to this behavior, the Spectral Galerkin Method resolves
the Branch-Point with 64 bit arithmetic already (cf. Figs. 7, 8 with Figs. 2–5 of [4]).
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