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Abstract

The formulae for the Coulomb potential derived in this paper apply to the

situation most commonly encountered in applications: a basic cell containing

N charges and their periodic images. The Coulomb energy or the Coulomb

forces can then be calculated using e.g. Ewald sums. The formulae given here

have several advantages over the Ewald technique, in particular when N is

large.



1. Introduction

Consider a basic cell C (a cube of side 1) containing N charges qi with total charge zero. A
standard situation is to consider all replicas of C filling the whole three dimensional space
or else a two-dimensional layer of finite thickness. In both situations one is interested in
the Coulomb energy, more precisely, in the expression

(1.1) E =
1

2

∑

!n∈ZZ3

′
N∑

i,j=1

qiqj
1

|!ri − !rj + !n|
.

For a two-dimensional layer one has !n ∈ ZZ2 in the place of ZZ3.
Here the prime indicates that the singular term that would arise for i = j is to be

excluded. !n is a lattice vector and !ri is the position vector of a charge qi.
Since the infinite sum is only conditionally convergent one has to specify in (1.1) how

the summation has to be executed. Standard practice is to take spherical means, i.e.

(1.2) E =
1

2
lim
R→∞

( ∑

|!n|≤R

′
N∑

i,j=1

qiqj
1

|!ri − !rj + !n|
)
.

The first paper giving an expression for the Coulomb potential, i.e.

(1.3) U(!r) =
∑

!n∈ZZ3

N∑

i=1

qi
1

|!r − !ri + !n|

was by Madelung [6]. His expression is only valid for !r #= !ri and is not correct for spherical
means. His method of derivation only works for the Coulomb potential. Ewald [2] then
derived his now well-known formula for the Coulomb energy. A variant of Madelung’s
formula applicable to (1.1) was derived by Lekner [4] and by different methods in [8]. The
formula of Lekner converges faster than Ewald’s but it is not simple to apply to the case
in which N gets large.

In this paper a new formula for the Coulomb energy (and also Coulomb forces) is
derived which converges at about the same rate as Lekner’s, but which has an advantage
in the application to dense systems, i.e. when N is large.

2. The Coulomb potential

Our starting point is the formula (3.30) of [8] which can be put into the following form:

(2.1)

E =
1

2

N∑

i &=j=1

qiqj {V (xi − xj , yi − yj, zi − zj) + 2π(|zi − zj |2 − |zi − zj |)}

+ Q0 ·
N∑

i=1

q2i +
2π

3

( N∑

i=1

qi !ri
)2

.

The last term (dipole moment) was missing there, but is has to be included if in (1.1) one
wants a limit of spherical means (see DeLeeuw-Perram-Smith [1]). Without the dipole

1



term E corresponds to a limit of two dimensional infinite plates. For the explicit form
of V (x, y, z) in (2.1) we introduce the following abbreviations which will be used later on
also:

(2.2) Be[ρ, x] := 4
∞∑

p=1

K0(2πp · ρ) cos(2πpx), K0 = Besselfunction

and

(2.3) L[y, z] = log(1− 2 cos(2πy) exp(−2π|z|) + exp(−4π|z|)) .

With this notation one has

(2.4) V (x, y, z) =
∞∑

k,"=−∞

Be[
√
(y + k2 + (z + $)2, x]−

∞∑

m=−∞

L[y, z +m]

and the constant is

(2.5) Q0 =
1

2

∞∑

k,"=−∞

′ Be[
√
k2 + $2, 0]−

1

2

∞∑

m=1

L[0, m] + γ − log(4π) ∼= −1.942248

where γ = 0.577216 is Euler’s constant.
For the case of a layer of some finite thickness 0 ≤ z ≤ h extending to infinity only in

x and y-direction one has

(2.6) E =
N∑

i &=j=1

qiqj {Ṽ (xi − xj , yi − yj, zi − zj)− 2π|zi − zj |}+ Q̃0 ·
N∑

i=1

q2i ,

where now

(2.7) Ṽ (x, y, z) =
∞∑

k=−∞

Be[
√
(y + k)2 + z2, x]− L[y, z]

and

(2.8) Q̃0 =
∞∑

k=1

Be[k, 0] + γ − log(4π) = −1.95013246 .

We now derive alternative formulae for the Coulomb potential. The advantages of these
new formulae will become clear later on.

In order to transform the functions V (x, y, z) and Ṽ (x, y, z) we apply a simple Lemma
which was introduced in [7] and used extensively again in [8]. For the sake of completeness
we reproduce it here.

Lemma: Let the infinite sum S be given as

(2.9) S(x, r) =
∞∑

k=−∞

p(|x+ k|, r) .

2



where r > 0 and p(, ) is such that the series converges for x ∈ [0, 1] and any r > 0. Then

(2.10) S(x, r) =
∫ ∞

0
p(s, r)ds+ 4

∞∑

"=1

∫ ∞

0
p(s, r) cos(2π$s)ds · cos(2π$x) .

The formula (2.10) is just the Fourier series of S(x, r). For more details see e.g. [8].
We now apply formula (2.10) to the case

(2.11) p(s, r) = K0(2πp
√
s2 + r2) .

The integrals in (2.10) can be looked up in any standard collection of Fourier-transforms
or else Besseltransforms. One is then led to the identity (see [9], Eq. (3.5))

(2.12)
∞∑

k=−∞

K0(2πp
√
(y + k)2 + r2) =

1

2p
e−2πrp+

∞∑

"=1

1√
p2 + $2

e−2πr
√

p2+"2 ·cos(2π$y) .

We first apply (2.12) in the expression (2.7) for Ṽ (x, y, z). Then it remains first to calculate

(2.13)
2

∞∑

p=1

1

p
e−2π|z|p · cos(2πpy) = 2Re

∫ ∞

ζ

∞∑

p=1

e−p·wdw

= 2Re
∫ ∞

ζ

e−w

1− e−w
dw = −2Re(log(1− e−ζ))

with ζ = 2π(|z|− i · y). Calculation of the real part gives

(2.14) 2
∞∑

p=1

1

p
e−2π|z|p · cos(2πpy) = −L[y, z] ,

which is the second term on the right of (2.7).
After some rearrangement of equaton (3.4) and use of equations (2.12) and (2.14) one

finds

(2.15) Ṽ (x, y, z) =
∑

!n>0

1

|!n|
exp[−2π|!n| |z|] cos(2π!n · !ρ) ,

with !n ∈ ZZ2 and !ρ = (x, y).
In the case of V (x, y, z) we have to replace r in (2.12) by |z + m| and sum over m

from −∞ to ∞. The first term on the right of (2.12) then leads to the second term on
the right of (2.4). The summation over m in

∞∑

"=1

∞∑

m=−∞

1√
p2 + $2

exp[−2π|z +m|
√
p2 + $2] · cos(2π$y)

consists of two geometric series. Some routine steps and rearrangement show that one
has

(2.16) V (x, y, z) =
∑

|!n|>0

1

|!n|
Cosh(π · |!n|(1− 2|z|)

Sinh(π · |!n|)
cos(2π!n · !ρ) .

3



Note that also here !n ∈ ZZ2. The functions V (x, y, z) and Ṽ (x, y, z) are obviously
symmetric in x and y. An important point is that

(2.17) U(x, y, z) := V (x, y, z) + 2π(z2 − |z|)

is symmetric in x, y, z! This is not obvious from the form of V (x, y, z), but it has to be
true if one goes back to the original meaning. One can however check numerically that
U(x, y, z) is indeed symmetric in x, y, z.

We summarize our results in the form of

Theorem 1: The Coulomb energy as defined by (1.2) can be written as

(2.18) E =
1

2

N∑

i &=j=1

qiqj U(xi − xj , yi − yj, zi − zj) +
2π

3

( N∑

i=1

qi!ri
)2

+Q0 ·
N∑

i=1

q2i

where U(x, y, z) defined by (2.16), (2.17) is symmetric in x, y, z and Q0
∼= −1.942248.

Remarks:

(a) If zi = zj we can take advantage of the symmetry and interchange in (2.16) the
variables x, y, z.

(b) The fact that the function V (x, y, z) involves only a double sum in contrast to the
Ewald sum or the form (2.4) is a considerable improvement.

For the case of a layer the analogue of Theorem 1 is

Theorem 2: The Coulomb energy defined by (1.2) with !n ∈ ZZ2 is given by

(2.19) E =
1

2

N∑

i &=j=1

qi qj Ũ(xi − xj , yi − yj, zi − zj) + Q̃0 ·
N∑

i=1

q2i

with

(2.20) Ũ(x, y, z) =
∑

|!n|>0

1

|!n|
exp[−2π|!n| |z|] cos(2π!ρ · !n)− 2π|z|

where !n ∈ ZZ2, !ρ = (x, y), Q̃0 = −1.95013246.

Remarks:

(a) If zi = zj one has to use (2.4) instead of (2.19), (2.20).

(b) If the basic cell is not a cube but still orthorhombic with sides a, b, c the formulae
(2.3) - (2.6) are just slightly changed (see Lekner [5]).

(c) If the distance between two charges qi, qj is very small then the series in (2.4), (2.7),
(2.16) or (2.20), converge slowly. One can then use identities derived in [8]. It was shown

4



(Eq. (3.40) - (3.42) there) that if ρ =
√
y2 + z2 is small (say < 0.5) one has

(2.21) Be[ρ, x]− L[y, z] = c0 +H [y, z] +G[ρ, x] +
1√

x2 + ρ2

where

(2.22) c0 = 4γ − log(16π2) = −5.0620485 ,

(2.23) H [y, z] = −L[y, z] + log ρ2 + log(4π2)

= 2π|z|+
π2

3
(y2 − z2) +

π4

90
(y4 − 6y2z2 + z4) + higher order terms

and

(2.24) G[ρ, x] =
∞∑

"=1

(
−1/2

$

)

ρ2" {ζ(2$+1, 1+x)+ζ(2$+1, 1−x)}−ψ(1+x)−ψ(1−x) .

Here

(2.25) ζ(m, s) =
∞∑

k=0

1

(k + s)m

is the Hurwitz Zetafunction (a multiple of the polygamma function) and ψ is the Digam-
mafunction. The function G[ρ, x] is an even function of x and symmetric with respect to
x = ± 1

2 . One can therefore restrict x to the interval [0, 1
2 ].

Equation (2.21) gives a decomposition of V (x, y, z) into a regular and singular part
which will be used in the next section.

(d) The Coulomb forces follow from the gradient of the corresponding potential for which
we have different versions. For example the x-component of the force on charge qi can be
written as

(2.26)

F i
x = −2π qi

∑

j &=i

qj
∑

|!n|>0

nxCosh(π!n|(1− |zj − zi|))
|!n| · Sinh(π|!n|)

sin (2π!n · (!ρj − !ρi))

+
4π

3
qi

∑

j &=i

qj(xj − xi)

if the form (2.16), (2.17) of the potential is used.
A different version follows for the same force from (2.4). One now obtains

(2.27)

F i
x = −8πqi

∑

j &=i

∞∑

p=1

∞∑

k,"=−∞

pK0(2πp
√
(yj − yi + $)2 + (zj − zi + $)2)

· sin(2πp(xj − xj)) +
4π

3
qi

∑

j &=i

qj(xj − xi) .

Note that

qi
∑

j &=i

qj(xj − xi) = qi
N∑

j=1

qjxj =: qi ·Dx

because of the charge neutrality. Two more versions are possible if in (2.16), (2.17) x, y, z
are interchanged.

5



3. Dense systems

In this paper only the main ideas are presented. The detailed analysis and numerical
results will be given in a separate work.

If the number N of charges qi in the basic cell gets large (104 or more) it would be
very time consuming to calculate the energy E or all the forces pairwise. The procedure
for such dense systems is to use a product decomposition in the following sense.

Assume that we have to calculate

(3.1) S =
N∑

i,j=1

f(xi, xj)

for some f . Suppose now that we have a decomposition

(3.2) f(xi, xj) =
∞∑

"=1

g"(xi) h"(xj) .

Then we can approximate

(3.3) S ∼=
L∑

"=1

N∑

i=1

g"(xi)
N∑

j=1

h"(xj) ,

so that we have 2 · L ·N terms instead of N2 terms to sum. In the case of the Coulomb
energy (or forces) there are several possible decompositions of the form (3.2).

The main problem in applying any decomposition formula (3.2) in the case of Coulomb
forces is that the limit L in (3.3) gets large as the distance of two charges gets small.

To account for this we split up the basic cell into M3 sub-cells (“boxes”)

(3.4)
Bαβγ =

{
(x, y, z)

∣∣∣
α− 1

M
≤ x <

α

M
,
β − 1

M
≤ y <

β

M
,
γ − 1

M
≤ z <

γ

M

}
,

α, β, γ = 1, . . . ,M .

The number of boxes will be chosen much smaller than the number of charges in the basic
cell.

For the Coulomb energy E one needs all 1
2 N(N−1) pair interactions which we replace

by box interactions.

A. Distant boxes

Applying the addition theorems for cosines and exponential functions one is led to the
approximation

(3.5) V (!ρi − !ρj , zi − zj) ∼=
∑

0<|!n|≤ν

c(|!n|)
︷ ︸︸ ︷

1

|!n|(1− exp(−2π|!n|))
exp(−2π|!n| zj|) exp(2π|!n| zi)
· cos(2π!n · !ρi) cos(2π!n · !ρj |
+ similar terms

where !ρ = (x, y) and zj ≥ zj is assumed.
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The limit ν depends on the accuracy required. We restrict our attention to a typical
term as given by the right side of (3.5) since the remaining terms are of the same structure.

One can then first define sum over “layers”:

(3.6) L±
γ (|!n|) =

M∑

α,β=1

∑

Bαβγ

qi exp(±2π|!n|zi) cos(2π!n · !ρi) ,

from which the energy contribution due to the interaction of two such layers follows as

(3.7) E(γ, γ̃) =
∑

0<|!n|<ν(δ)

c(|!n|)L+
γ (|!n|) · L−

γ̃
(|!n|) ,

where δ = γ̃ − γ ≥ 2. The value ν(δ) is not hard to determine but we omit the explicit
dependence on δ here. Finally one has to form

(3.8) EL =
M−2∑

γ=1

∑

γ̃≥γ+2

E(γ, γ̃)

to get the total energy contribution from these layer interactions.
We still have to calculate the interaction of all the charges within a layer Zγ =

{(x, y, z)|γ−1
M ≤ z < γ

M }. At this point the (x, y, z)-symmetry of the potential U(x, y, z)
defined by (2.16), (2.17) can be exploited. One forms sums over “stripes”

(3.9) S±
βγ (|!n|) =

M∑

α=1

∑

Bαβγ∈Zγ

qi · exp(±2π|!n| yi) cos(2π!n · !ρi) ,

where now !ρ = (x, z). The energy contribution due to such stripe interactions is then

(3.10) Eγ(β, β̃) =
∑

0<|!n|≤ν(δ)

c(|!n) · S+
βγ(|!n|) · S

−

β̃γ
(|!n|) ,

with δ = β̃ − β ≥ 2. It remains to form

(3.11) ES =
M∑

γ=1

M−2∑

β=1

∑

β̃≥β+2

Eγ(β, β̃) .

The last pieces to consider are boxes within a stripe, that is

(3.12) B±
αβγ(|!n|) =

∑

Bαβγ

qi · exp(±2π|!n|xi| cos(2π!n · !ρi), !ρ = (y, z) ,

which leads to

(3.13) Eβγ(α, α̃) =
∑

0<|!n|≤ν(δ)

c(|!n|)B+
αβγ(|!n|)B−

α̃βγ
(|!n|) ,

7



δ = α̃− α ≥ 2, and finally

(3.14) EB =
M∑

γ=1

M∑

β=1

M−2∑

α=1

∑

α̃≥α+2

Eβγ(α, α̃) .

The contribution to the Coulomb energy is EL + ES + EB.

B. Neighboring boxes

In this section the interaction of a box Bαβγ with itself and all nearest neighbors is
discussed. The basic formula is now (2.4) and the decomposition (2.21). If qi ∈ Bαβγ

and qj ∈ B
α̃β̃γ̃

where |α̃ − α|, |β̃ − β|, |γ̃ − γ| ≤ 1 then we can assume e.g. that

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)1/2 ≤ 0.2. We decompose V (x, y, z) given by (2.4) as
follows:

(3.15)

V (x, y, z) =
∑

(k,")&=(0,0)

Be[
√
(y + k)2 + (z + $)2, x]−

∑

m&=0

L[y, z +m]

+ Be[ρ, x]− L[y, z]

with ρ =
√
y2 + z2 and applying (2.21)

(3.16)

V (x, y, z) =
∑

(k,")&=(0,0)

Be[
√
(y + k)2 + (z + $)2, x]−

∑

m&=0

L[y, z +m]

+ H [y, z] +G[ρ, x] + c0 +
1√

x2 + y2 + z2

= W (x, y, z) +
1√

x2 + y2 + z2
.

The important point is that W (x, y, z) has no singularities for 0 ≤ x2 + y2 + z2 < 1. In
addition the function

(3.17) W (x, y, z) + 2π(z2 − |z|) = φ(x, y, z)

is symmetric in x, y, z and an even function of its arguments. In the range of variables
under consideration all series occurring converge very quickly. We first deal with the
regular part φ(x, y, z) of the potential.

The boxes Bαβγ have sides of length 1
M . We approximate φ(x, y, z) in a cube of side

s = 3
M as

(3.18) φ(x, y, z) ∼=
P∑

k,",m=1

ϕk"mCosh(kx) Cosh($z) Cosh(mz) .

The coefficients ϕk"m depend on P . Numerical tests show that for s = 0.3 and an error
≤ 10−6 P = 3 will suffice. Moreover, the ϕk"m have to be calculated only once.

Let Nαβγ be the neighboring boxes of Nαβγ (in the basic cell). Then the contribution
to E stemming from φ(x, y, z) is

(3.19) Er =
1

2

∑

qi∈Bαβγ

∑

qi∈Bαβγ∪Nαβγ

qi qj φ(xi − xj , yi − yi, zi − zj) .

8



The addition theorem for the hyperbolic cosine and (3.18) allow us to decompose φ(xi −
xj , yi − yi, zi − zj) into eight products of the form

(3.20) C i
k"mCj

k"m = Cosh(kxi) Cosh($yi) Cosh(mzi) Cosh(kxj) Cosh($yj) Cosh(mzj) ,

so that Er can be split up into expressions like

(3.21) E(1)
r =

P∑

k,",m=1

ϕk"m

{( ∑

Bαβγ

qi C
i
k"m

)2
+

∑

Bαβγ

qi C
i
k"m

∑

Nαβγ

qj C
j
k"m

}
.

The last item and the real “pièce de résistance” is the singular term (x2 + y2 + z2)−1/2.
We need the interactions

(3.22) ES(α, β, γ) =
1

2

∑

qi∈Bαβγ

∑

qj∈Bαβγ∪Nαβγ

qi qj
1

|!ri − !rj |
, i #= j .

In order to calculate ES(α, β, γ) we subdivide the box Bαβγ into two more subregions

B(1)
αβγ ⊂ B(2)

αβγ ⊂ Bαβγ

and similarly the whole neighborhood Bαβγ ∪Nαβγ into subregions

Bαβγ ⊂ N (1)
αβγ ⊂ N (2)

αβγ . . . ⊂ N (s)
αβγ = Bαβγ ∪Nαβγ .

The size and number of these subregions depends on N . For the interaction

B(1)
αβγ ×

{
B(1)

αβγ ∪B(2)
αβγ

}

we calculate the energy pairwise according to (3.22). For the interactions

B(1)
αβγ ×N ("), $ = 1, . . . , s

we use the same approach as for the regular part since now 1
|!ri−!rj |

is bounded by a fixed

constant which depends on the size of the subregions. The limit P in (3.18) depends
sensitively on s.

As an illustration for the sensitive dependence a few values are listed for the function
(x2 + a2)−1/2, approximated in the interval I = (−0.13, 0.13) by a set of functions

(3.23) bp(x) =
p∑

"=1

αp
" · Ch($ · x)

which are orthonormal on the slightly larger interval (−0.15, 0.15). Setting
ε = max

I
|(x2 + a2)−1/2 − fP (x)| with

(3.24) fP (x) =
P∑

p=1

cp · bp(x)
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one finds values listed in the following table:

a = 0.2: P ε

2 3 · 10−2

3 3 · 10−3

4 3 · 10−4

a = 0.25: 2 1 · 10−2

3 8 · 10−4

4 6 · 10−5

a = 0.3: 2 6 · 10−3

3 3 · 10−4

4 15 · 10−6

Remark: A different approach to calculate (3.22) is that of Greengard & Rokhlin [3].
Numerical tests indicate however that it is considerably slower.

Concluding Remarks:

a) Calculation of forces

It is quite obvious that for large N the forces can be calculated with a similar scheme
as used for the energy. The expression on the right of (2.31) can be decomposed into
products the same way as in (3.5). Furthermore, one will encounter the same terms
already calculated for the energy, just in new combinations now.

b) Modifications for the two-dimensional case

The potential Ũ(x, y, z) defined in (2.20) has only (x, y)-symmetry. For all charges qi, qj
in the same layer |zi − zj | ≤ δ, δ small, one has to use the form (2.7) and then apply
(2.21).

c) Product decomposition involving Bessel functions

It is possible to decompose into products the expression Be[
√
(y + $)2 + (z + $)2, x] oc-

curring e.g. in (3.15). One has to write the square-root term in polar coordinates and
then apply the Gegenbauer addition theorem which states that for R > r > 0

K0(
√
R2 + r2 − 2Rr cosϕ) = K0(R) I0(r) + 2

∞∑

ν=1

Kν(R) Iν(r) cos(νϕ) .

The analysis becomes however rather complicated (see [8]) and tests showed that the
procedure described in this paper is faster.
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d) Tests show that whenN > 100 with error≤ 10−6, the product decomposition described
in Section 3 becomes faster than the pairwise calculation using (2.1).

For N = 104 the calculation of E and all forces with relative error less than 10−6 on an
Alpha EV5.6 processor at 500 MHz required 4.5 seconds.
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