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0 Introduction

Very often the flow past bodies or obstacles is naturally formulated in exterior unbounded do-
mains. However, the numerical solution of nonlinear exterior problems is difficult and, therefore,
the unbounded domain is usually replaced by a bounded computational domain with an artificial
boundary Γ. Then, of course, the problem of the choice of “nonreflecting” physically acceptable
boundary conditions on Γ arises. Another possibility is to simulate the flow in the exterior of Γ
with the aid of a suitable (preferable linear) approximation. This approach has become rather
popular in various areas. Let us mention, e. g. [2, 7, 10].

In [8] we investigated the coupling of the incompressible Navier–Stokes system in the interior
of Γ with the exterior Stokes problem. We proved in particular the existence of a solution of
the coupled problem even for large data. This model can be used only in 3D and, moreover, the
Stokes equations do not approximate sufficiently accurately the flow in the wake behind bodies.
Here we will deal with a more relevant model using the coupling of the interior Navier–Stokes
system with the exterior Oseen problem.

In comparison to [8], additional difficulties appear here. First, the transmission conditions
used for the coupling “Navier–Stokes – Stokes” (inspired by considerations from [1]) are not
suitable for the coupling between the Navier–Stokes and Oseen. In this case we have found that
it is suitable to use the continuity of the normal stress augmented by the mean of the difference
of the momentum flux transported from inside by the interior velocity u− and from outside by
a constant vector ũ∞ equal to the exterior farfield velocity u∞. This condition is in agreement
with one of the “natural” boundary conditions proposed in [3]. It can also be used for the
coupling between the Navier–Stokes problem and the Stokes problem, putting ũ∞ = 0. Then
the analysis carried out in [8] would be completely analogous.

The second obstacle arises from the special form of the weak formulation of the exterior
Oseen problem (cf., e. g., [9]). In contrast to the exterior Stokes problem, test functions cannot
be considered as elements of the weighted Sobolev space where we seek a weak solution. This is
the reason that the technique from [8] based on the properties of the Steklov–Poincaré operator
is not used in the present paper.

Here we proceed in a quite different way than in [8]. Namely, we construct a monotone se-
quence of bounded domains covering the whole exterior domain and a sequence of corresponding
approximate solutions converging to a solution of the coupled problem.

Since the exterior Oseen problem possesses a fundamental solution, see, e.g. [9], Vol. II, it is
possible to reformulate this problem as a boundary integral equation on the artificial interface Γ.
That is why our results represent a theoretical basis for the coupled finite element – boundary
element procedures simulating numerically viscous incompressible flow.

1 Classical formulation of the problem

Let Ω ⊂ IRN be an unbounded domain representing a two-dimensional (N = 2) or three dimen-
sional (N = 3) region occupied by a fluid. We assume that its complement IRN −Ω (M denotes
the closure of a set M ⊂ IRN ) consists of a finite number of components that are bounded
domains Ωi, i = 1, . . . , k, with mutually disjoint closures Ωi and sufficiently regular boundaries
∂Ωi. Then Γ0 := ∂Ω =

⋃k
i=1 ∂Ωi.

We consider stationary incompressible viscous flow in the exterior domain Ω past imper-
meable bodies Ωi, i = 1, . . . , k, and assume that the flow is homogeneous far from the bodies.
We use the following notation: x = (x1, . . . , xN ) ∈ IRN denotes a point of the N -dimensional
Euclidean space, xi (i = 1, . . . , N) are the Cartesian coordinates of x, u = (u1, . . . , uN ) is
the velocity vector with components ui in the directions xi, f = (f1, . . . , fN ) the density of
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outer volume force, p the kinematic static pressure, ν > 0 the constant kinematic viscosity,
u∞ = (u1∞, . . . , zN∞) the farfield velocity, ∇ = (∂/∂x1, . . . , ∂/∂xN ) the nabla operator.

The classical formulation of the corresponding flow problem reads: Find u : Ω → IRN

and p : Ω → IR such that

ui ∈ C2(Ω), i = 1, . . . , N, p ∈ C1(Ω),(1.1a)

−ν∆u+ (u ·∇)u+∇ p = f in Ω,(1.1b)

divu = 0 in Ω,(1.1c)

u|Γ0
= 0(1.1d)

lim|x|→∞u(x) = u∞.(1.1e)

This problem has been investigated in a number of works. A detailed treatment can be found,
e. g., in [9]. For N = 3, see also [5]. However, this formulation in the unbounded domain Ω is
not convenient for numerical simulation. That is why we introduce an artificial interface Γ ⊂ Ω
dividing Ω into two subdomains: a bounded interior domain Ω− with ∂Ω− = Γ0 ∪ Γ, in which
we consider the Navier–Stokes system (1.1b - c), and an unbounded domain Ω+ lying outside Γ

with ∂Ω+ = Γ and Ω
+
= Ω+ ∪Γ. In Ω+ we approximate the nonlinear Navier–Stokes equations

by the linear Oseen system. (For a detailed investigation of the exterior Oseen problem, see [9]
and the references therein, or [5] for N = 3.)

Similarly as in the case of the coupling of the Navier–Stokes problem with the Stokes problem
([8]), an important question is the choice of transmission conditions on Γ. In [8] we proposed
transmission conditions according to [1] augmenting the condition of the continuity of the normal
stress on Γ by the kinetic energy from the interior side. However, this condition is not suitable in
our case and, therefore, we propose its modification resembling a “natural” boundary condition
from [3]. We arrive then at the following classical formulation of the coupled problem:

Find u± = (u±1 , . . . , u
±
N ) : Ω

±
→ IRN , p± : Ω

±
→ IR such that

u±i ∈ C2(Ω
±
), i = 1, . . . , N, p± ∈ C1(Ω

±
),(1.2a)

−ν∆u− + (u− ·∇)u− +∇ p− = f in Ω−,(1.2b)

divu− = 0 in Ω−,(1.2c)

u−|Γ0
= 0,(1.2d)

−ν∆u+ + (u∞ ·∇)u+ +∇ p+ = 0 in Ω+,(1.2e)

divu+ = 0 in Ω+,(1.2f)

lim|x|→∞u+(x) = u∞,(1.2g)

u− = u+ on Γ,(1.2h)

−p− n̂+ ν
∂u−

∂n̂
−

1

2
(u− · n̂)u− =(1.2i)

= −p+ n̂+ ν
∂u+

∂n̂
−

1

2
(u∞ · n̂)u+ on Γ.
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Here f , u∞, ν > 0 are given data. We assume that the support of f , i. e., suppf = {x;f(x) '= 0} ⊂

Ω− ∪ Γ0. (Hence, f = 0 in Ω
+
). By n̂ we denote the unit outer normal to ∂Ω− on Γ. This

means that n̂ points from Ω− into Ω+.

Remark 1.1. For simplicity we consider the terms ∂u±/∂n̂ in (1.2i), corresponding naturally
to equations (1.2b and e). If we use the relations

∆ui =
N∑

i=1

∂Dij(u)

∂xj
, Dij(u) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

valid for u ∈ C2(Ω±) with divu = 0, then ∂u±/∂n̂ can be replaced by
∑N

j=1Dij(u±) n̂j as in
[8].

2 Weak formulation

In what follows we will assume that ∂Ω− = Γ0 ∪ Γ is Lipschitz-continuous. First we
introduce some function spaces. If Ω̃ ⊂ Ω is a domain, then by Lp(Ω̃) and W k,p(Ω̃) we denote
the Lebesgue and Sobolev spaces, respectively, defined over Ω̃ (cf., [12]). For a bounded domain
Ω̃ we set W 1,2

0 (Ω̃) = {v ∈ W 1,2(Ω); v|∂Ω̃ = the trace of v on ∂Ω̃ =0 }. In W 1,2
0 (Ω̃) we can use

two equivalent norms

(2.1) ‖w‖W 1,2

0 (Ω̃) =

(∫

Ω̃
(|v|2 + |∇v|2) dx

)1/2

and

(2.2) |v|W 1,2

0 (Ω̃) =

(∫

Ω
|∇v|2 dx

)1/2

.

It is well-known that

(2.3) W 1,2
0 (Ω̃) = closure of C∞

0 (Ω̃) in W 1,2(Ω̃),

where C∞
0 (Ω̃) is the space of all infinitely continuously differentiable functions with compact

supports in Ω̃ : supp v ⊂ Ω̃ for v ∈ C∞
0 (Ω̃).

For the unbounded domain Ω we define the weighted Sobolev space

(2.4) W 1(Ω) =

{
u; (1 + |x|2)−1/2 σN u ∈ L2(Ω),

∂u

∂xi
∈ L2(Ω)

}
,

where σN (x) = 1 for N = 3 and σN (x) = | ln(2 + |x|)|−1 for N = 2, equipped with the norm

(2.5) ‖u‖W 1(Ω) =

{∫

Ω
[(1 + |x|2)−1σ2

N |u|2 + |∇u|2] dx

}1/2

,

which is equivalent to the seminorm

(2.6) |u|W 1(Ω) =

{∫

Ω
|∇u|2 dx

}1/2

.
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(See, e. g., [4, Theorem 1, page 118] or [9, Vol. I, page 60].)
Further, we put

(2.7) W 1
0 (Ω) = closure of C∞

0 (Ω) in W 1(Ω).

Then

(2.8) W 1
0 (Ω) =

{
v ∈ W 1(Ω); v|Γ0

= 0
}
.

We write v ∈ W k,p
loc (Ω), if v|Ω̃ = W k,p(Ω̃) for every bounded domain Ω̃ ⊂ Ω.

In what follows we will work with N -dimensional vector valued functions. To this end, for a
Banach space X with norm ‖ ·‖X we define the space X = XN = {u : (u1, . . . , uN ); ui ∈ X, i =
1, . . . , N}, equipped with the norm

(2.9) ‖u‖X =

(
N∑

i=1

‖ui‖
2
X

)1/2

, u = (u1, . . . , uN ) ∈ X.

In the same way we introduce the spaces L2(Ω), W 1(Ω), etc.

Now let us define subspaces of W 1(Ω):

V(Ω) = {v ∈ C∞
0 (Ω); divv = 0 in Ω} ,(2.10)

V (Ω) = closure of V(Ω) in W 1(Ω).

For functions v from subspaces of Sobolev spaces, the restrictions v|Γ, v|Γ0
etc. will be

understood in the sense of traces.
For v ∈ V (Ω), the limit at ∞ is zero and v|Γ0

= 0. In order to realize condition (1.2g)
in the weak formulation, we introduce a function φ∞ defined in the following way. Let B be a

sufficiently large ball with centre at the origin such that Ω
−
⊂ B. Then Ω∗ := (B∩Ω)−Ω

−
⊂ Ω+

and ∂Ω∗ = Γ ∪ Γ∗, where Γ and Γ∗ is the interior and exterior component of ∂Ω∗, respectively,
– see Fig. 2.1.

φ∞ = 0
Ω−

Ω+ − Ω∗

div φ∞ = 0

Γ∗

Γ0

φ∞ = u∞

Ω∗
Γ

Figure 2.1.
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Since
∫
Γ u∞ · n dS = 0, in virtue of [11, Lemma 2.2, page 24], there exists a function φ∗ such

that

(2.11) φ∗ ∈ W 1,2(Ω∗), φ∗|Γ = 0, φ∗|Γ∗ = u∞, divφ∗ = 0 in Ω∗.

Now we define φ∞ : Ω → IRN :

(2.12) φ∞ =






0 in Ω
−
,

φ∗ in Ω∗,

u∞ in Ω+ − Ω∗.

Obviously, φ∞ ∈ W
1,2
loc(Ω) and divφ∞ = 0 a. e. in Ω.

Let us assume that u±, p± form a classical solution of the coupled problem (1.2). Let
v ∈ V(Ω). Multiplying equation (1.2b) by v|Ω− and (1.2e) by v|Ω+ , integrating over Ω− and
Ω+, respectively, summing these integrals, applying Green’s theorem and using the fact that
divv = 0 in Ω and v|Γ0

= 0, we obtain the identity
∫

Ω−

f · v dx =

∫

Ω−

(
−ν∆u− + (u− ·∇)u− +∇ p−

)
· v dx(2.13)

+

∫

Ω+

(
−ν∆u+ + (u∞ ·∇)u+ +∇ p+

)
· v dx

= −

∫

Γ

(
ν
∂u−

∂n̂
− p− n̂

)
· v dS

+

∫

Ω−




ν
N∑

i,j=1

∂u−i
∂xj

∂vi
∂xj

+
N∑

i,j=1

u−j
∂u−i
∂xj

vi




 dx

+

∫

Γ

(
ν
∂u+

∂n̂
− p+ n̂

)
· v dS

+

∫

Ω+




ν
N∑

i,j=1

∂u+i
∂xj

∂vi
∂xj

+
N∑

i,j=1

u∞j
∂u+i
∂xj

vj




 dx.

We define u : Ω → IRN

(2.14) u =





u− in Ω

−
,

u+ in Ω
+
.

In view of (1.2h), u|Γ = u−|Γ = u+|Γ. Hence, u ∈ W
1,2
loc(Ω). Moreover, divu = 0 a. e. in Ω.

Now, using (1.2i), we get

ν

∫

Ω−

N∑

i,j=1

∂ui
∂xj

∂vi
∂xj

dx+ ν

∫

Ω+

N∑

i,j=1

∂ui
∂xj

∂vi
∂xj

dx+

∫

Ω−

N∑

i,j=1

uj
∂ui
∂xj

vi dx(2.15)

+

∫

Ω+

N∑

i,j=1

u∞j
∂ui
∂xj

vi dx−
1

2

∫

Γ
[(u− u∞) · n̂] [u · v] dS =

∫

Ω−

f · v dx.
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Let us introduce the forms

a0(u,v) = ν

∫

Ω−

N∑

i,j=1

∂ui
∂xj

∂vi
∂xj

dx,(2.16)

a1(u,w,v) =

∫

Ω−

N∑

i,j=1

uj
∂wi

∂xj
vi dx,

a2(u,w,v) = −
1

2

∫

Γ
[(u− u∞) · n̂] [w · v] dS,

b0(u,v) = ν

∫

Ω+

N∑

i,j=1

∂ui
∂xj

∂vi
∂xj

dx,

b1(u,v) =

∫

Ω+

N∑

i,j=1

u∞j
∂ui
∂xj

vi dx,

L(v) =

∫

Ω−

f · v dx,

a(u,v) = a0(u,v) + a1(u,u,v) + a2(u,u,v) + b0(u,v) + b1(u,v),

for u, v : Ω → IRN , u, w ∈ W
1,2
loc(Ω), v ∈ C∞

0 (Ω).

On the basis of the above considerations we come to the following concept:

Definition 2.1. We call a vector valued function u : Ω → IRN a weak solution of the coupled
problem (1.2), if the following conditions are satisfied:

a) u− φ∞ ∈ V (Ω),(2.17a)

b) a(u,v) = L(v) ∀ v ∈ V(Ω).(2.17b)

Remark 2.1. From (2.13) – (2.16) it follows that the function u defined on the basis of a
classical solution u± by (2.14) satisfies identity (2.17b). In (2.17a), conditions (1.2c, d, f, g) are
hidden and u ∈ W

1,2
loc(Ω). Since v ∈ V(Ω) has compact support, all integrals over Ω in (2.16)

have sense. Moreover, also the form a2 is well defined as follows from the trace theorem for
functions from W 1,2(Ω̃), where Ω̃ ⊂ Ω is a bounded domain with Γ ⊂ ∂Ω̃. However, it is not
possible to use v ∈ V (Ω) as test functions in (2.17b), because the form b1(u,v) is not defined
for u ∈ W

1,2
loc(Ω) and v ∈ V (Ω) in general (cf. [9]). This is the reason that we cannot carry out

the existence proof as in [8]. We will develop a completely different approach for proving the
existence of a solution of problem (2.17a -b). In fact, this new technique can also be applied to
the coupling of the interior Navier–Stokes problem with the exterior Stokes problem from [8].

Remark 2.2. On the basis of results from [9], Chap. VII, the weak solution u of problem
(2.17a-b) can be associated with the pressure p ∈ L2

loc(Ω) such that

(2.18) a(u,v)− (p,divv) = L(v) ∀v ∈ C∞
0 (Ω).
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3 Existence of a weak solution

First we prove some important properties of the forms a0, a1, a2 defined in (2.16). These forms
have sense, of course, also for functions from the space W 1,2(Ω−), as follows from (2.16) and
the continuous imbedding W 1,2(Ω−) ↪→ L4(Ω−) and the continuity of the trace operator from
the space W 1,2(Ω−) into L3(Γ). (We simply write W 1,2(Ω−) ↪→ L3(Γ).)

Lemma 3.1. a0 is a continuous bilinear form on W 1,2(Ω−). Further, a1 and a2 are continuous
trilinear forms on W 1,2(Ω−). !

Let us set

V 0(Ω
−) =

{
v ∈ W 1,2(Ω−);v|Γ0

= 0, divv = 0 a.e. in Ω−
}
,(3.1)

V0(Ω
−) =

{
v ∈ C∞(Ω

−
); suppv ⊂ Ω− ∪ Γ, divv = 0 in Ω−

}
,

ã(u,v) = −
1

2

∫

Γ
(u · n̂) |v|2 dS, u, v ∈ W 1,2(Ω−).(3.2)

In virtue of [8], Lemma 2.1,

(3.3) V 0(Ω
−) = closure of V0(Ω−) in W 1,2(Ω−).

Similarly as in [8], Lemma 4.1, Corollary 4.2 and Lemma 4.3, we can prove the following results.

Lemma 3.2. For u, v, w ∈ V 0(Ω−) we have

(3.4) a1(u,v,w) = −a1(u,w,v)− ã(u,v +w) + ã(u,v) + ã(u,w).

Proof. In virtue of Lemma 3.1 and (3.3) we can consider u, v, w ∈ V0(Ω−). Using Green’s
theorem in Ω−, we get

(3.5) a1(u,v,v) = −ã(u,v).

Now, setting v := v +w and using the trilinearity of the form a1, we get

−ã(u,v +w) = a1(u,v +w,v +w) = a1(u,v,v) + a1(u,v,w) + a1(u,w,v) + a1(u,w,w).

This and (3.5) yield (3.4). !

Lemma 3.3. Let us define the form

(3.6) d(u,v,w) = a1(u,v,w) + a2(u,v,w), u, v, w ∈ W 1,2(Ω−).

Then it holds: If z, v, zn ∈ V 0(Ω−), n = 1, 2, . . . , and if

|zn|W 1,2(Ω−) ≤ C, n = 1, 2, . . . ,(3.7a)

zn −→ z strongly in L2(Ω−)(3.7b)

zn|Γ −→ z|Γ strongly in L3(Γ)(3.7c)

as n → ∞,

then

(3.8) d(zn,zn,v) −→ d(z,z,v) as n → ∞.
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Proof. Since d is a continuous trilinear form and (3.7a) together with (3.3) hold, we can
suppose that v ∈ V0(Ω−). By Lemma 3.2,

d(zn,zn,v) = −a1(zn,v,zn)− ã(zn,zn + v) + ã(zn,zn) + ã(zn,v) + a2(zn,zn,v).

Similar relation holds, if zn is replaced by z. In view of (2.16),

|a1(zn,v,zn)− a1(z,v,z)| =

∣∣∣∣∣∣

∫

Ω−

N∑

i,j=1

(znjzni − zjzi)
∂vi
∂xj

dx

∣∣∣∣∣∣
≤

≤ c(v)

∫

Ω−

N∑

i,j=1

|znjzni − zjzi|dx −→ 0

due to (3.7b). The limit process in the terms with the form ã can be easily carried out on the
basis of (3.7c) and the Hölder inequality over Γ. (Cf. [8], Lemma 4.3.) !

For any positive integer n we denote by Bn the ball with radius n and centre at the origin.
We will consider n ≥ n0 with fixed n0 such that B ⊂ Bn0

(⊂ Bn), where B is the ball used in
the definition of the function φ∞. Hence, ∂Bn ⊂ Ω and φ∞|∂Bn

= u∞ for n ≥ n0. We set
Ωn = Ω ∩ Bn and Ω+

n = Ω+ ∩ Bn. Then for n ≥ n0, we have Ω− ⊂ Ωn, Ωn = Ω− ∪ Γ ∪ Ω+
n ,

∂Ωn = Γ0 ∪Γn and ∂Ω+
n = Γ∪Γn. Moreover, Ωn ⊂ Ωn+1 and

⋃∞
n=n0

Ωn = Ω. Γn is the exterior
component of ∂Ωn and ∂Ω+

n .
For n ≥ n0 we define the forms

bn0 (u,v) = ν

∫

Ω+
n

N∑

i,j=1

∂ui
∂xj

∂vi
∂xj

dx,(3.9)

bn1 (u,v) =

∫

Ω+
n

N∑

i,j=1

φ∞j
∂ui
∂xj

vi dx,

an(u,v) = a0(u,v) + a1(u,u,v) + a2(u,u,v) + bn0 (u,v) + bn1 (u,v),

u, v ∈ W 1,2(Ωn).

For every n ≥ n0 we introduce the spaces

V(Ωn) = {v ∈ C∞
0 (Ωn); divv = 0 in Ωn} ,(3.10)

V (Ωn) = closure of V(Ωn) in W 1,2(Ωn)

=
{
v ∈ W

1,2
0 (Ωn); divv = 0 in Ωn

}

and consider the following auxiliary problem in Ωn: Find un : Ωn → IRN such that

un − φ∞|Ωn
∈ V (Ωn),(3.11a)

an(un,v) = L(v) ∀ v ∈ V (Ωn)(3.11b)

(the form L(v) has sense for v ∈ V (Ωn) extended by zero on Ω). Condition (3.11a) implies
that un|Γ0

= 0, un|Γn
= Φ∞ and divun = 0 a. e. in Ωn. Conditions (3.11a–b) represent

the weak formulation of a coupled “Navier–Stokes – Oseen” problem in the bounded domain
Ωn = Ω− ∪ Γ ∪ Ω+

n .
The solution of problem (2.17) can be written in the form

(3.12) u = φ∞ + z, z ∈ V (Ω).
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Hence, (2.17) is equivalent to finding z : Ω → IRN such that

z ∈ V (Ω),(3.13a)

a(φ∞ + z,v) = L(v) ∀ v ∈ V(Ω).(3.13b)

Similarly we can reformulate problem (3.11): Find zn : Ωn → IRN such that

zn ∈ V (Ωn),(3.14a)

an(φ∞ + zn,v) = L(v) ∀ v ∈ V (Ωn).(3.14b)

Then un = φ∞ + zn. By (2.12), un = zn in Ω
−
.

First let us prove the existence and estimates of the solution zn of problem (3.14). Similarly
as in Lemma 3.1, we can establish some properties of the forms an.

Lemma 3.4. Let n ≥ n0. Then a0, bn0 and bn1 are continuous bilinear forms on W 1,2(Ωn). The
forms a1 and a2 are continuous trilinear forms on W 1,2(Ωn). !

Lemma 3.5. We have

a1(z,z,z) + a2(z,z,z) + bn1 (φ∞ + z,z)(3.15)

=

∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx ∀ z ∈ V (Ωn).

Proof. In virtue of Lemma 3.4 and the density of the space V(Ωn) in V (Ωn), it is sufficient
to prove (3.15) for z ∈ V(Ωn). By (2.16) and (3.9) we have for such a function

a1(z,z,z) + a2(z,z,z) + bn1 (φ∞ + z,z)(3.16)

=

∫

Ω−

N∑

i,j=1

zj
∂zi
∂xj

zi dx−
1

2

∫

Γ
[(z − u∞) · n̂] |z|2 dS

+

∫

Ω+
n

N∑

i,j=1

u∞j
∂(zi + φ∞i)

∂xj
zi dx.

Since z|Γ0
= 0 and divz = 0, by Green’s theorem we find that

(3.17)

∫

Ω−

N∑

i,j=1

zj
∂zi
∂xj

zi dx =
1

2

∫

Ω−

N∑

i,j=1

zj
∂z2i
∂xj

dx =
1

2

∫

Γ
(z · n̂) |z|2 dS.

9



Similarly, taking into account that z|Γn
= 0, φ∞|Γn

= u∞, divz = 0, divu∞ = 0 and divφ∞ =
0, we find that

∫

Ω+
n

N∑

i,j=1

u∞j
∂(zi + φ∞i)

∂xj
zi dx(3.18)

=
1

2

∫

Ω+
n

N∑

i,j=1

u∞j
∂z2i
∂xj

dx+

∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx

= −
1

2

∫

Γ
(u∞ · n̂) |z|2 dx+

1

2

∫

Γn

(u∞ · n) |z|2 dS

−
1

2

∫

Ω+
n

(divu∞) |z|2 dx+

∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx

= −
1

2

∫

Γ
(u∞ · n̂) |z|2 +

∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx.

Now (3.16) – (3.18) already yield (3.15). !

Lemma 3.6. There exists a constant c > 0 such that

(3.19)

∣∣∣∣∣∣

∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx

∣∣∣∣∣∣
≤ c|z|

W 1,2(Ωn)

for every z ∈ V (Ωn) and every n ≥ n0.

Proof. Taking into account that, by (2.12), ∂φ∞i/∂xj = 0 in Ω+ −Ω∗ and that Ω∗ ⊂ Ω+, we
have ∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx =

∫

Ω∗

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx.

This and the Cauchy inequality imply that

(3.20)

∣∣∣∣∣∣

∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx

∣∣∣∣∣∣
≤ c(u∞) |φ∞|

W 1,2(Ω∗)‖z‖L2(Ω∗).

Furthermore,

(3.21) ‖z‖
L2(Ω∗) ≤ ‖z‖

L2((Ω∗)−),

where (Ω∗)− = Ω∗ ∪ Γ ∪ Ω−. Since Γ0 ⊂ ∂(Ω∗)− and z|Γ0
= 0, we can use the Friedrichs

inequality ([12]):

(3.22) ‖z‖
L2((Ω∗)−) ≤ c∗|z|

W 1,2((Ω∗)−)

with a constant c∗ independent of z. Since (Ω∗)− ⊂ Ωn for n ≥ n0, we have

(3.23) |z|W 1,2((Ω∗)−) ≤ |z|W 1,2(Ωn).

Now from (3.20) – (3.22) we immediately get (3.19) with a constant c independent of z and
n ≥ n0. !
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Theorem 3.1. For each n ≥ n0 problem (3.14) has at least one solution zn. There exists a

constant K > 0 independent of n such that

(3.24) |zn|W 1,2(Ωn) ≤ K, n ≥ n0.

Proof. We use the Galerkin method in a standard way as, e. g., in [11], Theorem 1.2, page 280,
[14], Chap. II, or [6], Par. 8.4.20. Cf. also [8], Section 4. For every n, there exists a sequence
{wi}∞i=1 ⊂ V(Ωn) of linearly independent elements such that

(3.25) V (Ωn) = closure of
⋃∞

k=1Xk in W 1,2(Ωn),

where Xk is the linear space spanned by the set {w1, . . . ,wk}. Xk can be considered as a
Hilbert space with the scalar product

(3.26) ((u,v)) =

∫

Ωn

N∑

i,j=1

∂ui
∂xj

∂vi
∂xj

dx.

For any k = 1, 2, . . . we define the Galerkin approximation zk
n ∈ Xk satisfying the condition

(3.27) an(φ∞ + zk
n,w

i) = L(wi), i = 1, . . . , k.

By the Riesz representation theorem, for each z ∈ Xk there exists P k(z) ∈ Xk such that

(3.28) ((P k(z),v)) = an(φ∞ + z,v)− L(v) ∀ v ∈ V (Ωn).

(Of course, P k depends on n.) Similarly as in [11, 14, 6, 8], it can be shown that P k : Xk → Xk

is a continuous mapping. Let us show that it is coercive. For any z ∈ Xk, by (3.9) we have

((P k(z),z)) = a0(z,z) + a1(z,z,z) + a2(z,z,z) + bn0 (φ∞ + z,z) + bn1 (φ∞ + z,z)− L(z).

From (3.9), the relation Ωn = Ω− ∪Γ∪Ω+
n Lemmas 3.4, 3.5, 3.6, the Cauchy inequality and the

fact that ∂φ∞i/∂xj = 0 outside Ω∗ ⊂ Ωn it follows that

((Pk(z),z)) = ν

∫

Ωn

N∑

i,j=1

∣∣∣∣
∂zi
∂xj

∣∣∣∣
2

dx+ ν

∫

Ω+
n

N∑

i,j=1

∂φ∞i

∂xj

∂zi
∂xj

dx(3.29)

+

∫

Ω+
n

N∑

i,j=1

u∞j
∂φ∞i

∂xj
zi dx−

∫

Ω−

f · z dx

≥ ν|z|2
W 1,2(Ωn)

− c|z|
W 1,2(Ωn)

− ν|φ∞|W 1,2(Ω∗)|z|W 1,2(Ω∗) − ‖f‖L2(Ω−)‖z‖L2(Ω−)

(the constant c is independent of z, k and n). Since z|Ω− ∈ W 1,2(Ω−) and z|Γ0
= 0, in virtue

of the Friedrichs inequality and the inclusion Ω− ⊂ Ωn,

(3.30) ‖z‖
L2(Ω−) ≤ c̃|z|

W 1,2(Ω−) ≤ c̃|z|
W 1,2(Ωn),

where the constant c̃ is independent of z and n. Now (3.29), (3.30) and the inequality |z|
W 1,2(Ω∗) ≤

|z|
W 1,2(Ωn), imply the existence of a constant c∗ > 0 (independent of z, k and n ) such that

(3.31) ((Pk(z),z)) ≥ ν|z|2
W 1,2(Ωn)

− c∗|z|
W 1,2(Ωn), z ∈ Xk, n ≥ n0.
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Hence, because ν > 0, there exists K > 0 (independent of z, k and n) such that ((P k(z),z)) ≥ 0
for all z ∈ Xk with |z|

W 1,2(Ωn) = K. Since | · |
W 1,2(Ωn) is a norm in Xk, in virtue of [6],

Lemma 4.1.53 or [13], Chap. I, Par. 4.3, Lemma 4.3, there exists a solution

(3.32) zk
n ∈ Xk, with |zk

n|W 1,2(Ωn) ≤ K

of the equation P k(zk
n) = 0, equivalent to (3.27).

Hence, we get a sequence {zk
n}

∞
k=1 of solutions of (3.27) bounded in V (Ωn). Then there

exists a subsequence (for simplicity again denoted by {zk
n}

∞
k=1) and a function zn ∈ V (Ωn) such

that

(3.33) zk
n −→ zn weakly in V (Ωn) as k → ∞.

From the compact imbeddingW 1,2(Ωn) ↪→↪→ L2(Ωn) and the compactness of the trace operator
from W 1,2(Ωn) into L3(Γ) (we write W 1,2(Ωn) ↪→↪→ L3(Γ)) it follows that

zk
n −→ zn strongly in L2(Ωn),(3.34a)

zk
n|Γ −→ zn|Γ strongly in L3(Γ),(3.34b)

as k → ∞.

Now we carry out the limit process in (3.27) for k → ∞. In virtue of the bilinearity and
continuity of the forms a0, bn0 and bn1 and (3.33), we get

a0(z
k
n,wi) −→ a0(zn,wi),(3.35)

bnα(φ∞ + zk
n,wi) −→ bnα(φ∞ + zn,wi)

as k → ∞, i = 1, 2, . . . , α = 0, 1.

Furthermore, (3.32) and (3.34a) imply that

|zk
n|W 1,2(Ω−) ≤ K,(3.36)

zk
n −→ zn strongly in L2(Ω−) as k → ∞.

We see from (3.36) and (3.34b) that the sequence {zk
n}

∞
k=1 satisfies the assumptions of Lemma 3.3.

Hence,

a1(z
k
n,z

k
n,wi) + a2(z

k
n,z

k
n,wi) −→ a1(zn,zn,wi) + a2(zn,zn,wi)(3.37)

as k → ∞, i = 1, 2, . . . .

From (3.35) and (3.37) we conclude that zn is a solution of problem (3.14). Moreover, in virtue
of (3.32) and (3.33), estimate (3.24) is valid. !

Finally, we come to the main result of this paper.

Theorem 3.2. There exists at least one solution u of problem (2.17). This u is a weak solution

of the coupled problem (1.2).
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Proof. As was stated above, problem (2.17) is equivalent to problem (3.13). In order to prove
the solvability of problem (3.13), we extend the solution zn of problem (3.14) (n ≥ n0) by zero
from the domain Ωn onto Ω. For simplicity, we will denote this extension again by zn. Hence,
we have a sequence {zn}∞n=n0

such that

zn ∈ V (Ω), n ≥ n0,(3.38)

|zn|W 1(Ω) = |zn|W 1,2(Ωn) ≤ K, n ≥ n0.

Since the space V (Ω) is reflexive and the sequence {zn}∞n=n0
is bounded in V (Ω), there exists

z ∈ V (Ω) and a subsequence of {zn}∞n=n0
(let us denote it again by {zn}) such that

(3.39) zn −→ z weakly in V (Ω) as n → ∞.

Our goal is to show that z is a solution of problem (3.13).
Let v ∈ V(Ω). Then there exists n∗ ≥ n0 such that suppv ⊂ Ωn∗ and, in virtue of (3.14),

(2.16) and (3.9) we have v|Ωn
∈ V (Ωn) for n ≥ n∗ and

(3.40) a(φ∞ + zn,v) = an
∗

(φ∞ + zn,v) = an(φ∞ + zn,v) = L(v), n ≥ n∗.

Taking into account that |zn|W 1,2(Ωn∗ ) ≤ |zn|W 1(Ω), from (3.38) we see that the sequence{
zn|Ωn∗

}
is bounded in W 1,2(Ωn∗). Thus, we can suppose that

(3.41) zn|Ωn∗
−→ z|Ωn∗

weakly in W 1,2(Ωn∗) as n → ∞.

This and the compact imbeddings W 1,2(Ωn∗) ↪→↪→ L2(Ωn∗) and W 1,2(Ωn∗) ↪→↪→ L3(Γ) imply
that

zn|Ωn∗
−→ z|Ωn∗

strongly in L2(Ωn∗),(3.42)

zn|Γ −→ z|Γ strongly in L3(Γ),

as n → ∞.

Now we are ready to carry out the limit process in (3.40) for n → ∞. Linearity and continuity
of the forms a0(φ∞+·,v) = a0(·,v), b0(φ∞+·,v) and bn

∗

1 (φ∞+·,v) (let us remind that φ∞ = 0
in Ω−) imply that

a0(φ∞ + zn,v) = a0(zn,v) −→ a0(z,v) = a0(φ∞ + z,v),(3.43)

bn
∗

0 (φ∞ + zn,v) −→ bn
∗

0 (φ∞ + z,v),

bn
∗

1 (φ∞ + zn,v) −→ bn
∗

1 (φ∞ + z,v)

as n → ∞.

It remains to prove that

(3.44) a1(zn,zn,v) + a2(zn,zn,v) −→ a1(z,z,v) + a2(z,z,v) as n → ∞.

Concluding from (3.38) and (3.42) that the sequence {zn}∞n=n0
satisfies conditions (3.7a–c), we

see that (3.44) is a consequence of Lemma 3.3.
Now, (3.40), (3.43) and (3.44) imply that the function z ∈ V (Ω) satisfies the identity

a(φ∞ + z,v) = L(v) for allv ∈ V(Ω).

This means that z is a solution of problem (3.13) and u = φ∞ + z is a solution of problem
(2.17), which we wanted to prove. !

13



Acknowledgements. The research of M. Feistauer has been supported under the Grant No.
201/97/0217 of the Czech Grant Agency. The authors gratefully acknowledge this support.

References
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