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Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Hierarchic Models for Laminated Plates and Shells

R.L. Actis B.A. Szabo
Eng. Software Res. and Development Inc. Center for Computational Mechanics

St. Louis, Missouri Washington University
USA St. Louis, Missouri

USA

C. Schwab
Seminar für Angewandte Mathematik
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Abstract

The definition, essential properties and formulation of hierarchic models for laminated plates and 

shells are presented. The hierarchic models satisfy three essential requirements: approximability; 

asymptotic consistency, and optimality of convergence rate. Aspects of implementation are discussed 

and the performance characteristics are illustrated by examples. 

1. Introduction

Terms, such as “hierarchic elements” and “hierarchic modeling strategies” are used with increasing 

frequency in the finite element literature. For the sake of clarity, definitions for hierarchic models, 

finite element spaces and basis functions are given in the following.

The notion of hierarchic models differs from the notions of hierarchic finite element spaces and hier-

archic basis functions. Hierarchic models provide means for systematic control of modeling errors 

whereas hierarchic finite element spaces provide means for controlling discretization errors. The basis 

functions employed to span hierarchic finite element spaces may or may not be hierarchic. Brief 

explanations follow. For details we refer to [1].

• Hierarchic models are a sequence of mathematical models, the exact solutions of which constitute 

a converging sequence of functions in the norm or norms appropriate for the formulation and the 

objectives of analysis. Of interest is the exact solution of the highest model, which is the limit of 

the converging sequence of solutions. In the case of elastic beams, plates and shells the highest 

model is the fully three-dimensional model of linear elasticity, although even the fully three-
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dimensional elastic model can be viewed as only the first in a sequence of hierarchic   models that 

account for nonlinear effects, such as geometric, material and contact nonlinearities.

• Hierarchic finite element spaces are a sequence of finite dimensional spaces Si (i=1,2,…), charac-

terized by the finite element mesh, the polynomial degree of elements and the mapping functions. 

The space Si is a subspace of Si+1. Hierarchic finite element spaces are the means for obtaining a 

converging sequence of approximate solutions, the limit of which is the exact solution of a particu-

lar mathematical model. 

• Hierarchic basis functions have certain useful properties from the point of view of implementation: 

When hierarchic basis functions are used then the stiffness matrix, mass matrix and load vector 

corresponding to space Si is embedded in the stiffness matrix, mass matrix and load vector of space 

Si+1. However, hierarchic finite element spaces can be constructed with non-hierarchic basis func-

tions.

The shell models constructed in this paper are dimensional reductions of the full, three-dimensional 

elasticity problem by semi-discretization in the transverse direction and energy projection; in other 

words, the models are obtained by constraining the admissible displacements in the three-dimensional 

principle of virtual work to have a prescribed dependence on the transverse variable w. Depending on 

the number of director fields, we obtain a hierarchy of models (HM) indexed by i=1,2,.... The corre-

sponding exact solutions are denoted by uEX
(HM|i). The model hierarchy satisfy the following require-

ments:

(a) Approximability: At fixed, positive shell thickness h > 0, the exact solutions uEX
(HM|i) of the 

shell model should converge to the solution uEX
(3D) of the three-dimensional problem, 

(b) Asymptotic Consistency: As h !!0, 

Many shell models satisfy the criterion (b), in particular all classical shell models, such as those of 

Koiter-Sanders-Novozhilov type (without shear deformation) and those of Reissner-Mindlin-Naghdi 

type (including shear deformation). To assure criterion (b) it is, roughly speaking, sufficient to include 

polynomials of degree 1 in w into the director functions. Criterion (a) clearly cannot be satisfied by 

any single shell model. 

To assure computational efficiency of the model hierarchy, however, we require also 

uEX

3D" #
uEX

HM i" #
– E "" #

i #!
lim 0=

uEX

3D" #
uEX

HM i" #
– E "" #

uEX

3D" #
E "" #

--------------------------------------------------
h 0!
lim 0=
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(c) Optimality of the convergence rate: In the absence of boundary layers and edge singulari-

ties, 

(1)

with convergence rates $i+1 > $i.

This requirement is crucial for our design of hierarchic models of laminated shells: due to the cross-

thickness discontinuities of the material properties in the stack $i < $i+1 can not be achieved by poly-

nomial director functions. In order to resolve the cross-sectional stress variations, the microstructure 

of the laminate has to be accounted for. Rather than discretizing the discrete layers of the stack (which 

leads to expensive models for a large number of layers), special, lamina-adapted transverse shape 

functions are used. They assure criterion (c) (see Ref. [6]) and can be obtained from the constitutive 

properties of the laminate. Importantly, their number and hence the number of fields in the hierarchic 

model # i is independent of the number of layers in the sandwich. 

The assumption of absence of boundary layers and edge singularities is idealistic, of course, but justi-

fied by the Saint-Venant principle: if, in a O(h) vicinity of the edges, the three-dimensional phenom-

ena are resolved, Eq. (1) will hold even if boundary layers and corner/edge singularities are present, 

as will be shown in this paper (see also [6], [14]).

Hierarchies of plate and shell models based on higher order polynomial director functions satisfying 

criteria (a) and (c) were first introduced as a computational strategy in Szabo & Sahrmann (1988) for 

homogeneous materials [5]. In the case of homogeneous materials the director functions needed to 

satisfy criterion (c) are polynomials.

The foregoing definition of hierarchic models differs from definitions used by other investigators. For 

example, Noor et al. [13] referred to a “hierarchical adaptive strategy” which is based on the first 

order shear deformation model, combined with a predictor-corrector scheme which consists of either 

adjusting the shear correction factor to minimize the energy, or calculating the dependence of the dis-

placement components on the thickness coordinate, using the three-dimensional equations of elastic-

ity. In [13] a hierarchy of models is understood to mean repeated application of the predictor-corrector 

scheme. This strategy was shown to work well in some applications, but it does not satisfy criteria (a) 

and (c). 

It is well-known that deformation states of general thin shells fall into two categories: so-called bend-

ing dominated and membrane dominated states. Membrane dominated states arise whenever there are 

no inextensional displacement fields. A shell is membrane dominated if for a fixed load the strain 

energy is of O(h-1). In this case, membrane locking is absent in standard FE-discretizations. In bend-

ing dominated shells, however, the strain energy is of O(h-3) and membrane locking is usually severe. 

To date, there seems to be no universal “unlocking” technique for low-order elements which works in 

uEX

3D" #
uEX

HM i" #
– E "" #

uEX

3D" #
E "" #

-------------------------------------------------- Ch
$i% as h 0 i #!,!
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the general situation, i.e., when the character of the shell-deformation state is a priori unknown, as is 

usually the case for laminated shells [15]. In such cases, p-extension in the standard displacement for-

mulation gives, although not completely free of membrane locking effects, accurate solutions in the 

practical range of the shell thickness [17], [18].

2. Hierarchic shell models

Three aspects of the construction of the hierarchic sequence of models for shells are considered in the 

following:

• The generation of the optimal transverse shape functions (director functions).

• The mapping functions.

• The mathematical formulation of the problem

2.1 Transverse shape functions

Consider a curved shell element with arbitrary geometry located in the xyz Cartesian coordinate sys-

tem. Let r, s, w denote curvilinear coordinates such that w = 0 represents the middle surface of the 

shell (Figure 1). The shell under consideration is composed of a finite number of orthotropic layers of 

constant thickness. The thickness of each layer is denoted by hi, and the total thickness of the shell is 

, where N is the total number of layers.

Let  denote the displacement field for the shell subjected to nor-

mal surface loading Ti(r, s) and satisfying the equilibrium equations of 3D-elasticity. Let the stresses 

be related to the strains by the generalized Hooke’s law, and the strains related to the displacements by 

h hii 1=

N

&=

s

r

w

x y

z

er

ew

b

FIGURE 1. Curvilinear coordinates associated with the middle surface of the shell.

1

2

3

4

1 2

34

r

s

"st

"(k)

mapping

es

es

ur r s w$ $" #, us r s w$ $" #, uw r s w$ $" #
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the small strain theory. The problem is to find the displacement field that minimizes the potential 

energy functional '(u) over the subspace En("), defined as:

(2)

The displacements are written as the product of function with depend only on the variables associated 

with the shell middle-surface (r, s) times functions of the transverse variable normal to the shell sur-

face (w). The transverse functions  are derived on the basis of the degree to 

which the equilibrium equations of 3D-elasticity are satisfied. The procedure to obtain these functions 

is similar to that outlined in Refs. [7] - [12] for laminated plates in bending. The details are omitted 

here. The main steps in the derivation for laminated shells are as follows:

• Perform a partial Fourier transform, with parameters ( over the domain " of the three-dimensional 

problem described above. This transformation eliminates two field variables (r, s) in the displace-

ment components, so that derivatives with respect to r and s become multiplications by i(!in the 

Fourier transformed variables. For example, 

• Write down the strain-displacement relations in the transformed variables, substitute them into the 

stress-strain relations and express the equilibrium equations in their transformed form. A system of 

ordinary differential equations is obtained in the variable w. 

• Expand the functions  in powers of ( around (=0. For example,

• Substitute the expanded functions into the transformed form of the equations of motion, which 

must be satisfied for any power of (. The transverse shape functions are obtained by solving these 

equations. Integrate the Fourier-transformed form of the equilibrium equations to compute the 

transverse shape functions. For simplicity of notation, the normalized transverse functions are rela-

beled )i(w), i=1, 2, 3, ... in the following.

With the new notation, the expansion of the three displacement components in Eq. (2) can be written 

in general form as:

E
n
"" # u ur r s w,( , ) u

j

r
r s( , )*j w" #, us r s w,( , ) u

j

s
r s( , )+j w" #,

j 0=

n2

&=

j 0=

n1

&=

,
-
.
-
/

=

uw r s w,( , ) u
j

w
r s( , )0j w" #}

j 0=

n3

&=

*j w" #, +j w" #, 0j w" #

* ( w," # ur r s w,( , )e i( r s+" #– Ad

A

1=

* ( w," #, + ( w," #, 0 ( w," #

* ( w," # *0 w" # (*1 w" # (2*2 w" # (3*3 w" # %+ + + +=
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 (3)

The first hierarchic model is a five-field semi-discretization characterized by the transverse function 

)i(w), i=1 to 5. The first five transverse shape functions are the same for plates or shells of laminated 

or homogeneous materials:

where -1 2 w 2 1. The transverse shape functions for higher-order models are different for homoge-

neous and laminated shells. In the case of laminated shells, they depend on the layup, stacking 

sequence and the material coefficients. 

The next six transverse shape functions are defined as follows:

For homogeneous shells

For laminated shells

where

where the Qij are the coefficients of the 3D material matrix in the shell principal directions. It is clear 

from the above expressions that if Qij are constant within each lamina but different from lamina to 

ur r s w$ $" # u
0

r
r s$" #)1 w" # u

1

r
r s$" #)3 w" # u

2

r
r s( , ))6 w" # u

3

r
r s( , ))9 w" # %+ + + +=

us r s w$ $" # u
0

s
r s$" #)2 w" # u

1

s
r s$" #)4 w" # u

2

s
r s( , ))7 w" # u

3

s
r s( , ))10 w" # %+ + + +=

uw r s w$ $" # u
0

w
r s$" #)5 w" # u

1

w
r s$" #)8 w" # u

2

w
r s( , ))11 w" # %+ + +=

)1 w" # )2 w" # )5 w" # 1,= = = )3 w" # )4 w" # w h 2!" #= =

)6 w" # )7 w" # w
2

h 2!" #
2
,= = )8 w" # w h 2!" #=

)9 w" # )10 w" # w
3

h 2!" #
3
,= = )11 w" # w

2
h 2!" #

2
=

)6 w" #
h

2
--- *2 w" # *2 0" #–& ',= )7 w" #

h

2
--- +2 w" # +2 0" #–& ',= )8 w" #

h

2
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h

2
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2
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2
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lamina, the transverse variation of  is piecewise linear, and the slope at each 

interface depends on the material properties of the layers. 

The other three functions are:

In this case, the transverse variation is piecewise quadratic. Additional director functions are defined 

in a similar way. When Qij are constant for each lamina, they are piecewise polynomial functions in 

the transverse variable.

2.2 Formulation of the linear problem

The main advantage in approximating the displacement components in the curvilinear system is that 

each field can be augmented independently for the higher-order models. Also, given the variation in 

the material properties through the thickness in the case of laminated composites, this makes it possi-

ble to utilize a unique set of transverse shape functions per field. The other advantage is related to the 

specification of the boundary conditions (loads and constraints). Working with the natural coordinates 

of the shell surface simplifies the implementation of traditional constraints, such as simple support, 

clamped, symmetry, antisymmetry, etc., and the specification of distributed surface or edge tractions, 

as well as concentrated forces.

One added complexity in working with the curvilinear coordinates is the incorporation of the rotation 

matrix into the formulation. The rotation matrix [R] is needed to express the relation between the glo-

bal (xyz) and curvilinear (rsw) displacement components,

(4)

and its terms are the components of the normalized covariant basis vectors (er , es , ew in Figure 1) 

which are computed from the derivatives of the mapping functions. Introducing the following simpli-

*2 w" #, +2 w" #, 01 w" #

*3 w" # 01 w" #
Q44$a w" #

Q44Q55 Q45

2
–

------------------------------------
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Q44Q55 Q45

2
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------------------------------------–+
3 4
7 8
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wd
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w
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Q44Q55 Q45

2
–
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Q44Q55 Q45

2
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------------------------------------–+
3 4
7 8
5 6

wd
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0

1–=
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Q44Q55 Q45

2
–
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Q44Q55 Q45

2
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------------------------------------–+
3 4
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wd

1–

w

1 01 w" #
Q55$b w" #
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fied notation to indicate the difference between global and curvilinear components of the displace-

ments: , Eq. (4) can be rewritten as:

(5)

The shell middle surface can be written in parametric form as:

(6)

where x0, y0, z0 are smooth mapping function. Therefore considering the position vector b shown in 

Figure 1, the normalized covariant basis vectors are defined as:

(7)

with

(8)

In Eq. (8),  denote the unit vector components in the global coordinate system. The rotation 

matrix in Eq. (5) is obtained from the Cartesian components of the unit vectors in Eq. (7) as:

(9)

Note that the rotation matrix is a function of the curvilinear components (r, s) only. The relevance of 

the presence of the rotation matrix in the formulation becomes apparent when considering the bilinear 

form in the expression of the principle of virtual work. 

Considering the case of no body forces, no spring boundary conditions and homogeneous constraints, 

the principle of virtual work can be stated as follows (see, for example, Ref. [1]):

“Find {u} 9!So such that B(u,v) = F(v), for all {v} 9 So”

where So is the space of admissible functions satisfying the homogeneous boundary conditions, {v} 

are the test functions, F(v) is the virtual work of the applied loads, and B(u,v) is the virtual work of the 

internal stresses:

u xyz" # u u rsw" # ũ=,=

u& ' R( ) ũ& '=

x x0 r s( , ),= y y0 r s( , ),= z z0 r s( , )=

er r:
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:y0
j
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:z0
k+ +=

s:
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j
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(10)

In Eq. (10), {T} is the vector of the applied tractions in the global coordinate system, [D] is a differen-

tial operator in terms of the global coordinates and [Q] is the material stiffness matrix. [D] and [Q] are 

defined as:

(11)

Introducing Eq. (5) into Eq. (10):

(12)

In Eq. (12) the differential operator [D] acts on the rotation matrix which means that the second deriv-

atives of the mapping functions are also needed. The curvilinear components of the displacement vec-

tor are approximated by polynomial functions of the form:

(13)

in which [)] are known functions of (r,s,w) and {a}, {b} are the amplitudes of the basis functions. 

The basis functions are given as the product of a function of (r, s) times a function of w as follows:

B u v$" # D( ) v& '" #
T

Q( ) D( ) u& ' Vd

V
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F v" # v& '
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T& ' Ad

A

1=
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y:
:

0
y:
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0
z:
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0
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0 0
z:
:

y:
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x:
:

0

= Q( )
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=

(sym)
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(14)

where Ni(r,s) are the hierarchic basic shape functions characterized by the polynomial degree p and 

the mapping functions, and are given in Ref. [1]. Substituting Eq. (13) into Eq. (12), the expression of 

the principle of virtual work can be witten in matrix form:

(15)

which has to be satisfied for any {b}. Therefore, Eq. (15) can be written in compact form as:

(16)

where [K] is the system stiffness matrix and {q} is the load vector. For any element (e) in the mesh, 

the stiffness matrix and load vector terms are given by:

(17)

where {)}i is a column of matrix [)] in Eq. (14). The solution of the linear system of equations rep-

resented by Eq. (16), are the curvilinear components of the displacement vector.

As mentioned earlier, the coefficients of the rotation matrix [R] are the Cartesian components of the 

normalized covariant basis vectors {er es ew}T which are computed from the derivatives of the map-

ping functions of the shell middle surface. In general, the components of the normalized covariant 

basis vectors (er , es) are non-orthogonal. An orthogonal basis can be obtained by recomputing one of 

the base vectors as the cross product of the vector normal to the surface (ew) and the other unit vector 

on the surface (er):  (see Figure 1). 

The material stiffness matrix [Q] needed to compute the element stiffness matrix in Eq. (17) is deter-

mined as follows: Let w (the shell thickness direction) be the direction of the layup of the laminae. 

The material properties of each layer are defined in the principal material directions of the lamina (x y 

z). Let the relation between the global and lamina coordinate systems at a point within the ith lamina 

be:

)( )
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(18)

The stress-strain relation for the ith-lamina in the principal material directions is given by:

or, in short notation,

(19)

while the same relation in the global coordinate system is:

(20)

For an orthotropic material, the [C] matrix contains 9 independent stiffness coefficients. The relation 

between the strains in the lamina system and the strains in the global system is given by (Ref. [2]):
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or, in short notation,

(21)

The strain energy density for the ith-lamina, U(i), is an invariant, and therefore it is the same regard-

less of the coordinate system:

(22)

Substituting Eqs. (19), (20) and (21) into Eq. (22) we get:

and therefore, from the above equation, the material stiffness matrix corresponding to the ith-lamina 

in the global coordinate system is given by:

(23)

For each lamina the material matrix is transformed from the material coordinate system to the global 

coordinate system using Eq. (23). In computing the element stiffness matrix in Eq. (17), the numerical 

integration is performed layer-by-layer in order to include its material properties.

2.3 Shell mapping

The quality of the mapping procedure has a substantial impact on the quality of the finite element 

approximation. In the p-version of the finite element method large elements are generally used, and 

therefore accurate representation of surfaces is essential so that the errors of discretization can be con-

trolled by the mesh and the polynomial order rather than by the mapping of the elements. We use a 

mapping technique for shells in which the surfaces are approximated by piecewise interpolation poly-

nomials using special collocation points. This method, called Quasi-Regional Mapping, was devel-

oped at the University of Maryland, College Park [3] and investigated at Washington University in St. 

Louis [4]. This hp-approximation of the shell midsurface geometry converges exponentially to the 

true geometry, for piecewise analytic parametric representations.

To demonstrate the quality of mapping obtained by this method, consider the problem shown in 

Figure 2, which represents the canopy of a jet fighter. The canopy was created by connecting a set of 

elliptical arcs by a NURBS (Non Uniform Rational B-Spline) surface. Two meshes, one consisting of 

four quadrilateral shell elements, the other of six elements, were attached to the surface as shown in 

the figure. Visually, the mapping is able to capture all essential features of the underlying surface. 
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Numerical investigation of the quality of the mapping approximation and its influence in the data 

extraction from the finite element solution can be found in Ref. [4].

In the case of shells, additional requirements on the quality of the mapping procedures are imposed by 

the need to approximate the second derivatives well. The second derivatives of the mapping functions 

are required in the computation of the derivatives of the rotation matrix in Eq. (9) to be used in the 

computation of the stiffness matrix of the elements. To illustrate this point, consider the product 

[D][R] in Eq. (17). Given the definitions of [R] and [D] in Eqs. (9) and (11) respectively, the deriva-

tive of R1 with respect to x, for example, will be given as:

4-element mesh

6-element mesh

Elliptical

NURBS surface

arcs

FIGURE 2. Example of Quasi-Regional mapping for shells.
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but the derivative of R1 with respect to the curvilinear coordinates should be further expanded in 

terms of the mapping functions in Eq. (6) as follows: 

and similarly for other terms. The second derivative of the mapping function appears explicitly in the 

derivative of the rotation matrix components. This clearly indicates that unless smooth mapping func-

tions are used, errors will be introduced in the formulation which are not related to the those intro-

duced by the dimensionally reduced models.

2.4 Eigenvalue buckling

An eigenvalue buckling analysis is a linearized form of a geometrically nonlinear formulation, useful 

for estimating the limits of elastic stability. The main points of the formulation are outlined in the fol-

lowing.

The undeformed configuration of the shell is denoted by " and its boundary by :". The infinitesimal 

strain is defined in terms of the Cartesian components of the displacements (ui, i=1, 2, 3):

which is a simplification of the Green-Lagrange strains defined by

The simplification is justified by the assumption that |ui,j| << 1 and hence the product terms uB,i uB,j 

are negligible in relation to ui,j. The stress-strain relationship is:

where ?ij
0 is a pre-existing stress state, independent of ui, and Cijkl is the tensor of the elastic moduli 

of the material. An important property of ?ij
0 is that it is in equilibrium with the corresponding trac-

tions Ti
0 = ?ij

0 nj in the sense:

r:

:R1

r:

:erx

E
r

2

2

:

: x0

r:

:x0

r:

:x0

r
2

2

:

: x0

r:

:y0

r
2

2

:

: y0

r:

:z0

r
2

2

:

: z0
+ +

3 4
7 8
5 6

–

E
3 2!

------------------------------------------------------------------------------------------------------= =

E
r:

:x0

3 4
5 6

2

r:

:y0

3 4
5 6

2

r:

:z0

3 4
5 6

2

+ +=

Aij

1

2
--- ui j$ uj i$+" #=

Cij Aij

1

2
--- uB i$ uB j$+" #+=

?ij ?ij

0
CijklAkl+=



Hierarchic shell models

Hierarchic Models for Laminated Plates and Shells 15 of 40

(24)

where dV and dA represent the differential volume and differential area, respectively, and  is 

the space of kinematically admissible perturbations. 

When the reference configuration is stress-free (i.e., ?ij
0= 0) then the potential energy is defined by:

The exact solution minimizes ' on the set of all kinematically admissible functions denoted by 

. When the reference configuration is not stress-free then the work done by ?ij
0 due to the non-

linear strain terms may not be negligible. Therefore the potential energy expression is written in the 

following form:

(25)

The second integral in Eq. (25) represents the work done by the initial stresses due to the nonlinear 

strain terms. The work done by ?ij
0 due to the linear strain terms is cancelled by the work done by Ti

0 

in the sense of Eq. (24). The discretized form of the potential energy in Eq. (25) is:

where {a} represents the coefficients of the basis functions; [K] is the stiffness matrix; [G] is called 

the geometric stiffness matrix, and {q} is the load vector. In typical structural stability problems, Ti=0, 

?ij
0 is predominantly compressive, and the objective is to find the lowest scalar multiplier of ?ij

0, 

denoted by D, and the corresponding nontrivial displacement vector function ui, such that

(26)

is minimum. The stress field ?ij
0 is called the pre-buckling stress state, and the critical load, also 

called the bifurcation buckling load, is DminTi
0. 

The discretized form of the eigenvalue problem represented by the minimization of Eq. (26) is:

(27)

1

2
--- ?ij

0
vi j$ vj i$+" # Vd

"

1 Ti

0

":

1 vi Ad= for all vi E+ "" #9   

E+ "" #

' ui" #
1

2
--- CijklAijAkl Vd

"

1 Tiui Ad

":

1–=
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where the stiffness matrix is computed in the usual way (see Eq. (17)) and the geometric matrix is 

determined from the second integral in Eq. (25) as follows:

(28)

where ux , uy , uz are the Cartesian components of the displacements which are related to the curvilin-

ear components through the rotation matrix [R], {D} is a differential operator vector and [?,] is the 

stress tensor written in matrix form as indicated below.

The computation of the buckling load factor requires two steps: 

• A linear elastostatic problem is solved first for the specified loadings (Ti
0) and constraints. The lin-

ear solution is used to compute the initial stress tensor ?ij
0. The stress tensor ?ij

0 at each integra-

tion point is used for computing the geometric matrix.

• After the geometric matrix is available, the eigenvalue problem represented by Eq. (27) is solved to 

find the minimum buckling load factor. The critical load is then: Tcr = DminTi
0.

An unique feature of the formulation is that it is not tied to a particular type of dimensional reduction 

but rather it can be used in conjunction with the hierarchic family of models and even for fully tree-

dimensional models.

2.5 Pre-stress modal analysis

The formulation for elastic vibration is analogous to Eq. (25) for eigenvalue buckling. Specifically, 

we seek to find E and  such that

(29)

is minimum. The symbols E and 0 in Eq. (29) represent the natural frequency and the mass density, 

respectively. The importance of the stress field ?ij
0 is clearly visible from Eq. (29): If ?ij

0 is predomi-

nantly tensile then the stiffness is increased, whereas if ?ij
0 is predominantly compressive then the 

stiffness is decreased. If ?ij
0 is a buckling stress then the lowest natural frequency is zero.
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The discretized form of the potential energy in Eq. (29) is:

(30)

where, as before, {a} represents the coefficients of the basis functions; [K] is the stiffness matrix; [G] 

is the geometric stiffness matrix, and [M] is the mass matrix. The discretized form of the eigenvalue 

problem represented by the minimization of Eq. (30) is:

(31)

where D=E2, the stiffness matrix [K] is computed from Eq. (17), the geometric matrix [G] is deter-

mined from Eq. (28) and the mass matrix [M] is computed from:

(32)

The computation of natural frequencies and mode shapes under pre-stress conditions requires two 

steps: 

• A linear elastostatic problem is solved first for the specified loadings (Ti
0) and constraints. The lin-

ear solution is used for computing the initial stress tensor ?ij
0. The stress tensor ?ij

0 at each inte-

gration point is used to compute the geometric matrix.

• The stiffness matrix is modified by the geometric matrix and the mass matrix is also computed to 

solve the eigenvalue problem of Eq. (31).

3. Adaptive hierarchic modeling

The optimal selection of a particular model form the hierarchic family of models is problem-depen-

dent. Starting with a 5-field model, the question is how to construct the next model. Our research indi-

cated that the 5-field semi-discretization is increased by adding one more field to each displacement 

component (ur, us, uw), in such a way that the transverse function for the r and s components have the 

same order of director function. In other words, model 2 should be an 8-field semi-discretization, 

model 3 should have eleven fields, and so on. The criterion for selecting which of the available direc-

tor functions should be used to form a new model is based on the change in the value of the total 

potential energy of the problem. The combination of additional fields that results in the smallest 

potential energy provides the best improvement over the solution of model 1. 

The potential energy accounts for the effects of topology, material properties and boundary condi-

tions, thus characterizing the problem. The potential energy is computed by solving the problem sev-

eral times for each candidate combination of director functions at a low p-level. To illustrate the 

concept of model selection, consider the situation of selecting an 8-field model. There are four possi-
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ble combinations from the expansion given in Eq. (3) for the additional three fields needed to extend 

the 5-field model: (a) )6, )7, )8; (b) )6, )7, )11; (c) )9, )10, )8 and (d) )9, )10, )11. No other 

combinations are possible, given the constraint on the order of the director functions indicated before. 

For example, the hierarchic model 2, combination (d) would be:

The procedure solves for each possible combination at p-level=4, and selects that one which mini-

mizes the potential energy of the problem. Once the optimal model is identified, a p-extension is per-

formed to ascertain the discretization error.

This adaptive increase in the number of director functions can be performed locally, i.e. only in criti-

cal subdomains where accurate representation of three-dimensional effects is called for. This will be 

elaborated elsewhere.

4. Example problems

Five example problems are presented in this Section to highlight different aspects of the hierarchic 

models, including boundary layer effects and mesh distortion. For additional examples and details we 

refer to [11].

4.1 Problem 1: Linear elastostatic analysis of a cylindrical shell

A cylindrical shell clamped at one end and loaded by uniform distributed normal traction was ana-

lyzed using the 5-field shell model implemented in the prototype software and the results were com-

pared with a 3D-solid finite element solution of the same configuration. Figure 3a shows the shell 

model consisting of one quadrilateral shell element and the contour plot of the Uy displacement com-

ponent. The shell has a radius R=2.0, a length a=2.0, a width b=0.5 and a thickness h=0.10. The nor-

mal load has a magnitude of q=100 and the material is homogenous and isotropic with E=10x106 and 

G=0.0. The corresponding 3D-solid model, consisting of one hexahedral solid element, and the con-

tour plot of the Uy displacement component are shown in the Figure 3b.

The finite element solution was obtained for a fixed finite element mesh and for increasing polyno-

mial order ranging from p=1 to 6 (trunk space) for both models. The estimated error in energy norm 

for each case is shown in Figure 4 in tabular form and in a log-log scale plot, where the horizontal 

axis is the log of the number of degrees of freedom (DOF) and the vertical axis is the log of the per-

cent estimated relative error in energy norm. Note that the DOF for the shell model is smaller than for 
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the 3D-solid model for the same run number (p-level), and the rate of convergence increases substan-

tially for p-level greater than or equal to 4. The shell model is converging to the same potential energy 

as the reference three-dimensional solution given by the 3D-solid model.

The displacement of point A (Figure 3) at the free end of the shell middle surface is shown in Table 1 

for the shell model and for the reference 3D-solid solution as a function of the p-level. The results for 

both models are almost identical. The difference between the shell model and the 3D-solid model is 

only 0.04% for the Ux displacement component and 0.05% for Uy component. Figure 5 shows the 

convergence characteristics of the displacement component Uy as a function of the number of degrees 

of freedom (DOF) for the shell model.

FIGURE 3. Problem 1 - Mesh and contour plot for the shell and 3D-solid models.
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(a) Shell model

(b) 3D-solid model
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TABLE 1. Problem 1 - Displacement of point A

p-level

Ux
A Uy

A

Shell model 3D-solid model Shell model 3D-solid model

1 -5.46170x10-4 -4.90053x10-4 -9.18733x10-4 -7.21372x10-4

2 -1.49293x10-2 -4.28834x10-3 -1.93801x10-2 -5.92515x10-3

3 -1.06430x10-1 -9.11811x10-2 -1.46425x10-1 -1.20099x10-1

4 -1.24992x10-1 -1.25888x10-1 -1.81503x10-1 -1.80942x10-1

5 -1.24740x10-1 -1.24780x10-1 -1.81582x10-1 -1.81632x10-1

6 -1.24741x10-1 -1.24793x10-1 -1.81584x10-1 -1.81682x10-1

FIGURE 4. Problem 1 - Estimated relative error in energy norm.

(a) Shell model

(b) 3D-solid model
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This example demonstrates some of the key features of the implementation of the first shell model 

within the framework of the p-version of the finite element method: Quality of approximation of the 

three-dimensional problem; global error assessment capability; and local error assessment thorough 

convergence checks.

4.2 Problem 2: Buckling and modal analysis of a roof structure

Consider the cylindrical roof structure shown in Figure 6. The shell is of sandwich construction, with 

the outer layers of high modulus graphite/epoxy composite material and an isotropic material core. A 

vertical dead load is applied to the roof, and the objective of the analysis is to determine the maximum 

vertical deflection, the largest normal stress, the first natural frequency of vibration and the buckling 

load factor corresponding to the first symmetric mode. Also of interest is to determine the change in 

natural frequency as a function of the load magnitude. 

The following material properties were used for the external layers and core:

Graphite/Epoxy: EL=25x106; ET =1x106; GLT =5x105; GTT =2x105; GLT = GTT =0.3, 0=1x10-4

Isotropic: E=3x106; G=0.0; 0=1x10-4

where L indicates the direction parallel to the fibers and T is the transverse direction. In this problem, 

the L-direction is aligned with the global Z-axis. Because of symmetry, only one fourth of the roof 

was included in the analysis. The problem was solved using the first hierarchic shell model and also 

using a 3D-solid model in order to have a reference solution. Figure 7 shows the 2-element mesh for 

the shell model and the 6-element mesh for the 3D-solid model. In the solid model, each layer was 

discretized using hexahedral elements.

FIGURE 5. Problem 1 - Convergence plot of Uy for the shell model.
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Symmetry boundary conditions (un=0, where un is the displacement normal to the edge) were speci-

fied along two orthogonal directions, and antisymmetry boundary conditions (uw=ut=0, where ut is 

the displacement tangent to the edge) were used to represent the effects of the end support. The other 

edge is free. Note that a thin element was defined along the free edge of the shell and 3D-solid models 

to account for boundary layer effects. The results, obtained from shell model 1 (p=8, product space) 

and from the 3D-solid model (p=8, trunk space), are summarized in Table 2. The estimated relative 

discretization error (percent) are shown in brackets. They include the maximum vertical displacement 

uy
A

(xA,yA,zA), where (xA, yA, zA) are the coordinates of the shell mid-surface at point A (see Figure 6); 

the normal stresses at point A on the lower surface of the roof, ?z
A; the first natural frequency without 

pre-stress, f1, and the buckling load factor, BLF. The last row in the table are the value of the critical 

load on the roof, which were computed as the product of the applied load (PY=0.625) and the buck-

ling load factor (BLF).

TABLE 2. Results for problem 2

Function Shell model 1 3D-solid model Difference (%)

uy
A -2.73 (0.00) -2.82 (0.00) -3.2

?z
A 10614 (0.06) 10843 (0.20) -2.1

f1 [Hz] 4.71 (0.00) 4.64 (0.01) 1.5

BLF 11.29 (0.76) 10.39 (3.13) 8.7

(PY)CR 7.06 (0.76) 6.49 (3.13) 8.7

FIGURE 6. Problem 2- Cylindrical roof structure. Notation.
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The results of shell model 1 are very close to those obtained using the 3D-solid model specially for 

the linear and modal analysis results. Figure 8 shows the buckling mode shape for both models. The 

effect of the pre-stress induced by the applied load (PY) on the first natural frequency of the roof 

FIGURE 7. Problem 2- Finite element meshes.

Symmetry

Anti-symmetry

Free

Shell mesh
3D-solid mesh

mesh
detail

FIGURE 8. Problem 2- Buckling mode shape

Shell model 3D-solid model
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structure was obtained for the shell model, and the results are included in Table 3. The pre-stress 

increases the natural frequency until the load is about half the critical load, and then decreases rapidly 

as the critical buckling load is approached. 

4.3 Problem 3. Thick 4-ply laminate

Consider a 4-ply [0/90]s laminated plate loaded by a sinusoidal transverse load qz(x,y) = -cos(Hx/a) 

cos(Hy/b). The four layers of the laminate are of the same material and thickness with the following 

properties:

EL = 138000 MPa; ET = 9300 MPa; GLT = 4600 MPa; GTT = 3100 MPa; GLT = 0.3, GTT = 0.5

where L indicates the direction parallel to the fibers and T is the transverse direction. When the L-

direction coincides with the x-direction, we refer to it as the 0o orientation (Figure 9). All the dimen-

sions are in millimeters.The plate is hard-simply supported along all four edges. A hard-simple sup-

port is characterized by: uz = ut = 0, where ut is the displacement component tangent to the edge, and 

uz=uw. 

TABLE 3. Problem 2 - Effect of pre-stresses on the first natural frequency

PY 0.0 1.0 2.0 3.0 4.0 5.0 6.0 6.5 7.0 7.06

f1 [Hz] 4.71 5.39 5.82 6.01 5.89 5.31 4.07 3.02 0.95 0.00

a= 5

b
 =

 3
.5

h=1

Y

X

Y

Z

X

Z

FIGURE 9.  Problem 3 - Laminated plate. Notation



Example problems

Hierarchic Models for Laminated Plates and Shells 25 of 40

The reference solution was obtained from the finite element analysis of a 3D-solid model in which 

each layer was discretized as a solid element. Because of symmetry, only one quarter of the plate was 

used for the shell analysis, and one eighth for the solid analysis. Figure 10 shows the one-element 

mesh for the shell analysis and the two-element mesh for the 3D-solid analysis. Antisymmetry con-

straints were specified on the middle surface of the 3D-solid model. 

The results for the shell models were obtained for the first and second hierarchic shell models for 

polynomial orders ranging from 1 to 8, and the product space was used. The optimal combination of 

transverse shape functions for model 2 to be used in the 8-field semi-discretization of Eq. (3) was 

determined to be )6, )7, )11 (as it should be expected for a bending dominated problem). 

The results shown in Table 4 include the total potential energy of the solution '(u); the maximum dis-

placement at the center of the plate uz(0,0,0); the normal stresses ?x(0,0,-h/2) and ?y(0,0,-h/2) and the 

shear stress @xy(a/2,b/2,-h/2) at one of the external surfaces of the plate for both hierarchic shell models 

(shell 1 and 2) and for the 3D-solid model. For both shell models the results are for p=8 (product 

space), while for the 3D-solid model the results are for p=8, trunk space.

TABLE 4. Results for problem 3

Model '(u) x 104 uz(0,0,0) ?x(0,0,-h/2) ?y(0,0,-h/2) @xy(a/2,b/2,-h/2)

Shell 1 -2.8746631 -5.2565 x 10-4 6.4389 1.4035 -0.7274

Shell 2 -2.9863590 -5.5671 x 10-4 7.3924 1.9688 -0.8154

3D-Solid -3.0850379 -5.7263 x 10-4 7.7388 1.9267 -0.8602

FIGURE 10. Problem 3 - Finite element meshes for the shell and 3D-solid 

models.
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The low aspect ratio of the plate combined with the highly anisotropic nature of the material represent 

a severe test for any laminated shell model. The length-to-thickness ratio is only 3.5, and therefore not 

suitable for conventional shell analysis. However, the use of higher order models indicates that the 

results converge to the fully three-dimensional solution.

The through-thickness stress distribution of the normal stresses at the center of the plate is shown in 

Figure 11 for shell models 1 and 2. Differences between the two models is visible at the external sur-

faces and at the interface between layers.

4.4 Problem 4. Effect of boundary layers

Boundary layer effects occur at the shell boundaries, and are characterized by the fact that the solution 

‘near’ the boundary is substantially different from the solution in the interior. All hierarchic shell 

models (as well as the fully three-dimensional model) exhibit boundary layers, and an important part 

of the energy of the solution is contained in them. For further information on boundary layer effects 

refer to Refs. [16], [17]. Therefore, the mesh design necessary to obtain accurate solutions for any 

given member of the hierarchic sequence of models should properly account for the boundary layers. 

Extensive numerical experimentation clearly showed that the hierarchic models are very capable of 

resolving the boundary layer effects when proper meshing is used.

FIGURE 11. Problem 3 - Through-thickness stress distributions ?x(0,0,z) and ?y(0,0,z) for shell 

models 1 and 2.

?x
?y
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Based on the numerical evidence, guidelines for mesh design to be used with the hierarchic models 

that will provide optimal or near-optimal meshes with respect to the energy norm were developed. 

These guidelines are summarized as follows:

• The first step is to design a finite element mesh that provides optimal rate of convergence for the 

exact solution of the shell problem in the interior of the domain without consideration of the 

boundaries. For smooth problems and p-convergence this typically involves the use of uniform or 

quasi-uniform meshes. This will be referred to as the “coarse mesh”. 

• Once the coarse mesh is available, the boundary layers should be accounted for by the use of 

graded meshes. For most practical problems one or two layers of graded elements towards the 

edges are sufficient to account for boundary layer effects. The characteristic length of a shell prob-

lem is the thickness-to-radius ratio (h/R). For thin shells (h/R<< 1), the recommended size of the 

boundary layer elements are  for the first and second layers, respectively. For thick 

shells (h/R %!1), boundary layer effects are less significant and, in general, one layer of elements is 

sufficient with a size of order h. 

To illustrate the effect of the boundary layer on the solution of shell problems, consider a cylinder 

with no kinematical constraints at the ends, subjected to a sinusoidal distributed surface traction 

. This load is self-equilibrated in the angular direction and uniform in the axial 

direction. The dimensions are shown in Figure 12. 

Three thickness-to-radius ratios were analyzed: h/R=0.1, h/R=0.01, and h/R =0.001 and two different 

materials were considered. An isotropic material with E=10x106$!G=1/3 and unit shear factor; and a 4-

ply laminated composite with a [0/90]s layup and the following properties for each layer:

EL = 25x106, ET = 1x106, GLT = 5x105, GTT = 2x105, GLT = 0.25, GTT = 0.49

5h and 3 h

Tn T0 2I" #cos=

FIGURE 12. Problem 4 - Cylinder under sinusoidal loading. Notation.
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where L indicates the direction parallel to the fibers and T is the transverse direction. When the L-

direction coincides with the Z-direction, we refer to it as the 0o orientation: For the two outer layers 

the fibers run parallel to the Z-axis, and for the two inner layers the fibers run in the circumferential 

direction. All layers are of the same thickness (h/4). This problem is discussed in Ref. [18] for the 

case of isotropic material. 

The radius (R=1.0) and length (L=2.0) of the cylinder are kept fixed, and the thickness is changed for 

each case analyzed. The solutions were obtained for hierarchic models 1 and 2, polynomial orders 

ranging from 1 to 8, downward run, and the product space was used. For definition of the product 

space, see Ref. [1], page 96.

Because of symmetry, only one sixteenth of the cylinder is considered for the analysis. Figure 13 

shows the finite element mesh used for the analysis with the two boundary layer elements near the 

free end of the shell with sizes corresponding to h/R=0.01, that is b1=0.05 and b2=0.30.

The estimated relative error in energy norm as a function of the number of degrees of freedom (DOF) 

for each h/R is shown in Figure 14 for the case of isotropic material and in Figure 15 for the case of 

the 4-ply laminated composite material. All cases shown correspond to shell model 1, and the solu-

tions converged to less than 1% relative error in energy norm. Note that the rate of convergence is 

very low (and consequently the error in energy norm large) for polynomial orders less than 4 (run # 5) 

for the thick shell (h/R=0.1) and less than 5 (run #4) for the thin shells (h/R=0.01 and 0.001). When 

the displacement formulation of the finite element method is used for thin shells, locking occurs when 

the p-level is less than 4 or 5, depending on the h/R ratio. Also note that the total potential energy 

scales as (h/R)-3 as h/R ! 0, which means that the deformation state of the shell is fully bending dom-

inated. The p-convergence of the potential energies for small values of h/R stalls up to p=4 due to 

FIGURE 13. Problem 4 - Finite element mesh and 

boundary conditions.

symmetry
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45o
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membrane locking, but enters the asymptotic, exponential regime from p=4 on and achieves, in each 

case, an accurately converged solution at p=8 with a moderate number (<1000) of degrees of free-

dom. 

The boundary layer effects can be visualized when displaying the first principal stress distribution 

over the middle surface of the shell (w = 0.0). Even though this is a bending dominated problem, the 

free-edge boundary layer is present at the middle surface of the shell. Figure 16 shows the first princi-

pal stress, S1, for the case of isotropic material and for all three thickness-to-radius ratios. Note that as 

the thickness of the shell decreases, S1 is practically zero everywhere, except along a narrow band 

FIGURE 14. Problem 4 - Estimated relative error in energy norm. Shell model 1, isotropic case.

h/R = 0.1

h/R = 0.01

h/R = 0.001
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(the boundary layer) near the free edge, and that the size of the boundary layer decreases as h/R goes 

to zero. 

FIGURE 15. Problem 4- Estimated relative error in energy norm. Shell model 1, laminated composite 

case.

h/R = 0.1

h/R = 0.01

h/R = 0.001



Example problems

Hierarchic Models for Laminated Plates and Shells 31 of 40

h/R = 0.01

h/R = 0.1

FIGURE 16. Problem 4 - First principal stress distribution at the middle surface of the shell. Shell model 1, 

isotropic case.

h/R = 0.001
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The boundary layer effect is also present on the external surface (w = h/2) of the shell. Considering 

the case of isotropic material shown in Figure 17, the S1 stress distribution is rather regular every-

where, except close to the shell free end, where the presence of the boundary layer perturbs the stress 

distribution. 

The situation is quite similar for the case of the laminated composite shell. Figure 18 shows the S1 

stress distribution for the middle surface of the shell, that is, at w = 0.0, for all three h/R ratios. Com-

paring Figure 16 with Figure 18, the behavior of the boundary layer is almost identical for both mate-

rial types. 

h/R = 0.01

FIGURE 17. Problem 4 - First principal stress distribution at w=h/2. Shell model 1, isotropic case.

h/R = 0.001
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The effect of the boundary layer is less apparent at the interface between layers, however. As shown 

in Figure 19, the stress distribution near the free edge at the interface between two layers is only 

mildly perturbed by the boundary layer. The laminated composite case was also analyzed using shell 

FIGURE 18. Problem 4 - First principal stress distribution at the middle surface of the shell. Shell model 1, 

Laminated composite case.

h/R = 0.1

h/R = 0.01

h/R = 0.001
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model 2. No substantial difference was observed between the results of model 1 and model 2, how-

ever. The through-thickness normal stress distribution Sy for h/R=0.1, at a point located at I=0 on the 

free end of the cylinder (point A in Figure 12), is shown in Figure 20. The results for shell models 1 

and 2 are almost indistinguishable from each other. The same was found for the other two h/R ratios.

The first principal stress distribution, S1, at the middle surface of the laminated composite shell is 

shown in Figure 21 for h/R=0.1 and h/R=0.01 as computed from shell model 2. Comparing this plot 

with those shown in Figure 18, it is clear that the same type of boundary layer is present in both shell 

models, and the localized stresses are of the same order of magnitude.

FIGURE 19. Problem 4 - First principal stress distribution at w=h/4. Shell model 1, Laminated composite 

case.

h/R = 0.01

h/R = 0.001
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Table 5 shows the normalized displacement of point A for all three h/R ratios and for the isotropic and 

laminated composite cases. The 4-ply laminate results are shown for shell models 1 and 2. The nor-

malized displacement is defined as:

where ET= 1x106, T0=1.0, R=1.0 and ux
A is the displacement of point A in the global x-direction 

(Figure 12). Note that U converges to a limit value as the thickness-to radius ratio goes to zero, and 

that both hierarchic models converge to the same value. 

TABLE 5. Problem 4 - Normalized displacement of point A.

h/R

Normalized displacement U

Isotropic model 1 Laminated model 1 Laminated model 2

0.1 0.127 0.349 0.346

0.01 0.120 0.333 0.331

0.001 0.119 0.333 0.330

FIGURE 20. Problem 4 - Through-thickness normal stress distribution at point A. Shell models 1 and 2, 

laminated composite case.
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4.5 Problem 5. Effect of mesh distortion

The same model problem 4 is used to demonstrate the robustness of the shell models in the presence 

of distorted meshes. In particular, we are interested in evaluating the influence of the element edges 

not being aligned with the principal directions of the shell surface. 

Consider the cylindrical shell shown in Figure 12 with the finite element mesh of Figure 22. The 6-

element mesh was designed in such a way that the center longitudinal line can be rotated through an 

arbitrary angle B to change the distortion of the elements. The analysis was performed for the isotro-

FIGURE 21. Problem 4 - First principal stress distribution at the middle surface of the shell. Shell model 2, 

Laminated composite case.

h/R = 0.1

h/R = 0.01
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pic case and for two thickness-to-radius ratios: h/R=0.01 and h/R=0.001. Downward p-extension was 

used together with the product space and shell model 1.

The results of the analysis are shown in Figure 23, where the estimated relative error in energy norm 

for h/R=0.01 is shown for three values of the distortion angle (B=0, 5, 10 degrees). Note that the 

potential energy of the solution is practically independent on the distortion angle, and for all three val-

ues of B the relative error in energy norm at p-level=8 (run #1) is very small. The results are summa-

rized in Table 6 for both h/R ratios. Included in the table are the values of the potential energy 

corresponding to a p-level of 8 (run #1) and the ux displacement component of point A (see 

Figure 12). 

TABLE 6. Problem 5 - Effect of distortion angle, 6-element mesh

h/R B!(deg) Potential Energy ux
A

0.01

0 -2.399350588x10-2 0.122194

5 -2.399351950x10-2 0.122194

10 -2.399354319x10-2 0.122194

0.001

0 -23.87654257 121.602

5 -23.87655967 121.602

10 -23.87657944 121.602

FIGURE 22. Problem 5 - Distorted finite element mesh, 6 elements

B-.J
B-/,J
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The results indicate the very low sensitivity of the solution to element distortion, even in the presence 

of boundary layers.

5. Conclusions

Hierarchic plate and shell models provide means for systematic selection of the director functions 

which represent the transverse variation of the displacement vector components. The optimally deter-

mined director functions and their implementation in the displacement formulation of the p-version of 

FIGURE 23. Problem 5 - Estimated relative error in energy norm for h/R=0.01.

B = 0o

B = 5o

B = 10o
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the finite element method provide a robust algorithm which is free from locking and very insensitive 

to mesh distortion. 

In order to achieve a realistic mathematical representation of the mechanical response of a homoge-

neous or laminated plate or shell, it is necessary to control both the discretization and modeling errors. 

Once it is ascertained that the discretization errors are small, it is necessary to test the sensitivity of 

the engineering data with respect to the choice of the mathematical model. This is possible only if a 

hierarchic family of finite element spaces and a hierarchic family of models are available. In the 

examples presented in this paper a hierarchic family of finite element spaces based on p-extension, 

utilizing properly design finite element meshes, was employed to control the errors of discretization. 

A hierarchic family of models, which satisfies criteria (a), (b) and (c), described in the introduction, 

was employed to control modeling errors within the framework of the linear theory of elasticity.
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97-14 D. Schötzau, C. Schwab,
R. Stenberg

Mixed hp - FEM on anisotropic meshes II:
Hanging nodes and tensor products of bound-
ary layer meshes

97-13 J. Maurer The Method of Transport for mixed hyper-
bolic - parabolic systems

97-12 M. Fey, R. Jeltsch,
J. Maurer, A.-T. Morel

The method of transport for nonlinear sys-
tems of hyperbolic conservation laws in sev-
eral space dimensions

97-11 K. Gerdes A summary of infinite element formulations
for exterior Helmholtz problems

97-10 R. Jeltsch, R.A. Renaut,
J.H. Smit

An Accuracy Barrier for Stable Three-Time-
Level Difference Schemes for Hyperbolic
Equations

97-09 K. Gerdes, A.M. Matache,
C. Schwab

Analysis of membrane locking in hp FEM for
a cylindrical shell

97-08 T. Gutzmer Error Estimates for Reconstruction using
Thin Plate Spline Interpolants

97-07 J.M. Melenk Operator Adapted Spectral Element
Methods. I. Harmonic and Generalized Har-
monic Polynomials

97-06 C. Lage, C. Schwab Two Notes on the Implementation of Wavelet
Galerkin Boundary Element Methods

97-05 J.M. Melenk, C. Schwab An hp Finite Element Method for convection-
diffusion problems

97-04 J.M. Melenk, C. Schwab hp FEM for Reaction-Diffusion Equations.
II. Regularity Theory


