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CH-8092 Zürich Baltimore, MD 21250
Switzerland USA

Research Report No. 97-19
December 1997

1The work of this author was supported in part by the Air Force Office of Scientific Research,
Air Force Systems Command, USAF under Grant F49620-95-I-0230



Mixed hp Finite Element Methods for Stokes and
Non-Newtonian Flow

1C. Schwab M. Suri
Seminar für Angewandte Mathematik Department of Mathematics and Statistics
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We analyze the stability of hp finite elements for viscous incompressible
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1 Introduction

Solutions of the boundary value problems of incompressible fluid flow in non-smooth domains
Ω exhibit, as is well-known ([19], [21]), singularities at conical boundary points, even if the
prescribed data are (piecewise) analytic. This is so for nonlinear problems such as the Navier-
Stokes equations in the Newtonian case and, more so, for general non-Newtonian flows and their
linearized versions (see, e.g., [20]). The situation is analogous to that for elliptic boundary value
problems of potential and elasticity theory.

Our goal in this paper is to address the construction and mathematical validation of suit-
able hp finite element spaces that can be used to resolve the singularities encountered in such
problems. The use of high order methods such as the p and hp1 FEM is already well accepted
in elasticity problems, for which it has been shown (see e.g. [15]) that

(1) for smooth solutions, exponential convergence is obtained by the pure p version and

(2) for singular solutions (such as those encountered in linear elliptic PDEs over polygonal
domains), the exponential convergence can be preserved by the hp version over strongly
graded, geometric meshes.

Our motivation here is the application of these versions to fluid flow problems, in particular
the linearized versions of incompressible flows, both Newtonian and non-Newtonian. The p
version has already been analyzed for Stokes flow, for instance in the form of the spectral

element method (see e.g. [2]). Moreover, p and hp finite elements have been formulated and
analyzed for Stokes flow in e.g. [6, 7, 29], but not in the context of exponential convergence, i.e.
not in the context of hp spaces over geometric meshes, which we describe in Section 2. The first
of our goals here is to extend previous analyses to this case, thereby establishing exponential
convergence in the presence of singularities for the Stokes problem. (Note that it is not possible
to prove or attain exponential convergence in the context of the spectral element method over
a fixed mesh [2] when singularities are present.)

We do this in Section 3. The key concern here (not found in elasticity problems) is one of
stability, since we now have a saddle point problem involving both the velocity and pressure
unknowns, and an inf-sup (or Babuška-Brezzi (BB)) condition must be satisfied by the spaces
chosen. We establish such an inf-sup condition for geometrical meshes containing both parallel-
ograms and triangles. The theoretical treatment of p-stability for triangles is a necessary (and
new) result, since previous results (e.g. in [2, 6, 29]) only established the inf-sup condition for
the special case of parallelograms, and most hp meshes contain triangles as well. See Remark
3.8 in this context.

In Section 4, we extend our results to a three-field Stokes formulation which contains an
extra field: the stress tensor σ. This arises from the linearization of some differential models of
non-Newtonian flows (see e.g. [8], [10]). As in [10], we consider the stability of this limiting linear
problem as a means of formulating FE space combinations that can be used in the non-linear case
as well. The difference is that we are interested in identifying spaces that are stable in terms of
both h and p. We are motivated here by recent computations that show the superiority of p and
hp FEM over the classical h FEM for non-Newtonian flows (see e.g. [17, 30, 31, 32]). Our work

1By the p version, we mean a FEM where convergence is achieved by increasing the degree p on a fixed mesh.
This is in contrast to the classical h version, where p is fixed and the mesh is refined. The hp version combines
both strategies.
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here is a first step towards choosing such hp space combinations on the basis of mathematical
principles. Using our analysis, we once again establish exponential convergence for the linearized
version of such problems.

Our results in Section 4 indicate that to ensure stability of the limiting three-field Stokes
problem, we may need spaces for σ that have higher polynomial degree than those for the velocity
when continuous stresses are desired. This is consistent with computational observations (see
e.g. [30]). In Section 4.5, we show that if discontinuous stresses are used, then the same (or even,
for triangles, lower-order) spaces can be used for the stresses as for the velocities. In particular,
we present the Qk+1 −Qk+1 − Pk combination over parallelograms that is fully stable both

in terms of h and p.

If, however, continuous stresses are required, then a variant of the EVSS (Elastic Viscous
Split Stress) methods ([11], [12]) again allows the same (or lower) order space to be used
for the stress as for the velocity. This is considered in Section 4.6, where we again establish
exponential convergence for the hp method, and show that the Qk′ − Qk+1 − Pk combination
over parallelograms is stable and optimal in both h and p.

The exponential convergence proven here agrees well with numerical results for problems
such as the 4-to-1 contraction problem and the driven cavity problem. In Section 5, we present
one such test, for Stokes flow over an unsmooth domain, where the hp exponential convergence
is clearly observed. Let us remark that although our results have only been established for
linearized problems, computational results in Newtonian and non-Newtonian flow indicate that
the hp version again results in exponential convergence for the singularities in these more general
cases.

Our conclusions are summarized in Section 6.

2 Domains and meshes

Throughout, Ω ⊂ lR2 will denote a bounded polygon with M vertices Ai, i = 1, . . . ,M , and
straight, open sides Γi, i = 1, . . . ,M (see Figure 1). For i ≥ M , we will use Γi = Γi mod M ,
Ai = Ai mod M

Γ5

Γ2

A1

Γ6

A5

A6 = A0 Γ1

A3 Γ3
A2

Γ4

A4

Figure 1: The polygon Ω and the notation Γi = Γi mod M , Ai = Ai mod M
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In Ω, we define a family of geometric meshes {Ωn,σ}, where 0 < σ < 1 and k ∈ lN,
as follows: we partition Ω into a corner part Ω1 and an interior part Ω2 as shown in Figure
2.

A4

A1

A3 A2A5

A6

Ω13

Ω14

Ω2

Ω16 Ω11

Ω12
Ω15

Figure 2: The subdomain Ω2 and the corner patches Ω1i

The corner part Ω1 consists of M open corner patches Ω1i which are assumed to be disjoint, i.e.

Ai ∈ Ω1i, Aj /∈ Ω1i j %= i .

Each corner patch is now subdivided geometrically into triangular or parallelogram elements
K which are affinely equivalent to either the reference square K̂ = Q̂ = (−1, 1)2 or the
reference triangle K̂ = T̂ = {(x̂1, x̂2) : |x̂1| < 1, 0 < x̂2 <

√
3(1− |x̂1|)}, i.e.

(2.1) K = FK(K̂) , FK(x̂) = AK x̂+ bK ,

which implies in particular JK = ∂FK/∂x̂ = AK = constant.

A geometric subdivision Ωn,σ
1j of Ω1j with n layers and grading factor 0 < σ < 1 is a

collection of elements K as above that satisfies

i) Ωn,σ
1j is shape regular,

ii) Ωn,σ
1j is conforming, i.e. for any K,K ′ ∈ Ωn,σ

1j , K %= K ′, K ∩K
′
is either empty, a vertex

or an entire side,

iii) either: Aj ∈ K; then diam K ≤ c1 σn for some 0 < σ < 1, or:

(2.2) 0 < c2(1− σ) ≤ dist(K,Aj)/diam(K) ≤ c3(1− σ) < ∞

and there exists K ∈ Ωn,σ
1j such that

(2.3) diam(K) ≥ c4 diam (Ω1j)

where c", # = 1, 2, 3, 4 are independent of n and σ.
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Note that (2.2) and (2.3) can be satisfied by constructing Ωn,σ
1j by recursive subdivision

(Figure 3).

n = 4n = 3n = 2n = 1

Figure 3: Sequence {Ωσ,n
1j }4n=1 for σ = 1/2 on corner patch Ω1j = (0, 1)2

with vertex Aj = (0, 0).

The remaining interior domain Ω2 in Figure 2 is triangulated with a fixed, quasi-uniform
partition Ωσ

2 consisting of triangles and/or parallelograms such that Ωσ
2 ∪Ωn,σ

11 ∪Ωn,σ
12 ∪ · · ·∪Ωn,σ

1M
is a conforming shape regular partition of Ω for every n. Note that Ωσ

2 depends on σ but is
independent of n. The resulting geometric mesh on Ω will be referred to as Ωn,σ.

Remark 2.1. We confine ourselves here for brevity to straight polygons. All results carry over,
however, to polygons with smoothly curved sides, if the elements are mapped by blending maps
and the pressure spaces are redefined using the Piola-transform (see [5], [6] for more).

We will use Hk(S) to denote the Sobolev space of functions with k generalized derivatives
on a domain S ⊂ lRn, with L2(S) = H0(S). The norm will be denoted by ‖ · ‖Hk(S), or simply

‖ · ‖k if S = Ω. We also define H1
0 (S) = {u ∈ H1(S), u = 0 on ∂S} and L2

0(S) = {u ∈ L2(S),∫
S u dx = 0}. Finally, [H]2×2

sym denotes the space of all symmetric 2 × 2 tensors with each
component in H.

3 Stokes Problem (Classical Formulation)

3.1 Variational Formulation and FE discretization

The variational form of the Stokes problem in Ω reads:

Find (u, p) ∈ H1
0 (Ω)× L2

0(Ω) such that

(3.1)
a(u,v) + b(v, p) = (f ,v) v ∈ H1

0(Ω)

b(u, q) = 0 q ∈ L2
0(Ω) .

Here
a(u,v) = ν(grad u, grad v) ,

b(v, p) = −(p, div v) .

As is well-known (see, e.g., [13]), we have the continuous inf-sup condition

(3.2) ∀p ∈ L2
0(Ω) : sup

0#=v∈H1
0
(Ω)

b(v, p)

‖v‖1
≥ δ ‖p‖0

4



with some δ > 0. The condition (3.2) implies, together with

(3.3) a(u,u) ≥ C ‖u‖21 ∀u ∈ H1
0(Ω) ,

that (3.1) admits, for every f ∈ L2(Ω), a unique solution (u, p) ∈ H1
0(Ω)× L2

0(Ω).

The FE-discretization of (3.1) proceeds in the usual fashion: given families {VN} ⊂ H1
0(Ω)

and {MN} ⊂ L2
0(Ω) of finite-dimensional subspaces with dimensions proportional to N , find

(uN , pN ) ∈ VN ×MN such that

(3.4)
a(uN ,v) + b(v, pN ) = (f,v) ∀v ∈ V N ,

b(uN , q) = 0 ∀q ∈ MN .

If the discrete inf-sup condition

(3.5) ∀q ∈ MN : sup
0#=v∈VN

b(v, q)

‖v‖1
≥ δ(N) ‖q‖0

holds for some δ(N) > 0, the problem (3.4) admits a unique solution (uN , pN ) which satisfies
the a priori error estimate (see, e.g. [13], [27])

(3.6) ‖u− uN‖1 ≤
C1

δ(N)
inf

v∈VN

‖u− v‖1 + C2 inf
q∈MN

‖p− q‖0 .

(3.7) ‖p− pN‖0 ≤
C1

(δ(N))2
inf

v∈VN

‖u− v‖1 +
C2

δ(N)
inf

q∈MN

‖p − q‖0 .

We thus see the two basic ingredients of the convergence analysis: stability (via the constant
δ(N)) and consistency, which is governed by the approximability of the exact solution (u, p)
from {VN ×MN}. To quantify the latter, we must specify the regularity of (u, p) and the design
of the FE spaces (VN ,MN ). We next describe the spaces VN ,MN .

3.2 The hp FE spaces Sk,"
0 (Ωn,σ)

The spaces VN ,MN will be, as usual, spaces of piecewise polynomials on the geometric meshes
Ωn,σ defined in Section 2. The finite element approximations uN , pN will be piecewise polyno-
mials on Ωn,σ. We associate with each K ∈ Ωn,σ a polynomial degree kK ≥ 2 and combine all
degrees kK in the degree vector

(3.8) k = {kK : K ∈ Ωn,σ}, |k| = max
K∈Ωn,σ

{kK} .

Then

VN = [Sk,1
0 (Ωn,σ)]2 := {v ∈ H1

0 (Ω) : v|K ◦ FK ∈ V kK (K̂), K ∈ Ωn,σ}2 ,(3.9)

MN = Sk,0
0 (Ωn,σ) := {q ∈ L2

0(Ω) : q|K ◦ FK ∈ W kK (K̂), K ∈ Ωn,σ} .(3.10)

5



Here, V k(K̂),W k(K̂) are spaces defined on the reference element in terms ofQk = span{x̂α1

1 x̂α2

2 :
0 ≤ α1,α2 ≤ k} and Pk = span{x̂α1

1 x̂α2

2 : 0 ≤ α1,α2, α1 + α2 ≤ k}, the sets of polynomials of
separate, respectively, total degree k, as follows.

If K̂ = T̂ , we choose

(3.11) V k(T̂ ) = Pk+1(T̂ ), W k(T̂ ) = Pk−1(T̂ ), k ≥ 2 .

An alternate choice, discussed in [6], is to take W k(T̂ ) as above, with

(3.12) V k(T̂ ) = Pk(T̂ ) ∪ (Pk+1(T̂ ) ∩H1
0 (T̂ )) .

This is an optimized version of (3.11), and leads to the same stability estimates.

For quadrilateral elements (K̂ = Q̂), there are several choices; we present three of them and
refer to [29] for alternative ones. The analog of (3.11) is to choose

(3.13) V k(Q̂) = Qk+1(Q̂), W k(Q̂) = Qk−1(Q̂) .

This is the choice used most often in spectral element methods [2], but, as shown in [7], [29], it
is sub-optimal with respect to h convergence. An optimal choice (in terms of h) is to choose,
instead ([7], [29])

(3.14) V k(Q̂) = Qk+1(Q̂), W k(Q̂) = Pk(Q̂) .

(Recently [3] this choice has been shown to be completely stable with respect to k as well.)

Another alternative is to keep W k as in (3.13), but minimize V k. For this, we introduce the
space Ek(Q̂) of external degrees of freedom on Q̂:

(3.15) Ek(Q̂) = P1(Î1)⊗ Pk(Î2) ∪ Pk(Î1)⊗ P1(Î2) ,

where Îi = {x̂i : |x̂i| < 1} is the unit interval and Pk(Îi) denotes the space of polynomials of
degree ≤ k on Îi. The space J k(Q̂) of internal degrees of freedom on Q̂ is

(3.16) J k(Q̂) = {bQ̂v : v ∈ Qk−2(Q̂)}

where bQ̂ is the basic bubble function on Q̂, i.e.

(3.17) bQ̂(x̂1, x̂2) = (1− x̂21)(1− x̂22) .

With these notations we define

(3.18) V k(Q̂) = Ek(Q̂)⊕ J k+1(Q̂), W k(Q̂) = Qk−1(Q̂) .

For a comparison of these choices, see [6, 7].
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For V k(K̂) let us define V k
0 (K̂) := V k(K̂) ∩H1

0 (K̂). Then we have

(3.19) V k
0 (K̂) = {v ∈ V k(K̂) : v = bK̂w, w ∈ Xk(K̂)}

where

(3.20) Xk(K̂) :=

{
Pk−2(T̂ ) if K̂ = T̂ ,

Qk−1(Q̂) if K̂ = Q̂ .

Here, the bubble function bT̂ on T̂ is defined by

(3.21) bT̂ (x̂1, x̂2) = x̂2(1− x̂1 − x̂2/
√
3)(1 + x̂1 − x̂2/

√
3) .

We observe that our selections are such that

(3.22) ∇q ∈ [Xk(K̂)]2 ∀q ∈ W k(K̂) .

The spaces VN ,MN have been defined mainly with the discrete inf-sup condition (3.5) in mind,
as we will see in the next paragraph. However, they also have decisive advantages in terms of
approximability.

3.3 Approximation Properties of Sk,"(Ωn,σ)

To state the approximation properties of Sk,"(Ωn,σ), we assume that the right hand side f in
(3.1) is analytic in Ω. Then it follows from standard elliptic regularity that u and p are also
analytic in Ω and even on Ω\

⋃M
i=1Ai. There are, however, corner singularities at the vertices

Ai. It was shown by Babus̆ka and Guo for closely related elasticity and potential problems in
polygonal domains that in this case the solutions belong to countably normed spaces B"

β(Ω)
(see [15], [16], [1] for the definition and properties of these spaces). We make the following
analogous regularity hypothesis for the Stokes problem (3.1):

(3.23) u ∈ B2
β(Ω), p ∈ B1

β(Ω) for some 0 < β < 1

(the values of β depends on the corner angles of Ω).
W̌e also assume the following about the spaces Sk,"(Ωn,σ). Either the polynomial degree is

constant, kK = k for all K ∈ Ωn,σ, and proportional to n, the number of layer refinements in
the geometric meshes Ωn,σ, or the polynomial degrees pK are equal to 1 in the elements with
Aj as a vertex and increase linearly away from Aj : kK = [µ(#+1)] where # denotes the number
of elements between K ⊂ Ω1j and Aj. The (sufficiently large) constant µ(σ) > 0 is the slope

of the degree vector k and the degrees kK for K ⊂ Ω2 in Figure 2 are equal to 2µ(n + 1)3.

Under these assumptions, the spaces VN ,MN defined above have the following approximation
properties (see [15], [27] for details).

Theorem 3.1. Assume the regularity (3.23) and the choice of k described above. Then, for
VN ,MN defined as in (3.9), (3.10), there hold the approximability estimates

(3.24) inf
v∈VN

‖u− v‖1 ≤ C exp(−bN1/3) ,

(3.25) inf
q∈MN

‖p− q‖0 ≤ C exp(−bN1/3) ,

where the constants C and b are positive and independent of N .
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Combining the convergence rates (3.24), (3.25) with (3.6), (3.7), we deduce that the mixed
hp-FEM (3.4) converges exponentially whenever the inf-sup constant δ(N) in (3.5) approaches
zero at most algebraically, i.e. whenever

(3.26) δ(N) ≥ CN−λ, C,λ independent of N .

Of course, if λ > 0, this means that strictly speaking the method is unstable. However, for
methods with λ > 0 (e.g. using [Qk+1]2 − Qk−1), the exponential convergence rates (3.24),
(3.25) usually make this instability difficult to detect. Nevertheless, for large values of λ in
(3.26), numerical difficulties may result as well, from ill-conditioning of the discrete problem. It
is therefore essential that we obtain (3.26) with λ = 0 or with moderate λ > 0.

3.4 Divergence Stability of [Sk,1
0 (Ωn,σ)]2 − Sk,0

0 (Ωn,σ)

Here we prove our main result regarding divergence-stability of the pairs of spaces
[Sk,1

0 (Ωn,σ)]2 − Sk,0
0 (Ωn,σ) for any of the choices (3.11), (3.12), (3.13), (3.14), (3.18).

Theorem 3.2. The pairs {VN ,MN} of spaces, defined by (3.9) - (3.10) satisfy the inf-sup
condition (3.5) with

(3.27) δ(N) = δ(|k|) ≥ C |k|−3 ≥ CN−1

where C > 0 is independent of N , but may depend on σ.

Theorem 3.2 shows that the global inf-sup constant does not depend on the mesh, but only
the choice of polynomial degree, for all the elements considered, even when geometric meshes
are used. As shown in Theorem 3.3 of [29], the global stability follows whenever

(A1) the global spaces contain a combination of low-order subspaces that is h-stable for Stokes
problem (e.g. [Q2]2 −Q0 for parallelograms, [P2]2 − P0 for triangles) and

(A2) the reference combination (V k(K̂),W k(K̂)) satisfies a local inf-sup condition:

(3.28) ∀q ∈ W k(K̂) : sup
0#=v∈Vk(K̂)

∫
K̂ q div v dx

‖v‖H1(K̂)

≥ δ(k) ‖q‖L2(K̂) .

For the case of parallelograms, we have the following

Theorem 3.3. If K̂ = Q̂ is a square, then (3.28) holds with δ(k) = C for the choice (3.14) and

δ(k) = Ck−
1

2 for the choices (3.13), (3.18).

The proof for the O(k−
1

2 ) estimate may be found in [29], this was recently improved to O(1)
for the choice (3.14) in [3].

For triangles, we will prove the following.

Theorem 3.4. If K̂ = T̂ is a triangle, then (3.28) holds with δ(k) = Ck−3 for the choices
(3.11), (3.12).
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Since with Theorem 3.3 and 3.4, our spaces VN ,MN satisfy the above requirements (A1)
and (A2), Theorem 3.2 follows by using the argument of Theorem 3.3 of [29].

It remains to establish Theorem 3.4. We do this in the same framework that the stability
result for parallelograms was established in [29]. Accordingly, we define the projection Πk :
H1

0 (K̂) → V k
0 (K̂) (for k large enough)

(3.29)

∫

K̂

(v −Πkv)w dξ = 0 ∀w ∈ Xk(K̂) .

Here Xk(K̂) is defined in (3.19) and (3.20). We see that Πk is a weighted L2(K̂)-projection.
Then, as shown in [29], the local condition (3.28) follows provided we can show

(3.30) ‖Πku‖H1(K̂) ≤ Ĉ (δ(k))−1 ‖u‖H1(K̂) ∀u ∈ H1
0 (K̂) .

We need a series of lemmas to prove (3.29) for triangles with δ(k) = Ck−3.

Lemma 3.5. Let T̂ be the reference triangle and let bT̂ ∈ P3(T̂ ) denote the basic bubble function

(3.24) on T̂ . Assume further that for some θ,

(3.31) Λ(k) := inf
v∈Pk(T̂ )

∫

T̂

bT̂ (ξ)(v(ξ))
2 dξ

(

∫

T̂

(v(ξ))2 dξ
)

1

2

(

∫

T̂

(bT̂ (ξ))
2(v(ξ))2 dξ

)
1

2

≥ C k1−θ

with C > 0 independent of k. Then the projection Πk in (3.29) satisfies

‖Πkv‖H1(T̂ ) ≤ Ckmax{2,θ} ‖v‖H1(T̂ ) ∀v ∈ H1
0 (T̂ ) .

Proof: Recall that for any v ∈ H1
0 (T̂ ), Πkv is defined by vk = Πkv ∈ V k

0 (T̂ ) = Pk+1(T̂ )∩H1
0 (T̂ )

such that

(3.32)

∫

T̂

vkw dξ =

∫

T̂

vw dξ ∀w ∈ Pk−2(T̂ ) .

Define ṽk to be the H1
0 -projection of v onto V k

0 (T̂ ), i.e. ṽk ∈ V k
0 (T̂ ) such that

∫

T̂

∇ṽk ·∇w dξ =

∫

T̂

∇v ·∇w dξ ∀w ∈ V k
0 (T̂ ) .

Then from the approximation property of the p-version FEM we have

(3.33) ‖v − ṽk‖L2(T̂ ) ≤ C" k
−" ‖v‖H"(T̂ ), # ≥ 0 .

We observe further that vk − ṽk ∈ V k
0 (T̂ ), so that by (3.19)

(3.34) (vk − ṽk)(ξ) = bT̂ (ξ)wk(ξ)

for some wk ∈ Pk−2(T̂ ) whence it follows that

(3.35)

∫

T̂

(vk − ṽk)w dξ =

∫

T̂

bT̂ wk w dξ ∀w ∈ Pk−2(T̂ ) .
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Selecting w = wk in (3.35) we get with (3.32) that

(3.36)

∫

T̂

bT̂ (wk)
2dξ =

∫

T̂

(vk − ṽk)wk dξ =

∫

T̂

(v − ṽk)wk dξ

≤ ‖v − ṽk‖L2(T̂ ) ‖wk‖L2(T̂ ) .

Hence it follows that ∫

T̂
bT̂ (wk)

2dξ

( ∫

T̂
(wk)

2dξ
) 1

2

≤ ‖v − ṽk‖L2(T̂ ) .

By (3.31) (with v = wk) we get from this

C ·
( ∫

T̂

(bT̂ )
2(wk)

2 dξ
)1/2

k1−θ ≤ ‖v − ṽk‖L2(T̂ ) ,

i.e. by (3.34)

(3.37) ‖vk − ṽk‖L2(T̂ ) ≤ C kθ−1 ‖v − ṽk‖L2(T̂ ) .

The triangle inequality with (3.37) gives

‖v − vk‖L2(T̂ ) ≤ ‖v − ṽk‖L2(T̂ ) + ‖ṽk − vk‖L2(T̂ ) ≤ C (1 + kθ−1) ‖v − ṽk‖L2(T̂ ) .

Hence, by (3.33) with # = 1, we get that vk = Πkv satisfies

‖vk‖L2(T̂ ) ≤ ‖v‖L2(T̂ ) + ‖v − vk‖L2(T̂ ) ≤ ‖v‖L2(T̂ ) + C (1 + kθ−1) k−1 ‖v‖H1(T̂ ) .

Using the inverse inequality
‖vk‖H1(T̂ ) ≤ C k2 ‖vk‖L2(T̂ ) ,

we obtain the assertion. !

To prove Theorem 3.4, it remains therefore to prove the bound (3.31) with θ = 3. This is
the purpose of the following two lemmas.

Lemma 3.6. For any α > 0, there exists C = C(α) > 0 such that

(3.38)

1∫

−1

(1− x2)α (π(x))2dx ≥ C k−2α

1∫

−1

(π(x))2 dx

for every π ∈ Pk(−1, 1).

The proof of this lemma can be found, for example, in [23].

Lemma 3.7. The estimate (3.31) holds with θ = 3.
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Proof: We begin with the observation that with Λ(k) as in (3.31), we have for every vk ∈ Pk(T̂ )

1 ≥ (Λ(k))2 ≥
1

‖bT̂ ‖L∞(T̂ )

∫

T̂
bT̂ v2k dx̂

∫

T̂
v2k dx̂

.

Therefore it is sufficient to prove

(3.39)

∫

T̂

bT̂ v2k dx̂ ≥ Ck−4
∫

T̂

v2k dx̂ ∀vk ∈ Pk(T̂ ) .

Let 0 < a ≤ 1/
√
3. We decompose T̂ into 6 overlapping parallelograms Ŝi, i = 1, . . . 6 and one

triangle T̂0 as shown in Figure 4.

(1, 0)
ξ1

Ŝ6

Ŝ5

T̂0

ξ2

Ŝ2

Ŝ3

Ŝ4

(0,
√
3)

Ŝ1

Ŝ1

a

(0, 0)

(−1 +
√
3
2 a, a

2 ) (
√
3
2 a, a

2 )

(−1, 0)

(−1, 0)

Figure 4: Reference triangle T̂ and the notation

Consider the parallelogram Ŝ1. We map it into the standard square Ŝ = (−1, 1)2 by the linear
map

η1 = 2ξ1 − 2
√
3 ξ2 + 1, η2 =

4ξ2
a

− 1 .

Under this map, we have bT̂ (ξ) → b̂(η), where it may be verified

b̂(η) ≥ C̃1(a)(η2 + 1)2 + C̃2(a)(η2 + 1)(η1 + 1) .

with C̃1(a) > 0, C̃2(a) > 0. Transforming coordinates from (ξ1, ξ2) to (η1, η2), we therefore
obtain, with ṽk(η) = vk(ξ),

∫

Ŝ1

bT̂ (ξ) v
2
k(ξ) dξ = C(a)

∫

Ŝ

b̂(η) ṽ2k(η) dη

≥ C1(a)

1∫

−1

1∫

−1

(η2 + 1)2 ṽ2k(η) dη + C2(a)

1∫

−1

1∫

−1

(η2 + 1)(η1 + 1) ṽ2k(η) dη

≥ C(a) k−4

1∫

−1

1∫

−1

ṽ2k(η) dη (using Lemma 3.6 with α = 2)

≥ C ′ k−4

∫

Ŝ1

v2k(ξ) dξ .
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Similarly, we may establish that

(3.40)

∫

Ŝi

bT̂ v2k(ξ) dξ ≥ Ck−4
∫

Ŝi

v2k(ξ) dξ

for i = 2, . . . , 6. Since bT̂ ≥ C on T̂0, we have also

(3.41)

∫

T̂0

bT̂ v2k(ξ) dξ ≥ C

∫

T̂0

v2k(ξ) dξ .

The lemma now follows from (3.40) and (3.41) and the observation that for any non-negative
function f(ξ) on T̂ ,

C
( 6∑

i=1

∫

Ŝi

f(ξ) dξ +

∫

T̂0

f(ξ) dξ
)
≤

∫

T̂

f(ξ) dξ ≤
6∑

i=1

∫

Ŝi

f(ξ) dξ +

∫

T̂0

f(ξ) dξ .

(We remark that in the above argument, the parameter a is chosen small enough, so that when
any triangle T in the triangulation is mapped into T̂ , the pre-image of each Ŝi is still contained
in T . By shape regularity, this is always possible.) !

Lemmas 3.7 and 3.5 imply Theorem 3.4 and hence, also Theorem 3.2. Note that for the
geometric meshes Ωn,σ, we have N ∼ |k|3 which is why δ(N) ≥ CN−1. Geometrically re-
fined meshes consisting of triangles such as the mesh in Figure 5 (obtained by subdividing all
quadrilaterals K ∈ Ωn,σ along a diagonal) are admissible in Theorem 3.2.

O

Figure 5: Geometric mesh consisting of triangles in L-shaped domain

Remark 3.8. The stability results for triangles established in this section are necessary to treat
the meshes described in Section 2, as well as in Figure 5. If one is restricted to parallelogram
elements (as in [29]), then exponential hp convergence can be obtained if one uses tensor product
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meshes (in which case there are issues regarding the aspect ratio of the elements) or hanging
nodes (in which case the macroelement technique in [28] is applicable, using a Clément operator
existing on meshes with hanging nodes [26]). Also, in [6], a new formulation for hp elements
on quadrilaterals is analyzed, for which stability results are obtained for curved elements as
well. Using these elements, strongly graded meshes can once again be created, and exponential
convergence established.

Remark 3.9. (On continuous pressures)

Theorem 3.2 immediately implies a corresponding result for continuous pressures, i.e. for the case
of subspaces VN = [Sk,1

0 (Ωn,σ)]2, MN = Sk,1(Ωn,σ)∩L2
0(Ω), since in this case the pressure space

has been reduced. The inf-sup condition (3.5) also holds here, with constant δ(N) satisfying
(3.27). We remark that for the p version, a better stability estimate is available for Taylor-Hood
elements in [4]. On quasiuniform meshes, it is shown that the discrete inf-sup constant δ(N) in
(3.5) is bounded as

δ(N) ≥ C/(|k|2
√

log |k|) .

Theorems 3.1, 3.2 together with (3.6), (3.7) show that

‖u− uN‖1 ≤ CN exp(−bN1/3) ≤ C exp(−b′ N1/3)

‖p − pN‖0 ≤ CN exp(−bN1/3) ≤ C exp(−b′′ N1/3)

i.e. we get exponential convergence for the Stokes problem.

Remark 3.10. (On the hp version with quasiuniform meshes)

The results in [3] show that (3.14) gives optimal convergence in u and p. For (3.13), (3.18), it
is shown in [29] that if the exact solution (u, p) ∈ [Hm(Ω)]2 ×Hm−1(Ω) and the triangulation
is quasiuniform with meshwidth h, then

(3.42) ‖u− uN‖1 + δ(N) ‖p − pN‖0 ≤ C(ε)h" k−(m−1)+ε(‖u‖m + ‖p‖m−1)

where # = min{m−1, k}. This shows that the convergence in k is optimal (modulo kε) in u and
shows deterioration of no worse than O(k1/2+ε) in p. Equation (3.42) is proved by interpolating
the estimate (see [29])

(3.43) ‖u− uN‖1 + δ(N)‖p − pN‖0 ≤ C(‖u‖1 + ‖p‖0)

with the estimate obtained from (3.6) - (3.7). It will also hold for triangles, with δ(N) ≈ k−3.

Remark 3.11. The stability of O(k−3) proved here for triangles may be pessimistic. In [6], it is
shown computationally that the inf-sup constant behaves like k−1 for the range of k commonly
used in practice.

4 The Upper Convected Maxwell Model and its Limit

4.1 Motivation

Several problems of non-Newtonian fluid mechanics involve three unknown fields u, p,σ, where σ
(called the extra-stress tensor) arises as an additional unknown due to the nonlinear constitutive
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laws characterizing such fluids. The example we consider here is the Upper Convected Maxwell
Model (UCM), which is one of the simplest (differential) non-Newtonian fluids. This is given by

(4.1) −divσ + grad p = f , divu = 0,
λδσ

δt
= 2νD(u)

where D(u) denotes the symmetric part of the gradient of u, δσ/δt is the upper convected
derivative [10] and λ is a parameter called the relaxation time of the viscoelastic material.

FE discretizations of problems like (4.1) must provide subspaces VN , MN and ΣN for each of
these quantities. The question then arises: how to choose these subspaces so that the resulting
discretization satisfies the correct stability and approximation properties.

For stability, we use the criterion proposed in [10] by Fortin and Pierre, which they used
to mathematically validate the 4× 4 stress element of Crochet and Marchal [8]. If one allows
the relaxation time parameter λ in (4.1) to go to zero, the limit gives the so-called three-field

Stokes problem

(4.2)

−div σ + grad p = f in Ω ,

div u = 0 in Ω ,

σ = 2νD(u) in Ω ,

u = 0 on ∂Ω .

The choice of spaces must be such that they are stable for (4.2), since if they don’t work for
the limit λ = 0, they cannot be expected to work for λ > 0. Another reason to consider this
three-field Stokes problem is that linearization of the upper convected derivative in (4.1) also
results in a system similar to (4.2), see [11].

Although low-order (h version) elements have been derived and validated with the above
criterion, our concern here is with high order p and hp type FEM. These have been recently
developed for non-Newtonian flow problems in e.g. [17], [32]. Our goal here is to mathematically
validate some combinations of spaces, using the stability (in both h and k) of the limiting problem
(4.2) as our criterion. As in [10], a basic building block will be Theorem 3.2, i.e. the inf-sup
condition for the classical Stokes problem.

For these new p/hp FEMs, comparison with methods based on lower-order elements have
indicated good performance and high accuracy for several benchmark problems [17]. In partic-
ular, the so-called “4 to 1 contraction problem” is posed on what in solid mechanics is called
an“L-shaped domain”. The solution then contains a radial singularity emanating from the reen-
trant corner the precise nature of which is not yet known for many nonlinear constitutive laws,
(see, however [20]). Exponential rates of convergence for the approximation of the singular-
ity can once again be observed if a geometric mesh and high polynomial degree is used ([17],
[18]), provided suitable stabilization techniques are used in the nonlinear case. The hp stability
analysis we give here (valid also for meshes containing triangles) establishes this exponential
convergence, for the limiting three-field Stokes case.

4.2 Mixed Method

The mixed variational formulation of (4.2) we consider is given by:
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Find ((σ, p),u) ∈ Σ×M × V such that

(4.3)
a((σ, p), (τ , q))− b((τ , q),u) = 0 ∀(τ , q) ∈ Σ×M ,

b((σ, p),v) = (f ,v) ∀v ∈ V .

Here

a((σ, p), (τ , q)) :=
1

2ν

∫

Ω

σ : τ dx ,

b((τ , q),u) :=

∫

Ω

(τ − qI) : D(u) dx ,

and the function spaces are given by

(4.4) V = [H1
0 (Ω)]

2, Σ = [L2(Ω)]2×2
sym , M = L2

0(Ω) .

Existence and uniqueness of a weak solution to (4.3) are ensured by the following coercivity
properties of the forms a(·, ·) and b(·, ·) [10]: Let

(4.5) Z = {(σ, p) ∈ Σ×M : b((σ, p), v) = 0 ∀v ∈ V } .

Then a(·, ·) is coercive on Z, i.e. there exists α > 0 with

(4.6) a((σ, p), (σ, p)) ≥ α(‖σ‖20 + ‖p‖20) ∀(σ, p) ∈ Z ,

and b(·, ·) satisfies an inf-sup condition,

(4.7) inf
v∈V

sup
(σ, p) ∈ Σ×M

b((σ, p),v)

(‖σ‖20 + ‖p‖20)1/2 ‖v‖1
≥ β > 0 .

4.3 General FE discretization

For the FE-discretization of problem (4.2), we choose families ΣN ×MN × VN of subspaces of
Σ×M × V as follows: For VN and MN , we choose as for the Stokes problem

(4.8) VN = [Sk,1
0 (Ωn,σ)]2, MN = Sk,0

0 (Ωn,σ)

where Ωn,σ is a geometric mesh with n layers and grading factor σ ∈ (0, 1) in the polygon Ω.
For the extra stress approximation, we choose a continuous approximation which is customary
in simulations of non-Newtonian flow

(4.9)
ΣN =

{
σ ∈ [C0(Ω)]2×2

sym : σαβ |K ◦ FK ∈ QkK+3(K̂) if K̂ = Q̂ ,

σαβ |K ◦ FK ∈ PkK+3(K̂) if K̂ = T̂
}
.

So, on a single element K ∈ Ωn,σ, we have the combinations shown in Table 1

σ p u

Qk+3(Q̂) Pk(Q̂) /Qk−1(Q̂) Qk+1(Q̂)

Pk+3(T̂ ) Pk−1(T̂ ) Pk+1(T̂ )
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Table 1: Element polynomial spaces in the hp-FEM for three-field Stokes problem based
on ΣN ×MN × VN (k ≥ 2), continuous stresses

We remark that the spaces VN in Table 1 can be optimized (see (3.12), (3.18)). This in
turn leads to corresponding optimizations of ΣN , which will be proper subsets of the spaces
shown above, containing fewer “side” shape functions (the stability analysis will be the same).
Moreover, continuous pressure spaces could be used as in Taylor-Hood elements for triangles
(Remark 3.10), giving better stability estimates and reducing the total degrees of freedom.

With the above selection of the subspaces, the hp-FE discretization of (4.3) reads: Find
((σN , pN ), uN ) ∈ ΣN ×MN × VN such that

(4.10)
a((σN , pN ), (τ , q))− b((τ , q),uN ) = 0 ∀(τ , q) ∈ Σ×MN ,

b((σN , pN ),v) = (f ,v) ∀v ∈ VN .

From the standard theory of FE-discretization of saddle-point problems (see, e.g., [27], Chap.
V or [5]), we have the following: Define the discrete kernel

(4.11) ZN = {(σ, p) ∈ ΣN ×MN : b((σ, p), v) = 0 ∀v ∈ VN}

and assume the discrete stability conditions

(4.12) a((σ, p), (σ, p)) ≥ α(N)(‖σ‖20 + ‖p‖20) ∀(σ, p) ∈ ZN ,

(4.13) ∀v ∈ VN sup
(σ, p) ∈ ΣN ×MN

b((σ, p),v)

(‖σ‖20 + ‖p‖20)1/2
≥ β(N) ‖v‖1 .

Then the FE approximations (σN , pN ,uN ) in (4.10) exist and satisfy the a-priori error esti-

mates

(4.14)

‖σ − σN‖0 + ‖p− pN‖0 ≤
C1

α(N)β(N)
inf

τ ∈ ΣN
q ∈ MN

(‖σ − τ‖0 + ‖p − q‖0)

+
C2

α(N)
inf

v∈VN

‖u− v‖1

(4.15)

‖u− uN‖1 ≤
C1

(α(N)(β(N))2
inf

τ∈ΣN
q∈MN

(‖σ − τ‖0 + ‖p− q‖0)

+
C2

α(N)β(N)
inf

v∈VN

‖u− v‖1 .

As in Section 3, (4.14) and (4.15) again imply an exponential convergence result under suitable
regularity assumptions on σ, p, u and algebraic behaviour of α(N), β(N) in (4.12), (4.13).
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4.4 Proof of the inf-sup conditions for continuous stresses

Here we establish the inf-sup conditions (4.12), (4.13) for the hp FE subspaces VN , MN and
ΣN defined in (4.8), (4.9). It turns out that α(N) in (4.12) can be bounded independently of
the choice of ΣN when the pair (VN ,MN ) satisfies (3.5).

Theorem 4.1. Let (VN ,MN ) satisfy (3.5) with inf-sup constant δ(N). Then for any ΣN , (4.12)
holds with

α(N) ≥ (δ(N))2 .

Proof: Let (σ, p) ∈ ZN be given. Then for any v ∈ VN ,

(σ,D(v)) = (p,div v) .

By (3.5) we have

‖p‖0 ≤ C (δ(N))−1 sup
v∈VN

(p,div v)

‖v‖1
= C (δ(N))−1 sup

v∈VN

(σ,D(v))

‖v‖1
≤ C (δ(N))−1 ‖σ‖0 .

Hence, for any (σ, p) ∈ ZN ,

a((σ, p), (σ, p)) =
1
2ν

‖σ‖20 ≥
C

ν
(δ(N))2 (‖σ‖20 + ‖p‖20) .

!

Corollary 4.2. For VN , MN , ΣN defined as in (4.8), (4.9),

α(N) =
C

ν
|k|−6 ≥

C

ν
N−2 .

We turn next to the second inf-sup condition (4.13).

Theorem 4.3. Let VN ,MN and ΣN be defined as in (4.8), (4.9). Then the stability condition
(4.13) holds with

(4.16) β(N) ≥ Cβ/|k|2 = CβN−2/3 .

To prove this theorem, we use the following lemma, due to Fortin (see, e.g. [10]):

Lemma 4.4. Let VN ⊂ V , ΣN ⊂ Σ and MN ⊂ M be closed subspaces and assume the
continuous inf-sup condition (4.7). If there exists a projection ΠN : Σ ×M → ΣN ×MN such
that

(4.17) ‖ΠN (σ, p)‖0 ≤ µ(N)(‖σ‖20 + ‖p‖20)1/2 ,

and such that

(4.18) b((σ, p)−ΠN (σ, p),v) = 0 ∀ v ∈ VN ,

then the discrete inf-sup condition (4.13) holds with β(N) = β/µ(N).
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The next lemmas will be tools for verifying (4.17) and (4.18) in our case. For any polynomial
space S(Ω), Ω ⊂ lR1 or lR2, S0(Ω) will denote the subset of polynomials vanishing on ∂Ω.

Lemma 4.5. Let I = (−1, 1). Let Πx
k : L2(I) → Pk+2

0 (I) be such that for any τ ∈ L2(I),
σk = Πx

k τ ∈ Pk+2
0 (I) is defined by

(4.19)

∫

I

(τ − σk) τk dx = 0 ∀τk ∈ Pk(I) .

Then

(4.20) ‖Πx
k τ‖L2(I) ≤ C

√
k ‖τ‖L2(I) ∀τ ∈ L2(I) .

Proof: Since Pk+2
0 (I) = B2Pk(I) where B2(x) = 1− x2, (4.19) defines σk uniquely. Let Li(x)

be the Legendre polynomial of degree i and let

Ui(x) = γi(Li+1(x)− Li−1(x)), γi = (2i+ 1)−1 .

Then we may write

τ(x) =
∞∑

i=0

bi Li(x), σk(x) =
k+1∑

i=1

ai Ui(x) .

We have

σk = −a1γ1L0 − a2γ2L1 + (a1γ1 − a3γ3)L2 + (a2γ2 − a4γ4)L3 +

+ · · ·+ (ak−1γk−1 − ak+1γk+1)Lk + akγkLk+1 + ak+1γk+1Lk+2

whence it follows that

(4.21)
‖σk‖20,I = 2[(a1γ1)2 γ0 + (a2γ2)2 γ1 + (a1γ1 − a3γ3)2 γ2

+ · · ·+ (akγk)2 γk+1 + (ak+1γk+1)2 γk+2] .

From (4.19) we get the equations

(4.22)

−a1γ1 = b0 ,

−a2γ2 = b1 ,

a1γ1 − a3γ3 = b2 ,

...

ak−2γk−2 − akγk = bk−1 ,

ak−1γk−1 − ak+1γk+1 = bk .

We see that the first k + 1 terms in the expression (4.20) for ‖σk‖2L2(I) are bounded by

(4.23) 2 [b20γ0 + b21γ1 + · · ·+ b2kγk] ≤ ‖τ‖2L2(I) .

Furthermore we obtain from (4.22) that (assuming k is odd)

akγk = −(bk−1 + bk−3 + · · ·+ b0) .
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Hence

(akγk)2 γk+1 = γk+1

( ∑

" even

b"
)2

≤ γk+1

( k∑

"=0

γ"b
2
"

)( k∑

"=0

γ−1
"

)

≤ Ck−1 ‖τ‖2L2(I) k
2 = Ck ‖τ‖2L2(I) .

We can similarly bound the last term of (4.21). Combining these estimates, we get
(4.20). !

Lemma 4.6. Let K̂ = (−1, 1)2 be the reference square and let τ ∈ [L2(K̂)]2×2
sym. Then, for k ≥ 0

there exists σk ∈ [Qk+2
0 (K̂)]2×2

sym such that

(4.24)

∫

K̂

σk : τ k dx̂ =

∫

K̂

τ : τ k dx̂ ∀τ k ∈ Qk(K̂) ,

and

(4.25) ‖σk‖L2(K̂) ≤ Ck ‖τ‖L2(K̂) .

Proof: Let x̂ = (x̂1, x̂2). For any τ(x̂) ∈ C∞(K̂), we define

σ̃k(x̂) = Πx̂1

k Πx̂2

k τ(x̂) .

Then using (4.19), we see that with τk = τ1k (x̂1) τ
2
k (x̂2), τ

i
k ∈ Pk(I),

(4.26)

∫

K̂

(τ − σ̃k) τk dx̂ = 0 ∀τk ∈ Qk(K̂) .

Also, since each of Πx̂1

k , Πx̂2

k satisfy (4.20), we may show

(4.27) ‖σ̃k‖L2(K̂) ≤ Ck ‖τ‖L2(K̂) .

The proof is completed by first using a density argument to deduce (4.26) and (4.27) for all
τ ∈ L2(K̂), then by defining the tensor σk in (4.24) componentwise in the same way as σ̃k above.
The symmetry of τ and the uniqueness of σ̃k constructed above imply that σk ∈ [Qk+2

0 (K̂)]2×2
sym

and that (4.24) and (4.25) hold. !

Lemma 4.5 addressed only the case of the reference square Q̂, but a scaling argument shows
that the result holds for any parallelogram Q ∈ Ωn,σ.

To prove Theorem 4.3, we need an analog of Lemma 4.5 for triangles. Once again, it is
sufficient to consider only the reference triangle T̂ .

19



Lemma 4.7. Let τ ∈ [L2(T̂ )]2×2
sym be given. Then, for any k ≥ 0, there exists σk ∈ [Pk+3

0 (T̂ )]2×2
sym

such that

(4.28)

∫

T̂

σk : τ k dx̂ =

∫

T̂

τ : τ k dx̂ ∀τ k ∈ [Pk(T̂ )]2×2

and

(4.29) ‖σk‖L2(T̂ ) ≤ Ck2 ‖τ‖L2(T̂ ) .

Proof: Let τ ∈ L2(T̂ ). Then, σk ∈ Pk+3
0 (T̂ ) defined by

(4.30)

∫

T̂

σkτkdx̂ =

∫

T̂

τ τk dx̂ ∀τk ∈ Pk(T̂ )

is uniquely defined, since Pk+3
0 (T̂ ) = bT̂P

k(T̂ ) implies that the Gram matrix for the spaces

Pk(T̂ ) and Pk+3
0 (T̂ ) is non-singular for every k ≥ 0. To prove (4.29), we write σk = bT̂ σ̂k where

σ̂k ∈ Pk(T̂ ). Selecting in (4.30) τk = σ̂k, we get
∫

T̂

bT̂ (σ̂k)
2 dx̂ ≤ ‖τ‖L2(T̂ )‖σ̂k‖L2(T̂ ) , or

‖τ‖L2(T̂ ) ≥

∫

T̂
bT̂ (σ̂k)

2 dx̂

( ∫

T̂
(σ̂k)

2 dx̂
)1/2

.

Now we use (3.31) and Lemma 3.7, to deduce

(4.31) ‖τ‖L2(T̂ ) ≥ Ck−2 ‖bT̂ (σ̂k)‖L2(T̂ ) = Ck−2 ‖σk‖L2(T̂ ) .

For given τ ∈ [L2(T̂ )]2×2
sym, we define σk ∈ [Pk+3

0 (T̂ )]2×2 via (4.30) component-wise. Then σk is
symmetric and (4.29) follows from (4.31). !

Now we turn to the proof of Theorem 4.3. We use Lemma 4.4 and need to construct
ΠN (σ, p). To this end, denote by PΣ

N the L2(Ω) projection of Σ onto ΣN , and by PM
N the L2(Ω)

projection of M onto MN and define

(4.32) τ = (σ − PΣ
N σ)− (p − PM

N p) I .

Since
‖PΣ

N σ‖0 ≤ ‖σ‖0 , ‖PM
N p‖0 ≤ ‖p‖0

we have for τ in (4.32) that

(4.33) ‖τ‖0 ≤ (‖σ‖20 + ‖p‖20)1/2 .
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We now construct ΠN (σ, p) in (4.17).

Pick any K ∈ Ωn,σ. Applying a linear transformation and Lemmas 4.5 and 4.7 (depending
on whether K is a quadrilateral or a triangle), we obtain τK

k ∈ [Qpk+2
0 (K)]2×2

sym (respectively

τK
k ∈ [PpK+3

0 (K)]2×2
sym) such that

(4.34) ‖τK
k ‖L2(K) ≤ CK k2K ‖τ‖L2(K) .

Let τ k ∈ ΣN be defined by τ k|K = τK
k . Then from (4.34),

(4.35) ‖τ k‖0 ≤ C(Ω,σ) |k|2 ‖τ‖0 .

From the definition of VN , it follows with (4.24) and (4.28) that
∫

K

τ k : D(v) dx =

∫

K

τ : D(v) dx ∀v ∈ VN .

This is because v ∈ [Qk+1(Q̂)]2 =⇒ D(v) ∈ [Qk+1(Q̂)]2×2
sym, v ∈ [Pk+1(T̂ )]2 =⇒ D(v) ∈

[Pk(T̂ )]2×2
sym. We set for σ ∈ Σ, p ∈ M

σN := PΣ
N σ + τ k, pN = PM

N p, (σN , pN ) = ΠN (σ, p) .

Then σN ∈ ΣN and for any v ∈ VN we have
∫

Ω

[(σ − σN )− (p− pN ) I] : D(v) dx =
∑

K∈Ωn,σ

∫

K

[τ − τ k] : D(v) dx = 0

which is (4.18). Further, (4.33) and (4.35) imply

(‖σN‖20 + ‖pN‖20)1/2 ≤ C |k|2 (‖σ‖20 + ‖p‖20)1/2

which is (4.17) with µ(N) = |k|2. !

Based on Theorems 4.1 and 4.3, we may specify the abstract error estimates (4.14), (4.15)
in the following way. (The estimate (4.39) follows by Theorem 3.1.)

Theorem 4.8. Let ΣN , MN and VN be the hp-subspaces defined in (4.8), (4.9). Then for the
hp-FE approximations σN , pN and uN of the three-field Stokes problem, there hold the error
estimates

(4.36)

‖σ − σN‖0 + ‖p− pN‖0 ≤ CN8/3 inf
τ∈ΣN
q∈MN

{‖σ − τ‖0 + ‖p− q‖0}

+ CN2 inf
v∈VN

‖u− v‖1 ,

(4.37)

‖u− uN‖1 ≤ CN10/3 inf
τ∈ΣN
q∈MN

{‖σ − τ‖0 + ‖p− q‖0}

+ CN8/3 inf
v∈VN

‖u− v‖1 .
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If, in addition, u,σ and p have the regularity

(4.38) u ∈ B2
β(Ω), σ, p ∈ B1

β(Ω)

for some 0 < β < 1, then the following exponential convergence estimate holds,

(4.39) ‖u− uN‖1 + ‖σ − σN‖0 + ‖p− pN‖0 ≤ C exp(−b
3
√
N) .

Remark 4.9. (On the hp version with quasiuniform meshes)

For the case of meshes consisting only of parallelograms, equations (4.37) - (4.38) can be im-
proved to

(4.40)
‖σ − σN‖0 + ‖p− pN‖0 + k−1 ‖u− uN‖1

≤ Ch" k−(m−r)(‖σ‖m−1 + ‖p‖m−1 + ‖u‖m)

where # = min{m − 1, k + 1} and r = 2 when the pressure space is Pk, and # =
min{m− 1, k}, r = 3 when it is Qk−1.

From (4.40), it can be clearly seen that we pay quite a bit for stability, since even though
we are using polynomials of degree k+3 for σ, we only realise O(hk) (or O(hk+1)) convergence
instead of O(hk+4) convergence in σ. This can be improved in one of two ways, either by using
discontinuous stresses or by using the modified EVSS method with continuous stresses. In
each of these methods, discussed in the next two sections, the stability ends up only depending
on the velocity-pressure inf-sup constant δ(N).

4.5 Discontinuous stress elements

So far, we investigated the stability for the hp-FEM (4.10) based on (4.9), the spaces ΣN of
continuous stresses. Here we had to increase the polynomial degree k for σ by 2 over that of v
in order to ensure stability of ΣN ×MN × VN . It turns out that with discontinuous stresses,
the degree increase can be avoided. Instead of (4.9), we select

(4.41) ΣN =

{
σ ∈ [L2(Ω)]2×2

sym : σαβ|K ◦ FK ∈ QkK+1(K̂) if K̂ = Q̂ ,

σαβ|K ◦ FK ∈ PkK (K̂) if K̂ = T̂
}
,

so that we have the combination shown in Table 2

σ p u

Qk+1(Q̂) Pk(Q̂)/Qk−1(Q̂) Qk+1(Q̂)

Pk(T̂ ) Pk−1(T̂ ) Pk+1(T̂ )

Table 2: Element polynomial spaces in the hp-FEM for three-field Stokes problem based
on discontinuous stresses (ΣN as in (4.41)).

We have
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Theorem 4.10. Let VN ,MN ,ΣN be defined as in (4.8) and (4.41), respectively, and |k| be as
in Theorem 4.1. Then the discrete inf-sup condition (4.13) holds with

(4.42) β(N) ≥ Cβ .

For the proof of this result, we proceed exactly as in the proof of Theorem 4.3. However, using the
fact that σ is discontinuous, in Lemmas 4.5 and 4.7 we may simply choose the sets [Qk+1(Q̂)]2×2

sym

and [Pk(T̂ )]2×2
sym, respectively, which contain D(v) for v ∈ VN . The projections in Lemmas 4.5

and 4.7 are then L2(K̂)-projections which have norms bounded by one, independently of k. !

Using (4.42) and Theorem 4.1 in the abstract error estimates (4.14), (4.15) gives a-priori
error bounds analogous to those in Theorem 4.8 resp. Remark 4.9, however now with a smaller
loss in the orders of k. We leave their derivation to the reader. Note that now the stability only
depends on the discrete velocity-pressure constant δ(N) in (3.5), since α(N) = (δ(N))2.

Remark 4.11. (A completely stable combination)

For the case of parallelograms with the choice Qk+1(Q) for σ, Pk(Q) for p and Qk+1(Q) for u,
we see now that α(N), β(N) are both O(1) when discontinuous stresses are used. Hence, this
choice is completely stable, and we have, with # = min{m− 1, k + 1},

(4.43)
‖σ − σN‖0 + ‖p − pN‖0 + ‖u− uN‖1

≤ Ch" k−(m−1)(‖σ‖m−1 + ‖p‖m−1 + ‖u‖m)

which is the optimal convergence rate on quasiuniform meshes for u and p. (For σ, we lose a
power of h compared to the expected rate of O(hk+2) using Qk+1 elements.)

4.6 The hp-FEM for the modified EVSS method

As mentioned in Section 4.4, in order to achieve stability, the hp-FE discretization of the three-
field Stokes problem (4.2) required fairly large (continuous) spaces ΣN for the approximation
of the extra stress σ. This is observed also for other (continuous) discretizations of (4.2) (see
e.g. [5], where the stability of the so-called 4× 4 stress element is shown, and also [30], where it
is visible in practical computations). The large stress spaces are responsible for driving up the
cost of the method, primarily for the sake of stability (see Remark 4.9).

The EVSS method introduced in [24] was designed to circumvent the need for large spaces
ΣN while still using continuous stresses. In the recent variant [11], it was shown that a suitable
reformulation of (4.2) allows for a discretization that only depends on δ(N), i.e. the divergence
stability of VN ,MN . Thus we may select here the hp-FE spaces analyzed in Section 3 and pick
ΣN based solely on approximability considerations. Let us describe the reformulation of (4.2)
from [11] and its hp-FE discretization. The theorems and proofs in this section are essentially
from [11], we include them here to get the explicit dependence of inf − sup constants on N .

The key idea is to introduce into (4.2) the new variable

(4.44) d = D(u)
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and let α > 0 be a parameter at our disposal. We then write the equivalent problem

(4.45)

−div σ + 2α divd− 2α divD(u) +∇p = f ,

d−D(u) = 0 ,

div u = 0 ,

σ − 2νD(u) = 0 ,

u = 0 on ∂Ω

or, in weak form: Find (σ,u) ∈ Σ× V , (d, p) ∈ D ×M such that

(4.46)
a((σ,u), (τ ,v)) + b1((τ ,v), (d, p)) = (f ,v) ∀(τ ,v) ∈ Σ× V ,

b2((σ,u), (e, q)) = 0 ∀(e, q) ∈ D ×M .

Here
D = Σ = (L2(Ω))2×2

sym , V = (H1
0 (Ω))

2, M = L2
0(Ω)

and

a((σ,u), (τ ,v)) =

∫

Ω

([σ + 2αD(u)] : D(v)−D(u) : τ ) dx ,

b1((τ ,v), (e, q)) =

∫

Ω

(e : [τ − 2αD(v)]− qI : D(v)) dx ,

b2((τ ,v), (e, q)) =

∫

Ω

(e : [τ − 2νD(v)]− qI : D(v)) dx .

We observe that α > 0 adds a stabilization term and that (4.46) requires a generalization
of the inf-sup conditions, since b1 %= b2 if α %= ν. So far, (4.46) is equivalent to (4.3), as is
easily verified. This changes, however, once (4.46) is discretized. To this end, we select finite
dimensional subspaces

(4.47) VN ⊂ V , MN ⊂ M, ΣN = DN ⊂ [L2(Ω)]2×2
sym

where VN ,MN are as in Section 3 and ΣN = DN is as yet unspecified. The discrete inf-sup

conditions to be satisfied now by a(·, ·) and bi(·, ·) are as follows: let, for i = 1, 2,

(4.48) Zi
N := {(τ ,v) ∈ ΣN × VN : bi((τ ,v), (e, q)) = 0 ∀(e, q) ∈ DN ×MN} .

Then we must have ([22])

(4.49) inf
(σ,u)∈Z2

N

sup
(τ ,v)∈Z1

N

a((σ,u), (τ ,v))

(‖σ‖20 + ‖u‖21)1/2 (‖τ‖20 + ‖v‖21)1/2
≥ γ(N) > 0

and, since ΣN = DN , for i = 1, 2,

(4.50) inf
(e,q)∈ΣN×QN

sup
(τ ,v)∈ΣN×VN

bi((τ ,v), (e, q))

(‖τ ‖20 + ‖v‖21)1/2 (‖e‖20 + ‖q‖20)1/2
≥ βi(N) > 0 .
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Under these conditions, a discrete solution (σN ,uN ) ∈ ΣN × VN , (dN , pN ) ∈ DN × MN of
(4.46) exists and satisfies the a priori error estimates

(4.51)
‖σ − σN‖0 + ‖u− uN‖1 ≤

C
(
1 + 1

γ(N)

) ((
1 + 1

β2(N)

)
(‖σ − τ‖0 + ‖u− v‖1) + ‖d− e‖0 + ‖p − q‖0

)
,

(4.52)
‖d− dN‖0 + ‖p− pN‖0 ≤ C

(
1 + 1

β1(N)

) (
1 + 1

γ(N)

)
×

{
‖d− e‖0 + ‖p − q‖0 +

(
1 + 1

β2(N)

)(
‖σ − τ‖0 + ‖u− v‖1

)}

for every τ ∈ ΣN ,v ∈ VN , e ∈ DN and q ∈ MN .

It remains to check (4.49), (4.50). Let us first estimate γ(N) in (4.49). We note that

(4.53) Zi
N = {(2λDN (v), v)

∣∣∣ v ∈ ZN}

where λ = α if i = 1, λ = ν if i = 2,

(4.54) ZN =
{
v ∈ VN :

∫

Ω

qI : D(v) dx = (q,div v) = 0 ∀q ∈ MN

}

and DN (u) ∈ ΣN is the L2 projection of D(u) onto ΣN , defined by

(DN (u), τ) = (D(u), τ) ∀τ ∈ ΣN .

On Z1
N ×Z2

N , the bilinear form a(·, ·) in (4.46) is, by (4.53) - (4.54), equivalent to

(4.55)
ã(u,v) = 2α (D(u), D(v))− 2α (DN (u), DN (v))

+ 2ν (DN (u), DN (v)) ,

where u,v ∈ ZN .

For u = v ∈ ZN in (4.55), we get

ã(u,u) = 2α ‖D(u)‖20 + 2(ν − α) ‖DN (u)‖20 .

If ν − α ≥ 0, we are done, since ‖D(u)‖20 ≥ C2(Ω) ‖u‖21 by Korn’s inequality. If ν − α ≤ 0,
α− ν ≥ 0 and we write, using ‖DN (u)‖0 ≤ ‖D(u)‖0,

ã(u,u) = 2ν ‖D(u)‖20 + 2(α− ν)(‖D(u)‖20 − ‖DN (u)‖20)

≥ 2ν ‖D(u)‖20 .

Hence we get

(4.56) ã(u,u) ≥ 2min(α, ν) ‖D(u)‖20 ≥ C2(Ω) min(α, ν) ‖u‖21 ∀u ∈ ZN .
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Now using (4.53), we get for any u ∈ ZN

sup
v∈ZN

a((2νDN (u),u), (2αDN (v),v))

(‖2αDN (v)‖20 + ‖v‖21)1/2
≥

ã(u,u)

(‖2αD(u)‖20 + ‖u‖21)1/2

≥ C2(Ω) min(α, ν)
‖u‖21 + 1/(2C2(Ω)) ‖D(u)‖20
(4α2 ‖D(u)‖20 + ‖u‖21)1/2

≥ KC2(Ω) min(α, ν) min
(
1,

1

αν C(Ω)

)
(‖u‖21 + 4ν2 ‖D(u)‖20)1/2

which is (4.49) with γ(N) ≥ γ0 > 0 where γ0 depends only on α, ν and the Korn constant C(Ω).

Let us now prove (4.50).

Lemma 4.12. Assume (VN ,MN ) satisfies (3.5) with δ(N) > 0. Then (4.50) holds with

(4.57) βi(N) ≥
Cδ2(N)

λ2 + δ(N)
, i = 1, 2

where λ = α if i = 1, λ = ν if i = 2.

Proof: By (3.5), for every p ∈ MN , there exists v ∈ VN such that

(4.58) −(p, div v) = (p, q) ∀q ∈ MN , ‖v‖1 ≤ 1
δ(N)

‖p‖0 .

For any (d, p) ∈ DN ×MN , select v ∈ VN as in (4.58) and σ ∈ ΣN equal to ηd where η > 0 is
a number to be selected. Then, by (4.58),

(4.59)
‖σ‖20 + ‖v‖21 ≤ η2 ‖d‖20 +

1

(δ(N))2
‖p‖20

≤ max(η2, (δ(N))−2)(‖d‖20 + ‖p‖20) .

Further, with q = p in (4.58),

bi(σ,v), (d, p)) = η ‖d‖20 − 2λ(d,D(v))− (p, div v)

≥ η ‖d‖20 −
1
ε
‖d‖20 − λ2ε ‖D(v)‖20 + ‖p‖20

≥
(
η − 1

ε

)
‖d‖20 +

(
1− 2λ2 ε

(δ(N))2

)
‖p‖20 .

Select now ε = (δ(N))2/(4λ2) and η = 1
2 +

1
ε . This yields

bi((σ,v), (d, p)) ≥
1

2
(‖d‖20 + ‖p‖20) .

Replacing max(η2, (δ(N))−2) by (η2 + (δ(N))−2) in (4.59) gives the lemma. !

Using the above stability estimates together with the estimate for δ(N) from (3.27), equations
(4.51) - (4.52) give the following error bound for the modified EVSS method for the case α ≥
α0 > 0:

(4.60)
‖σ − σN‖0 + ‖u− uN‖1 ≤ C(N2 (‖σ − τ‖0 + ‖u− v‖1)

+ ‖d − e‖0 + ‖p− q‖0)
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(4.61)
‖d− dN‖0 + ‖p − pN‖0 ≤ CN2 (‖d − e‖0 + ‖p− q‖0 +N2(‖σ − τ‖0

+ ‖u− v‖1)) .

for every τ ∈ ΣN , v ∈ VN , e ∈ DN and q ∈ MN . Each of the norms on the right can be
bounded by Ce−bN1/3

for a geometric mesh, giving exponential convergence for any reasonable
choice of ΣN = DN .

Remark 4.13. (A stable and optimal choice).

As seen from the above, the choice of ΣN = DN can now be determined by approximability
considerations. For parallelograms, suppose we choose VN ×MN to be the [Qk+1(Q̂)]2 ×Pk(Q̂)
combination, for which δ(N) ∼ C. Then, since we want σN to be continuous, we can take
(minimally) each component to be in Qk′(Q̂) (the serendipity space for k ≥ 2). For α ≥ α0 > 0,
we then have γ(N) ∼ C and βi(N) ∼ C, so that we obtain the estimate (# = min{m− 1, k+1})

(4.62)
‖σ − σN‖0 + ‖u− uN‖1 + (‖d − dN‖0 + ‖p− pN‖0
≤ Ch" k−(m−1) (‖σ‖m−1 + ‖u‖m + ‖p‖m−1 + ‖d‖m−1) .

This is completely stable, like the element in Remark 4.9, but now is optimal in h and k for σ
as well. However, we now have an additional unknown dN and a non-symmetric problem.

5 Numerical Experiments

We report some numerical experiments on mixed hp-FEM with geometric meshes for stationary
Newtonian flow in an L-shaped domain. These results are taken from [25], where several other
related numerical investigations are presented. We have used geometric refinement towards the
reentrant corner and depict a typical mesh and the domain in Figure 6. The problem was solved
with exact solution

u =

(
rα [(1 + α) sin(ϕ)ψ(ϕ) + cos(ϕ)ψ′(ϕ)]
rα [sin(ϕ)ψ′(ϕ)− (1 + α) cos(ϕ)ψ(ϕ)]

)

p = −rα−1
[
(1 + α)2ψ′(ϕ) + ψ(3)(ϕ)

]
/(1 − α)

where ω = 3π/2 and α = 0.5444... and

ψ(ϕ) =
sin((1 + α)ϕ) cos(αω)

1 + α
− cos((1 + α)ϕ)−

sin((1− α)ϕ) cos(αω)

1− α
+ cos((1− α)ϕ)

This solution satisfies the homogenous Stokes equations exactly (i.e. (3.1) with f = 0), but has
nonzero boundary values on the sides of Ω which do not abut at the reentrant vertex. It is a
model for the singularities arising also in non-Newtonian flow at the reentrant corners in the
so-called 4 : 1-contraction problem.

The implementation was accomplished in the general purpose hp-FE code hp−90, an object
oriented FORTRAN90 hp-FE framework for elliptic systems [9]. The velocity pressure space
pair [Qk+1]2×Qk was used with discontinuous pressures. The (non-parallelogram) elements were
mapped with bilinear element maps and, thus, do not completely fall into our theory (but see [6]
in this connection). In the numerical experiments below, a uniform degree-vector k was chosen
and the number n of layers in the geometric mesh was related to k by n = k + 2. Geometric
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refinement towards the reentrant corner with several different grading factors ranging from 0.5
(corresponding to element bisection) to 0.1 (corresponding to strong refinement towards the
reentrant corner) was used.

The error curves shown in Figure 7 show clearly the predicted convergence rate of exp(−b 3
√
N),

both for the velocity as well as for the pressure error. We further see the importance of the
proper choice of the grading factor in the geometric mesh: the error with choice 0.5 is an order
of magnitude larger both for the velocity and the pressure, compared to that for 0.15, with the
same number of degrees of freedom.

We recall the 1-d result stating that in hp-FEM for singular functions, the optimal geometric
mesh has a grading factor of (

√
2−1)2 ∼ 0.17... independently of the strength α of the singularity

[14]. The same can be expected in higher dimensions for solutions containing radial singularities
emanating from a point like the one considered here. This is of particular relevance for problems
in non-Newtonian flow, where the strength of the singularity is not known, but where geometric
refinement with this ratio could be prescribed to capture the singularity. We remark that in our
example, a grading factor of 0.15 gives a relative percentage error for velocity and pressure of
0.1% at about 5000 DOF.

Figure 6: L-shaped domain with geometric mesh, grading factor 0.5
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Figure 7: Errors
∥∥u1 − u1FE

∥∥
H1(Ω)

and ‖p− pFE‖L2
0
(Ω) versus N

1/3 for various grading factors s

6 Conclusions

In this paper, we have investigated the design and convergence properties of hp spaces for
problems in fluid flow. For the mixed method for Stokes Flow, the following results follow
from this paper and from [3], [4], [29]:

(1) For parallelograms, the combinationQk+1 (velocity) - Pk (pressure) is stable and optimal
in h and k. The combination Qk+1 −Qk−1 is stable in h, and has an inf-sup constant of
Ck−1/2 in k. It is non-optimal in h for the velocities. An optimized version of this element
can be obtained, however - see Section 3.2 and [29].

(2) For triangles, the combination Pk+1 (velocity) - Pk−1 (pressure) is stable in h, but non-
optimal in h in the velocity (an optimized version is given in Section 3.2). The stability
constant is no worse than Ck−3 in k, but computational results in [6] indicate a behavior
of Ck−1 for practical choices of k. If Pk+1 (velocity) - Pk (pressure) spaces are used with
continuous pressures, then the stability estimate is improved to Ck−2/

√
log k.

(3) Due to the above stability results for parallelograms and triangles, the hp version over
geometric meshes leads to exponential convergence in both the velocity and the pressures.

For the three-field linearized limit model of Non-Newtonian Flow, we obtain, in addi-
tion:

(4) On parallelograms, the combination

Qk+3 (continuous stress) - Qk+1 (velocity) - Qk−1 or Pk (pressure)

is stable in h. In terms of the degree, the stability constants are no worse than α(N) = C
for the pressure space Pk and α(N) = Ck−1 for the pressure spaceQk−1 and β(N) = Ck−1

in either case (see equations (4.12) - (4.13)).

For triangles, the combination

Pk+3 (continuous stress) - Pk+1 (velocity) - Pk−1 (pressure)

is stable in h, and the discrete inf-sup constants in k satisfy α(N) ≥ Ck−6, β(N) ≥ Ck−2.
It is expected that the actual behavior will be better.

Computational results in [30] confirm that it is necessary to choose higher degrees for the
continuous stress than the velocity.

(5) For discontinuous stresses we get the combination

Qk+1 (stresses) - Qk+1 (velocity) - Pk (pressures)

on parallelograms, which is stable in both h and k. The only non-optimality present in
this element is that for smooth solutions, even though one uses degree k + 1 polynomials
for σ, we would only get O(hk+1) and not O(hk+2) convergence in σ.
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If, instead, we take Qk−1 for pressures, then the stability in h is preserved, but the inf-sup
conditions become α(N) ≥ Ck−1, β(N) ≥ β > 0. This element is less optimal in h for
both σ and u. Finally, for triangles, we may take

Pk (stresses) - Pk+1 (velocity) - Pk−2 (pressures) ,

for which we can prove α(N) ≥ Ck−6, β(N) ≥ β > 0.

(6) A stable and optimal choice (in both h and k) with continuous stresses is obtained by
using the modified EVSS method and taking (on parallelograms)

Qk′ (stresses) - Qk+1 (velocity) - Pk (pressures) .

In comparison with the stable element in (5) above, although a smaller space is used for
σ, we now have an extra (stress) unknown d, and we get non-symmetric matrices.

Acknowledgement

The authors would like to thank Dr. K. Gerdes for the computations in Section 5.

References

[1] I. Babus̆ka and B.Q. Guo. Regularity of the solution of elliptic problems with piecewise
analytic data. Part I and II, SIAM J. Math. Anal., 19, (1988), 172-203 and 20, (1989),
763-781.

[2] C. Bernardi and Y. Maday: Approximations spectrales de problèmes aux limites elliptiques.
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