
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

HP90: A general & flexible Fortran 90 hp-FE code

L. Demkowicz1, K. Gerdes2, C. Schwab, A. Bajer1 and T. Walsh1

Research Report No. 97-17
December 1997

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

1TICAM, The University of Texas at Austin, Austin, TX 78712, USA
2email: gerdes@sam.math.ethz.ch

HP90: A general & flexible Fortran 90 hp-FE code

L. Demkowicz1, K. Gerdes2, C. Schwab, A. Bajer1 and T. Walsh1

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Research Report No. 97-17 December 1997

Abstract

A general 2D-hp-adaptive Finite Element (FE) implementation in Fortran
90 is described. The implementation is based on an abstract data structure,
which allows to incorporate the full hp-adaptivity of triangular and quadri-
lateral finite elements.

The h-refinement strategies are based on h2-refinement of quadrilaterals
and h4-refinement of triangles. For p-refinement we allow the approxima-
tion order to vary within any element. The mesh refinement algorithms are
restricted to 1-irregular meshes. Anisotropic and geometric refinement of
quadrilateral meshes is made possible by additionally allowing double con-
strained nodes in rectangles.

The capabilities of this hp-adaptive FE package are demonstrated on var-
ious test problems.

Keywords: hp finite element method, spectral element method, constrained ap-
proximation, anisotropic mesh refinement

Subject Classification: Primary: 65N30, 65N35, Secondary: 65N50

1TICAM, The University of Texas at Austin, Austin, TX 78712, USA
2email: gerdes@sam.math.ethz.ch

1 Introduction

The Finite Element Method (FEM) is today the most widely used discretization technique
in solid and fluid mechanics. The classical approach still dominant in today’s industrial ap-
plications is to partition the domain into many small subdomains of diameter O(h) and to
approximate the unknown solution by a piecewise polynomial of low order p (typically, in ap-
plications, p = 1 or p = 2). Convergence is achieved through mesh refinement, i.e. by letting
h → 0.

In the early eighties, the so-called p-Version FEM emerged where the polynomial degree
p → ∞ on a fixed mesh in order to produce convergent sequences of FE-solutions (see, e.g., [1]
and the references there). It has been shown in the meantime that p-FEM are substantially less
susceptible to locking phenomena than the abovementioned h-type FEM and, moreover, give
exponential rates of convergence for many problems in solid and fluid mechanics for piecewise
analytic solutions typically arising in practice [17, 26].

Early implementations of p-FEMwere PROBE of Noetic Tech. and, more recently, STRESS-
CHECK of ESRD Res. Corp. in St. Louis, Mo. where the mesh was fixed and the polynomial
degree was assumed uniform.

The first implementation of a general hp-FEM where the mesh as well as the elemental
polynomial degree are completely general was available for two dimensional problems in the
late 80ies [3, 4]. There general meshes consisting of triangles and/or quadrilaterals and even
certain types of irregular (“hanging”) nodes were admissible. A commercial version of this
code became available under the name PHLEX of COMCO Corp. in Austin, Tx. The early
work had been strongly determined by considerations to save RAM and could also accomodate
standard, continuous FE-spaces.

In recent years, however, the advantages of nonstandard mixed and hybrid variational
formulations of boundary value problems and of the FEM based on such formulations have
been widely recognized [6] and also hp-variants of many mixed elements (such as the Raviart-
Thomas, MITC [30], Nedelec-edge elements [19]) have been analyzed, but computational expe-
rience with such hp-versions for problems in Mechanics is lacking. The situation is similar with
regard to the classical Stokes and Navier-Stokes problem (although equal order interpolants
for velocity and pressure together with SUPG stabilization proved to be quite successful [25])

Thus there arises the need for a flexible implementation of general hp-FEM. Here flexible

means that meshes consisting of triangles and/or quadrilaterals with possibly hanging nodes
are admissible. On such meshes we admit arbitrary polynomial degree distributions, and even
allow variable polynomial degree within elements. General hp-FEM is to be understood in
the sense that not only C0-conforming, “classical” elements are to be considered, but also
mixed element pairs where no or only partial continuity constraints are enforced between
elements (as is the case with H(div,Ω) and H(curl,Ω) conforming elements or the MITC-
family). This flexibility is mandatory, for example, in the context of multiple field problems

where elliptic systems of governing equations of possibly quite different mathematical character
are to be discretized simultaneously (as, e.g., incompressible fluid flow with heat exchange,
electromagnetic scattering coupled with elasticity etc.)

To present a general class of FE-spaces capable of realizing hp-versions for nearly all finite
elements and to describe its successful implementation on general meshes in two dimensions
is the purpose of the present paper. Departing from discontinuous, piecewise polynomial
vector functions of possibly different degrees on the abovementioned general class of meshes,
we describe a general constraining strategy which allows to realize all possible interelement
continuity conditions — from completely discontinuous to C0, even in the presence of hanging

1

nodes. We describe in detail how these elements are implemented in FORTRAN 90.

Frequently, in applications, adaptive mesh refinement leads to superior performance of FE-
codes. Our implementation can accomodate very general types of refinements – in particular
also anisotropic refinements which are imperative to resolve boundary layers (as, e.g. the
viscous boundary layer in incompressible fluid flow or the skin-effect in electromagnetics) at
an exponential rate of convergence.

The outline of this paper is as follows. In section 2 we define the hp−FE meshes and
the mesh refinement algorithms. The corresponding FE spaces are presented in section 3
together with examples of variational formulations. In section 4 we give a general overview
of the capabilities of this FE package. The new dynamic data structure is introduced in
section 5. Section 6 deals with the constrained approximation procedure and section 7 reveals
details about the element computations and the generalized assembling procedure. Numerical
examples are presented in section 8 and we finish with a summary in section 9.

2 The hp-FE Meshes

In this section we describe the meshes that our FE package can generate and handle. We start
from the assumption that the initial triangulation is always regular. At first we focus on the
geometrical description, i.e. on describing the triangulations and the possible subdivisions of
such triangulations. Then we introduce the polynomial spaces on the master elements and
define the element mappings that map each element from the triangulation onto its corre-
sponding master element. For each element we also define the polynomial degree and these
approximation orders together with the triangulation define then the hp-mesh.

2.1 The Initial Triangulation

By Ω ⊂ IRN , N = 2, 3 we denote a bounded two dimensional linear manifold with piecewise
analytic Lipschitz boundary Γ = ∂Ω, i.e. the sides Γj are analytic curves. A partition T of Ω
with subdomains K ∈ T is called an initial triangulation of Ω if

• each subdomain K ∈ T is either a curvilinear triangle or quadrilateral,

• the intersection of any two K,K ′ ∈ T , K &= K ′, is either empty, a vertex, or a side,

• each side belongs to at most two subdomains K.

In this case K ∈ T is called an element, the vertices of T are the nodes of T .

Remark 2.1 We assume that the initial triangulation is always regular, and the so called
hanging nodes can only be introduced by subdividing elements.

Nodes that are introduced by subdivision in the interior of a side are called irregular

or hanging or constrained nodes, otherwise regular nodes or simply nodes. A triangulation
containing only regular nodes is called a regular triangulation.

Remark 2.2 Many practitioners question the usefulness of hanging nodes. We allow them
for flexibility and efficiency. For example, on typical geometric triangulations used for the
resolution of corner singularities (see, e.g., Figures 1 and 2) the number of DOF per element is
p2/2 + O(p) in both cases (if the serendipity- or “trunk”-space Q′

p is used on quadrilaterals),
but hanging nodes allow geometric subdivisions with considerably fewer elements.

2

Figure 1: Irregular and regular subdivision of a quadrilateral and a triangle

Figure 2: Subdivision into a corner.

2.2 Subdivisions

2.2.1 Motivation

In many practical situations it is necessary to subdivide the FE triangulation to account for
singularities or boundary layers. In the case of boundary layers it is additionally desirable
to have the ability of anisotropic subdivisions. This is incorporated in the algorithm that
subdivides quadrilaterals. In the following we describe the algorithms that subdivides elements,
i.e. in the case of a triangular element we describe the h4-subdivision and in the case of a
quadrilateral element the h2-subdivision. The capabilities of these algorithms are visualized
in Figure 3.

2.2.2 h4-subdivision

The h4-subdivision procedure generates 4 new triangles out of a triangle. This is done by
introducing new edges that intersect the edges of the original triangle in the middle, as shown
in Figure 4. In particular, this algorithm allows a successive subdivision of triangles into a
corner as shown in Figure 3. In general, we have to assure that the irregularity rule for the
mesh is satisfied. This means, that an algorithm has to determine which elements need to be
subdivided first before the element in question can be subdivided. The algorithm that enforces
the irregularity rule for triangular and quadrilateral elements is described in section 2.3.

Figure 3: FE Triangulation with constrained and double constrained nodes.

3

(a) h4-subdivision (b) h2-subdivisions

Figure 4: Subdivisions of triangles and quadrilaterals

2.2.3 Anisotropic h2-subdivision

The anisotropic h2-subdivision creates 2 new rectangles out of a rectangle. Both horizontal
and vertical subdivisions are possible, as shown in Figure 4. From Figure 4 it is also evident
that a successive application of the anisotropic h2-subdivision gives a result similar to an h4-
subdivision. We emphasize again, that the anisotropic h2-subdivision procedure allows for both
uniform and anisotropic subdivisions and also for subdivisions towards a corner, as shown in
Figure 3. Again, the algorithm in section 2.3 determines any necessary additional subdivisions.

2.3 Subdivision algorithm

The algorithm that decides which elements have to be subdivided first is based on an algorithm
proposed in [9, 23] for quadrilateral elements, which is also path independent. The algorithm
presented here is an extension of the original version in [9] to quadrilateral and triangular
elements. The input data that have to be provided are the element Nel and the kind of sub-
division Nref, and the subdivision of element Nel is then performed by following the following
guidelines:

set nel = Nel; nref = Nref

10 continue

if nel is a triangle then

if nel is constrained then store the element on the waiting list; identify the

element to be subdivided first and the kind of subdivision required, i.e. set new

nel, nref; goto 20

endif

h4-subdivision of triangle nel

get next element from shelf, i.e. set new nel,nref

goto 10

elseif nel is a quadrilateral then

if nel is an initial mesh element then goto 20

if kind of subdivision of the father of nel = nref then

if all nodes of the element are active then goto 20

else store the element on the waiting list; identify the element to be subdivided

first and the kind of subdivision required, i.e. set new nel, nref; goto 10

4

endif

else

if all nodes of the element’s father are active then goto 20

else store the element on the waiting list; identify the element to be subdivided

first and the kind of subdivision required, i.e. set new nel, nref; goto 10

endif

endif

h2-subdivision of quadrilateral nel

endif

20 if the waiting list is empty then stop

else get the last element from the waiting list, i.e. take new nel and nref

from the list; goto 10

endif

2.4 Polynomial spaces on the master elements

In the following we define the master elements K̂t and K̂q that correspond to a triangular or
quadrilateral element K ∈ T .

For each element K ∈ T we define the element polynomial degree pK by

pK =
(

p1K , · · · , pLK
)

, (2.1)

with L = 4 for a triangle and L = 5 for a quadrilateral. piK , 1 ≤ i ≤ L− 1, is the polynomial
degree on the i-th edge of the element, and pLK the polynomial degree in the interior of the
element. For a quadrilateral, we allow p5K to be anisotropic, i.e.

p5K = phK ∗ 10 + pvK , (2.2)

where phK , pvK are the horizontal and vertical polynomial degrees in the quadrilateral. Whenever
we refer in the following to p5K , then we implicitly mean the horizontal and vertical polynomial
degrees and not the in (2.2) decoded value.

The polynomial degree of an element can be in principle arbitrary, but we require that

pLK ≥ max
{

p1K , · · · , pL−1
K

}

∀ K ∈ T . (2.3)

We describe a particular set of nodal shape functions for the triangular and quadrilateral
master elements that are associated with these master elements but want to emphasize that
the user can replace these shape functions by any other set of nodal based shape functions. By
slightly modifying the code it is also possible to incorporate shape functions such as integrated
Legendre polynomials [31] that are not nodal based.

Also, we want to point out that the choice of the higher order shape functions is somewhat
arbitrary, provided that the following conditions are satisfied:

• The mid-side node side shape functions corresponding to the i-th side of K̂ vanish on
the remaining sides. They must span polynomials of order pi

K̂
and vanish on the side

endpoints.

• The middle node interior shape functions vanish along the whole element boundary.

• The element shape functions span polynomials of order p, where p = min{p1
K̂
, · · · , pL

K̂
}.

5

1

1

0 a

a

a

a

a

a

a

2

1 4

5

6

3

7

^

^

^

^^

^ ^

!

!

2

1

Figure 5: Triangular master element K̂t of order p = (p1, p2, p3, p4).

2.4.1 The triangular master element

The triangular master element is defined on the basis of the right triangle K̂t shown in Figure 5.
The nodes â1, · · · , â7 are introduced to represent the dof corresponding to the master element.
We divide the nodes into three categories:

1. vertex nodes â1, â2, â3

2. mid-side nodes â4, â5, â6

3. middle node â7

Each of the mid-side nodes and the middle node may have a different corresponding order
of approximation p1, · · · , p4 respectively. The vertex nodes are linear and therefore have ap-
proximation order 1. The shape functions corresponding to the triangular master element are
defined for each node by using the area coordinates λ1,λ2,λ3 with

λ1 = 1− ξ1 − ξ2, λ2 = ξ1, λ3 = ξ2. (2.4)

Further, a set of points xij , j = 0, · · · , pi, is introduced for each approximation order pi, i =

1, · · · , 4. It is required that xi0 = 0 and xipi = 1 and that xij < xij+1. It is further understood

that the points x2j are scaled by a factor
√
2 to account for the length of the second edge of the

master triangle. Any system of nodes satisfying above requirements can be choosen to define
the corresponding Lagrange type shape functions. Possible choices for xij include equidistant
points or the Gauss-Lobatto points. In general the Gauss-Lobatto points are better conditioned
than the equidistant points. The Lagrange type shape functions χ̂(ξ1, ξ2) for the master triangle
are then defined for each node by (compare [8])

• vertex nodes
χ̂j(ξ1, ξ2) = λj , j = 1, 2, 3, (2.5)

• mid-side nodes

χ̂1
j (ξ1, ξ2) =

p1−1
∏

l=0;l #=j

(λ2 − x1l)λ1

p1−1
∏

l=0;l #=j

(x1j − x1l)(1− x1j)

, j = 1, · · · , p1 − 1, (2.6)

the formulas for χ̂2
j (ξ1, ξ2) and χ̂3

j (ξ1, ξ2) are obtained by permuting indices

6

p vertex dof side dof interior dof total # dof
1 3 0 0 3
2 3 3 0 6
3 3 6 1 10
4 3 9 3 15
5 3 12 6 21
6 3 15 10 28
7 3 18 15 36
8 3 21 21 45
9 3 24 28 55

Table 1: Number of triangular element shape functions for uniform p.

1

1

0 a

a

a

a

a

2

1

^

^

^^

^

a

a

a

a

^ ^

^
^

4 3

6

5

8

9

7

!

!

2

1

Figure 6: Quadrilateral master element K̂q of order p = (p1, p2, p3, p4, p5).

• middle node

χ̂4
i,j,k(ξ1, ξ2) =

i−1
∏

m=0

(λ1 − x4m)
j−1
∏

n=0

(λ2 − x4n)
k−1
∏

l=0

(λ3 − x4l)

i−1
∏

m=0

(1− x4j − x4k − x4m)
j−1
∏

n=0

(x4j − x4n)
k−1
∏

l=0

(x4k − x4l)

, (2.7)

with 1 ≤ i, j, k ≤ p4 − 1; i+ j + k = p4.

There are (p4 − 1) × (p4 − 2)/2 shape functions associated with the middle node. Table 1
summarizes the number of shape functions or the number of dof for the triangular master
element with uniform p. In general the number of shape functions is determined by

#dof = p1 + p2 + p3 +
(p4 − 1)(p4 − 2)

2
. (2.8)

2.4.2 The quadrilateral master element

The quadrilateral master element is defined on the basis of the unit square K̂q shown in Figure
6. The nodes â1, · · · , â9 represent the dof corresponding to the quadrilateral master element
and are again devided into three categories:

1. vertex nodes â1, â2, â3, â4

2. mid-side nodes â5, â6, â7, â8

7

3. middle node â9

Similar to the triangular master element can each mid-side node and the middle node have
a different corresponding approximation order p1, · · · , p5 respectively. Additionally, we allow
the approximation order p5 of the middle node to vary horizontally and vertically. This is
indicated in Figure 6.

The points xij , j = 0, · · · , pi; i = 1, 2, 3, 4 are defined as in Section 2.4.1 and the Lagrange
type master element shape functions χ̂(ξ1, ξ2) are defined as tensor products of one-dimensional
shape functions. These 1D shape functions of order p corresponding to a system of points xi
are then defined by

• vertex nodes
χ̂1(ξ) = 1− ξ, χ̂2(ξ) = ξ (2.9)

• middle node

χ̂j+2(ξ) =
p−1
∏

l=1;l #=j

ξ − xl
xj − xl

× ξ(1− ξ)

xj(1− xj)
, j = 1, · · · , p− 1. (2.10)

The tensor product gives then for the quadrilateral master element shape functions

• vertex nodes
χ̂k(ξ1, ξ2) = χ̂i(ξ1)χ̂j(ξ2), 1 ≤ i, j ≤ 2 (2.11)

• mid-side nodes
χ̂1
k(ξ1, ξ2) = χ̂j+2(ξ1)χ̂1(ξ2), j = 1, · · · , p1 − 1 (2.12)

with formulas for χ̂2
k(ξ1, ξ2), χ̂

3
k(ξ1, ξ2), χ̂

4
k(ξ1, ξ2) obtained by permuting indices

• middle node

χ̂k(ξ1, ξ2) = χ̂i+2(ξ1)χ̂j+2(ξ2), i = 1, · · · , p5h − 1, j = 1, · · · , p5v − 1, p5 = p5h × 10 + p5v.
(2.13)

In general the number of shape functions or dof of the quadrilateral is given by

#dof = p1 + p2 + p3 + p4 + (p5h − 1) ∗ (p5v − 1). (2.14)

The number of shape functions is summarized in Table 2 for uniform p.

2.4.3 Interpretation of the dof

The definition of the corresponding dof is somewhat arbitrary and relies on a particular, cor-
responding interpolation procedure [8]. We will now shortly introduce the interpolation proce-
dure that is currently used and emphasize that this particular procedure can easily be modified
or removed to incorporate another interpolation procedure.

Let K be any element. For u ∈ C0(K) we define the corresponding interpolant uhp in three
steps:

1. Evaluate the usual bilinear interpolant u1hp of u using the bilinear vertex shape functions

u1hp =
N
∑

i=1

u(ai)χ̂i (2.15)

with N = 3 for a triangle (and N = 4 for a quadrilateral).

8

p vertex dof side dof interior dof total # dof
1 4 0 0 4
2 4 4 1 9
3 4 8 4 16
4 4 12 9 25
5 4 16 16 36
6 4 20 25 49
7 4 24 36 64
8 4 28 49 81
9 4 32 64 100

Table 2: Number of quadrilateral element shape functions for uniform p.

2. Subtract u1hp from u and for each of the sides evaluate the corresponding side interpolants

of u− u1hp using the mid-side node shape functions

u2hp =
N
∑

i=1

pi−1
∑

j=1

(u− u1hp)(âi,j)χ̂i,j (2.16)

where âi,j are the points on the i-th side that are used to construct the side shape
functions.

3. Evaluate the Lagrange interpolant of u − u1hp − u2hp using the points, that are used to
construct the shape functions corresponding to the middle node

u3hp =
pN+1−1
∑

i,j,k=1;i+j+k=pN+1

(u− u1hp − u2hp)(âi,j,k)χ̂N+1,i,j,k (2.17)

The Lagrange interpolant uhp of u is then defined as

uhp = u1hp + u2hp + u3hp. (2.18)

This interpolation procedure is consistent with the hp convergence analysis in the sense that
when combined with the standard Cea’s lemma argument, it yields optimal rates of conver-
gence. The definition of the hp-interpolation differs in the evaluation of u2hp and u3hp because

they are obtained by performing local H1
0 -projections along the element sides or over the el-

ement, respectively. We emphasize here that these local H1
0 -projections should be used if the

Lagrange type shape functions are based on equidistant points. On the other hand, if the
Gauss-Lobatto points are used in Section 2.4.1 and 2.4.2 then the optimal convergence rates
can still be obtained by avoiding the local H1

0 -projections. In any way, the particular interpo-
lation procedure implies the definition of specific dof. These are functionals φ̂i that constitute
a dual basis to the element shape functions.

2.5 The hp-FE meshes

We emphasize that the actual computations are not performed on the hp-meshes, which we
define in the following. The actual computations are performed on the master elements and
therefore we first have to introduce an element mapping that maps from the hp-mesh onto the
corresponding master element.

9

The element mapping FK , K ∈ T , is defined by

FK : K̂ → K, (2.19)

which is assumed to be a C1 diffeomorphism. Furthermore, we assume that

1. detF ′
K ≥ α > 0 ∀ K ∈ T .

2. The part of an edge that neighboring elements Ki,Kj ∈ T have in common does have
the same parametrization “from both sides”. Let γij = Ki ∩Kj be the common part of
the edge with possibly irregular endpoints (vertices) P1, P2. Then for any point P ∈ γij ,
we have

dist
(

F−1
Ki

(P), F−1
Ki

(Pl)
)

/Li = dist
(

F−1
Kj

(P), F−1
Kj

(Pl)
)

/Lj, l = 1, 2,

where Li, Lj denote the length of the edges of the reference elements corresponding to
γij .

Remark 2.3 Above assumptions are also applicable in the situation of neighboring triangular
and quadrilateral elements. Further, condition 2 is essential for the construction of conforming
(continuous) finite element spaces.

Additionally, we also require that the polynomial degree is the same across an edge of two
neighboring elements. This requirement is essential in the construction of continuous finite
element spaces. The element mappings FK and the element polynomial degrees pK , defined in
(2.1), are collected in the degree vector p and the mapping vector F by

p := {pK : K ∈ T } , F := {FK : K ∈ T } . (2.20)

The triangulation T together with the approximation order on each element in T , given by
the degree vector p, and the mapping vector F , define the hp-mesh M and we shortly write

M := (T ,p,F) . (2.21)

In the case of a uniform polynomial degree p throughout the mesh M we simply replace p by
p.

Remark 2.4 The above definitions are applicable to L2 and C0 finite element formulations
and can be naturally extended to vector valued problems. But, in the case of mixed formu-
lations, these definitions have to be changed to account for a different interpretation of the
degrees of freedom, as it is for example the case with the generalization of the edge elements
[6] that are described in [11].

3 Examples of variational formulations and the construction of
corresponding hp-FE Spaces

In the following we give examples of problems of engineering interest that can be discretized
using the hp-FE spaces that we define in this section. We state the weak formulations of our
examples in the most general sense and do not discuss the stability issue in detail here. We
only point out that the trial and test spaces have to be chosen appropriately, i.e. restricted, so
that the formulation is stable. Such appropriate FE spaces are given in the remainder of this
section, which will indeed lead to stable approximations.

10

3.1 Example problems and their variational formulations

1. The linearized elasticity problem (displacement formulation), see e.g. [2], has the fol-
lowing weak formulation: Let Ω ⊂ IR2 be a Lipschitz domain and let λ, µ be the Lamé
constants and εij be the linearized strain tensor, then:

Find v ∈ H1
0 (Ω) such that

∫

Ω
λ divu divv + 2µ

2
∑

i,j=1

εij(u)εij(v) ∂Ω =
∫

Ω
f · v ∂Ω ∀ v ∈ H1

0 (Ω)
(3.1)

2. Scalar elliptic equation, e.g. the exterior Helmholtz problem: Let Ω ⊂ IR3 be the
exterior of the unit sphere S and

∆u− k2u = 0 in Ω,
∂u

∂n
= g on S,

∣

∣

∣

∣

∂u

∂R
− iku

∣

∣

∣

∣

= O
(

1

R2

)

for R → ∞.

(3.2)

The corresponding weak formulation is:

Find u ∈ H+
1,ω(Ω) such that

∫

Ω
∇u ·∇v − k2uv dΩ =

∫

∂Ω
gv dS ∀ v ∈ H+

1,ω∗(Ω),
(3.3)

where H+
1,ω are weighted spaces of “outgoing waves”. Although the exterior Helmholtz

problem is a three-dimensional problem, it actually can be solved within the framework
of this FE package by a hierarchical modeling approach and a tensor product Ansatz for
the trial and test spaces, for details and the definition of H+

1,ω we refer to [12, 13, 14].

3. The Stokes problem: Let Ω ⊂ IRn, n = 2, and

−ν∆u+∇p = f in Ω,
div u = 0 in Ω,

u = 0 on ∂Ω.
(3.4)

The corresponding weak formulation is:

Find (u, p) ∈
[

H1
0 (Ω)

]n × L2
0(Ω) such that

∫

Ω
ν∇u ·∇v dΩ −

∫

Ω
p div v dΩ =

∫

Ω
f · v dΩ ∀ v ∈

[

H1
0 (Ω)

]n
,

∫

Ω
q div u dΩ =0 ∀ q ∈ L2

0(Ω).

(3.5)

The Stokes problem has a stable weak formulation if S1,n
0 (p,T ;Ω) × S0

0(p − 2,T ;Ω)
is chosen for the trial and test spaces. In this case the triangulation T can be either a
regular mesh with triangles and quadrilaterals [27, 29] or an irregular quadrilateral mesh,
i.e. a quadrilateral mesh with local geometric refinements and hanging nodes [25]. The
above pairs of spaces are stable on these hp-meshes, i.e. satisfy the inf-sup condition.

4. The electromagnetics problem (Maxwell equations) can be written under appropriate
assumptions as a (reduced) wave equation [11, 18]:

curl
(

1

µ
curlE

)

− (ωε− jωσ)E = −jωJ imp

div ((jωε+ σ)E) = 0
(3.6)

11

The weak formulation is then

Find (E, p) ∈ H(curl;Ω)×H1(Ω) such that
∫

Ω

1

µ
(curlE) ·

(

curlF
)

dΩ −
∫

Ω

(

ω2ε− jωσ
)

(E +∇p) · F dΩ

= −jω
∫

Ω

(

J imp · F
)

dΩ ∀ F ∈ H(curl;Ω),
∫

Ω

(

ω2ε− jωσ
)

E ·∇q dΩ =0 ∀ q ∈ H1(Ω).

(3.7)

In [11] it is shown that the above weak formulation is stable in the case of lossless media,
i.e. σ = 0.

5. The Poisson problem −∆u+ f = 0 can be written formally in a mixed formulation as

∇u = σ,
f + div σ = 0.

(3.8)

A stable mixed formulation [5, 6] is

Find (σ, u) ∈ H(div;Ω) × L2(Ω) such that
∫

Ω
σ · τ dΩ+

∫

Ω
u div τ dΩ =0 ∀ τ ∈ H(div;Ω),

∫

Ω
v div σ dΩ = −

∫

Ω
f v dΩ ∀ v ∈ L2(Ω).

(3.9)

3.2 The hp-FE spaces

Now we give a precise mathematical definition of the hp-FE spaces that are admissible in
our code, i.e. we define the global hp spaces that are admissible within the framework of
the code. Among those are the traditional H1-conforming (scalar- or vector-valued) piecewise
polynomials, and various H(div) and H(curl) conforming spaces of piecewise polynomials,
where the curl-operator [16] is defined by

curl v =

∂v2
∂x1

− ∂v1
∂x2

n = 2
(

∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)

n = 3
(3.10)

The framework of the code is general and flexible enough to include most settings of engineering
interest.

The condition (2.3) makes it possible to define the hp-spaces independent of a particular
set of shape functions, which allows us to view the element definition in the abstract setting
of Ciarlet [2].

Definition 3.1 Let M = (T ,p) be a given hp-mesh on Ω ⊂ IRn, n = 2 or 3, and let m ≥ 1
be the number of field variables. Further, let Sp(K) be the polynomial space of degree p on

the element K which is either Pp(K) if K is a triangle or Qp(K) if K is a quadrilateral. Let

ei, 1 ≤ i ≤ L− 1, be the edges of the element K. Then we define

1. the space of piecewise discontinuous vector-valued polynomials

S0,m(M;Ω) :=
{

u; u ∈
[

L2(Ω)
]m

; u|K ∈
[

SpL
K
(K)

]m
; u|ei ∈

[

Spi
K
(ei)

]m
∀ K ∈ T

}

(3.11)

12

2. the space of piecewise discontinuous vector valued-polynomials with vanishing mean value

S0,m
0 (M;Ω) :=

{

u; u ∈ S0,m(M;Ω);
∫

Ω
u dΩ = 0

}

(3.12)

3. the space of piecewise continuous vector-valued polynomials

S1,m(M;Ω) :=
{

u; u ∈
[

H1(Ω)
]m

; u|K ∈
[

SpL
K
(K)

]m
; u|ei ∈

[

Spi
K
(ei)

]m
∀ K ∈ T

}

(3.13)

4. the space of piecewise continuous vector-valued polynomials with vanishing trace on the

boundary

S1,m
0 (M;Ω) :=

{

u; u ∈ S1,m(M;Ω); u|∂Ω = 0
}

(3.14)

5. the space of H(div)-conforming vector-valued piecewise polynomials

Sdiv(M;Ω) :=
{

u; u ∈
[

L2(Ω)
]m

; div u ∈ L2(Ω); u|K ∈ [SpK (K)]m ;

u|ei ∈
[

Spi
K
(ei)

]m
∀ K ∈ T

}

(3.15)

6. the space of H(curl)-conforming vector-valued piecewise polynomials

Scurl(M;Ω) :=
{

u; u ∈
[

L2(Ω)
]m

; curl u ∈
[

L2(Ω)
]m

; u|K ∈ [SpK (K)]m ;

u|ei ∈
[

Spi
K
(ei)

]m
∀ K ∈ T

}

(3.16)

Remark 3.2 Frequently we include the degree vector in the notation, i.e. we write S0(p,T ;Ω)
instead of S0(M;Ω). In the case of a uniform polynomial degree we simply write S0(p,T ;Ω).

Remark 3.3 For a vector valued problem it is admissible to use any combination of these
hp-FE spaces, with possibly different p, but on the same T .

Remark 3.4 The BDM -spaces and BDFM -spaces defined e.g. in [6] fall into the category
of spaces that approximate Sdiv(M;Ω). Further, the edge elements by Nedelec [20, 21] fall
into the category of elements that approximate Scurl(M;Ω).

4 Overview of the FE package

The whole FE package consists of several independent modules. The interfaces between the
various packages shown in Figure 7 are well defined and consistent with the underlying data
structure that is used (compare section 5). In the following we shortly describe the various
parts of the code.

Geometric modeling package (GMP): The GMP [7] provides parametrizations which
describe the domain that has to be meshed by the mesh generator. The parametrizations
currently possible include such reference figures as curved triangles and quadrilaterals and also
2-dimensional linear manifolds in the 3-dimensional space that are bounded by 3 or 4 curves.
It is easily possible to add additional parametrizations to the GMP if the existing ones cannot
describe the domain Ω of interest. Therefore, Ω is a 2-dimensional linear manifold that is a

13

Element computations Solver

Initial mesh generation

Geometric modeling

Mesh modification Visualization

Constrained approximation

Figure 7: Structure of 2D-hp-adaptive FE package.

union of a finite number of triangular and quadrilateral linear manifolds that have edges in
common.

Initial mesh generation (IMG): The IMG creates the triangular/quadrilateral finite
elements in each triangular/quadrilateral reference figure. The initial mesh is generated by
using the idea of an algebraic mesh generator and hp-interpolation. Given, for the reference
figure, numbers m and n of divisions in the “horizontal” and “vertical” directions (compatible
for neighboring reference figures, the initial mesh is always regular) the reference figures are
covered with uniform, regular grids consisting of finite elements K̃. By constructing a compo-
sition of the standard affine map η transforming the master element K̂ onto element K̃, and
(the restriction of) the block parametrization xb, a map is constructed from the master element
K̂ onto a curvilinear element K, identified as the image of element K̃ under the particular
parametrization xb,

K = x(K̂) = xb(K̃) , x = xb ◦ η. (4.1)

In principle, this map could be used directly to define the curvilinear element, i.e. in the element
calculations. In practice, it is approximated using the idea of isoparametric approximation.
More precisely, given a particular order of approximation for element K (may vary for different
nodes), transformation x is replaced with its hp-interpolation.

The idea of the hp-interpolation follows from the convergence theory for hp-approximations
and has been introduced in [10]. Roughly speaking, the hp-interpolation combines the clas-
sical interpolation for vertex nodes with local H1

0 -projections for higher order nodes. Given
a sufficiently regular function, the corresponding hp-interpolant exhibits the same orders of
convergence (in terms of both h and p) as the corresponding global H1

0 -projection (solution to
the Laplace equation with Dirichlet boundary conditions imposed using the H1

0 -projection on
the boundary).

The initial hp-FE mesh can have polynomial degree p with 1 ≤ p ≤ 9. This limitation on p
can easily be removed by providing even higher order shape functions and the necessary storage
space. All data corresponding to the hp-FE mesh are stored in the abstract data structure
that is introduced in section 5.

Mesh modification (MM): The MM package handles the various types of mesh refine-
ment procedures. It is possible to increase the polynomial degree of an element (p-refinement)
or to refine a triangle into 4 triangles (h4-refinement) or to refine a quadrilateral into 2 quadri-
laterals (h2-refinement). In the case of h-refinement we restrict ourselves to 1-irregular meshes
and further allow double constrained vertex nodes in quadrilateral elements. A vertex node
is called irregular or constrained or hanging if there exists an adjacent element for which the
node is not a vertex node. A quadrilateral contains a double constrained node if the node

14

is constrained by nodes of which at least one is irregular. This will be dealt with in more
detail in section 6. Figure 3 shows a mesh with constrained and double constrained nodes.
In the following sections we describe in detail the implementation aspects related to the mesh
refinement, constrained approximation and element computations.

Element computations (EC): The calculation of the element stiffness matrix and the
element load vector are done on the master elements that are introduced in section 2.4. The
physical element is therefore mapped in the usual way onto the corresponding master element.
The integration is performed by numerical integration and the Gaussian quadrature is applied
although other choices of integration procedures are possible too. It is assumed that the user
of the FE package provides the routines that perform the element computations and therefore
it is up to the user to decide on which integration procedure is used.

Constrained approximation (CA): The CA enforces the continuity of the approxima-
tion on irregular meshes. This is done by requiring a common order of approximation along
two neighboring elements and by constraining degrees of freedom (dof) that correspond to an
irregular node. This is described in detail in section 6.

Solver: The Solver interfaces with the CA. The corresponding element stiffness matrices
and load vectors are transformed into an appropriate data structure format for the employed
linear system solver. Currently a direct solver is used but it is straight forward to interface
with any other solver, e.g. with iterative solvers.

Visualization: The currently used graphics package is based on XWindows graphics and
displays the corresponding elements which are stored in the data structure. This graphics
package could easily be replaced by interfacing with any other graphics/CAD program.

5 The data structure

Similar to computer languages C, C++ it is possible to define abstract data types in Fortran
90. The data that are necessary for an hp-adaptive FE implementation can be classified into
two categories, nodal information and element information. Therefore, we define the two data
types node and element by

type node

character(len=4) :: type

integer :: order

double precision, dimension(:,:), pointer :: coord

double precision, dimension(:,:), pointer :: dofs

endtype node

type element

character(len=5) :: type

integer :: nodes(9), neig(4), bcond, father, sons(4), ref kind

endtype element

Type node contains all the information about a particular node, where type=’vert’ for a
vertex node, =’msid’ for a midside node, =’mdlt’ for a bubble node in a triangle and =’mdlq’
for a bubble node in a quadrilateral. The variable order determines the approximation order
at the node. It is 1 for the vertex nodes, since the vertex nodes are by definition linear. The
degrees of freedom (dof) on the edges and inside the element are handled by higher order
nodes. This simplifies dealing with higher approximation orders, because the number of nodes
stays the same for cubic or higher approximation orders. The geometry dof corresponding to

15

the particular node are stored in the variable coord and the corresponding solution dof are
stored in the variable dofs.

In the type element the variable type determines the type of the element by its value
’trian’ or ’quadr’. The node numbers, i.e. pointers onto all the nodal information are stored in
the variable node, which is an array of length 9. The last two entries of node have no meaning
for a triangular element. The neighboring elements are stored in variable neig. The boundary
condition flags are stored in variable bcond, which determines which edges or vertices of an
element are part of the boundary of the domain Ω. The variables father, sons and ref kind

contain information that is generated during the h-refinement. In detail, father points to the
father element of the present element, sons points to the elements that are generated by h-
refining the element and ref kind determines the refinement kind. ref kind can be equal to 1
or 2 for horizontal or vertical h2-refinement of a quadrilateral and equal to 4 for h4-refinement
of a triangle.

The data types node and element are used to define the dynamic arrays NODES and ELEMS

by the statements

type(node), allocatable :: NODES(:)

type(element), allocatable :: ELEMS(:)

It should be emphasized here that the necessary memory for storing the element and
nodal information is allocated on demand during the runtime of the code. Therefore, it is not
necessary to reserve large memory space ahead of time. Also, memory can be deallocated at run
time if certain elements and nodal information can be deleted due to refinement/unrefinement.

It should be pointed out here that the data types defined above do not incorporate directly
a global denumeration of the elements and that they only provide information about equal
size or larger size neighboring elements. Therefore, it is necessary to establish an order of the
elements and to provide information about the actual active neighboring elements. This is
done by two algorithms, nelcon and neigbr.

An order of the elements is established by an algorithm that determines the so called natural

order of elements. This algorithm is based on the denumeration of the initial mesh elements
and the refinement of the initial mesh element. The element number nel of the n-th element
is found by the algorithm nelcon that has as input data the previous element Nel:

set nel = Nel

10 continue

if (nel=0) then nel = 1; go to 20

elseif initial mesh element then nel = nel + 1; go to 20

else get family information

if nel is not last son then nel = brother(#son+1); go to 20

else nel = father(nel); go to 10

endif

endif

20 continue

if element has not been refined then Nel1 = nel; return

else nel = first son; go to 20

endif

For solving a particular problem with the FE code it is necessary to loop over all the active
elements. This can easily be done by using the natural order of elements. A typical loop over
all the active elements in the code will then look as follows

16

Figure 8: Large element neighboring two small elements.

nel = 0

do iel = 1, number of elements

call nelcon(nel, nel)

...

enddo

The neigbor information is generated in the code by the procedure neigbr, which explicitly
follows the refinement of each of the elements that are stored in the array neigh.

6 Constrained approximation for C0 discretizations

The h-refinement strategies can lead to irregular meshes, compare Figure 3, and this brings
up the issue of enforcing continuity of the numerical approximation. We are assuming in this
section that the global shape functions are in H1, and so continuity must be enforced if it
does not occur naturally. We have already required that the polynomial degree across element
edges be the same and therefore we only need to deal with the case of having a large element
on one side of the edge and two small elements on the other side. This situation and the shape
functions corresponding to a quadratic approximation along the common edge are illustrated in
Figure 8. From Figure 8 it is evident that similar imcompatibilities will occur for all polynomial
degrees when elements with different sizes are adjacent. Nevertheless, the continuity can be
accomplished by forcing the son’s shape functions to conform to the father’s at the constrained
nodal points. This, however, means that the dof corresponding to constrained nodes are not
dof since they are dependent upon other dof. It is evident that the constraints that have to
be determined must be related to properties of one dimensional shape functions, since the
restriction of a shape function ϕ to an edge e results in a one dimensional shape function. This
requires that the connectivities of the elements to each other are known. That is, for each
constrained local node we need to determine lists of the associated global dof and the so-called
constraints coefficients.

In the following we describe how to reconstruct this information at the local level, and
show how it is used in the generalized assembling procedure to impose the continuity of the
approximation. We emphasize that this procedure is similar for triangles and quadrilaterals
and can also be extended to the 3D case, although the situation becomes much more complex
in three dimensions.

6.1 Triangular elements

We will begin with a simple example of the construction of the constraint information for a
triangle with single-constrained nodes. Figure 9 shows an initially unrefined triangle and the
corresponding four sons generated by an h4 refinement. The constraint information for the
hatched element is generated in three steps: reconstruction of the nodal constraints, identifi-
cation of the modified element, and reconstruction of the constraints for the local dof. These

17

12

ELEMS(Father)%nodes

ELEMS(Son)%nodes

Output:

Input:

17 17 17

Norient

17

Ncons

Nodloc

7 12 17

0

25 20 22 30

-1 -1 17 27 -4 -4 32

-1 -3 17 27 -4 -2 32

7 7 12 12

22 22 20 20

0 1 0 0

1000

-4-2

-1 -3

-4-4

Order of

7

127

22 20

7 12

Approx.

32

30

32

25

17

17

17

27

(a)

(b)

(c)

27

-1-1

01

Figure 9: An example of the construction of the nodal constraint information from the data
structure arrays for a triangle with single-constrained nodes.

procedures will now be illustrated with an example.

Step1: Reconstruction of the nodal constraints. The nodal information available in
the data structure for the initial triangle and the hatched son after h4 refinement is shown
in the left column of Figure 9. The ELEMS(father)%Nodes and ELEMS(son)%Nodes arrays
simply contain a counterclockwise listing of the node numbers of the father and son elements,
respectively. By comparing these arrays with their corresponding elements, it is seen that the
first three entries are a counterclockwise listing of the vertex nodes, the next three entries are
the mid-side nodes, and the last is reserved for the middle node. For the hatched element and
its father, then, this is the nodal information that is available in the data structure after the
h4 refinement.

The four nodes of the triangle in Figure 9b that are marked with a negative sign are
constrained nodes, i.e. they do not include active dof. These nodes are not associated with
any node numbers in the data structure. Instead, the order of approximation of the node
is stored, preceded by a negative sign. Since constrained nodes do not include dof, there is
no need to endow them with any explicit node number. Previous experience shows that the
mesh modification routines are simplified significantly when nodal constraint information is
not stored explicitly in the data structure. Indeed, with this approach there is no need to
update nodal arrays for constrained nodes during the refinement/unrefinement processes.

The assembling procedure requires a local listing of node numbers, and although node
numbers are not stored for constrained nodes, this information is easily reconstructed element
by element. The array Nodloc, shown in Figure 9, contains a listing of the node numbers
for the hatched element, using the same pattern as the ELEMS arrays. The four constrained
nodes are given a local denumeration, 1-4, again preceded by a negative sign. However, in this

18

case the numbers are actually pointers to the respective columns in the array Ncons, to be
described next.

Due to continuity requirements, the dof of constrained nodes depend on the dof along the
father’s common edge. Thus, for a given constrained node, a listing of the corresponding
constraining nodes along the father’s edge must be constructed. This information is stored
columnwise in the array Ncons, the first column containing the information for constrained
node −1, the second column for node −2, and so on. A given column in Ncons contains the
vertex and midside node numbers of the father’s common side in the first three entries. For
example, the vertex node −1 is constrained by nodes 7, 17, and 22, which are the first three
entries in the first column of Ncons. The final two entries in any column of Ncons contain
the so-called integer coordinates, relating the position of the element side with respect to the
father side. Figure 9 shows that these entries are nonzero only for midside nodes. To define the
integer coordinates, a local 1D coordinate system from−1 to 1 is constructed along the father’s
common side, in the direction of the orientation of the father’s midside node. Considering the
orientation of the hatched element’s midside node, the positions of the two corressponding
vertex nodes along the hatched element’s side are identified as the integer coordinates. For
example, the first constrained midside node in Figure 10(a) is −2, which connects nodes 17 and
−1. With respect to the coordinate system defined by the father’s common side (which in this
case is in the opposite direction of the hatched element’s orientation), the integer coordinates
are identified as 1, 0. These are seen to be the final two entries in the second column of Ncons.
The remaining entries are constructed in a similar manner.

The orientations of the hatched element’s active midside nodes need to be known in general.
For a given unconstrained edge of the hatched element, the array Norient stores a value of 1 if
the local orientation is consistent with the global orientation, a value of −1 if they are opposite,
and a value of zero if the edge is constrained.

Step2: Definition of the modified element. The next two arrays of interest, Nod1
and Nod2, contain listings of the vertex and midside node numbers of the so-called modified
element. These arrays are constructed from the arrays Ncons and Nodloc. To illustrate,
the first entry in Nodloc is −1, indicating that it is constrained. The corresponding vertex
and midside nodes along the father’s common edge, 7, 17, and 22, are obtained from the first
column of Ncons. Thus, 7 and 17 become the first two entries in Nod1, and 22 becomes the first
entry in Nod2. The remaining entries are obtained in a similar way. Finally, Nod1 and Nod2
contain a listing of the vertex and midside nodes associated with the hatched element. These
arrays define the so-called modified element, or element with legs, [24], which can be useful
for visualizing the constraint situation. The modified element corresponding to the hatched
element is shown at the bottom of Figure 10. It is a graphical representation of the locations
of the nodes which constrain the element of interest (in this case the hatched element). The
constraining vertex and midside nodes along the father’s common edges constitute the ”legs”
of the modified element.

Once the above arrays are constructed, we have a complete description of the nodal infor-
mation for the hatched element (and the modified element), including the nodal constraints.
The next step is to do the same for the dof.

Step3: Construction of the constraints for the local dof. The previous section dealt
only with nodal information. Next, we will consider the constraints for the dof. In particular,
we will construct arrays that describe the dof for the modified element, as well as the constraint
coefficients that enforce continuity of the approximation across element boundaries.

19

Norient

‘Modified element’

Nod1

‘Element with legs’

Nod2

7 17 12

272022

17

1

17 1717

Ncons

Nodloc

-1 -3 17 27 -4 -2 32

7 7 12 12

22 22 20 20

0 1 0 0

1000

-4-2

-1 -3

127

32

17

27

17

(a)

(b)

127

22 20

27

32

00

Figure 10: The nodal constraint information and associated modified element for a triangle
with single-constrained nodes.

In a similar manner as for the nodal information, we need to consider each dof for the
hatched element. If it is constrained, we need to determine a listing of the constraining dof
along the father’s common side. This information is stored in the matrix NAC. Thus, NAC
contains, for each local dof of the hatched element, a corresponding column of local dof numbers
of the modified element which constrain that dof. If a given dof is unconstrained, then its
column in NAC will only contain one entry.

As shown in Figure 11a, Nod1 and Nod2 can be concatenated to form an ordered list of the
vertex and midside node numbers for the modified element. Corresponding to each vertex node
is one dof, and to each mid-side node are p − 1 dof’s, where p is the order of approximation.
Thus, Figure 11(a) establishes a correspondence between local node numbers and local dof’s
for the modified element.

With this correspondence, the array NAC can be constructed as follows: for the i-th local
dof of the hatched element, determine the node numbers of the constraining nodes from the
matrix Ncons. Next, locate the constraining nodes on the list in Figure 11(a), and extract the
corresponding local dof numbers of the modified element. These dof become the entries in the
i-th column of NAC, corresponding to the i-th dof of the hatched element. For example, the
first dof of the hatched element in this case is constrained by nodes 7, 17, and 22. Referring
to Figure 11(a), we see that these correspond to dof 1, 2, 4, 5, and 6. As can be seen in Figure
11(b), these are precisely the entries in the first column of NAC.

At this point, it is instructive to draw an analogy between the arrays NAC and CONSTR,
and the classical finite element approach. In either approach, within a given element, the values
of geometrical coordinates and dof’s at a point are represented as linear combinations of the
nodal dof’s (each of which is associated with a shape function). However, if one of the nodal
dof’s is constrained, then it is actually dependent upon other dof’s within the element (as
illustrated by the array NAC). Thus, in the constrained case values of geometrical coordinates
and dof’s at a point are actually ’nested’ linear combinations of the nodal dof’s.

20

Local dof #

Modified element node #

Ordered list of Local dof for the MODIFIED Element

2720

(b)

(a)

Local dof #1 2 3 4 5 6

22

7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Dof constraint information for the hatched element (NAC)

1

5

2

3

7

2 11

8

10 12 7 7 7 4 4

2

4

6 9

8

8 8 5 5 5

666999

4

7 17 12

Figure 11: An example of the construction of the dof constraint information for a triangle with
single-constrained nodes.

With this in mind, the arrays NAC and CONSTR are recognized to be the second level
of these nested summations. In fact, if an element were unconstrained, then each column in
NAC would have only one entry, and the corresponding constraint coefficient would be 1.0.
Thus, the classical FEM approach is seen to be a special case of the more generalized procedure

discussed here. The element shown in Figure 9 has only single constrained nodes. If higher
degrees of irregularity were allowed, then there would be a hierarchy of summations involved.

6.2 Quadrilateral elements

Step1: Reconstruction of the nodal constraints. We will begin with a simple example
of the construction of the constraint information for a quadrilateral with only single constrained
nodes, followed by an example with double-constrained nodes. Figure 12 shows a nine-node
quadrilateral which has been refined horizontally, resulting in two constrained son elements.
Figures 12(b) and 12(a), respectively, show the information available in the data structure for
the hatched element and its father, and Figure 12(c) shows the reconstructed constraint arrays.

As in the case for triangles, notice that the first four entries in the ELEMS and Nodloc
arrays of Figure 12 correspond to a counterclockwise listing of the vertex nodes, and the
subsequent four entries are a counterclockwise listing of the mid-side nodes. The last entry, of
course, is for the middle node. Negative entries in Nodloc indicate constrained nodes.

In this case, Ncons has four columns, each containing information for one of the constrained
nodes listed in Nodloc. As in the case for triangles, the negative entries in Nodloc simply point
to the respective column in Ncons. Thus, Figure 12 is the direct analog to Figure 9.

Steps2 and 3: Construction of the constraints for the local dof and the modified
element. Figures 13(b) and 14 show the modified element and the reconstructed constraints
for the dof, respectively. As in the case for triangles, Nod1 and Nod2 contain listings of the
vertex and midside nodes of the modified element. For each local dof of the hatched element,
NAC contains a column of local dof numbers of the modified element that constrain that local
dof. The modified element for this case is shown in Figure 13(b), and it is the analog of the

21

6

10

6

ELEMS(Nel)%nodes

711 6 27 15

0

24 13

ELEMS(Nel)%nodes

-1 7 6 -4 -4

-1 -3 -4 -2

Nodloc

1

Norient

Ncons

6 507

-1

Input:

Output:

-1

10

0

30

50 32

24 32

6 6 7 7

24

10 10 11 11

15151313

0 0-10

0 0 0 -1

13

7

15

11
27

30

24

24

32

50

-4

-1

-4

7

-1

-2

76

10 11

-3

-4

-1

32

24

50

10 11

(a)

(b)

(c)

Figure 12: An example of the construction of nodal constraint information from the data
structure arrays for a quadrilateral with single constrained nodes.

13 50 15 24

-3 -4 -2

Nodloc

Norient

0

Ncons

50

6 7

-2

-1

-2

-3

-4

6 11710

(a)

(b)

‘Element with legs’

‘Modified element’

Nod2

Nod1

1 -1 0

-1 7 6 24 32

0

0

0-10

00 -1

50

24

32

-3

-4

76

10 11

32

24

50
-1

10 11

15 151313

10 10 11 11

7766

Figure 13: The nodal constraint information and associated modified element for a quadrilat-
eral with single constrained nodes.

22

2 11

6 10

Local dof #

Modified element Node #

1 3 4 5 6 7 8 9 10 12 1513 14 16

7

13

11 13 50 15 24

8

1

2

7

9

4

3 1 8 9 11 15 16

6

5 5

6 6

7

12

13

11

3 10 14

7

5

7

Dof constraint info for the hatched element (NAC)

Local dof #1 2 3 4 5 6 7 8 9 10 12 14 15 16

Ordered list of Local dof for the MODIFIED element

11 13

12

13

12

13

11 11

12

Figure 14: An example of the construction of the dof constraint information for a quadrilateral
with single-constrained nodes.

case of a triangle with a single constrained node.

Condensation Process: Both the triangle and quadrilateral examples presented thus far
have contained only single constrained nodes. Consequently, the arrays in Figures 9 and 12
differ only in the number of entries in the arrays.

Quadrilaterals, however, have the added technicality that they can accomodate double

constrained nodes, i.e. nodes that are constrained by constrained nodes. Figures 15 and 16
illustrate the data structure information, corresponding nodal constraint arrays and modi-
fied element for a quadrilateral with a double constrained node resulting from two successive
refinements. The most notable difference from the triangle case is the presence of negative
entries (constrained nodes) in the array Ncons and Nod1, indicating the presence of double
constrained nodes.

An additional loop through Nod1 to check for negative values is necessary to determine
nodes of the modified element. For each negative entry in Nod1, the corresponding parent
vertex and midside nodes are extracted from Ncons and added to Nod1 and Nod2 if they
are not already there. After completion of this process, Nod1 will contain a listing of all
unconstrained vertex nodes for the modified element, and Nod2 will contain the unconstrained
midside nodes. The corresponding condensation process for the NAC and Ncons arrays is
described in section 6.5.

As stated previousely, double constraints are the highest degree of irregularity allowed in
the code. The mesh modification routines have built-in protocols that prevent higher degrees
of irregularity.

6.3 Constrained approximation coefficients (CAC)

The coefficients that are used to impose the constraints, i.e. CONSTR, can be computed ahead
of time or they can even be hardwired into the FE code. In any case, these coefficients are
computed for all polynomial degrees p. For a typical situation, as shown in Figure 8, we simply

23

6 7

10 11

6

-1

-4

50

24

ELEMS(Nel)%Nodes

32

30

6

-4

Input:

(a)

-1

-4

48

-4

52

ELEMS(Nel)%Nodes

-1 6 -4-1 -4 -448

ELEMS(Nel)%Nodes

-1 7 -4 -4-1

711 6 27 15 24 1310 30

6 50 24 32

52-1

24

-4

-1-1

27

13 15

7

10 11
(b)

(c)

7

1110

-1

-4

-3

Figure 15: An example of the data structure information for a quadrilateral with double-
constrained nodes.

Nodloc

Norient

Ncons

6

(a)

50

0

50

6

7

24

0

0

1

0

24

7

6

0

0

0

-1

6 7

-2

-8

48

-6

52

(b)

‘Modified element’

‘Element with legs’

-1

6 7

-2 48

-6

52
48

10

52

0

0 0

00

0

15151313

13 50 24 48

0

-8

-5

-7

-7

-4

-3

1110

-5
-3

-4

1110

Nod2

Nod1

-1 -5 -7 -6 -8 -2

-1-1

-3-311111010

-1

-1

-1

7766

6 -110 7 11-3

Figure 16: The nodal constraint information and the modified element for a quadrilateral with
double constrained nodes.

24

need to determine the values of the big element shape functions at the nodes xj of the small
neighbors. The nodes xj have already been defined in section 2.4 and we only need to establish
a numbering convention for these coefficients, which are collected in an array CAC(19, 9, 9).
We interprete them so that CAC(j, i, p− 1) is the value of the i-th big element shape function
at the j-th node of the small neighbor with the convention that 2≤ p ≤ 10, and that the small
element nodes are numbered with j = 1 for the node that coincides with the mid-side of the
large element and with 2 ≤ j ≤ p for the first small element nodes and p+ 1 ≤ j ≤ 2p − 1 for
the second small element nodes. The coefficients are then easily be determined by the following
algorithm:

do p=2,10

determine shape functions ϕi at x = 0.5

do i=1,p-1; CAC(1,i,p-1) = vshap(2+i); enddo

do j=1,p-1

determine shape functions ϕi at xj

do i=1,p-1

CAC(1+j,i,p-1) = vshap(2+i) - CAC(1,i,p-1)*2.d0*xj

enddo

enddo

do j=1,p-1

determine shape functions ϕi at xj + 0.5

do i=1,p-1

CAC(p+j,i,p-1) = vshap(2+i) - CAC(1,i,p-1)*2.d0*(1-xj)

enddo

enddo

enddo

6.4 Selection of the constrained coefficients

In section 6.3 we already described how to obtain the coefficients CAC for all possible poly-
nomial degrees p and in sections 6.1 and 6.2 we introduced the modified element informa-
tion. Now we have to select particular coefficients from the list CAC that correspond to the
approximation orders of the modified element. The selected coefficients are then stored in
the list CONSTR(j, i), with j = 1, · · · , NRCON(i), i = 1, · · · ,number of local element dof.
Therefore, CONSTR(j, i) contains the constraint coefficients corresponding to the i-th lo-
cal dof. Obviously, in the case of any unconstrained dof we have CONSTR(1, k) = 1, for
k = local dof number. This is in particular the case for all the dof associated with the middle
node, because the middle node is always unconstrained. In the case of a constrained local
vertex node with local dof number k we have

CONSTR(1, k) =
1

2
; CONSTR(2, k) =

1

2

and
CONSTR(2 + j, k) = CAC(1, j, p − 1), j = 1, · · · , p − 1

if the orientation of the parent mid-side node is consistent with the local orientation, and
otherwise

CONSTR(2 + j, k) = CAC(1, p− j, p− 1), j = 1, · · · , p− 1

25

where p is the approximation order of the parent mid-side node. In the case of a constrained
mid-side node we additionally have to take the position of the small element with respect to
the father element into account. Therefore we have for the local mid-side node with parent
mid-side node of order p:

do j=1,p-1

set k

do jp = 1,p-1

if small element is located at first half of the edge of the large element then

if edge orientation is consistent then CONSTR(jp,k) = CAC(1+j,jp,p-1)

else CONSTR(jp,k) = CAC(2*p-j,jp,p-1)

endif

else

if edge orientation is consistent then CONSTR(jp,k) = CAC(p+j,jp,p-1)

else CONSTR(jp,k) = CAC(p+1-j,jp,p-1)

endif

endif

enddo

enddo

Thus, the constrained approximation coefficients are determined for an element with vari-
able approximation order.

6.5 Treatment of double constrained nodes in a quadrilateral. The conden-
sation process

The next step in the constrained approximation procedure is to eliminate the constrained
nodes that are still present. We have already discussed that this is only possible in the case of
a quadrilateral with double constrained vertex nodes. The following algorithm is based purely
on algebraic considerations and takes care of the double constrained nodes. The particular
orientation of an edge and the corresponding mid-side node is not important at this stage and
only the data in the lists NRCON , NAC and CONSTR are updated. Therefore, we first have
to determine the modified element and then select the corresponding constraint coefficients,
according to the algorithm in section 6.4. Additionally, it is also necessary to determine the
local Nrloc and global Nrglob number of dof in the modified element. If these two numbers
are equal, then there is no double constrained node present and the following algorithm need
not be executed. Otherwise the double constraints are condensated out:

naf(i) = location of dof i after condensation for an unconstrained dof

= -number of constraint for a constrained dof i

do k = Nrloc + 1, Nrglob (renumerate dof)

do kp = 1, NRCON(k)

NAC(kp,k) = naf(NAC(kp,k))

enddo

enddo

do k = 1, Nrloc (condense connected dof)

kc = 0; k1 = 0

do kp = 1, NRCON(k) (making a list of connected constrained dof)

26

if (naf(NAC(kp,k)) ¿ 0) then

k1 = k1 + 1; NAC(k1,k) = naf(NAC(kp,k))

CONSTR(k1,k) = CONSTR(kp,k)

else

kc = kc + 1; nacl(kc) = -naf(NAC(kp,k))

constrl(kc) = CONSTR(kp,k)

endif

enddo

nrconl = kc

do kc = 1, nrconl

do kcp = 1, NRCON(nacl(kc)) (loop through connected dof)

n=0

if connected dof is not on list NAC then

k1 = k1 + 1; n = k1; NAC(k1,k) = NAC(kcp,nacl(kc))

enddo

CONSTR(n,k) = CONSTR(n,k) + constrl(kc) * CONSTR(kcp,nacl(kc))

enddo

enddo

NRCON(k) = k1

enddo

7 Generalized assembling procedure and element computations

We first review shortly the regular assembling procedure before considering the generalized
assembling procedure. This generalized assembling procedure uses the modified element infor-
mation and the constrained approximation coefficients to ensure a continuous approximation
across element edges. Then we reveal details about the element computations and the appli-
cation of general boundary conditions, which are enforced at the local element stiffness matrix
level.

7.1 Generalized assembling

For a regular mesh the continuity of the approximation is established by enforcing the local
dof to coincide with the corresponding global dof. In practice this is done by introducing
the connectivity list NA(i), i = 1, · · · , N , which assigns for each local dof i the corresponding
global dof NA(i). The usual assembling procedure for the global load vector LOAD and global
stiffness matrix STIFF is then given by

do for each local dof i1

LOAD(NA(i1)) = LOAD(NA(i1)) + load(i1)

do for each local dof i2

STIFF(NA(i1),NA(i2)) = STIFF(NA(i1),NA(i2)) + stiff(i1,i2)

enddo

enddo

Here load and stiff are the local load vector and local stiffness matrix that correspond to

27

the local unconstrained element.

For a finite element mesh with constraint nodes this standard procedure fails to enforce the
continuity of the approximation. Instead of the list NA the list NAC has to be used, which
corresponds to the constrained case. This allows then to apply the constraint coefficients
CONSTR. The algorithm for assembling the global load vector and stiffness matrix is then:

do for each local dof i1

do ip1=1,NRCON(i1) (for each connected dof)

LOAD(NAC(ip1,i1)) = LOAD(NAC(ip1,i1)) + load(i1)*CONSTR(ip1,i1)

do for each local dof i2

do ip2=1,NRCON(i2) (for each connected dof)

STIFF(NAC(ip1,i1),NAC(ip2,i2)) = STIFF(NAC(ip1,i1),NAC(ip2,i2)) +

stiff(i1,i2)*CONSTR(ip1,i1)*CONSTR(ip2,i2)

enddo

enddo

enddo

enddo

This generalized assembling procedure, as it is given here, is written for a scalar problem.
In the case of a vector valued problem this algorithm can easily be extended to account for
the block structure of the corresponding stiffness matrix. It is also possible to take advantage
of symmetries by slightly modifying the procedure. The spaces Sdiv(M,Ω) and Scurl(M,Ω)
in (3.15) and (3.16) require a further generalization, we refer to [11] for a possible extension
of the generalized assembling procedure that is well suited for the electromagnetic scattering
problem. The presented methodology is very general and can be applied to various problems
of engineering interest, provided that the appropriate modifications are incorporated into the
generalized assembling procedure.

7.2 Element computations

The element stiffness matrix and load vector are computed by mapping the element onto the
master element and performing all calculations on the master element. In particular, these
computations are done by assuming that the local element is completely unconstrained. This
means that the element computations are done in the standard way and that the user only needs
to provide an element routine that corresponds to the problem that is being solved. Again, the
user does not have to worry about the constrained approximation and the enforcement of the
continuity of the approximation. At this point we also do not include the boundary conditions
into the element computations (general boundary conditions are treated in section 7.3). Also,
the possibly variable polynomial approximation order within an element does not introduce any
difficulties into the element computations because the corresponding data are automatically
provided by the data structure and the supporting routines. The integration over an element
and possibly over element edges are done by using the standard Gauss integration rules for
quadrilaterals and triangles. In the code we provide Gauss rules that are exact for polynomials
up to degree 19. If the user wishes to use other integration schemes then they can easily be
added to the code.

The element computations are similar for quadrilaterals and triangles and are performed
in the following manner:

• determine the features of the element: type of element, order of approximation, geometry,
etc.

28

"

#

"

D

N

"R

Figure 17: Dirichlet, Neumann and Robin boundary condition.

• establish order of Gauss Quadrature

• loop through the integration points

– compute values and derivatives of the shape functions at the integration point

– evaluate material parameters

– determine the jacobian of the mapping from the master element onto the actual
element

– accumulate contributions of the integration point to subsequent entries of the ele-
ment stiffness matrix and load vector

7.3 Application of general boundary conditions

We allow Dirichlet (essential), Neumann (natural) and Robin (mixed) boundary conditions
to be imposed on the boundary of the 2D domain Ω that is being discretized. The only
requirement on the boundary conditions is that they do not overlap. That is that the boundary
Γ of the domain Ω is the disjoint union of the Dirichlet, Neumann and Robin boundaries, i.e.
Γ = ΓD ∪ ΓN ∪ ΓR.

In the following we describe how these general boundary conditions are implemented in
the code. Figure 17 shows a typical situation and it is obvious that element edges can be
part of the boundary Γ and that for a triangular element it is additionally possible that single
vertices are part of the boundary. In any case, we only require that an edge of an element can
only be part of one of the three different boundary parts. This assumption need not hold for
vertex nodes. The abstract data structure introduced in section 5 provides for each element
the information about its connection to the boundary and the type of boundary conditions
to be imposed. The Neumann and Robin boundary conditions result in a modification of
element load vector and/or element stiffness matrix and, therefore, they are implemented at
the local element level, before the constraint approximation modifications are imposed. The
Dirichlet boundary conditions, however, concern the actual degrees of freedom and, therefore,
they have to be applied to the modified element. The methodology is illustrated using as a
model problem the Poisson equation with all three different types of boundary conditions.

Poisson problem: −∆u = f on Ω
Dirichlet BC: u = uD on ΓD

Neumann BC:
∂u

∂n
= uN on ΓN

Robin BC:
∂u

∂n
+ a u = uR on ΓR, 0 < c ≤ a, a ∈ L∞(ΓR)

(7.2)

29

Obviously, the corresponding weak formulation is obtained by multiplying with a test function
v ∈ H1

0 (Ω) and integrating by parts:

Find u ∈ H1
D(Ω) such that ∀ v ∈ H1

0 (Ω)
∫

Ω
∇u ·∇v dΩ+

∫

ΓR

auv dS =
∫

Ω
fv dΩ+

∫

ΓN

uNv dS +
∫

ΓD

∂u

∂n
v dS +

∫

ΓR

uRv dS
(7.3)

with H1
0 (Ω) = {v ∈ H1(Ω); v = 0 on ΓD} and H1

D(Ω) = {u ∈ H1(Ω);u = uD on ΓD}.
From (7.3) we note that the Neumann and Robin boundary conditions do not introduce any
complications into the element computations. They just add some boundary integrals to the
element stiffness matrix and the load vector, which can be computed similar to the element
computations.

The only technical difficulty arises from the Dirichlet boundary condition. Let us first
assume that we already have computed the element stiffness matrix and the element load
vector with the corresponding Neumann and Robin boundary conditions, i.e.

B = (Bij), Bij =
∫

K
∇ϕi ·∇ϕj dΩ+

∫

∂K∩ΓR

a ϕi ϕj dS 1 ≤ i, j ≤ Ne

F = (F j), F j =
∫

K
f ϕj dΩ+

∫

∂K∩ΓN

uN ϕj dS +
∫

∂K∩ΓR

uR ϕj dS 1 ≤ j ≤ Ne

(7.4)
where Ne is the local number of dof for elementK and ϕi are the local element shape functions.
If ∂K ∩ ΓD &= ∅ then we construct an interpolant of the Dirichlet data on ∂K ∩ ΓD by using
the element shape functions ϕi, 1 ≤ i ≤ Ne, i.e.

IhuD =
Ne
∑

i=1

uiD ϕi. (7.5)

In practice we construct a Lagrange interpolant by requiring that

uD(yj) =
Ne
∑

i=1

uiD ϕi(yj) , 1 ≤ j ≤ p+ 1, (7.6)

where p is the approximation order on the edge that is part of the Dirichlet boundary. In
principle any set of points yj could be used, including equidistant points, but we emphasize
that theoretical results [28] show that the Gauss Lobatto points should be used, to obtain
a robust interpolant. Based on the interpolation points, the coefficients are collected in the
vector uD, which is then used to modify the load vector F , i.e.

F = F −B uD. (7.7)

The components of F that correspond to dof on the Dirichlet boundary are then set to the
corresponding Dirichlet data, i.e. let F i correspond to a dof that is located at yi, then we set

F i = uD(yi). (7.8)

In the case of a triangular element and only a vertex being part of ΓD, the same procedure
applies, but the determination of uD becomes completely trivial.

We emphasize that the modification of the element load vector takes place for the modified

element, i.e. after the constrained approximation has been applied.

After modifying F we only need to modify B by putting zeros in every column and row
that corresponds to a dof that is located on ΓD and then setting the corresponding diagonal
entry of B to one. With this procedure we can impose homogeneous and nonhomogeneous
Dirichlet boundary conditions in a numerically stable way. Further, it is evident that this
methodology assures that the test and trial functions are consistent with the test and trial
spaces.

30

unstructured trian. mesh

structured trian. mesh

unstructured quad. mesh

structured quad. mesh

0 2000 4000 6000 8000 10000 12000 14000 16000
10

!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

degrees of freedom

re
la

ti
v
e
 e

rr
o
r

in
 e

n
e
rg

y

Energy convergence for t=0.01

Figure 18: Shell solution on a structured/unstructured mesh and convergence rates.

Figure 19: Solution on a geometrically refined mesh.

8 Numerical Examples

We confine our numerical examples to two significant problems of engineering interest, namely
the shell problem and the Stokes problem. Here we only report briefly on the numerical results
and refer to our previous work [15, 25] for additional details.

In [15] we analyzed in detail the numerical solution of shell problems. We used the Naghdi
shell model, a second order elliptic system for three displacement- and two rotation fields. In
our theoretical investigation we derived an exponential convergence result for the hp−FEM.
This result could only be obtained because the hp−FEM is capable of resolving the boundary
layers that are in the shell problem. Figure 18 shows the hp-approximation of a rotation
on a structured and an unstructured hp−FE mesh. The corresponding convergence rates for
triangular and quadrilateral meshes are also displayed. These convergence rates clearly indicate
that the hp−FEM converges for a shell thickness t = 0.01. Also it is evident that the hp−FEM
is robust, since the results are similar for structured and unstructured meshes.

Our second example is Example 3 above, the Stokes problem, a mixed problem. In Figure
19 we show the solution to the Stokes problem. We see that the pressure has a singularity
at the reentrant corner and we clearly see the geometric refinement towards this reentrant
corner. The corresponding convergence rates are displayed in Figure 20 and the exponential
convergence of our hp−FEM is obvious. For further theoretical investigations, we refer to
[25, 27].

31

2 3 4 5 6 7 8
10

!3

10
!2

10
!1

hp!FEM on geometric mesh for velocity 1

n = number of layers = polynomial degree

re
la

ti
v
e
 e

rr
o
r

in
 H

1
!

n
o
rm

2 3 4 5 6 7 8
10

!3

10
!2

10
!1

10
0

n = number of layers = polynomial degree

re
la

ti
v
e
 e

rr
o
r

in
 L

2
!

n
o
rm

hp!FEM on geometric mesh for pressure

Figure 20: Convergence rates for velocity and pressure.

9 Summary and future work

A new framework for scientific computations for two dimensional problems is described in this
work. The described hp−FE code relies on a flexible implementation which allows a general
class of hp finite elements. Among them are the classical discontinuous and continuous finite
elements and their vector valued counterparts as well as the non standard H(div) and H(curl)
conforming finite elements.

Practically, all families of hp-elements can be realized within this package and general
systems of equations can be discretized, allowing in particular multiple field problems. The
implemented anisotropic mesh refinement algorithms provide a basis for the extraordinary
numerical performance, which is evident from the numerical examples presented in the previous
section.

In our future work we will also address issues that are related to the optimization of the
code, i.e. solution techniques and in particular fast assembling algorithms that reduce the
global system size and allow for a significant speed up of the linear system solver. In this
context, we will also investigate on domain decomposition techniques and parallelization in
the spirit of [22]. Another natural extension of the presented hp−framework is to address
nonlinear problems and also to extend to fully three dimensional problems.

In our forthcoming work we will present additional evidence to support the superior per-
formance of this hp−FE framework.

References

[1] I. Babuška and M. Suri. The p and hp Versions of the Finite Element Methods, Basic
Principles and Properties. SIAM review 36 (1994) 578-632.

[2] P. G. Ciarlet. The Finite Element Methods for Elliptic Problems. North-Holland 1987.

[3] L. Demkowicz, J.T. Oden, W. Rachowicz and O. Hardy. Toward a Universal hp Adap-
tive Finite Element Strategy. Part 1: Constrained Approximation and Data Structure.
Computer Methods in Applied Mechanics and Engineering, 77 (1989), 79-112.

[4] J.T. Oden, L. Demkowicz, W. Rachowicz and T. A. Westermann. Toward a Universal
hp Adaptive Finite Element Strategy. Part 2: A Posteriori Error Estimation. Computer

Methods in Applied Mechanics and Engineering, 77 (1989), 113-180.

32

[5] D. Braess. Finite Elements. Cambridge University Press, 1997.

[6] F. Brezzi and M. Fortin. Mixed and hybrid Finite Element Methods. Springer Series in
Comp. Mathematics vol. 15 , Springer Verlag New York (1991).

[7] L. Demkowicz, A. Bajer and K. Banas. Geometric Modeling Package. TICAM Report

92-06, 1992.

[8] L. Demkowicz, W. Rachowicz, K. Banas and J. Kucwaj. 2-D hp Adaptive Package
(2DhpAP). Technical Report, Section of Applied Mathematics, Technical University of
Cracow, Poland, 1992.

[9] L. Demkowicz and J. T. Oden. ‘New Developments in Applications of hp-Adaptive BE/FE
Methods to Elastic Scattering. in The mathematics of finite elements and applications,
ed. by J. R. Whiteman, Wiley, 1994.

[10] L. Demkowicz, A. Karafiat and J. T. Oden. Solution of Elastic Scattering Problems in
Linear Acoustics using hp Boundary Element Method. Computer Methods in Applied

Mechanics and Engineering, vol. 101, pp. 251-282, 1992.

[11] L. Demkowicz and L. Vardapetyan. Modeling of Electromagnetic Absorption/Scattering
Problems using hp-Adaptive Finite Elements. TICAM Report, 1997, to appear in Com-

puter Methods in Applied Mechanics and Engineering.

[12] K. Gerdes. Solution of the 3D Laplace and Helmholtz Equation in Exterior Domains of
Arbitrary Shape using HP-Finite-Infinite Elements. Doctoral Dissertation, The University
of Texas at Austin, 1996.

[13] K. Gerdes and L. Demkowicz. Solutions of 3D-Laplace and Helmholtz Equations in Exte-
rior Domains using hp Infinite Elements. Comput. Methods Appl. Mech. Engrg. 137 (1996)
239-273.

[14] K. Gerdes and F. Ihlenburg. On the Pollution Effect in FE Solutions of the 3D-Helmholtz
Equation. In print in Comput. Methods Appl. Mech. Engrg.

[15] K. Gerdes, A. M. Matache and C. Schwab. On Membrane Locking in hp FEM for a
Cylindrical Shell. In print in Zeitschrift für Angewandte Mathematik und Mechanik.

[16] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations.
Springer-Verlag, 1986.

[17] B. Guo and I. Babuška. The hp−sVversion FEM I: The Basic Approximation Results; and
Part II: General Results and Applications. Comp. Mech. vol. 1 (1986) 21-41 and 203-226.

[18] F. Kikuchi. Mixed and Penalty Formulations for Finite Element Analysis of an Eigenvalue
Problem in Electromagnetism. Computer Methods in Applied Mechanics and Engineering

vol. 64 (1987), 509-521.

[19] P. Monk. An Analysis of Nédélec’s Method for the Spatial Discretization of Maxwell’s
Equations. J. Comp. Appl. Math. vol. 47 (1993) 101-121.

[20] J. C. Nedelec. Mixed Finite Elements in IR3. Numerische Mathematik, vol. 35 (1980) 315-
341.

[21] J. C. Nedelec. A New Family of Mixed Finite Elements in IR3. Numerische Mathematik,
vol. 50 (1986) 57-81.

33

[22] J. T. Oden, A. Patra and Y. Feng. Parallel Domain Decomposition Solver for Adaptive
hp Finite Element Methods. SIAM J. Numer. Anal. vol. 34 (1997) 2090-2118.

[23] W. Rachowicz, ”An Anisotropic h-Type Mesh-Refinement Strategy,” Computer Methods

in Applied Mechanics and Engineering, 109 (1993) 169-181

[24] W. Rachowicz, ”An -hp Finite Element Method on One-Irregular Meshes, Error Estima-
tion and Mesh Refinement Strategy. Doctoral Dissertation, The University of Texas at
Austin, 1989.

[25] D. Schötzau, C. Schwab and R. Stenberg. Mixed hp-FEM on Anisotropic Meshes II:
Hanging Nodes and Tensor Products of Boundary Layer Meshes. SAM Report 97-14,
submitted to Numerische Mathematik.

[26] C. Schwab and M. Suri. The p and hp Versions of the Finite Element Method for Problems
with Boundary Layers. Math. Comp. vol. 65 (1996) 1403-1429.

[27] C. Schwab and M. Suri. Mixed hp-FEM for Incompressible Fluid Flow. In preparation.

[28] Burkhard Sündermann. Lebesgue Constants in Lagrangian Interpolation at the Fekete
points. Ergebnisberichte der Lehrstühle Mathematik III und VIII (Angewandte Mathe-
matik) 44, Universität Dortmund, 1980.

[29] R. Stenberg and M. Suri. Mixed hp Finite Element Methods for Problems in Elasticity
and Stokes Flow. Num. Math. 72 (1996), 367-389.

[30] R. Stenberg and M. Suri. An hp-Error Analysis of MITC Plate Elements. SIAM J. Numer.

Anal. vol. 34, 544-568.

[31] B. Szabo and I. Babuska. Finite Element Analysis. Wiley 1991.

34

Research Reports

No. Authors Title

97-17 L. Demkowicz, K. Gerdes,
C. Schwab, A. Bajer,
T. Walsh

HP90: A general & flexible Fortran 90 hp-FE
code

97-16 R. Jeltsch, P. Klingenstein Error Estimators for the Position of Disconti-
nuities in Hyperbolic Conservation Laws with
Source Terms which are solved using Opera-
tor Splitting

97-15 C. Lage, C. Schwab Wavelet Galerkin Algorithms for Boundary
Integral Equations

97-14 D. Schötzau, C. Schwab,
R. Stenberg

Mixed hp - FEM on anisotropic meshes II:
Hanging nodes and tensor products of bound-
ary layer meshes

97-13 J. Maurer The Method of Transport for mixed hyper-
bolic - parabolic systems

97-12 M. Fey, R. Jeltsch,
J. Maurer, A.-T. Morel

The method of transport for nonlinear sys-
tems of hyperbolic conservation laws in sev-
eral space dimensions

97-11 K. Gerdes A summary of infinite element formulations
for exterior Helmholtz problems

97-10 R. Jeltsch, R.A. Renaut,
J.H. Smit

An Accuracy Barrier for Stable Three-Time-
Level Difference Schemes for Hyperbolic
Equations

97-09 K. Gerdes, A.M. Matache,
C. Schwab

Analysis of membrane locking in hp FEM for
a cylindrical shell

97-08 T. Gutzmer Error Estimates for Reconstruction using
Thin Plate Spline Interpolants

97-07 J.M. Melenk Operator Adapted Spectral Element
Methods. I. Harmonic and Generalized Har-
monic Polynomials

97-06 C. Lage, C. Schwab Two Notes on the Implementation of Wavelet
Galerkin Boundary Element Methods

97-05 J.M. Melenk, C. Schwab An hp Finite Element Method for convection-
diffusion problems

97-04 J.M. Melenk, C. Schwab hp FEM for Reaction-Diffusion Equations.
II. Regularity Theory

97-03 J.M. Melenk, C. Schwab hp FEM for Reaction-Diffusion Equations.
I: Robust Exponentiel Convergence

97-02 D. Schötzau, C. Schwab Mixed hp-FEM on anisotropic meshes
97-01 R. Sperb Extension of two inequalities of Payne
96-22 R. Bodenmann, Stability analysis for the method of transport

A.-T. Morel

