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Abstract

When computing numerical solutions of hyperbolic conservation laws with source
terms, one may obtain spurious solutions — these are unphysical solutions that only
occur in numerics such as shock waves moving with wrong speeds, cf. [7], [2], [1], [10],
[3]. Therefore it is important to know how errors of the location of a discontinuity
can be controlled.

To derive appropriate error-estimates and to use them to control such errors, is the
aim of our investigations in this paper. We restrict our considerations to numerical
solutions which are computed by using a splitting method. In splitting methods, the
homogeneous conservation law and an ordinary differential equation (modelling the
source term) are solved separately in each time step.

Firstly, we derive error-estimates for the scalar Riemann problem. The analysis
shows that the local error of the location of a discontinuity mainly consists of two
parts. The first part is introduced by the splitting and the second part is due to
smearing of the discontinuity.

Next, these error-estimates are used to construct an adaptation of the step size
so that the error of the location of the discontinuity remains sufficiently small. The
adaptation is applied to several examples, which are a scalar problem, a simpli-
fied combustion model, and the one-dimensional inviscid reacting compressible Euler
equations. All the examples show that the adaptation based on the derived error-
estimates works well.

The theory can also be extended to planar two-dimensional problems.

Keywords: adaptation, error-estimates, operator splitting, shock location, stiff
source terms
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1 Introduction

Hyperbolic conservation laws often arise in models of physical processes that
ignore the effects of dissipative and dispersive mechanisms. In gas dynamics,
for example, hyperbolic conservation laws are obtained if viscous effects and
heat conduction are neglected. Source terms arise in various contexts. We are
interested in those that are due to the physical model, as they occur in non-
equilibrium or in chemically reacting gas dynamics. In the latter context the
problem often is stiff, which means that the time scale of the source term is of
orders of magnitude different from that of the fluid dynamics.

Solving hyperbolic conservation laws with stiff source terms numerically causes
special difficulties. Often one 1s not interested in resolving the solution profile on
the finest scale, but wants to compute the solution on a grid that is appropriate
to the fluid dynamics. On the one hand, one has to be careful to handle the stiff
source term in a stable manner. On the other hand, this is not sufficient to get a
physically correct solution. When computing numerical solutions of hyperbolic
conservation laws with source terms, one may obtain spurious solutions — these
are unphysical solutions that only occur in numerics such as shock waves moving
at wrong speeds. This phenomenon 1s due to the coupling of the source term
and the fluid dynamics.

Wrong propagation speeds have been observed by several authors, e.g. [7], [2],
[1], [10]. In [7], LeVeque and Yee investigate a scalar advection equation with a
nonlinear source term, which has two stable and one unstable equilibrium state.
They observe nonphysical numerical shock speeds for piece-wise constant initial
data. Their investigations show that these problems are caused by the smearing
of the discontinuity. They conclude that spatial resolution is as important as
temporal resolution.

In [2], Colella, Majda and Roytburd consider reacting shock waves. They show
for a simplified combustion model and for the Navier-Stokes equations that
dynamically stable weak detonations occur in bifurcating wave patterns for suf-
ficiently small heat release or large reaction rate. Similar wave patterns are also
obtained in inviscid calculations for relatively large step sizes, where a precursor
numerical weak detonation wave is moving at the speed of one grid cell per time
step. Those solutions are incorrect as the bifurcating wave patterns vanish for
smaller step sizes.

In [1], Berkenbosch derives a condition on the ignition value for the simplified
combustion model and the reacting Euler equations with ignition temperature
kinetics such, that the numerical solutions exhibit correct wave speeds even for
relatively large step sizes.

In [10], Pember considers relaxation problems. He proposes criteria ensuring
that the numerical methods do not produce spurious solutions as the relaxation
time vanishes. These criteria are, firstly, that the solution has to tend to the so-
lution of the equilibrium equation as the relaxation time vanishes, and secondly,
that a certain subcharacteristic condition has to be satisfied.



This paper, a brief version of [4], is concerned with the exactness of numerical
locations of discontinuities. Estimates are derived for scalar Riemann problems
with stiff source terms, in order to be able to control the error of the location of a
discontinuity'. This work is done for numerical solutions that are computed by
using a splitting method. This means that in each time step the homogeneous
conservation law and an ODE modelling the source term are solved separately.
Splitting methods are a popular approach to solve conservation laws with source
terms. Their advantage is that good numerical methods exist for each of the
subproblems. Furthermore, the analysis of wrong propagation speeds is rela-
tively easy in this case. With a Strang splitting, second order accuracy can be
achieved. The mentioned numerical difficulties are not due to splitting, but they
also occur if other methods are used, cf. [7].

The analysis shows that the local error of the location of a discontinuity mainly
consists of two parts — one part that is introduced by the splitting and another
part that is due to smearing. Both parts are, apart from the influence of the dis-
cretisation errors of the solvers used, of second order in the step size multiplied
by the size of the source term.

Based on those error-estimates, an adaptation of the step size is constructed
in order to keep the error of the location of the discontinuity sufficiently small.
The adaptation is applied to several examples. These are a scalar problem, a
simplified combustion model, and the one-dimensional inviscid reacting com-
pressible Euler equations. The adaptation constructed here works well for all
these examples. In [4], the theory is also extended to planar two-dimensional
problems.

We also applied the error-estimates to the simplified combustion model de-
scribed in [1], where the condition on the ignition value proposed by Berken-
bosch was fulfilled. The results showed relatively large approximated errors
for large step sizes, although the numerical solutions exhibited correct wave
speeds. Consequently, the error-estimates derived for scalar piece-wise constant
problems would have to be improved in order to get good results for numerical
solutions computed with large step sizes and showing correct speeds. The step
sizes obtained by our adaptation ensure that the wave speed is sufficiently cor-
rect, and yet are not unreasonable small. So if one wants to resolve the solution
profile and therefore use (locally) small step sizes, the adaptation based on the
error-estimates presented here gives satisfactory results.

This paper is organised as follows. Section 2 introduces the problem, and a scalar
example shows the difficulties that arise because of smeared-out shock profiles in
Section 3. In Section 4, estimators for the error of the shock location are derived,
which are used to construct an adaptation of the step size in Subsection 4.7.
Finally, in Section 5, three numerical examples are presented.

Iwhich includes shocks and contact discontinuities



2 The Problem
Let us consider the scalar equation
(1) u + f(u)e = q(u)

where u(z,t), f(u), ¢(u) € Rand z € R, t > 0. We study the Riemann problem
on the time interval [t,,1,41] with

2) () = { AR

UR, & >0

We consider entropy solutions consisting of two states that only depend on the
timet. We want these states to be the left and right state of a Riemann problem
because we are only interested in the interaction between the source and the
shock. Consequently, the solution u(z,t) of (1), (2) should be

ur(t), v <o(t)

JtE [tn,t
ur(t), = > o(t) [t st 1]

(3) u(x, 1) = {

such that the two states are separated by a shock curve o(t). () is determined
by integrating the so called jump condition

flur(t) = f(ur(t))

ur(t) — ur(t)
where we assume ur(t) # ug(?). This jump condition can be derived from the
weak formulation of the integral form of (1), which has to be fulfilled by the

solution of (1). To ensure that the solution (3) is the entropy satisfying weak
solution, we impose the following entropy condition (cf. [6]) on the discontinuity.

(4) o(t) =

Definition 2.1 wu(xz,t) defined by (3) is the entropy solution if the discontinuity
travelling with speed &(1) given by (4) has the property that

f(u) = fur(t)) f(u) = f(ur(?))

(5) u—ur(l) u—ug(t)

> 6(t) >

for all u between ur(t) and up(t).

Remark 2.2 In fact, one of the two inequalities in (5) with &(t) on one side
suffices because they are equivalent.

The exact solution of (1), (2) is given explicitely in Subsection 4.3.

The numerical solution of (1) is computed using a time splitting method, which
means that in each time step the homogeneous conservation law

(6) ur + f(u)y =0



and the ODE

(7) ur = q(u)

are solved separately. To describe the numerical approximations we use the
following notations.

The spatial mesh points are denoted by z; = jAx with j € Z. Az is the spatial
step size. Likewise, ¢, with n € IN U {0} stands for the discrete time levels. At
is the step size in time so that ¢, 11 = t, + At. The step sizes Az and At have to
fulfil the CFL-stability-condition. For a three-point-scheme, the CFL-condition
reads

(8) CFL := |max{f (u)}| N <1,

where we introduced the parameter C'F'L. The discrete numerical solution ] at
time ¢, can be interpreted as the mean value of the cell 7, [¢; — %Al‘, x;+ %Al‘),
of an approximate solution u"(z) to u(xz,t,)

Ti+5Az
©) W= [ s,
xr

Furthermore, 4™ may denote the discrete numerical solution at time level %,
u(x) or u(x,t,). u} and u% are the numerical approximations of ur(¢,) and
ug(ty), respectively. Finally, o™ is the location of the discontinuity at time ¢,
of the numerical solution, and (%, ) is the location of the discontinuity at time
t, of the exact solution of (1).
The solution operator for the ODE is called L,(At) and the one for the ho-
mogeneous conservation law Ly(At), respectively. In the following, we denote
solutions of the homogeneous conservation law by v and solutions of the ODE
by w instead of u, the notations that were just made for u are used analogously
for v and w. This reads as follows:

n

e Solve wy = ¢(w) approximately by w"+! = L,(At)w™,

n

e solve v; + f(v), = 0 approximately by v"*1 = L (At)v".

Here each of the solution operators L,(At) and L;(At) may denote either a
discrete or a continuous operator between two function spaces.

L,(At) may be the exact or an approximate solution operator with incremental
function ®. ® depends on the numerical solution at the time levels ¢,, and/or
tn+1, on the time step At and on the source q. We write shortly

(10) w?‘"l = L, (At)uw" = w? + Atq)(w?).



Lf(At) 1s assumed to be exact or to be a consistent and conservative solu-

i ntl _ on 4 At | pn
tion operator of the form v = 4+ R F!

, — F™ || with numerical flux
jit+s JI—3

function Fj+%'

As we want to investigate local errors of the location of the discontinuity, which
occur in a time step [tn,tn41], we assume the numerical solution uj at time
level n to fulfil the following properties corresponding to the exact solution.
The first assumption is that

K xK+%Ax

(11) Aa:Zu? :/ u(z, ty)de
j=d cr-302

and

(12) up =ur(ty), ug =ugr(ty).

hold. Additionally, we still denote the solution of the homogeneous conservation
law by v instead of u, with initial data v(z,t,) = u(x,t,), vr(tp) = ur(t,) and
UR(tn) = uR(tn) .

If Ly(At) is not the exact solution operator then the numerical solution may
be smeared-out. Therefore

we assume that the numerical solution — as the exact solution
(13) — takes the constant values u} resp. u; on both sides of some

interval [27, #;] that contains the discontinuity.

The interval [}, 2'k] will be referred to as the region of smearing.

3 Scalar Example

In this Section we consider an example that agrees with the assumptions made
in Section 2. It 1s Burgers’ equation with a piece-wise linear source term. In
order to see what influence the source term may have on the part of the error
that is due to smearing when the source is getting stiff, the initial data are
chosen such that the local splitting error is equal to zero. For relative large step
sizes wrong shock speeds are obtained.

The equation reads

(14) w4 (Su®)e = —p(u — a(u))
where ¢ > 0 and

1 u>02
15 = o= .
(15) alw) { 0, u < 0.25



The initial data define a Riemann problem

(16) u(m,O):{l’ v <0

0, z>0

With the given initial data the source is equal to zero on both sides of the shock
and the entropy condition (5) is fulfilled. In conclusion, the exact solution is

(17) u(z,t) = u(e — %t, 0).

Remark 3.1 In [7], a linear advection equation with a source term —pu(u —
1)(u — .5) is investigated. It is stated that wrong shock speeds occur because of
the influence of the source on intermediate values of a smeared-out shock profile.
The source term considered here has similar properties in that it shifts values of
u that are greater than or equal to 0.25 towards 1 and values that are less than
0.25 towards 0. The point of discontinuity of q does not cause trouble because
if the ODE 4y = q(&) has to be solved then a() only depends on the initial
— and u that are at one time less than 0.25 will forever stay smaller than 0.25.
The analogous statement 1s valid for u that are greater than or equal to 0.25.
This will be shown in Subsection 3.1. Consequently, for given initial data the
source will never become discontinuous while integrating the ODE.

The numerical solution is computed using the Strang splitting. The temporal
step size is determined by the CFL-condition. The homogeneous conservation
law is solved by using the upwind scheme and the ODE is solved by using the
implicit Euler scheme. u?"'l only depends on the relative time T,..; := p/At and
the initial data for fixed C'F'L. As the numerical solution does not depend on
At but on T,.;, we fix the step sizes in the following computations, and vary
only the relative time Ty..;. We get the following results (see Fig. 1):

e For T,..; small the shock speed is correct.
e If we increase T,.;, the shock speed becomes wrong.

e If T,.; is large enough, two phenomena occur:
— For ratios of the step sizes % < 0.5 the discontinuity does not move
at all.

— For % > 0.5 the discontinuity moves one grid cell per time step.

3.1 Explanation of the Phenomena

The phenomena shown in the previous subsection for the scalar example occur
because of the smearing of the shock profile. To see this, let us look at the single
steps of the Strang splitting procedure (see Fig. 2):



Figure 1: Shock curves of the numerical solutions for different 7,.; where At
and Az are fixed with % = 0.45 resp. % = 0.55, and At =0.01.
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1: T =0.00001,2: T, =0.01,3: Toog=1,4: T, = 100.

e In the first step Lq(%At) is applied - nothing happens:  ¢(u?) =0 Vi.

e In the second step the upwind scheme produces one intermediate value.

1 At

For ratios % < 0.5 this value 1s less than 0.25 and for ~ > 05 it 1s

greater than 0.25.

We consider the first case.

e For % < 0.5 the intermediate value is less than 0.25 so that Lq(%At)

shifts this value towards zero.

To understand the influence of the source term, let us consider the ODE

(18) (1) = —p(u(t) —a(a(t))), u(0) = uo.

a(t) is attracted by a(ug) and a(a(t)) = a(ug). u(t) reads

i 0.25
(19) aft)y = 4 "° oS EE
1—(1—wugp)e™# jug>0.25

e In the next time step Lq(%At) is applied first. The intermediate value is
again shifted towards zero.

If T,.; is large enough, the intermediate value is shifted so close to zero that

after one time step the discontinuity has not moved at all. The case % > 0.5

behaves analogously.



Figure 2: The three steps of the Strang splitting (over one time step) for T,..; =
100 and £ = 0.45.
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4 Estimator for the Error of the Shock Speed

4.1 Smeared-out Shock Profiles and the Equal Area Rule

Firstly, we show that numerically a shock profile has in general to be represented
by a smeared solution. Let us therefore consider a homogeneous conservation
law. We assume that the mesh points z; are chosen in such a way that at time
t, the discontinuity lies on a cell boundary. Now we define

1 xj+%Ax
(20) vi = E/ﬁ_%Aw v(z,t,)d.

From consistency and conservativity we have

xK+%Ax

K
(21) Ava?‘H = / v(e, thy1)de.
i=J z

J—%Al‘

Now we can say that, in general, o(¢,4+1) will not coincide with a cell boundary.
To see this, one can argue as follows. Assume o(¢,,41) would coincide with a cell
boundary. Then the numerical shock speed would always be an integer multiple
of % even if Az — 0. Since we usually fix the ratio %, we will in general not
have convergence to the correct shock speed.

So if 0™ does not coincide with a cell boundary there must be at least one
value U;LD-H not equal to UZ-H or v%"’l because of (21).

As we have seen, in numerical solutions shocks may be smeared-out. If we want
to measure errors of the shock location, we have to define for any numerical



solution where this shock location has to be. This will be achieved by using
the equal area rule. But before we go into details of the equal area rule, let us
introduce some notations and properties concerning the solution of our Riemann
problem and the smeared-out discontinuity.

We consider Riemann problems with an entropy solution of the form (3). If the
discontinuity is smeared-out in the numerical solution then there are values of
uj which are not equal to u} or ug near the discontinuity. For each time level
n, we define indices kl(n), kr(n) such that

Fkl(n) €I : Tpin) < 0" A uj

(22)
Fkr(n) € 1 1 Tppn) > 0" A W]

3 =3

As we do not stress on the boundary treatment, we just consider a sub-domain
I of the computational domain with

I={J,J+1,... K}C Z.

Of course, the computational domain has to be so much larger than I that all
values of u to be inserted into the flux functions F” 1 and F"_I_1 are known.

We demand that the boundaries of the considered domain I = {L,J+1,... K}
are away far enough from the discontinuity so that

(23) klln+1), kr(n+1) € 1.

Remark that kl(n + 1) resp. kr(n + 1) differ at least the width of the stencil of
L;(At) from kl(n) resp. kr(n).
Let us now come back to the equal area rule. With (3), (11), (12), (13), and

1
TY = Ty — A%, TR = Tre(n) + §Ax

2
we have
kr(n) Ty
Az Z u? = / u(x,ty)
j=ki(n) L
= (o(tn) — 2L )ur(tn) + (2 — o(tn))ur(ts)
(24) = (o(tn) — 27 )up + (2 — o(tn))uf-
This means, that with (24)
kr(n)
(25) Az Z u? =(c" —a2p)ul + (2 — o™ )ug
J=ki(n)

gives 0" exactly. Notice that only ¢” is unknown so that (25) can be solved for
the numerical shock location ¢”. Equation (25) corresponds to the equal area



Figure 3: Correct shock position obtained by equal area rule

rule. We define the shock location for any numerical solution by (25). The equal
area rule says that the difference area 1, cf. Fig.3, between the smeared-out and
the sharp solution profile has to be equal to difference area 2.

If the homogeneous conservation law is solved then, as in (24), it follows with
(21) that the equal area rule gives the shock location also at time ¢4 exactly:

Lemma 4.1 Assume that the homogeneous conservation law (6) should be solved
for one time step with initial data given by (2) and the entropy condition (5)
fulfilled. Let v be a discrete approrimation to these initial data satisfying (11)
and v} = ur(ty), v = ur(ts). If a conservative scheme with a consistent flux
is used to solve (6) numerically then

. vZ'H =} and v""'l = v,

e the discontinuity is propagated exactly due to conservation if its location
is determined by the equal area rule (25)

e thus the correct shock position is obtained.

For inhomogneous conservation laws the equal area rule means that the produc-
tion of the source over some temporal and spatial domain should be the same
for the numerical smeared-out and the sharp solution. To make this more clear,
assume now that the inhomogeneous conservation law u; + f(u), = q(u) should
be solved for one time step. Let us therefore consider the integral form of the
inhomogeneous conservation law

xK+%Ax xK+%Ax
/ w(z, tpyr)de = / u(x, ty)dx
xr xr

J—lAl' J—%Al‘

_ (/t” flu(ex + Ax Jt))dt /t”ﬂ Flu(zy — %Ax,t))dt)

nt1 Tr+iAT
(26) / / v, 1))de dt.
r— —Ax

10



Here the integration is carried out over one time interval and over the considered
spatial computational domain.

From the physical point of view one should demand that the integrals of the
fluxes as well as the integral of the source have to be modelled accurately. For
the homogeneous conservation law the integrals of the fluxes at the boundary
of the considered computational domain I are modelled even exactly by a con-
sistent and conservative numerical scheme. Modelling the integral of the source
accurately means that the production of the source over the considered time
and spatial domain should be about the same in the numerical and in the exact
solution.

The more accurate those integrals are modelled the smaller is the difference

xK+%Ax K
(27) / w(@, tpy1) — D E u?"’l.
ri—iAx -
2 i=J

If the numerical shock location is defined by (25) then the error of the numerical
shock location depends on (27) and is zero for (27) equal to zero.

4.2 Local Error of the Shock Location

In this section the local error of the shock location is analysed for a scalar
Riemann problem. One can interpret the local error of the shock location as
coming from two parts: one part introduced by the ”splitting” and another
occurring because of ”smeared-out shock profiles”. The numerical solution is
computed using the Strang splitting

(28) Wt = Lq(%At)Lf(At)Lq(%At)u”.

Each time one of the solution operators is applied, a change of the shock location
is introduced. The following graph illustrates our notations of the intermediate
solutions and the parts of the local errors over one time step of the Strang
splitting:

g LD gt LA sags L3OO g

AO’l AU’f AUZ
The numerical shock location changes over one time step by

Aopum = Aoy + Aoy + Aoy

and the change of the shock location of the exact solution is denoted by Ao pqet-
So the formula for the local error of the shock location calculates as

(29) &= AO'num - Ao'exact = A0'1 + AUZ + AO'f - Ao'exact

11



If there would be no smearing then Aoy = Aoy = 0. This can be seen as
follows. If we apply Lq(%At) to a solution with no smearing then Lq(%At) only
changes the quantities ur(¢) and ug(?). This means that Lq(%At) does not
cause a change of the shock location.

u u
U,
%
Lq ,,,,,,,,,, [
UR
P e

X X

We call
Aoy + Aoy the parts of the error due to smearing

30
(30) Aoy — Acepacy = Epr the error due to splitting

Notice that for exact solution operators L (At) and Lq(%At) the shock profile
is not smeared-out. Therefore we also call the error due to splitting &;p; given
in (30) the local splitting error.

To make 1t more clear how the changes of the shock location develop if one of
the solution operators is applied, we look again at one time step of the Strang
splitting procedure.

e We start with the numerical solution u™ which is assumed to have a
smeared-out shock profile:

u

n

The shock location is determined by the equal area rule.
e Then Lq(%At) is applied. We get u"*3:

n

12



L4 works on the values on the left and on the right sides of the shock but it
also works on the intermediate values. This causes a change of the shock
profile and therefore, in general, a change of the shock location: Ae;.
Consequently, Aoy arises because of smearing.

e Now L;(At) is applied and we get ants:

u

L;(At) changes the shock location due to conservation — according to

1 1
the values uTLL+2, u2+2: The change of the shock location is denoted by

ZﬁUﬁ
e Again Lq(%At) is applied. We get u”t1:

u

7777777 Ak u’ts
hNg un+1
t t X
onts H o+l
AUQ
The change of the shock location is denoted by Acs.

4.3 Riemann Problem with Source Term

We consider problem (1), (2) with entropy condition (5) satisfied. We show
that the exact solution of this problem can be given explicitly. We need this to
compare it to the numerical approximation. We solve equation (1) by integrating
along characteristics. One can easily see that all the characteristics starting at
time t,, on the left side of the discontinuity o are curves with the same shape that
can be matched on each other by translation in z-direction, and that the same
is true for all the characteristics starting on the right side of the discontinuity.
Characteristic lines are given by (x(zg,?),t) and z(z,?) has to satisfy

(31 WD pruge 1), oo 1) = 20

13



Along such a curve (z(wzg,t),t) u fulfils

d d

—u(e(ro,t),1) = ux(x(xo,t),t)d—f + g (220, ), 1)
(32) = q(u(x(wo,1),1)).
Lemma 4.2 Let x(xo,t), u(x(zo,t),t) witht € [ty,thy1], #o < o be a solution
of (31), (32) with x(xo,t,) = xo. Then for 1 < o

(33) z(z1,t) = x(zo,t) + (z1 — z0)

(34) w(z(zy,t),t) = u(e(xg,t),1)
is also a solution of (31), (32) with

(35) z(z1,t,) = 21

The same s valid for xg, x1 > 0.

Proof. (35) is trivially satisfied due to (33), and by (34) we have (32). From

(33) it follows that
de(x1,t)  dr(xo,t)

dt dt
and hence using (34) again we have (31). O

What we see from Lemma 4.2 is that there exist two states that only depend
on the time ¢

(36) ur(t) := u(z(wo,t),t) for zg <o
and
(37) ugr(t) = u(z(xo,t),t) for zq > 0.

The two states and the characteristics are obtained from simultaneously solving
(31) and (32). But of course we can solve these equations in a much easier
fashion.

ur(t) can be obtained by simply solving

duL(t)
dt

(38) = q(ur(?))

with uz (t,) = ur. To compute the characteristics, one has to solve the problem

dz(x9,1)

(39) 7

= f(ur(¥)), x(xo,tn) = 0.

One proceeds in the same way for ug(t).
Now we are ready to state Theorem 4.3.

14



Theorem 4.3 Let ur, ur and o be the quantities given in (2) and let t €
[tn,tnt1]- urp(t) and ur(t) are supposed to be two solutions of (38) withur(t,) =
ur and ur(ty) = ug. Also, let o(t) be the solution of ({) with o(t,) = o.
Furthermore assume that the entropy condition (5) is fulfilled.

Then u(z,t) given by (3) is the weak entropy solution of (1), (2).

Notice that the whole solution is known. Since the right hand side of (4) is
known, we can just integrate (4) and demand o(¢,) = o to obtain ¢(¢). This
means that we can compute the whole solution exactly even with a source term.
The following two lemmata contain continuity statements for ur (), ur(t) and

o(t).

Lemma 4.4 Let q(w) be a (n-1)-times continuously differentiable function of
w, but at least continuous, with w, ¢(w) € R. Suppose w(t) to be a solution of
(38), i.e. w(t) satisfies

(10) 20— ywin)

Then w(t) is n-times continuously differentiable.

Lemma 4.5 Let f(u) be n-times and let q(u) be (n-1)-times continuously dif-
ferentiable, with n > 1 resp. q at least continuous, with u, f(u), ¢(u) € R.
Furthermore let t € [ty,tny1] and suppose urp(t) and ug(t) to be two solutions

of (38) with ur(t) # ug(t).
Then o(t) defined by (4) is n-times continuously differentiable.

The proofs of Lemmata 4.4 and 4.5 follow by differentiating.

4.4 Local Splitting Error

In this subsection we analyse the local splitting error &1 = Aoy — Avegacr-
With the abbreviation

f(v) = f(w)

v —w

(41) h(v, w) :=

we can write the jump condition (4) as

(42) h(ur(t),ur(t)) = ().
We also use the abbreviation

Oh(v, Oh(v,
(43) hio(v,w) == %, ho1(v,w) == %

The second derivatives are defined analogously, e.g. hag(v, w) means that the
function h(v,w) is differentiated twice with respect to the first argument.
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Additionally, let ®7 := ®(u}) for the incremental function ® defined in (10),
and let ®% be defined analogously.

To compute the local splitting error we have to investigate Aoy and Acepaer-
Let us consider Aoy first. Aoy solves the homogeneous equation (6). As the
shock speed is constant for the homogeneous conservation law and by Lemma 4.1
it follows that

(44) Aoy = Ath(ul? uT?),

On the other hand, the change of the shock location of the exact solution can
be written as

(45) AGusart = /t s ydt = /t " (s t), ur(t))dt.

n n

Expansion and comparison give the following results.

Theorem 4.6 Let the conditions of Theorem 4.3 be fulfilled. Furthermore as-
sume f to be three times and q to be at least twice continuously differentiable.
Request that Ly(At) is a consistent and conservative solution operator and let
L (At) be either the exact or an approzimate solution operator with a local dis-
cretisation error of the order p+ 1 with p > 1. In the last case q has to be
p-times continuously differentiable. We assume the numerical solution at time
tn to fulfil (11) and v} = ur(t,), uh = up(ts).

Then the local splitting error Ep; ts

1 n n n n n n
Espt = (5 - H)Atz [hio(ul, uk) q(ul) + hoi(ur, uk) q(up)]

(46) +O(Cp 2 AF) + K, O0(Cy pr1 Ch o APT?)

1
gspl — Atz th(UTLL, u%) (5@?/ - HQ(UTIL,))

1
(47) + hor(uf, uR) (595 — 0a(uR)) | + O(Cha )
d2h ntg  ntg
gspl = —iAtS (uL LR )
24 dt?
(48) —|—O(Ch73At4) + A/rqO(Cuyp{_lChyuAtp-l_z)

where 8 € (0,1). The constant K, is given by

K, = {0 , Lg exact .

1, else

dzh(un-l_% un+%)
L 2’ Lid means the following: The function h(ur(t), ur(t)) is differen-

tiated twice with respect tot, where the derivatives of uy, ug with respect tot are
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d*h(ur(t), ur(t))
dt?

written in terms of q(ur), q(ur). This gives an expression of

+3 n+i
resp. up °.

m terms of ur, and ug. Then insert the values uTLL
The constants Cy p depend on the k" derivative of u with respect to t, Chum
depend on mized derivatives of order M of h with respect to the first and second
argument, and Ch 1, depend on the k" derivative of h with respect to t - in the
. . . 2

sense as it 1s described for %.

The error-estimates are the most interesting if the source term 1is stiff. This
means that the time scale of the source term is much faster than the time scale
of the fluid dynamics. This again corresponds to the fact that the absolute
eigenvalues of the (linearized) source are much larger than the absolute eigen-
values of the (linearized) fluid dynamics. Therefore we may request that the
source fulfils

(49) g™ =: 1g™ with ¢ = 0(1), p e [0,00), m=0,1,2,...

¢ denotes the m'" derivative of ¢ with respect to u. Using this assumption
we treat all derivatives of ur(¢) and ug(?) as being of order O(y) whereas all the
other terms are treated as being of order O(1). Then the constants in Theorem
4.6 can be estimated as

Cupr = O("), k=1,2,3,p+1
Ch,uM = 0(1)
Chs = O(4°)

These estimates follow by applying the chain rule for differentiating and, if
necessary, induction. Here we used Cy 1 = O(p)(1 + O(pP? At?) = O(u), p > 0.

4.5 Influence of Smearing

In this subsection we want to analyse the parts Aoy and Aoy of the local error
of the shock location which are due to smearing. The analysis is done for Aoy
and can be carried out analogously for Aes.

Remember that the interval [z}, 2] was defined to be the region of smearing
and kl(n), kr(n) are given by (22). With u;+5 = Lq(%At)u? it follows that
[z, 2] can also be taken as region of smearing for unts
Applying the equal area rule (25) to U;H_E
these two equations | and using

and uj, building the difference of

(50) "3 = 6" 4 Aoy
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gives

kr(n)
n+3 n n n n+3
Aoy = |Ax Z (u]» —uj) = (0" — 27 )(uy > —uj)
n ny, nts nyl L[, +3 n+3
(51) (= o) — )| [ -

To compute ", the values 47 have to be inserted into the equal area rule (25)
explicitly. Consequently, we want to write (51) only in terms of uj so that the

1
values u: T7 do not need to be inserted to compute Acy. To do this we denote
u;(t) to be the exact solution of the ODE

1

(52) wy = q(w), tE [th,tn+ §At] with w(t,) = uj
so that by means of Taylor series expansion we get

1 n n
(53) wj(ty + §At) —uf = 8(u}) + O(At?Cy 3)
with

Ot Ot?

(54) 8(u) := Tq(u) + ?q/(u)q(u).

Cu,3 depends on the second derivatives of ¢ with respect to 7.
Using the incremental step function ®, we have
”+% n At n
(55) u; " —uj = 7@(11]» ).
We use the abbreviation ®7 := ®(u}), and ®% defined analogously. Then
expansions give the following results by using (53), (55) in (51).

Theorem 4.7 Let the conditions of Theorem 4.6 be fulfilled. The numerical
solution may be smeared-out. Then, with o™ defined by (25),

kr(n)
Aoy = |Da Y 8(uf) = (0" = a})a(uf) — (w — ™)3(uf)
kl(n)
ut = i+ 0u) — s(up)
(56) FO(( = #1)CusE) + K, O((h — £3)Cu pir SH)
At kr(n)
Aoy = - [Al‘ Z @(u?) —®h (0" —2}) — (2 — 0c™)D}
kl(n)
(57) : [UL —up+ > (@7 — @%)
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where Cy pt1 ts defined analogously to Cy 3 and K, is the same as in Theo-
rem 4.6.

1
If we replace uj by Q;H_Q

we get Noy.

In order to make clear the effect of stiff source terms on the errors of the shock
location, condition (49) was introduced in Subsection 4.4. If we assume (49)
here we can argue in a similar manner to get

Cur =O0(p*), k=3p+1.

4.6 Estimators

In general, the structure of the solution is not as simple as in the analysis of
the scalar Riemann problem. In the case where a solution has a shock that is
not interacting with another shock in the considered time interval, we have to
define a region of smearing of the discontinuity in order to approximate the local
error of the shock location. This region of smearing at time ¢, is denoted by
[Tri(n) — %Al‘, Thr(n) + %Al‘] where the indices kl(n), kr(n) are in the general
case no longer given by (22), but have to be defined suitably for each specific
problem. Next, use this region of smearing to approximate the values u, u;
on the left and on the right sides of the discontinuity. One way to proceed is to
approximate the values u’, u)' by the values of the solution at the boundary of
the region of smearing: uf := uf, n) and u}} := qu(n)' Now those values can be
inserted into the error-formula which gives us approximated local errors of the
shock location.

All the numerical experiments shown in this thesis, except of the scalar examples
where the solution is piece-wise constant, use this approach.

All estimators neglect the higher order terms in the error-formulae.

Application to Systems

To apply the estimators for the scalar equation to a system of hyperbolic con-
servation laws with source terms, define each of the parts of the local error of
the location of a discontinuity for each equation of the system separately. Con-
sequently, the local error of the location of the discontinuity can be computed
for each of the conservative (we call them so although there is a source present)
variables. So the results of the scalar case can be applied to each single equation
of the system by taking into account that one works with vectors now.

We consider numerical approximations of exact solutions having a discontinuity
between two states connected by a p-shock that satisfies the Rankine-Hugoniot
jump conditions and the entropy condition. This discontinuity should not inter-
act with another one in the considered time interval. One way to approximate
the local error of the location of the discontinuity in such a case is analogous
to the scalar case: Define a region of smearing [@5; — %Al‘, Tpr + %Al‘] through
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one of the conservative variables (depending on the problem) and use this to
approximate the vectors Uy, Ug on the left and on the right side of the dis-
continuity. For each of the equations of the system insert those values into the
equation for the local errors of a scalar equation.

To compute the local splitting error, the Rankine-Hugoniot jump conditions are
used. Due to numerical inaccuracies and depending on how the values Ug, Ugr
are chosen in the numerical solution, the jump conditions may not be fulfilled
exactly. We mention one possible way to proceed.

Approximate Uy, Ur by Ur := Uy and Ug := Uj, even if those values do not
fulfil the jump conditions exactly. As a consequence of the analysis being done
for a piece-wise constant scalar solution, the local error of the location of the
discontinuity is approximated in a rather rough way. Therefore it need not to
be required that values Uy, Ug fulfilling the jump conditions exactly are used
— they are an approximation, anyway.

In the numerical experiments of this paper only this approach is used.

4.7 Adaptation

In Subsections 4.4 and 4.5 we computed local errors of the location of the dis-
continuity. We want to use these error-estimates to construct an adaptation of
the step size in order to keep the relative global errors sufficiently small. There-
fore we have to find an upper bound B for the local error to indicate if the mesh
has to be refined or not.

Let us first investigate the influence of B on the relative global error. We denote
the local error of the location of the discontinuity of the n*? time step for the
moment by £(n). Our aim is to ensure that after N time steps the relative
global error E,.; is smaller than a certain positive number. So if we demand
the absolute values of the local errors |£(n)| to be smaller than a certain upper
bound B

£l < B,

it follows that N
=Y |€m) < NB.
n=1
We define an averaged speed ¢ by |0’N — 00| =:6 N Atpar, where Aty qs is the

largest step size of the NV time steps. Then the relative global error is bounded
from above by

Seml T lEml

— < o .
|oN — % = |oN = T 6 Atnas

(58) Erel =

If
B < At - tol < 6 Aty - tol
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with a certain positive constant tol, then
FEre < tol.
Notice that in general, At may change from time step to time step.

Remark 4.8 Of course, one would like to have B automatically chosen during
the computations. But how to automate the adaptation will not be a topic of this
paper, we will just show that the adaptation works well for appropriate bounds

B.

The adaptation works as follows: The estimated local error of the shock location
E.st 18 expected to be smaller than the upper bound B. If this assumption is
not satisfied, the step size Az is bisected, At is computed in dependence of Az,
and then the last step is repeated. Which exact value for B is going to be used
in an adaptation, is decided here on test computations.

5 Examples

5.1 Scalar Example

In this subsection the local errors of the shock location are computed for the
scalar example presented in Section 3. The exact errors are compared to those
approximated with (46) and (56) by neglecting the higher order terms. Further-
more, the adaptation described in Subsection 4.7 is tested.

In this example, given by (14), (15), (16), the local error of the shock location
(29) computes as

1
(59) E=AD0pym — DOegaer = Dz Zi:(u?‘l'l —up) — §At.

The local errors of the shock location that are computed by using the error-
formulae (46) and (56), reduce in the considered problem to

(60) SIAUl—i—AUz

because with the special choice of the source term we have ¢(u}) = q(u) =0
for any n and therefore &;,; = 0.
The relative (global) error after N time steps is defined by

o — oty )]

(®1) Bret = ]

Table 1 lists the relative (global) errors F,.; and the relative differences between
the estimated and the exact local errors in dependence of the relative time T,..;.
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Table 1: Relative time T,.;, relative (global) error F,.;, relative maxima of
the (absolute) differences between the estimated and the exact local errors.
The relative time 7T,.; is varied while the step sizes At and Az are fixed with
CFL = .55. The solutions are computed up to time 7' =ty = 1.

Trel Fra Difference Trel Fra Difference
-2 .1594-2 4168-7 .6-2 .9297-2 .1501-5
.2-2 .3178-2 .1667-6 7-2 1102-1 .2043-5
.3-2 AT62-2 .3751-6 .8-2 1255-1 .2669-5
4-2 .6330-2 .6670-6 .9-2 .1385-1 .3379-5
.5-2 .8068-2 .1042-5 1.0-2 | .1571-1 A172-5

The notation .1+ 1:=.1-10" is used.

The relative differences of the errors are the quotients of the maxima of the
(absolute) differences between the estimated and the exact local errors and
the maxima of the (absolute) local errors. The maxima are taken over the N
computed time steps up to time T' =ty = 1.

As expected, are the relative differences between the estimated and the exact
local errors sufficiently small. F,..; can now be used to decide which value T,
should not exceed.

Adaptation

To make the adaptation work, we have to determine an appropriate bound B
as described in Subsection 4.7. If we choose tol = .01 then Table 1 shows that
max(7Ty.;) should not exceed 0.007. Based on test computations, we define the
upper bound for the local error to be

1, b<3
B:=05-At-cg-00l, ecoi=4b  4<b<8
b+1, 9<b

where b denotes the number of bisections. Notice that the factor 0.5 is the shock
speed of the exact solution. ¢p - 0.01 corresponds to the constant tol.

If during the adaptation estimated local error of the shock location &.4; is not
smaller than the upper bound B, then the step sizes At and Az are bisected so
that the ratio % stays constant. We computed the solution up to time 7' = 1
for p = 10. Table 2 lists the numerical results.

Each of the resulting step sizes is not larger than twice the smallest of them, and
the relative error remains less than 1.3%. Also, one can see that the resulting
Trer 18 smaller than 0.01 and thus gives sufficiently correct solutions, see Fig. 1.
This shows that the adaptation works well for this example.
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Table 2: Number of bisections b and time steps N, the resulting smallest At,
and the relative error of the shock location for various step sizes AtY at time
t = 0. The solutions are computed up to time 7' = 1 for 4 = 10 and CF L = .55.

A0 b N At Era

0.0l | 4 1601 .625000-3 .100392-1
0.10 | 8 2554 .396250-3 .676327-2
0.20 | & 1278 .761250-3 .129742-1
1.00 | 11 2020 .488281-3 .945125-2

2.00 | 12 1901 .488281-3 .128107-1
The following notation is used: .10 41 :=.10- 10"

5.2 The Combustion Model

We consider a simplified model for the inviscid reacting compressible Euler
equations in one space dimension. This model is a (2 x 2) - system, given by
Burgers’ equation coupled to a chemical kinetics equation. It has analogues to
the structure of reacting shock profiles (see [2] or [8] for more details). In [2] it is
recommended to use these simplified model equations for testing and developing
numerical codes that have to handle shock phenomena in reacting gases.

The equations for the simplified combustion model are given by

(62) uy + (%u2 —q0Z)e = 0
(63) Zy = ®(u)7

with initial data

1.0, <0
64 0)= ’ .
(64) u(z,0) {—0.7,x>0

We use ignition temperature kinetics with ®(u) given by

1 >0
Su)y=4{ "7
0, u<0
7 is the mass fraction of unburned gas with limy_ . Z(2,t) = 1. The 2-

coordinate in (63) represents the distance from the reaction zone. u can be
interpreted as a lumped variable with some features of pressure or temperature,
cf. [2]. We set qop = 0.935 where ¢q is the heat release.

The data given by (64) initiate a shock wave that raises 4 above 0 which causes
the reaction to start. In the reaction zone that follows the mass fraction of
unburnt gas decreases as long as the gas is getting burnt. As time passes a
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combustion spike develops and a travelling wave solution evolves. The solution
structure shows a reaction rate that is zero ahead of the shock and finite behind
it. This structure is analogous to the solution structure of the reacting Euler
equations considered in Chapter 5.3.

The detonation wave has the internal structure of an ordinary shock wave fol-
lowed by a reaction zone. The shock wave has to satisfy the Rankine-Hugoniot
jump condition. This jump condition states that the speed of the combustion
wave with the left and right states given by (64) is 6(0) = 0.15 at time ¢ = 0.
The shock wave raises u from uy = —0.7 to a left state upeqr. If the travelling
wave solution has evolved with the fixed speed &(¢) = 0.7 then by again using
the jump condition o (upear — uy) = (%u;wk — %ui) we have for the left state
Upeak = 2.1.

Figure 4 shows a reference solution.

Figure 4: Reference solution of the simplified combustion model showing u, 7 at
time 7" = 10 and the shock curve. The step sizes are At = 0.001 with % = 45.

u z t
20

The numerical solution is computed using the Strang splitting where the equa-
tions

(65) ws + (%um — 0
(66) Zo = ®(u)Z
(67) ur = q®(u)7

are solved separately in each time step. (65) is solved with an upwind scheme,
c.f. [12]. (66) is solved by trapezoidal approximation of the integral in the exact
solution formula, c.f. [2],

Zi = Zipre~ = @im0+wi) G- 7 741K, Zg =1

bl

Here the superscripts denoting the time level were omitted. To solve (67) with
fixed Z we use

{ const > 0, for the initial data ug > 0
Uy =

0, else,
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which means that ®(u) remains constant. Using this result we solve equation
(67) exactly. We solve (66) first and then (67), and combining the solution
operators for these two equations in this way gives Lq(%At).

The numerical solution shows the following behaviour of the combustion wave
speeds for different step sizes At and Az with % = 0.45, see Fig. b:

e For At small the shock speed is correct.
e If we increase At, the shock speed becomes slower than the correct speed.

o If At is large enough, the shock speed remains unchanged: ¢(¢) = ¢(0) =
0.15.

This phenomenon occurs because the combustion spike of the solution decreases
when the step size is increased.

Remark 5.1 In [2] another kind of spurious solution for the same example is
obtained for large step sizes. Other solution operators and somewhat different
data are used. These spurious solutions exhibit a bifurcating wave pattern as it
also appears for the reacting Euler equations, see Chapter 5.3.

Figure 5: Numerical solution of the simplified combustion model showing u after
1000 time steps and the shock curve for different At.

u o

At =0.1
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Errors of the Shock Location

The solution profile 1s not piece-wise constant so that this error can only be
approximated. The solution exhibits a shock wave where the right state equals
the initially given right state and where the left state corresponds to the com-
bustion peak. The variable Z begins to decrease just after the shock wave. To
approximate Aoy and Aoy we have to define x3i(n), Trr(n) for the region of the
smearing. This is done by prescribing k{(n) and kr(n) as

kl(n) = ufyny = meajxu? and  kr(n):=min{i € I |u] = —0.7}.

We approximate Z by Z = 1 over the region of the smearing [Zri(n), Trr(n)]-
Finally, we estimate the local error of the shock location by

. . 1
(68) gest = |AO’1 + A0'2| + ZQOAtZ
where Agq resp. Ads denote the approximations to Aoy resp. Aocs.

Adaptation

Now we want to test if an adaptation of the step size based on &.5; (68) gives
satisfactory results. The aim is to keep the relative global errors of the shock
location sufficiently small. The adaptation works as described in Subsection 4.7.
If £.5¢ is not smaller than a certain upper bound B, the step sizes At and Az
are bisected so that the ratio % stays constant, and then the last time step is
repeated.
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Based on test computations, we set the upper bound for the local error to be
B:=0.01-At.

Furthermore, we estimate the relative (global) error of the shock location by

N
b DAl Eanl)
rel — |0-N|

where &.41(n) denotes the approximate local error of the n'” time step.
The solutions are computed up to time 7" = ¢ = 10. Table 3 lists the numerical
results.

Table 3: Number of bisections b and time steps N, the resulting smallest At,
and F,.; for various step sizes AtY at time ¢ = 0. The solutions are computed
up to time 7' =ty = 10 and % =.25.
A | b N At Erel

0.1 5 3199 .312500-2 .5507-2

1.0 | 8 2560 .390625-2 .6950-2

2.0 9 2560 .390625-2 .6950-2

5.0 | 11 4090 .244141-2 .4328-2
10.0 | 12 4090 .244141-2 .4328-2

20.0 | 13 4090 .244141-2 .4328-2
The following notation is used: .10 41 :=.10- 10"

Each of the resulting step sizes is smaller than twice the smallest of them, and
the approximate relative errors remain less than 0.7%. Also, one can see that
the resulting step sizes yield sufficiently correct solutions, see Fig. 5.

5.3 The Reacting Euler Equations

In this subsection the adaptation i1s applied to the one-dimensional inviscid re-
acting compressible Euler equations. The solution of those equations shows a
detonation wave where the chemical reaction is taking place very much faster
than the fluid flows. Numerical solutions of those equations exhibit an un-
physical bifurcating wave pattern for large step sizes, where a precursor weak
detonation wave is moving with a speed of one grid cell per time step, cf. [2].
In our model equations for a reacting mixture the following simplifying assump-
tions are made, see [1], [11]: There are only two species present, unburnt gas and
burnt gas. The unburnt gas is converted to burnt gas by a one-step irreversible
chemical reaction. Furthermore, the specific heats at constant pressure are as-
sumed to be equal and constant and the gas mixtures should behave like ideal
gases with the same gas constant v. Finally, effects of diffusion are ignored.
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Under these assumptions the model is described by the inviscid reacting com-
pressible Euler equations [2]:

(69) Ui+ F(U): = QU),
where
p pu 0
2
pu pu” +p 0
U= P(U) = Q) =
pE pull + up 0
p7 puz —pK(TYZ

Here we have density p, fluid velocity u, total energy £ = e + % + qoZ, mass
fraction of unburnt gas Z, constant amount of heat released per unit mass
by the chemical reaction qq, specific internal energy e, pressure p = (v — 1)pe,
temperature T' = é, Boltzmann’s gas constant R, molecular weight M, specific

heat at constant density c,, and gas constant v = CE + 1.
P
We use ignition temperature kinetics such that

Ko, T>T
(70) K(T)y=4 "% =70
0, T <1y,

with Ty the ignition temperature and Ky the reaction rate.

Of special interest is a detonation that spontaneously emerges from the process
of combustion itself. It belongs in a series of important cases to the Chapman-
Jouguet (C-J) point [2][5]. The initial data are piece-wise constant, defining a
C-J detonation:

(71) (po, po, 4o, Zo) , # >0 pre-shock state
(p1,p1,u1,71) , # <0 post-shock state.

The pre-shock state corresponds to 25% ozone and 75% oxygen at roughly room
temperature. The data are:

variables ||pre-shock state Hpost—shock state
pl==2-]/0.8321 - 10° 7.9434 - 10°
pl=Ls]  |[1.2001-107% [11.9690-10~3

u ] 0. 4.8057 - 10*

002 [2221)6.9283 - 10° |0

Furthermore we have R = 8.3143 - 107%, M =36 y=14 T, =
500°K, and Ky = 0.582458 - 1010%.
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Numerical Solutions

The numerical solution is computed using the Strang splitting. The homo-
geneous conservation law is solved using a flux-difference splitting where an
approximate Riemann solver introduced by Pandolfi [9] is implemented. This
solver transforms the variables (p, pu, pEy) into the variables speed of sound,
fluid velocity, and entropy (a, u, s). Here we use the notation Fy = e + “2—2 The
acoustic waves (1,3) are assumed to be locally isentropic.

The ODE U; = Q(U) is solved by reducing the problem to the scalar equation

(72) (pe02): = —=K(T)(pq0 Z).

Different ODE-solvers are used in order to compare the local errors of the loca-
tion of the discontinuity. The ODE-solvers are:

1. Exact integration of the linear ODE, where the temperature is held point-
wise fixed.

2. Semi-implicit Euler scheme
3. Explicit Euler scheme
4. Explicit Runge-Kutta method of 2. order

The numerical solutions we show here are computed using ODE-solver 1 (exact
integration of the linear ODE). The spatial step size Ax is varied

Az =aRy, Ro=5347-10"%, & =0.001,...,100000

and in each time step the step size in time At is determined by the CFL-
condition with CFL-number 0.8. There is no other stability condition for At.

When time evolves, a travelling wave profile with constant wave speed ¢ is being
built up. The speed of this wave is sonic relative to the gas flow behind it, which

means that
b=ar+ur = JvEE £ uy = 1.2321-10°.
1

We briefly describe the structure of the physical solution, cf. [5]. The actual
shock wave in the combustible starting mixture is the front of a detonation wave.
In this wave the gas is compressed and warmed up. The state immediately
behind this shock wave corresponds to the peaks one can see in the solution
profiles of numerical solutions (here shown for pressure and density, see Fig. 6)
that are computed using small step sizes. The chemical reaction starts in the
compressed gas. Heat is released, the gas expands, and its pressure decreases.
This is taking place until the combustion is completed and all of the reaction
heat is released.

For large step sizes the solution exhibits totally unphysical bifurcating wave pat-
terns with precursor numerical weak detonations (compare to [2]). All chemical
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energy is released too soon in this precursor detonation wave. The slower mov-
ing trailing wave profile is an ordinary fluid dynamic shock. The numerical weak
detonation wave is always moving at the speed of one mesh point per time step.
Figure 6 shows the reference solution for o = 0.01 after 0, 2000, ... 10000 time
steps.

Figure 6: Numerical solution of the reacting Euler equations showing density p,
pressure p and chemical energy ¢oZ for a« = 0.01 after 0, 2000, ... 10000 time
steps.
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Figure 7 shows the density p and chemical energy ¢qoZ of the numerical solutions
for small and large step sizes after 0, 500, 1000 and 1500 time steps. Notice that
a = 0.01 corresponds to the reference solution shown in Fig. 6. For small step
sizes the solution profiles are still built up at these times, but for larger step
sizes this is already done. Nonetheless, the typical behaviour of the solution
computed with different step sizes can clearly be seen. Because of this and
because adaptation — which is the aim of our investigations — starts with the
first time step, we show here the numerical results at rather early times.

Next, numerical wave speeds are investigated. The numerical solution shows
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Figure 7: Numerical solution of the reacting Euler equations showing density p
and chemical energy qgZ for small and large « after 0, 500, 1000 and 1500 time
steps. The corresponding times are for & = 0.01: 0, 1.6-10, 3.3-10, 4.9-10, and
for « = 10: 0, 1.7-7, 3.5-7, 5.2-7
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the following behaviour: The shock speed of the precursor detonation wave is
equal to % for large time and space steps. Numerical wave speeds are listed
in Table 4. For large step sizes the numerical wave speed is determined by the
formula

5 _ 2(1500) — #(1000)

t1500 — t1000

where z(n) denotes the location of the precursor detonation wave at time ¢,.

Remark 5.2 For a = 0.01 and o = 0.1 the solution profile 1s still being bualt
up between tigop and tisoo. Therefore an additional averaged wave speed s
computed for 9500 and 10000 time steps, where for « = 0.1 CFL=0.4 is used.
The speed of the detonation wave of the exact solution is Gogaer = 1.2321 - 10,
cf p. 29.

Remark 5.3 The half-reaction length Ly o 15 the distance for the half comple-
tion of the reaction starting from the front of the detonation. It is often used as
a reference length-scale for detonation problems. The number of points in the
half-reaction zone is approzimated here by the ratio of Lyjs/Ax, where Lqo is
estimated from the plots of the numerical solutions. Therefore, if the reaction
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Table 4: Numerical wave speeds ¢ compared to the ratio of the step sizes %
for various «. Furthermore, the approximate number of mesh points in the
half-reaction zone L5 is shown.

o i) o i S | P/l
0.01** 1.6500-5 1.6314-10 1.011445 1.65704+5
0.1 1.6700-4 1.3934-9 1.198545 1.9331+5
1 1.7700-3 1.4364-8 1.232245 1.874245 1.5
10 2.6735-2 1.7355-7 1.540545 1.540545 0.5
100 2.6735-1 1.7355-6 1.540545 1.540545 0*
100000 2.67354+2 1.7355-3 1.540545 1.540545 0*
o oy, _yloooo 5 25 | Pis/Lip
0.01** 1.6624-5 1.3991-10 1.188245 1.912945 80
0.1 0.8400-4 0.6828-9 1.230245  3.916645 9.5

The following notation is used: .10 41 := .10 10"
0*: see Remark 5.3.

**: see Remark 5.2.

1s completed in at least one time step, no points lie in the reaction zone, which
could therefore not be recovered.

Errors of the Shock Location

The local splitting error given by (46) and (48), respectively, is approximated for

each of the single equations of the system, i.e. fori =1,...,4. The approximate
local splitting errors for these four equations are denoted by S;pl, cey Sfpl.

To determine the values Uy, Ugr, kl and kr to be inserted into the error formulae,
we proceed as described in Chapter 4.6. Considering the density (it could also be
some other quantity showing the combustion spike), we approximate the region
of smearing [zxi(n) — %Al‘, Thr(n) + %Al‘] in such a way that just the (smeared-
out) detonation wave is captured. That is we set kr(n) to be the smallest index
such that u? = u%, j > kr(n) with v :=wu; = p. kl(n) < kr(n) is defined to be
the largest index with uzl(n) > uzl(n)_l and the temperature greater than the
ignition temperature. Then we set uly := ul[ryn), i = 1,...,4, where uf [pi(n)
is the value of u at location zpyn). uip is defined analogously. For ﬂ?-l_%
we proceed in the same way. Then the captured wave is the one exhibited by
solutions computed with small step sizes, and in solutions computed with large
step sizes it is the one moving at the speed of one mesh cell per time step. The
so-defined region of smearing corresponds to that discontinuity where the source
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term actually works.
In the numerical computations the local errors of the location of the disconti-
nuity are estimated by adding the absolute values of these parts. Remember
that the local errors are scalar variables. Computing these errors for each of the
variables u; we have:

gl,=0

gezst = |‘§3pl|

g?st = |g?pl|

&L = 1EL I+ 1051 + 1A53).

Notice that €L, is zero because of the simplifying assumptions that were made
for the scalar analysis and carried over to the case of a system.

To begin, numerical results for solutions computed up to 1500 time steps were
compared to computations up to 100 time steps. As they yield similar errors,
all computations shown in this section will be done just up to 100 time steps.
Aoy resp. Aog are approximated by using (56) and setting %K(T) =0.

The maxima of the local errors £2,,, £2, and £, are shown in Figure 8. The
results depicted in Fig. 8 show — as expected — that for small a the local
errors are approximately the same — independent of the ODE-solver. The left
figures plot the errors where éN'spl is based on (46), while it is based on (48) in

the figures on the right.

Adaptation

We show the results of the adaptation for the errors including a splitting error
based on (46) as well as those based on (48). In both cases we proceed in the
same way.

For the errors based on (46) our aim is E,. < 1%, and, based on test compu-
tations, the upper bound for the local error is set to

B:=2-10*. At,
whereas for errors based on (48) we choose
B:=5-10. At.

Now we want to test if an adaptation based on &.4; gives satisfactory results.
The adaptation is carried out just for one ODE-solver because we expect all
the various cases to behave analogously. We used ODE-solver 1 (exact integra-
tion of the linear ODE). To approximate the local errors of the location of the
discontinuity, we assume ¢4 to be piece-wise constant. The adaptation is not
tested for unreasonable large step sizes, that is a > 10.

This adaptation works as follows: The approximated local error of the location
of the discontinuity £2, is expected to be smaller than a certain upper bound
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B. If this assumption is not satisfied, the step size Az is bisected and At is
computed via CFL-condition. Then we start again with the initial data. This
seems to be optimal as we observed that bisections took place just up to the
fifth time step.

In a next run, the numerical solution is computed up to a fixed time T =
5 -1071% This is done because the solution profile is being built up at the
beginning of the computation and because therefore the shock speed is not
constant. These computations give similar results as the first run. Furthermore,
the approximate relative global errors of the location of the discontinuity

N o
S 2an=1Cest(M)
rel — |O'N _ 0_0|
are computed. &£ ,(n) denotes £, of the n'® time step. Table 5 shows these
results. It lists the various a® at time ¢ = 0, the resulting smallest v, and the

relative global errors B2, E3 , and E%, belonging to the second, third, and

rel? rel? rel
fourth of the equations’ systems.
The results of the adaptation based on the approximate local errors of the
shock location which use the sharper estimation of the local splitting error (48)
compared to the adaptation based on errors using (46) show that each of these

two adaptations works as well as the other.

6 Conclusions

Based on scalar one-dimensional Riemann problems, an estimator for the error
of the location of discontinuities has been derived. It can be used for adap-
tive choice of the step sizes, and the considered examples show that such an
adaptation works well.

Of course, the adaptation does not work fully automatically yet. This could
be the aim of further investigations. Furthermore, we would appreciate if the
error-estimates could be extended to not piece-wise constant solutions.

In [4], the theory presented in this paper is extended to planar two-dimensional
problems. This is possible if the tangent to the discontinuity in the solution
exists — as then the one-dimensional estimates are applied orthogonal to the
tangent.
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Table 5: Upper part: Results of the adaptation based on (46). The relative
erTors Efel remain less than 1%. Lower part: Results of the adaptation based
on the sharper estimate (48). The relative errors Efel remain less than .61%.
All solutions are computed up to time T = .5 - 107'%. The resulting step sizes

are all about the same size.

a® o E? E? E!

rel rel rel

.10-2 .1000000-2  .5160-4  .3434-4 .1140-3
.10-1 .1000000-1  .4894-3  .2984-3  .2655-2
.50-1 .2500000-1  .1143-2 .6320-3  .1278-1
.104-0 | .2500000-1 .1143-2 .6320-3 .1278-1
.254-0 | .1562500-1  .7459-3  .4362-3  .5648-2
.404-0 | .2500000-1 .1143-2 .6320-3  .1278-1
5040 | .1562500-1 .7459-3  .4362-3  .5648-2
6040 | .1875000-1 .8874-3  .5093-3 .7644-2
1041 | .1562500-1  .7459-3  .4362-3  .5648-2
5041 | .1953125-1  .9183-3  .5244-3  .8200-2
1042 | L1953125-1 .9183-3  .5244-3  .8200-2

.10-2 .1000000-2  .8144-9  .5419-9 .7056-4
.10-1 .1000000-1  .7702-7  .4690-7  .1670-2
.50-1 .2500000-1  .4494-6  .2477-6  .7854-2
.104-0 | .2500000-1  .4494-6  .2477-6  .7854-2
.254-0 | .1562500-1 .1834-6 .1070-6  .3569-2
4040 | .2500000-1  .4494-6  .2477-6  .7854-2
.5040 | .1562500-1 .1834-6 .1070-6  .3569-2
6040 | .1875000-1 .2618-6  .1498-6  .4769-2
1041 | .1562500-1  .1834-6  .1070-6  .3569-2
5041 | .1953125-1  .2820-6  .1606-6  .5104-2

1042 | .1953125-1 .2820-6  .1606-6  .5104-2
The following notation is used: .10 41 :=.10- 10"
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Figure 8: Maxima of the estimated local errors of the location of the disconti-
nuity comparing results for the different ODE-solvers. &, is based on (46) for
the left figures and on (48) for the right figures.
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O: Exact solution formula
A: Euler semi-implicit

¢: Euler explicit

(O: Runge Kutta 2. order
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