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Abstract

Starting from a numerical scheme for solving systems of hyperbolic par-

tial differential equations the transition to parabolic equations of the type of

advection-diffusion equations needs a different treatment of the viscous part.

Since we are using a genuine multi-dimensional scheme also the fact that the

diffusion acts in infinitely many directions shall be captured properly. There-

fore, to be able to use this scheme we have developed a decomposition of the

scalar advection-diffusion equation into a special system of advection equa-

tions. In particular the interaction of the advection and diffusion part will be

taken into account. The extension to the Navier-Stokes equations which are

a system of mixed hyperbolic-parabolic type is possible and will be pointed

out.
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1 Introduction

The Method of Transport is a genuine multi-dimensional finite volume scheme

which was developed originally for the Euler equations and was extended for

several systems of hyperbolic conservation laws. The idea of the scheme is

build up out of two parts. In the first step the system of partial differential

equations is decomposed into a finite number of advection equations with

variable coefficients. This technique will be presented in section 2 for the

Euler equations. In the second step these advection equations will be solved

with the multi-dimensional scheme which will be introduced in section 3.

For simulating viscous flows the Navier-Stokes equations are a proper model.

This system is still a conservation law but no longer of hyperbolic type.

The equations for the momentum and energy include viscosity and heat flux

which is described by second order derivatives. This needs a different nu-

merical treatment of these equations. Since the diffusion is a process which

does not act in a specific direction, similar to the acoustic waves in the Euler

equations, we want to take these infinitely many directions into account. In

the decomposition of the system a linearisation error is introduced and the

resulting scheme is only of first order accuracy. In order to obtain second

order, correction terms are introduced which are added to the scalar equa-

tions. These terms look like a viscosity but with a negative sign because they

damp the numerical viscosity. However they do not change the character of

the equations.

Having this fact in mind we will show here that it is possible to model

parabolic equations with a finite number of advection equations with vari-

able coefficients. To get a first insight how to handle such scalar parabolic

equations we start our investigation with the advection-diffusion equation in

section 4 and show in section 5 our results for the system of Navier-Stokes

equations.
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2 The two-dimensional Euler equations

2.1 Decomposition in finitely many advection equa-

tions

We consider the two-dimensional Euler equations

∂

∂t
U +

∂

∂x
F(U) +

∂

∂x
G(U) = 0, (1)

with

U =








ρ
ρu
ρv
ρE







, F(U) =








ρu
ρu2 + p
ρuv

u(ρE + p)







, G(U) =








ρv
ρuv

ρv2 + p
v(ρE + p)







.

Here, ρ is the density, u and v are the velocities in x- and y-direction, E is

the total energy per unit mass and p is the pressure. Since the system is not

closed we use the equation of state

p = (γ − 1)ρ(E −
u2 + v2

2
)

to get a relation between the pressure and the quantities in U. Here γ is the

ratio of the specific heat capacities with a value of 1.4 for air.

In the one-dimensional case we can write the fluxes as

F(U) =
∂F

∂U
U = AU = RΛR−1U =

3
∑

i=1

(αiriλi) (2)

with R the matrix of the right eigenvectors and λi the eigenvalues of the

Jacobian matrix A and Λ = diag(λ1,λ2,λ3) = diag(u + c, u, u − c). In

the two-dimensional case the hyperbolicity still allows the diagonalisation of

each Jacobian matrix

F(U) =
∂F

∂U
U and G(U) =

∂G

∂U
U

but they cannot be diagonalised simultaneously. To get a more compact

formulation we introduce the matrix

F(U) = (F(U),G(U)) = UuT +






0T

I

uT




 p ,

2



where 0 is the zero vector, I the identity and uT = (u, v) the velocity vector.

The Euler equations now become

Ut + div(F) = Ut +∇ · F = 0, (3)

where the divergence acts on the rows of F .

Considering the last term of (2) we have vectors αiri which propagate with

the characteristic speeds λi. We want to decompose U in such a way that

the multidimensional flux is obtained by propagating these quantities along

the characteristic surfaces. In order to get a consistent numerical flux it is

sufficient to define the two vectors and the matrix respectively (see [2], [3])

R1(U) =
1

γ






ρ
ρu

E + p




 ,R2(U) =

γ − 1

γ






ρ
ρu

ρu2/2




 ,L(U) =

ρc

γ






0T

I

uT






where R2 will be convected by the fluid velocity u and R1 and L propagate

along the characteristic surfaces the so called Monge cone (see Fig. 1).

y

x

∆tu

∆t cn3

∆t cn4

∆t cn2

t0 +∆t
∆t cn1

t0

t

Figure 1: Characteristic cone with four unit vectors ni

By this approach infinitely many propagation directions have to be consid-

ered. However, it turns out that it is sufficient for consistency of the scheme

3



when we approximate the Monge cone by a finite number of vectors (see [5]).

Then U can be written as

U = R1 +R2 +
α

k

k
∑

i=1

Lni , k ∈ IN , (4)

where the ni have to be chosen as

k
∑

i=1

ni = 0 , (5)

so that the last term drops out. If we furthermore demand that

α

k

k
∑

i=1

nin
T
i = I

we can decompose F corresponding to U as

R2u
T +

1

k

{
k
∑

i=1

[

(R1 + αL · ni)(u+ nic)
T
]
}

. (6)

Assemble (4) and (6) we obtain the Euler equations rewritten as a sum of

linear advection equations

Ut +∇ · F = (R2)t +∇ · (R2u
T ) +

1

k

k
∑

i=1

[

(Rn)t +∇ · (Rn(u+ nic)
T )
]

with

Rn = R1 + αLni

Hence the (k + 1) advection equations

Φ2 = (R2)t +∇ · (R2u
T ) = 0 (7)

Φn(ni) =
1

k

{

(Rn)t +∇ · ((Rn)(u+ nic)
T )
}

= 0 ; i = 1, ..., k (8)

are a linearisation of the Euler equations (3).
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2.2 Error analysis and second order approximation

To solve equations (7) and (8) we have to discretise them. We know that for

the discretisation in space a approximation order of two can be achieved but

not for the time discretisation. Therefore, consider here a semi-discretisation

in time only and assume we know an exact solution at a given time t. We

eliminate the time dependency of u and c by freezing the time so that the

advection velocities become functions of space only. The error at time t+∆t

between the discretised and exact solution is of the order ∆t2. We will show

this statement in this section and derive a modification of the linearised

equations so that we obtain an error which is of order ∆t3 only.

We will restrict ourselves to the study of the one-dimensional equation of

mass conservation. A two-dimensional example will be given in section 4.

We expand the exact solution ρ(x, t+∆t) in a Taylor series and get (omitting

the arguments x and t)

ρ(x, t+∆t) = ρ+ ρt∆t+ ρtt
∆t2

2
+O(∆t3) .

The time derivatives can be replaced by spatial ones using the Euler equations

ρt = −(ρu)x
ρtt = −(ρu)tx = (ρu2 + p)xx

and we obtain

ρ(x, t+∆t) = ρ− (ρu)x∆t + (ρu2 + p)xx
∆t2

2
+O(∆t3) . (9)

Since for the one-dimensional case there are only two vectors ni, namely

n1 = 1 and n2 = −1, the decomposition of the density leads to

ρ = ρ1 + ρ2 + ρ3

with

ρ1 = ρ3 =
1

2γ
ρ and ρ2 =

γ − 1

γ
ρ .

Each of this quantity will be expanded in a Taylor series

ρi(x, t+∆t) = ρi + (ρi)t∆t + (ρi)tt
∆t2

2
+O(∆t3) .

5



Again the time derivatives will be replaced by spatial derivatives now using

the corresponding advection equation (7), (8)

(ρ2)t = −(uρ2)x

(ρ1/3)t = ((u± c)ρ1/3)x

(ρ2)tt = (u(ρ2)x)x

(ρ1/3)tt =
(

((u± c)((u± c)ρ1/3)x
)

x
.

Summing up this expansions the comparison with (9) shows that the numer-

ical solution differs from the exact solution by O(∆t)2:

3
∑

i=1

ρi(x, t+∆t) = ρ+ ρt∆t +
(

ρtt +
(
ρ

2
(γuux + ccx)

)

x

)
∆t2

2
+O(∆t3) .

If we modify the equations (7) and (8) by replacing L by (L+K) we can

achieve an approximation of the exact solution up to a term of O(∆t3). K

is called a correction term and if we choose for the one-dimensional Euler

equations

K =






kρ

km

kρE




 =












−
∆tρ

2 c
(γ u ux + c cx)

−
∆t

2
ρ((γ − 2)c ux + u cx) + u kρ

−
∆t ρ c

2γ(γ − 1)
(u ux − c cx) + u km −

u2

2
kρ












we obtain an error term of size O(∆t3). These correction terms can always be

found, like for the two-dimensional Euler equations [4] or the Shallow-water-

equations [6]. Note that the decomposition is independent of the numerical

scheme and that any scheme which solves an advection equation with variable

coefficients can be used.

3 The Method of Transport

In the previous section we have replaced the system of Euler equations by

a finite number of linear advection equations with variable coefficients, so it

6



will be sufficient to have a scheme for solving the scalar equation

ut +∇ · (uaT ) = 0

where a = a(x) is the local advection velocity. We consider the Method of

Transport which is a multidimensional finite volume scheme. In this method

fluxes will be computed not across cell sides but from one cell to all adjacent

cells which have at least one point of contact. Furthermore the method uses

an explicit time integration so that the scheme is described by

un+1
Ωi

= un
Ωi

−
1

|Ωi|
∑

j∈V

(FΩiΩj − FΩjΩi)

where Ωi is a control volume with volume |Ωi| and V is the set of indices of

all adjacent cells of Ωi. The contributions FΩiΩj are an approximation of the

multidimensional flux from Ωi into Ωj

FΩiΩj =
∫

S∆t(Ωi,Ωj)
un
i dx (10)

with

S∆t(Ωi,Ωj) = T (Ωi) ∩ Ωj

and

T (Ωi) = [ y | y = x+∆t a(x); x ∈ Ωi] .

If we assume that the quantity u and the velocity a are constant in each

volume we obtain a first order scheme and the contributions read

FΩiΩj = un
Ωi
|S∆t(Ωi,Ωj)| .

The transport of the quantity u is described for the two dimensional case by

a shift of Ωi by ∆t a, cf. Fig. 2.

However, if we choose piecewise linear functions for u and a the integration

of (10) is more complicated since the transport is no longer a shift. Consid-

ering the two dimensional case a rectangle will now be carried over into a

parallelogram. For more details see [8].

7



Ωi

Ωj

∆t a

S∆t(Ωi,Ωj)

Figure 2: Transport of Ωi as a shift by ∆t a

4 The advection-diffusion equation

4.1 Decomposition of the equation

We consider the two-dimensional advection-diffusion equation

∂

∂t
u+

∂

∂x
(au) +

∂

∂y
(bu) =

∂

∂x

(

ε
∂

∂x
u

)

+
∂

∂y

(

ε
∂

∂y
u

)

(11)

with constant coefficients a, b and ε. This equation can also be written in

conservation form

ut + (a u− εux)x + (b u− εuy)y = ut +∇ · F = 0

with

F = F(u, ux, uy) .

The flux function now depends on u as well as on the derivatives ux and

uy. The advection equation is of hyperbolic type but the advection-diffusion

equation is parabolic. By changing the character of the equation also the

character of the solution changes. The main difference between the solutions

8



of hyperbolic and parabolic equations is that the analytical solution is always

smooth even if the initial solution is non-smooth. This is also true for the

numerical solution provided that the resolution of the grid is fine enough.

First we consider the advection-diffusion equation in one space dimension.

We introduce the transformation

τ = t , z = x− at .

This leads to

ut = uτ
∂τ

∂t
+ uz

∂z

∂t
= uτ − auz

ux = uτ
∂τ

∂x
+ uz

∂z

∂x
= uz

uxx = uτ
∂2τ

∂x2
+ uττ

(

∂τ

∂x

)2

+ uz
∂2z

∂x2
+ uzz

(

∂z

∂x

)2

= uzz .

Hence, it follows

uτ − εuzz = 0 .

The advection part drops out and a diffusion equation is left with unchanged

diffusion part. There is a superposition of the diffusion and the advection that

means the quantity u will be advected with the velocity a and simultaneously

smeared by the diffusion. This result is from a physical point of view not

very surprising but it is ignored in most of the splitting methods, [7], [1].

Let us consider some special diffusion equations. In the heat equation u

represents the temperature and ε the thermal diffusivity

ε = χ =
κ

ρcp

with κ and cp as thermal conductivity and specific heat respectively. When

u represent a velocity then ε will be the kinematic viscosity

ε = ν =
µ

ρ

where µ is the dynamic viscosity. We notice that the thermal diffusivity

and the kinematic viscosity are both positive values with the unit m2/sec.

9



Our aim is to write the flux in a form similar to (6) as a quantity times a

propagation velocity. If we divide the coefficient ε or one of its equivalent by

a length we achieve a velocity which will be used as propagation speed

ut −
ε

l
(lux)x = 0 .

Since the equation is of parabolic type the propagation speed is infinite. Thus

it seems unreasonable to define a finite propagation velocity. However, we can

define such a l which will for that reason depend on the spatial discretisation.

We will see this in section 4.3.

To take into consideration the superposition mentioned above we introduce

as new propagation velocity (a− ε H−1 ni) with

aT = (a, b) and H =

(

lx 0
0 ly

)

,

where H represents l in two dimensions. Another property of the diffusion is

that it acts in all directions similar to the propagation of the quantities R1

and L. To take both facts into account we rewrite equation (11) as

ut+∇·(u aT )+
1

k

{
k
∑

i=1

[

(H(∇u)Tni)t +∇ ·
(

(H(∇u)Tni)(a− ε H−1 ni)
T
)]
}

= 0 .

Note that the terms (R1 + αLni)t and (R1 + αLni)aT drop out because of

(5).

To get a representation similar to the Euler equations we define

R1 = 0, R2 = u, and L =
(

H(∇u)T
)

.

The quantity u is given by

u = R1 +R2 +
α

k

k
∑

i=1

Lni

and the (k + 1) advection equations

(R2)t +∇ · (R2a
T ) = 0 (12)

1

k

{

(R1 + αLni)t +∇ · ((R1 + αLni)(a− ε H−1 ni)
T )
}

= 0 i = 1, ..., k(13)

10



are a linearisation of (11), where equation (12) contains the advection part

and equations (13) contain the diffusion part. Note that there appear no

problems in the limit ε → 0 because the propagation velocity of equations

(13) tend to zero and hence the influence of this equations can be neglected

against (12).

4.2 Error analysis and second order approximation

A semi-discretisation in time of (12) and (13) yields that this system of

advection equations is only a first order approximation of (11).

In an analogous proceeding to the Euler equations, an error analysis of the

discretised solution can be performed to get a second order approximation

of (11) by modifying the linearised equations.

First we consider the one-dimensional case. Assume that the exact solution

at time t is known and expand the solution u(x, t+∆t) in a Taylor series

u(x, t+∆t) = u+ ut∆t + utt
∆t2

2
+O(∆t2) . (14)

By using the advection-diffusion equation the time derivatives can be re-

placed by spatial ones

ut = −aux + εuxx (15)

utt = a2uxx − 2aεuxxx + ε2uxxxx . (16)

For the numerical solution we consider the time derivatives of each advection

equation. For the first derivatives we get

ut = −aux

1

2
(lux)t = −

1

2
(a−

ε

l
)(lux)x

1

2
(−lux)t = −

1

2
(a +

ε

l
)(−lux)x .

Summing up this equations we obtain

ut = −aux +
ε

l
(lux)x = −aux + εuxx . (17)

11



Inserting this equation into the Taylor expansion we see that the linearised

equations are at least of first order. For the second derivatives we get

utt = a2uxx

1

2
(lux)tt =

1

2
(a−

ε

l
)2(lux)xx

1

2
(−lux)tt =

1

2
(a+

ε

l
)2(−lux)xx .

Again summing up we obtain

utt = a2uxx − 2aεuxxx . (18)

Thus the linearised equations are not of order ∆t3 because the term ε2uxxxx

in equation (16) is missing. Since the advection part is still correct it will be

sufficient to introduce a correction term in equation (13)

1

k

{

(R1 + α(L+K)ni)t +∇ · ((R1 + α(L+K)ni)(a− ε H−1 ni)
T )
}

= 0 .

Now the time derivatives read

uk
t = −aux + εuxx +

ε

l
kx

uk
tt = a2uxx − 2aεuxxx − 2

ε

l
kxx .

The term kxx is of order ∆t3 and can be neglected. To determine kx we

demand that the Taylor series of the exact and the numerical solution shall

be equal up to terms of order ∆t3

u+ ut∆t + utt
∆t2

2
= u+ uk

t∆t + uk
tt

∆t2

2
.

Hence it follows

∆t
ε

l
kx =

∆t2

2
ε2uxxxx

so the correction term

K =
∆t l

2
εuxxx

12



achieves that the linearised equations (12) and (13) approximate equation

(11) up to O(∆t3). Note that the correction terms are not due to the inter-

action of the advection and diffusion part (there is no dependency on a since

the advection part will be solved exactly in time) but they are necessary to

get a second order approximation in time of the viscous part.

In the two-dimensional case the time derivatives of the exact solution are

ut = −aux − buy + ε(uxx + uyy) (19)

utt = a2uxx + b2uyy + 2abuxy − 2a ε(uxxx + uxyy)− 2b ε(uyyy + uxxy)

+ε2(uxxxx + 2uxxyy + uyyyy) . (20)

For the time derivatives of the discretised solution we get

(R2)t = −∇·(R2a
T ) = −aux − buy

1

k
{(R1 + αLni)t}=−∇·((R1 + αLni)(a− εH−1ni)T )= ε(uxx + uyy) .

Summing this (k + 1) equations up we get

ut = −aux − buy + ε(uxx + uyy) .

The same procedure for the second derivatives yields

utt = a2uxx + b2uyy + 2abuxy − 2a ε(uxxx + uxyy)− 2b ε(uyyy + uxxy) .

The difference between the Taylor expansions of the exact and discretised

solutions is

ε2 (uxxxx + 2uxxyy + uyyyy) .

This term is contributed symmetrically to the x and y component of the

correction term so that

K =





kx

ky



 =








∆t∆x

2lx
ε(uxxx + uxyy)

∆t∆y

2ly
ε(uyyy + uxxy)








leads to a second order approximation of (11).

13



4.3 Stability analysis

Up to now the choice of l is not clear. As mentioned in section 4.1 l will de-

pend on the spatial discretisation since we have to treat a parabolic equation

with infinite propagation speeds. Furthermore, it is necessary to investigate

the time-step restriction for the discretisation of equations (12) and (13).

We consider the Method of Transport as described in section 3 in one space

dimension. The control volume Ωi is the interval [xi−1/2, xi+1/2], then the

contributions in one space dimension for the advection equation read

FΩiΩi+1
=
∫ xi+1/2+∆t a

xi+1/2

u(x+∆t a) dx =
∫ xi+1/2

xi+1/2−∆t a
u(x) dx

for the fluxes from cell Ωi into Ωi+1 and

FΩi+1Ωi =
∫ xi+1/2

xi+1/2−∆t a
u(x−∆t a) dx =

∫ xi+1/2+∆t a

xi+1/2

u(x) dx

from cell Ωi+1 into Ωi.

For the advection-diffusion-equation we have to sum up the fluxes of the

advection and the diffusion parts. For a first order approximation we choose
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u, a and ε̃ constant in Ωi then the fluxes become

FΩiΩi+1
=











































∆t a ui +∆t
a− ε̃

2∆x
(l D0u)i +∆t

a + ε̃

2∆x
(−l D0u)i if a > 0, ε̃ > 0, a− ε̃ > 0

∆t a ui +∆t
a + ε̃

2∆x
(−l D0u)i if a > 0, ε̃ > 0, a− ε̃ < 0

∆t
a + ε̃

2∆x
(−l D0u)i if a < 0, ε̃ > 0, a+ ε̃ > 0

∆t
a− ε̃

2∆x
(l D0u)i if a < 0, ε̃ < 0, a− ε̃ > 0

0 otherwise

FΩiΩi−1
=











































∆t a ui +∆t
a− ε̃

2∆x
(l D0u)i +∆t

a + ε̃

2∆x
(−l D0u)i if a < 0, ε̃ < 0, a− ε̃ < 0

∆t a ui +∆t
a + ε̃

2∆x
(−l D0u)i if a < 0, ε̃ < 0, a− ε̃ > 0

∆t
a + ε̃

2∆x
(−l D0u)i if a > 0, ε̃ < 0, a+ ε̃ < 0

∆t
a− ε̃

2∆x
(l D0u)i if a > 0, ε̃ > 0, a− ε̃ < 0

0 otherwise

with (D0u)i =
ui+1 − ui−1

2∆x
as the central difference operator.

For second order accuracy we reconstruct linearly. For simplicity we only

give the fluxes for the advection equation

FΩiΩi+1
=







∆t (a ui +
∆x

2
(1− λ) a (Du)i) if a > 0

0 otherwise

FΩi+1Ωi =







∆t (a ui+1 −
∆x

2
(1 + λ) a (Du)i+1) if a < 0

0 otherwise,

with λ =
a ∆t

∆x
.
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For the stability analysis we use the von Neumann method. Therefore we

consider the time evolution of a single harmonic En
k e

Iiφ where En
k is the

amplitude of the kth harmonic and φ its phase angle. Inserting this form

into the numerical scheme (12) and (13) and dividing by En
k e

Iiφ the absolute

value of the amplification factor

|G| =
∣
∣
∣
∣
∣

En+1
k

En
k

∣
∣
∣
∣
∣

has to be lower of equal one for all wave-numbers k. For the advection

equation we obtain the restriction λ ≤ 1. This restriction continues to hold

for the advection-diffusion equation and we look for a restriction for ξ =
∆t ε̃

∆x
.

We consider the first order scheme and assume a > 0, ε̃ > 0. For the case

a− ε̃ > 0 the scheme is

un+1
i = un

i − λ(un
i − un

i−1)

−
σ

2

l

2∆x
(un

i+1 − un
i−1 − un

i + un
i−2)

−
θ

2

l

2∆x
(−un

i+1 + un
i−1 + un

i − un
i−2)

= un
i − λ(un

i − un
i−1) + ξ

l

2∆x
(un

i+1 − un
i−1 − un

i + un
i−2)

with σ = λ− ξ and θ = λ+ ξ. Then we obtain for the amplification factor

G = 1− λ(1− e−Iφ) + ξ
l

2∆x
(eIφ − e−Iφ − 1 + e−2Iφ) ,

where ξ
l

2∆x
represents the parabolic part.

Here we obtain the term l
2∆x which represents an additional grid dependence

of G. Since we want all these dependencies to be included in λ and ξ only,

we choose l = ∆x so that ε̃ = ε
∆x .

16



Then we get

G2 = GḠ = cos3φ(2ξ2)

+ cos2φ(2ξ − 2ξ2)

+ cosφ(2λ− 2λ2 − 2ξ2)

+ 1− 2λ+ 2λ2 − 2ξ + 2ξ2

= (cos3φ− 1)2ξ2

+ (cosφ− 1)2(−λ+ λ2 + ξ2)

+ (cos2φ− 1)(λ− λ2 + 2ξ − 3ξ2)

+ 1 .

We have rearranged the terms so that a positive and a negative term have

been combined. Hence to achieve |G| ≤ 1 we obtain a CFL restriction

λ+ ξ ≤ 1 and since ξ < λ it is clear that ξ ≤ 1
2 .

For the second case (a− ε̃) < 0 the scheme has the form

un+1
i = un

i − λ(un
i − un

i−1)

−
σ

2

l

2∆x
(un

i+2 − un
i − un

i+1 + un
i−1)

−
θ

2

l

2∆x
(−un

i+1 + un
i−1 + un

i − un
i−2)

= un
i − λ(un

i − un
i−1)

−
l

4∆x

(

2λ(−un
i+1 + un

i−1) + 2ξun
i + (λ− ξ)un

i+2 − (λ+ ξ)un
i−2

)

.

Here the amplification factor is

G = 1−λ(1−e−Iφ)−
l

4∆x

(

2λ(−eIφ + e−Iφ) + 2ξ + (λ− ξ)e2Iφ − (λ+ ξ)e−2Iφ
)

.
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Multiplying by its conjugate we get

G2 = GḠ = cos4φ(−λ2 + ξ2)

+ cos3φ(2λξ)

+ cos2φ(2λ2 + 2ξ − 2ξ2 − 2λξ)

+ cosφ(2λ− 2λ2 − 2λξ)

+ 1− 2λ+ λ2 − 2ξ + ξ2 + 2λξ

= cos2(cos2φ− 1)(−λ2 + ξ2)

+ (cos3φ− 1)(2λξ)

+ (cosφ− 1)2(−λ+ λ2 + λξ)

+ (cos2φ− 1)2(λ+ 2ξ − ξ2 − 3λξ)

+ 1 .

To achieve G2 ≤ 1 we get the restrictions λ + ξ ≤ 1 and ξ ≤ 1
2 . Note that

although ξ > λ we obtain directly from the analysis the restriction ξ ≤ 1
2 .

The analysis of the second order scheme yields the same restrictions. In order

to adjust ξ and λ and thus adjust a and ε̃ we choose l = ∆x
2 so that the CFL

restriction for ξ reads

ξ =
2ε∆t

∆x2
≤ 1 .

Since we are using an explicit time stepping we get an inherent stiffness

problem for large ε with respect to ∆x.

4.4 Two-step time integration

The introduction of third derivatives into the scheme to obtain second order

accuracy in time is not very satisfying because the computational stencil

gets large and they could lead to dispersive effects. They had to be used

because the one stage time integration does not yield the second order term

of the diffusion part. Hence another possibility is to replace it by a two-step

integration method. However we have to be careful because in the case of

constant coefficient the numerical scheme gives the exact solution for a CFL
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number equal to one even in first order. Hence the modification of the time

integration can result in a worser approximation.

Let us consider again the Taylor expansion (14) and the time derivatives (15)

and (16). The second derivative is given by

utt = −auxt + εuxxt .

The sequence of time and space derivatives can be exchanged and with (15)

we obtain

utt = −a (−a ux + εuxx)x + ε (−a ux + εuxx)xx
= a2 uxx − a εuxxx

︸ ︷︷ ︸
− a εuxxx + ε2 uxxxx
︸ ︷︷ ︸

Advection part Diffusion part

.

The first two terms on the right hand side are dominated by the advection

and the others by the diffusion. For that reason the advection part shall

be captured by the advection equation (12) and the diffusion part by the

equations (13). Since the term εuxxxx which caused the correction term is

contained in (13) the improvement for the time integration has to be done

for this part. This will be achieved by a two-step time integration. In the

first step the solution un will be decomposed into R1, R2 and L. For solving

the advection part we introduce the term

S =
∆t

2
∇ · (ε(∇u)T )

to take the term ε uxx into account and solve the equation

(R2)t +∇ · ((R2 + S)aT ) = 0 . (21)

Still in the first step with the same decomposition we solve the diffusion part

1

k

{

(R1 + αLni)t +∇ · ((R1 + αLni)(−ε H−1 ni)
T )
}

= 0 i = 1, ..., k . (22)

From the entire solution of this first step a new decomposition is constructed

and equation (22) is solved with this new solution for a time step ∆t
2 . Note

that we have replaced the propagation velocity (a − ε H−1 ni)T of (13) by
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(−ε H−1 ni)T because the superposition of a and ε is considered by S for the

advection part and by the two-step integration for the diffusion part.

The scheme looks as follows: Let F adv
ΩiΩj

(un,∆t) be the numerical flux of

equation (21) and F diff
ΩiΩj

(un,∆t) of equation (22). Then the numerical time

integration can be written as

• First step:

ûn+1
Ωi

= un
Ωi

−
1

|Ωi|
∑

j∈V

(

F adv
ΩiΩj

(un,∆t)− F adv
ΩjΩi

(un,∆t)
)

ũn+1
Ωi

= ûn+1
Ωi

−
1

|Ωi|
∑

j∈V

(

F diff
ΩiΩj

(un,∆t)− F diff
ΩjΩi

(un,∆t)
)

• Second step:

un+1
Ωi

=
ûn+1
Ωi

+ ũn+1
Ωi

2
−

1

|Ωi|
∑

j∈V

(

F diff
ΩiΩj

(ũn+1,
∆t

2
)− F diff

ΩjΩi
(ũn+1,

∆t

2
)
)

.

The discretisation of this scheme yields a solution which is a second order

approximation of the exact solution of (11) yet the viscous fluxes have to be

approximated of first order in time and space only. Since the error and sta-

bility analysis for the equations (21) and (22) is the same as for the equations

(12) and (13), they will not be carried out here.

With regard to the Navier-Stokes equations we note that the more general

equation

∂

∂t
(ρu)+

∂

∂x
(a(ρu))+

∂

∂y
(b(ρu)) =

∂

∂x

(

ερ
∂

∂x
(u+ v)

)

+
∂

∂y

(

ερ
∂

∂y
(u+ v)

)

,

(23)

where ρ = ρ(x, t) and v = v(x, t) are known functions, will be solved with

second order accuracy, too.

5 The Navier-Stokes equations

The Euler equations are used to simulate non-viscous fluids. They are ob-

tained from the Navier-Stokes equations by neglecting the second order terms
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like shear stresses and heat conduction terms. But as Prandtl showed in his

boundary layer approximation this is not the approximation of physical flows

in the limit of vanishing viscosity. However, they are a valid approximation

for flows at high Reynolds numbers outside this viscous boundary region.

Since the Navier-Stokes equations are the most general description of a new-

tonian fluid they have to be used if the boundary layer cannot be neglected

or clearly if the viscosity and the heat conduction are large. The complete

Navier-Stokes equations are

Ut +∇ · F = ∇ · G,

with

G(U,∇U) =






0T

τ
uT τ




+






0T

0

κ(∇T )T




 , (24)

τ =

(

τ11 τ12
τ12 τ22

)

= µ(∇u+ (∇u)T ) + λ I∇ · u and ∇u :=

(

ux vx
uy vy

)

.

µ, λ and κ are the dynamic viscosity, second viscosity and thermal conductiv-

ity coefficients respectively. They are functions of the fluid state essentially

of the temperature and only weakly coupled to the pressure. To determine

the coefficients we assume only an influence by the temperature and use

Sutherland’s formula to determine the dynamic viscosity

µ = µ0 T
3/2 1 + Sl

T + Sl
with Sl =

110K

T0
,

where µ0 and T0 are to be given dependent on the physical problem.

For the relation between µ and λ we can assume that the Stokes relation

λ = −
2

3
µ

holds. Furthermore we assume a constant Prandtl number so that we achieve

a simple relation between the viscosity and the thermal conductivity coeffi-

cient

κ =
µcp
Pr

.
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The equation of state combines the temperature and the pressure

p = ρRT ,

with the gas constant R.

5.1 Decomposition into advection equations

In this section we give a decomposition of G into a finite number of advection

equations which corresponds to the ansatz in section 4.1. Therefore we first

need a propagation velocity which is related to the diffusion. As mentioned

in section 4 the thermal diffusivity and the kinematic viscosity represent the

ε of the diffusion equation. Since the relation between the kinematic viscosity

and the dynamic viscosity is

ν =
µ

ρ
,

and between the thermal diffusivity and conductivity

χ =
κ

ρcp

we can rewrite G as

G(U,∇U) = ν






0T

τ̃
uT τ̃




+ χ






0T

0

cpρ(∇T )T






with τ = ντ̃ .

The coefficients ν and χ have a fixed proportion because we are assuming

a fixed Prandtl number. Therefore it is sufficient to choose one ”diffusion-

velocity” only. If we take the quantity ν we can introduce as transport value

of the diffusive fluxes

Lv =












0T

τ̃
uT τ̃




+







0T

0
ρ

Pr
(∇T )T












H .

The state vector U is

U = R1 +R2 +
1

k

k
∑

i=1

(L + Lv)ni .
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From this term we get additionally to the equations (7) and (8) k advection

equations of the form

Φv(ni) =
1

k

{

(αLvni)t +∇ · ((αLvni)(u+H−1niν)
T )
}

= 0 , (25)

so that the Navier-Stokes equations can be rewritten as

Φ2 +
k
∑

i=1

Φn(ni) =
k
∑

i=1

Φv(ni) .

Therefore the (2k+1) advection equations (7), (8) and (25) are a linearisation

of the Navier-Stokes equations.

Note that the discretisation in time of this equations yields only a first or-

der approximation of the exact solution for two reasons: first due to the

linearisation process of the system like for the Euler equations and second

due to the fact that the discretisation of equations (25) leads to a first order

approximation of the solution only corresponding to the problem considered

in section 2.2.

To achieve second order accuracy a correction term Kv is introduced and

Lv is replaced by (Lv +Kv). But this correction term is too complicated to

be printed here completely. The correction term for the mass equation is a

correction for the linearisation error only since this equation is hyperbolic.

It has the form

Kρ =








∂τ11
∂x

+
∂τ12
∂y

∂τ12
∂x

+
∂τ22
∂y







.

Adding all correction terms the local approximation error is O(∆t3). Note

that the correction terms for the momentum and energy include third deriva-

tives of the conservative variables.

The CFL condition for the Navier-Stokes equation is

∆t ≤
∆x

vmax

with

vmax = max(|u|∞ + c, |u+ εH−11|∞) ,
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where H is different from the advection-diffusion case. Here we have to

choose

lx =
∆x

4 + c∆x
ε

and ly =
∆y

4 + c∆x
ε

to achieve a stable scheme.

5.2 Decomposition into advection-diffusion equations

The decomposition in the previous section yields third derivatives into the nu-

merical scheme like for the decomposition of the advection-diffusion equation

in section 4.1. To avoid them the Navier-Stokes equations are decomposed

into advection-diffusion equations of the form of (23). These equations will

be solved with the two-step time integration of section 4.4 which is of second

order accuracy. There remains an error due to the linearisation of the system

which will be captured again by correction terms. The advantage compared

with the linearisation of section 5.1 is that this correction terms get much

simpler and do not include third derivatives.

Two types of diffusion mechanisms are contained in the Navier-Stokes equa-

tions: the kinematic and the thermal diffusion. Since these diffusion co-

efficients and therefore the diffusion velocities are in general different, the

corresponding advection-diffusion equations have to be found. Therefore the

term R1 of the Euler equations will be split into a kinetic and an internal

energy part

R1 = Rk

1 +Ri

1 .

The kinetic energy term Rk
1 is similar to R2. It differs only by a constant

factor

Rk

1(U) =
1

γ






ρ
ρu

ρu2/2




 .

The term Ri
1 represents the internal energy

Ri

1(U) =
1

γ






0
0

ρcpT




 ,
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where T is the temperature.

With this decomposition we get the following linear advection-diffusion equa-

tions

(R2)t +∇ ·
(

R2u
T
)

= ∇ · (V2ν) (26)

(Rk
1 + Lni)t + ∇ ·

(

(Rk
1 + Lni)(u+ cni)

T
)

= ∇ ·
(

Vk
1 ν

)

(27)

(Ri
1)t + ∇ ·

(

(Ri
1)(u+ cni)

T
)

= ∇ ·
(

Vi
1χ
)

(28)

with

Vk
1 =

ρ

γ











0T

(∇u)T

uT (∇u)T




+ (1 + λ′)






0T

(∇u)
uT (∇u)









 ,

Vi
1 = ρcp






0T

0

(∇T )T




 ,

V2 = ρ
γ − 1

γ











0T

(∇u)T

uT (∇u)T




+ (1 + λ′)






0T

(∇u)
uT (∇u)











and λ′ =
λ

µ
.

The Navier-Stokes equations can be rewritten as sum of these equations.

Hence with (26), (27) and (28) we obtain a linearisation of the Navier-Stokes

equations with (2k + 1) advection-diffusion equations, instead of (k + 1)

advection equations for the Euler equations.

Note that the advection part for Rk
1 and Ri

1 can be treated together as for

the Euler equations, only the diffusion part has to be solved separately.

Although the truncation error of the semi-discretised advection-diffusion equa-

tions is of order ∆t3 the linearisation yields only a first order approximation

of the numerical solution. This lack can be solved in the same manner as for

the Euler equations by introducing correction terms. Therefore we replace L

by (L+K) and get with the right choice of K a second order approximation

in time. As mentioned before the correction terms become much simpler
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compared to the case in section 5.1:

k1
ρ = −

∆t (ρ ccx + ρ uyvγ + uuxρ γ − τ11;xγ − τ12;yγ)

2 cγ

k2
ρ = −

∆t (vvyρ γ + ccyρ+ vxuρ γ − τ12;xγ − τ22;yγ)

2 cγ

k1
ρu = −

∆t

2 cγ
(ρ vccy + ρ vyc

2γ − ρ c2vy + ρ uxc
2γ − 2 ρ c2ux + uρ ccx−

γ2uxτ11 + γ uxτ11 − τ12vxγ2 + γ vxτ12 − τ12γ2uy + γ uyτ12 − γ2vyτ22+

γ vyτ22 − γ2(κxTx + κTxx) + γ (κxTx + κTxx)− (κyTy + κTyy)γ2+

γ (κyTy + κTyy)) + uk1
ρ

k2
ρu =

∆t cρ uy

2 γ
+ uk2

ρ

k1
ρv =

∆t cρ vx
2 γ

+ vk1
ρ

k2
ρv = −

∆t

2 cγ
(ρ vccy + ρ vyc

2γ − 2 ρ c2vy + ρ uxc
2γ − ρ c2ux + uρ ccx−

γ2uxτ11 + γ uxτ11 − τ12vxγ2 + γ vxτ12 − τ12γ2uy + γ uyτ12 − γ2vyτ22+

γ vyτ22 − γ2(κxTx + κTxx) + γ (κxTx + κTxx)− (κyTy + κTyy)γ2+

γ (κyTy + κTyy)) + vk2
ρ

k1
ρE =

∆t c (ρ ccx − uyρ v − uρ ux + τ11;xγ + τ12;yγ)

2 γ (γ − 1)
+ uk1

m + vk1
n +

(u2 + v2) k1
ρ

2

k2
ρE =

∆t c (−vvyρ+ ccyρ− vxρ u+ τ12;xγ + τ22;yγ)

2 γ (γ − 1)
+ uk2

m + vk2
n +

(u2 + v2) k2
ρ

2

with K = (k1,k2).

6 Numerical results

The first set of calculations verifies that the approximation for the advection-

diffusion equation is of second order. In the second part the validation of
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the Navier-Stokes equations is performed. An analytic solution of the incom-

pressible Navier-Stokes equations will be investigated and the approximation

order will be checked. Furthermore, the flow formation in a Couette motion

is calculated. For the velocity distributions in this flow an analytic solution

can be obtained which will be checked against the numerical solution.

6.1 Advection-diffusion equation

For the advection-diffusion equation the solutions of the two approaches,

with correction terms or two-step time integration, will be compared with an

exact solution. Therefore we consider the C∞-function

u = exp(x− at+ y − bt− 2 + 2εt)

which we choose for the initial and boundary conditions. The computational

domain is [−2, 2] × [−2, 2]. We set a = 0.2, b = −0.2 and ε = 10−4. The

solution is computed on different meshes beginning with 20 × 20 cells and

two steps with ∆t = 0.75.

For the first approach two calculations will be performed. In the first case

no correction terms are used, but the advection equations are solved with

second order accuracy. In the second case the correction terms are switched

on. We compare the numerical solution with the exact solution and calculate

the error in the L1- and L∞-norm:

Without correction terms
Error Order

n×m L1 L∞ L1 L∞

20× 20 1.12e-7 1.45e-6
40× 40 7.80e-8 1.06e-6 0.53 0.46
80× 80 2.32e-8 3.32e-7 1.75 1.67
160× 160 6.34e-9 9.31e-8 1.87 1.83
320× 320 1.82e-9 2.70e-8 1.79 1.78
640× 640 5.65e-10 8.35e-9 1.69 1.69
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With correction terms
Error Order

n×m L1 L∞ L1 L∞

20× 20 1.22e-7 1.58e-6
40× 40 7.34e-8 9.98e-7 0.73 0.66
80× 80 2.10e-8 3.00e-7 1.81 1.73
160× 160 5.25e-9 7.71e-8 2.00 1.96
320× 320 1.28e-9 1.90e-8 2.03 2.02
640× 640 2.95e-10 4.37e-9 2.12 2.12

We observe that without the use of the correction terms the order of the

method is clearly distinct from two.

For the second approach there are no correction terms so that only one

calculation will be carried out to show that the approximation is of second

order:

Error Order
n×m L1 L∞ L1 L∞

20× 20 1.25e-7 1.62e-6
40× 40 7.18e-8 9.71e-7 0.80 0.73
80× 80 2.02e-8 2.87e-7 1.83 1.76
160× 160 4.85e-9 7.05e-8 2.06 2.03
320× 320 1.09e-9 1.58e-8 2.15 2.15
640× 640 2.06e-10 2.93e-9 2.40 2.43

6.2 Navier-Stokes equations

For validating the Navier-Stokes equations the first test is to set the viscosities

to zero and compare with the solution of the Euler equations. It turns out

that we get two identical solutions.

For the validation of the viscous terms an analytical test problem is chosen.

Assuming density and viscosity constant an exact solution of the incompress-
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ible Navier-Stokes equations is defined by

u = −A cos(x) sin(y) exp(−2µ/ρ t)
v = A sin(x) cos(y) exp(−2µ/ρ t)
p = p0 − A2/4ρ (cos(2x) + cos(2y)) exp(−4µ/ρ t) ,

where p0 is a reference pressure and A is the amplitude. Since we are solving

the compressible Navier-Stokes equations we will obtain a different solution.

This errors can be computed by comparing the time derivatives of the Navier-

Stokes equations when the exact solution is applied with the time derivative

of the analytical solution itself. The initial solution is divergence free so that

after one time step the solutions for the velocities are still correct. However,

the density will not stay constant as in the analytic solution which leads

to a first order error. The energy of the compressible solution has to be

determined out of the pressure for the incompressible solution. This leads

after one time-step to a deviation

A2 2

(γ − 1)
µ exp(−4µ/ρt)

(

cos(y)2 − 1

+2γ
(

1− cos(y)2 − cos(x)2 + cos(x)2 cos(y)2
)

+ cos(x)2 − 2 cos(x)2 cos(y)2
)

−A3 ρ

(γ − 1)
exp(−6µ/ρt) sin(y) sin(x)(cos(y)2 − cos(x)2) .

This term is independent from the grid spacing and its size is mainly deter-

mined by the amplitude A.

For the calculation we introduce nondimensional variables, where the trans-

formation into nondimensional variables should lead to values of about 1 for

the quantities ρ, u and T . This can be achieved by setting R =
1

γMa2
with

γ = 1.4 for air, so that the flow is characterized by a reference Mach number

and Reynolds number. We choose

Ma = 0.2
Re = 1
κ = 0 (Pr = ∞)
A = 0.04 .

Due to the restriction of the explicit time integration the time step size is

for that configuration about one to two orders smaller than the grid spacing.
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Hence we can only check the spatial error by computing one time step with

the same ∆t on grids with a different number of cells. For a second order

approximation the error has to be a quarter of the error on the coarser grid

when the number of cells will be doubled. We choose the domain [0, 2π] ×
[0, 2π]:

∆t = 2 · 10−4

n×m Error (L1) Order (L1)
ρ ρu ρv ρE ρ ρu ρv ρE

20× 20 3.92e-8 4.17e-8 4.17e-8 2.78e-6
40× 40 1.96e-8 1.02e-8 1.02e-8 1.77e-6 1.00 2.03 2.03 /
80× 80 9.72e-9 1.85e-9 1.81e-9 1.35e-6 1.01 2.47 2.49 /

n×m Error (L∞) Order (L∞)
ρ ρu ρv ρE ρ ρu ρv ρE

20× 20 9.05e-8 1.10e-7 1.09e-7 4.89e-6
40× 40 4.77e-8 2.74e-8 2.73e-8 3.45e-6 0.93 2.00 1.99 /
80× 80 2.35e-8 5.13e-9 5.13e-9 3.00e-6 1.02 2.42 2.41 /

∆t = 2 · 10−5

n×m Error (L1) Order (L1)
ρ ρu ρv ρE ρ ρu ρv ρE

80× 80 9.90e-10 2.65e-10 2.63e-10 1.36e-7
160× 160 4.94e-10 6.41e-11 6.29e-11 1.21e-7 1.00 2.05 2.06 /
320× 320 2.46e-10 7.77e-12 6.46e-12 1.16e-7 1.01 3.04 3.29 /

n×m Error (L∞) Order (L∞)
ρ ρu ρv ρE ρ ρu ρv ρE

80× 80 2.38e-9 7.35e-10 7.37e-10 3.01e-7
160× 160 1.17e-9 1.92e-10 1.92e-10 2.90e-7 1.02 1.93 1.94 /
320× 320 5.96e-10 2.58e-11 2.57e-11 2.88e-7 0.98 2.90 2.90 /

To illustrate the influence of the correction terms for the Navier-Stokes equa-

tions we consider a further test case. An initial solution with small per-

turbations in density, velocity and pressure is taken so that the solution

keeps smooth in the considered time interval. The computational domain is

[−2, 2]× [−2, 2] and the time-step on the coarsest mesh is ∆t = 0.3. We use
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the radial symmetric function

z =









zi +
(

r

0.4

)3

(zo − zi)

(

10− 15
(

r

0.4

)

+ 6
(

r

0.4

)2
)

; r ≤ 0.4

zo ; r > 0.4

where r is the radius around the center of the perturbations which are located

at
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1

2

)T

,
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1
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1

2
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,
(
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1

2
,
1
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.

For each of this point we take for z one of the following quantity

ρi = 1.1 , ρo = 1.0
ui = 0.1 , uo = 0.0
vi = −0.1 , vo = 0.0
pi = 1.0 , po = 0.9 .

We interpret them again as non-dimensional variables. To obtain a temper-

ature of about 1 and fulfill the state equation we get R = 1 because the

pressure is already fixed. This leads to a reference Mach number Ma ≈ 0.85.

For the reference values T0 and µ0 we set

T0 = 273K and µ0 = 10−3

which corresponds to a Reynolds number of about 100. The viscous velocities

therefore varies in a range from about 5 ·10−3 for the 20×20 grid to 1.6 ·10−1

for the 640 × 640 grid. For comparison the speed of sound has values of

about 1.1, so that the time-step will be mainly restricted by the inviscid part

of the equations. We consider only the approach of the decomposition into

advection-diffusion equations. The results are shown below:
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With correction terms for Euler equations only
n×m Error (L1) Order (L1)

ρ ρu ρv ρE ρ ρu ρv ρE

40× 40 2.28e-4 1.70e-4 1.42e-4 7.23e-4 2.18 2.19 2.41 1.96
80× 80 8.52e-5 5.27e-5 5.38e-5 1.84e-4 1.42 1.69 1.41 1.98
160× 160 2.80e-5 1.80e-5 1.79e-5 5.99e-5 1.60 1.55 1.59 1.62
320× 320 8.38e-6 5.38e-6 5.37e-6 1.71e-5 1.74 1.74 1.74 1.81

n×m Error (L∞) Order (L∞)
ρ ρu ρv ρE ρ ρu ρv ρE

40× 40 3.85e-3 3.41e-3 3.26e-3 1.38e-2 2.20 1.79 1.82 0.83
80× 80 1.86e-3 1.34e-3 1.34e-3 3.33e-3 1.05 1.35 1.28 2.05
160× 160 4.59e-4 4.95e-4 4.95e-4 1.40e-3 2.02 1.44 1.44 1.25
320× 320 1.62e-4 1.77e-4 1.77e-4 5.79e-4 1.50 1.48 1.48 1.27

With correction terms for Navier-Stokes equations
n×m Error (L1) Order (L1)

ρ ρu ρv ρE ρ ρu ρv ρE

40× 40 1.30e-3 7.89e-4 7.47e-4 2.29e-3 1.01 1.02 1.03 1.12
80× 80 2.31e-4 1.65e-4 1.70e-4 4.56e-4 2.49 2.26 2.14 2.33
160× 160 4.27e-5 2.91e-5 2.84e-5 9.27e-5 2.44 2.50 2.58 2.30
320× 320 1.20e-5 5.80e-6 5.49e-6 2.18e-5 1.83 2.33 2.37 2.09

n×m Error (L∞) Order (L∞)
ρ ρu ρv ρE ρ ρu ρv ρE

40× 40 2.58e-2 8.50e-3 8.34e-3 3.17e-2 / / / /
80× 80 2.70e-3 2.02e-3 2.10e-3 7.79e-3 3.26 2.07 1.99 2.02
160× 160 1.35e-3 8.12e-4 8.12e-4 1.48e-3 1.00 1.32 1.37 2.40
320× 320 3.04e-4 2.25e-4 2.25e-4 3.37e-4 2.15 1.85 1.85 2.13

As the last test problem the flow formation in Couette motion is calculated.

The configuration consists of two parallel walls with a distance h. The gas is

at rest and at the time t = 0 one wall will be impulsively accelerated to the

velocity u0. If we assume the flow to be incompressible an exact solution of

the time dependent velocity profiles is known (see [9]). In the limit t → ∞
the velocity profile will be the linear distribution of the steady state. With
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the boundary conditions

u = u0 for y = h
u = 0 for y = 0 ,

the velocity profiles are given by

u

u0
=

∞
∑

n=0

erfc(2nη1 + η)−
∞
∑

n=0

erfc(2(n+ 1)η1 − η) ,

where η =
y

2
√
νt

, η1 =
h

2
√
νt

and erfc is the complementary error function.

We set the reference values

Ma = 0.2
Re = 1000
T0 = 273K .

The profiles are approximately similar and will remain so as long as the

boundary layer has not spread to the stationary wall but the simulation has

not been carried out so far. The comparison of the numerical and exact

solution for different times is presented in Fig. 3, where the velocities are

scaled with respect to u0 and y with respect to the distance h. The numerical

solution coincides in all cases very well with the exact one. This indicates that

the implementation is also time accurate and describes the correct viscosity.
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Figure 3: Flow formation in Couette motion at various time levels: Compar-
ison of numerical and exact solution
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