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Abstract

The idea of the method of transport is introduced by means of non-linear

conservation laws. The systems are rewritten in an advection form accounting

for the characteristic propagation directions. A straightforward linearization

of this advection form leads to a genuinely multi-dimensional method. Ap-

proximations using infinitely many or a finite number of propagation direc-

tions are shown.



1 Introduction

We want to solve numerically nonlinear systems of hyperbolic partial differential equa-
tions. For simplicity we assume that one of the independent variables is time while the
others are space variables. Typical examples will be the unsteady Euler equations of gas
dynamics, the shallow water equations and the Magneto-Hydrodynamic equations, MHD.
We shall mainly be concerned with the Euler equations and indicate very briefly modi-
fications needed for the shallow water equation and MHD. The main difference between
hyperbolic and parabolic equations is that in the hyperbolic case information travels at
finite speed while in the other case the speed is infinite. Thus, when it comes to solv-
ing the equations numerically, explicit methods are in general used in the hyperbolic case
while time implicit schemes are needed for the parabolic case. Most numerical approaches
start with the one-dimensional problem where one has finitely many propagation speeds,
namely the Eigenvalues of the Jacobian of the flux function.

In more than one space dimension one generally introduces some cells, e.g. finite-volumes
or finite-elements. Due to the mainly one dimensional solution operators the numerical
propagation is performed, according to the geometry of the cells. Since cells usually consist
of finitely many cell-vertices, this means that only finitely many transport directions are
numerically accounted for. However for hyperbolic systems in several space dimensions
one has infinitely many propagation direction, e.g. sound waves in a gas propagate in all
space directions.

In this presentation we take the approach of Fey, [1, 2, 3, 5]. One rewrites the equations
in what I shall call the advection form. This is a formulation of the equations where one
can see more easily the transport directions. This form is independent of any discretiza-
tion. Since infinitely many transport directions are involved this form will contain some
integrals. This will be done in Section 2. Unfortunately, when one uses the advection
form for designing a numerical scheme the computation of the integrals are rather time
consuming. To reduce this computational effort Fey has introduced an advection form

with finitely many advection directions. This will be presented in Section 3. Despite the
fact that only finitely many advection directions are visible in this form the equation still
represent the full set of equations. This will then be different in Section 4 where one does
a first approximation by replacing the full set of equations by a finite number of linear
advection equations where one freezes the coefficients at time t. This approximate
system has a solution which differs at time t + ∆t from the exact solution by O(∆t2).
Hence any discrete version of this approximate system will lead to a numerical scheme
of first order only. In order to be able to develop a second order scheme we modify the
approximate system such that its solution differs after a time step ∆t by O(∆t3) from the
exact solution. This modification is made for regions where the solution is smooth and
Taylor series expansions can be used.

In Section 5 we explain the space discretization, and the overall scheme under the assump-
tion that a transport scheme for the linear advection equation exists. Different realisation
of the approximation of the state vector will then lead to an overall first order scheme
formulated in Section 5 and an extended second order scheme described in Section 6. In
Section 7 we briefly discuss the problem of avoiding oscillations near discontinuities using
limiters. In the final section we give some conclusions.
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2 Advection form of the Euler equation

We consider systems of hyperbolic conservation laws of the form

(2.1)
∂U

∂t
+∇ · F(U) = 0 ,

where U is the state vector. The divergence acts on the rows of the flux matrix F(U).
We give four examples:

i) Euler equations of gas dynamics in lRN

Let u ∈ lRN denote the velocity vector. Then the vector of state U ∈ lRN+2 and
the flux matrix F(U) ∈ lR(N+2)×N are given by

(2.2a) U =




ρ
ρu
E



 , F(U) = UuT + cL(U)

where

(2.2b) L(U) =
p

c




OT

I

uT



 .

Here ρ is the density, E is the total energy, p the pressure, c is the speed of sound
given by c2 = pγ/ρ and γ is the ratio of specific heats. O is the zero vector and
I the identity matrix of appropriate dimensions. (2.1), (2.2) represent a system of
N +2 nonlinear hyperbolic conservation laws and one has to close this system with
the equation of state

(2.3) p = (γ − 1)
(
E − ρ

uTu

2

)
.

ii) Shallow water equations in lRN

Let again u ∈ lRN denote the velocity vector. Then the vector of state U ∈ lRN+1

and the flux matrix F(U) ∈ lR(N+1)×N are given by

(2.4a) U =

(
h
hu

)

, F(U) = UuT + cL(U)

where

(2.4b) L(U) =
ch

2

(
OT

I

)

.

Here h is the total depth of the fluid, c is the celerity given by c2 = gh and g is the
constant of gravity. Again O and I are the zero vector and the identity matrix of
appropriate dimensions. Note that the isentropic Euler equations can be put in the
same form.
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iii) Magneto-Hydro-Dynamic equations in lRN

Let B ∈ lRN denote the magnetic field and b = B/
√
ρ the propagation speed of the

Alfvén waves. Let again u ∈ lRN be the velocity vector. Then the vector of state
U ∈ lR2N+2 and the flux matrix F(U) ∈ lR(2N+2)×N can be given, using the notation
of Fey, [7] by

(2.5a)
U =





ρ
ρu
E
B



 , F(U) = A0u
T+

A1(u+ b)T +A2(u− b)T

+ c̃L(U)

where

(2.5b) A0 =





ρ
ρu
E
0



 , A1 =
ρ

2






0
−b

−uTb
1
√
ρ
(b− u)






, A2 =
ρ

2






0
b

uTb
1
√
ρ
(b+ u)






and

(2.5c) L(U) =
p̃

c̃





OT

I

uT

O



 .

Here ρ is the density. p̃ is related to the gas dynamical pressure p by

p̃ = p+BT B/2

and c̃ is the new speed of sound given by c̃2 = p̃γ/ρ where γ is the same as in
the Euler equation. O is the zero vector or matrix and I the identity matrix of
appropriate dimensions. We have to close the system given by (2.1), (2.5) with the
equation of state

(2.6) E =
p

γ − 1
+ ρ(uTu+ bTb)/2 .

Note that if the magnetic field B is divergence free at the initial condition, then it
will be divergence free for all times. It is the challenge to construct explicit finite
volume methods that fulfill this property also in the numerical solution.

iv) Wave equation in lRN

A simplified version of the Euler question, that includes lots of the multidimensional
properties, i.e. infinitely many propagation directions, is the system of wave equa-
tions. They are a linear system with constant coefficients. In conservation form the

3



state vector U ∈ lRN+1 and the flux matrix F (u) ∈ lR(N+1)×N are given by

U =

(
φ
u

)

, F(U) = cL(U)

with

L(U) =

(
uT

φ I

)

.

Here φ is the pressure density perturbation and u ∈ lRN the velocity perturbation.

The common feature of these four examples is that F(U) always has the structure

(2.8) F(U) =
k∑

i=1

Aia
T
i + cL

with

(2.9)
k∑

i=1

Ai = U .

Up to now we have just rewritten the flux function F and the state vector U. Observe
that the representation of F(U) as given in (2.8) is obviously not unique.

Let us now explain what is meant by an advection form. Clearly the linear equation

(2.10) Ut +∇ · (UaT ) = 0

describes the transport of the state vector U in direction of the vector a. More generally
one can introduce a superposition of several advections. To do this the state vector U is
decomposed into different parts

(2.11) U =
k∑

i=1

Ai

and each part is advected in the direction ai, i.e. the flux F(U) would be

(2.12) F(U) =
k∑

i=1

Aia
T
i .

Hence, with (2.11) and (2.12) the equation

(2.13) Ut +∇ · F(U) = 0

can be written in the form

(2.14)
k∑

i=1

((Ai)t +∇ · (Aia
T
i )) = 0 .
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We shall say that (2.14) is the advection form of equation (2.13). Clearly the two
equations (2.13) and (2.14) are identical. Only later when we shall use a numerical
scheme, we shall replace at time t (2.13) by decomposing U(t) according to (2.11) and
transport each part Ai(t) independently by the advection equation

(2.15) (Ai)t +∇ · (Aia
T ) = 0 .

Because F(U) in (2.12) has only k transport directions and constant velocities one has

(2.16) U(t+∆t) =
k∑

i=1

Ai(t +∆t) .

From now on we restrict ourselves to the Euler equations. Let S = {s ∈ lRN
∣∣∣ ‖s‖2 = 1}

and |S| denotes the area of S. n represents a unit vector. We decompose U as follows:

(2.17) U = R2 +
1

|S|

∫

S
R1 ds+

N

|S|

∫

S
Ln ds .

R1,R2 are natural extensions of the right eigenvectors of the Jacobian of the flux function
in one space dimension, see [1, 3, 5] and are given by

(2.18) R1(U) =
1

γ




ρ
ρu
ρH



 , R2(U) =
γ − 1

γ




ρ
ρu

ρuTu/2



 .

Clearly

(2.19)
1

|S|

∫

S
ds = 1,

1

|S|

∫

S
n ds = 0,

1

|S|

∫

S
nnT ds = N I .

Note, that if N = 1 one has to replace the integrals in an obvious fashion by a sum.

The decomposition in (2.17) is done according to different advections of the different
terms. To each term the advection is described by the corresponding advection operator:

(2.20a) φ1(n) :=
∂R1

∂t
+∇ · (R1(u

T + cnT )), for all n, ‖n‖2 = 1

(2.20b) φ2 :=
∂R2

∂t
+∇ · (R2(u

T ))

(2.20c) φ3(n) :=
∂(Ln)

∂t
+∇ · (Ln(uT + cnT )), for all n, ‖n‖2 = 1 .

We call these advection operators because they lead to advection equations if each by
itself is set to 0, as one shall do it later. The full Euler equation can be written in what
we call advection form

(2.21) φ2 +
1

|S|

∫

S
φ1(n) ds+

N

|S|

∫

S
φ3(n) ds = 0 .

5



For a more detailed derivation, see [4, 5]. We call it advection form since one can see
in the decomposition (2.17) of U the parts of U which are transported according to the
advection operators by u and u + cn. Observe that there are infinitely many transport
directions and that the advection form is not unique.

For the shallow water equations one can derive formulas which are basically of the same
form. For the MHD equations the situation is more complicated. Moreover, for the
numerical method of transport we can account only for finitely many transport directions
and this can be done for the MHD equations also.

3 Advection form with finitely many directions

In order to be able to use the advection form (2.16), (2.20) one would have to compute
the integral in (2.20) exactly. In Fey’s first version of the transport scheme this was done
[2, 3, 5]. It was possible to do it because in each computational cell, U was assumed to
be constant. However the resulting scheme becomes computationally expensive. Hence
one might replace the integrals in (2.16), (2.20) by quadrature formulas. This could be
interpreted as integrating over the mach cone numerically. Since any such integration is
affected by errors we might lose conservation. To avoid this Fey introduces an advection
with a finite number of advection operators. The operators still add up to the full set of
equations and hence conservation is guaranteed.

Again we restrict ourselves to the Euler equation. Instead of admitting infinitely many
advection directions u,u+ cn, for all unit vectors n we could restrict ourselves to finitely
many, say u and u+ cni, i = 1, 2, . . . , k where ‖ni‖ = 1, see e.g. [4]. We make here as in
[4] directly the more general Ansatz for approximating the acoustic waves

(3.1) Ran (α,ν) = R1 + αLν, α ∈ lR, ν ∈ lRN .

The index an stands for numerical acoustic wave. We choose k directions νi and corre-
sponding weight/factors αi and wi such that

(3.2) R1 =
k∑

i=1

wiRan(αi,νi) .

Clearly we will need that

(3.3)
k∑

i=1

wi = 1

and

(3.4)
k∑

i=1

wiαi Lνi = 0

6



because it is a discrete version of

(3.5)
N

|S|

∫
Ln ds = 0 .

To each of these numerical acoustic waves belongs an advection operator

(3.6) φan(αi,νi) :=
∂Ran(αi,νi)

∂t
+∇ · (Ran(αi,ν i)(u

T + cνT
i )), i = 1, 2, . . . , k ,

i.e. one thinks of Ran(αi,νi) to be advected by u+ cνi. In order to derive the advection
form of the Euler equations with finitely many directions we decompose U as follows

(3.7) U = R2 +
k∑

i=1

wi Ran(αi,νi)

and request that

(3.8) φ2 +
k∑

i=1

wi φan(αi,νi) = Ut +∇ · F(U) = 0

where F is the Euler flux matrix defined in (2.2). This leads to the conditions

(3.9)
k∑

i=1

wi αi νi = 0 ,

(3.10)
k∑

i=1

wi αi νi ν
T
i = I

and

(3.11)
k∑

i=1

wi ν i = 0 .

Observe that up to now the equations (3.8) are still the Euler equations. No discretisation
has been made, it is only that we have written the equations in a form, which from a
formal point of view, gives a preference to certain directions. Of course we shall exploit
this picture in our numerical approximation in the next section. Up to now the choice
of ν i,αi, wi is free, especially it does not depend on any space discretization. Only the
equations (3.3), (3.9), (3.10), (3.11) have to be satisfied.

Just for an illustration we give two choices:

i) k = 2N , wi = 1/k, αi = N , ν i = ni, where ni are the unit vectors in coordinate
directions, e.g. if N = 2

n1 =

(
1
0

)

, n2 =

(
0
1

)

, n3 =

(
−1
0

)

, n4 =

(
0

−1

)

.
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ii) k = 2N , wi = 1/k, αi = 1, νi = ñi, where ñi are the vectors whose components are
either 1 or −1, e.g. if N = 3

ñ1 = −ñ8 =




1
1
1



 , ñ2 = −ñ7 =




−1
1
1



 , ñ3 = −ñ6 =




1

−1
1



 ,

ñ4 = −ñ5 =




1
1

−1



 .

Note that in the one dimensional case the natural choice is i, k = 1 and ni = (1),
n2 = (−1). One obtains three transport speeds u, u + c, u − c and the corresponding
numerical scheme of Fey will reduce to the scheme of Steger and Warming.

Equation (3.8) has formally the same structure as (2.14). If we now solve each advection
operator independently as in (2.15) which will be discribed in the next section, the sum
of the solution will no longer be equal to the exact solution, i.e. (2.17) will not hold.
Note, that even for linear systems that do not obey the structure in (2.12), e.g. the two
dimensional wave equations, we will also not get equality in (2.16). This is related to the
infinitely many propagation directions.

4 First and second order time discretization

In Section 2 and 3 we have reformulated the system of conservation laws such that its
form conveys infinitely many, or finitely many, transport operators. These transport
operators are generally nonlinear since the velocities u and c depend on the state vector
U. One discretizes the equations in time as follows. At time t0 the state vector U(x, t0)
is decomposed according to (3.7), i.e.

(4.1) U(x, t0) = R2(U(x, t0)) +
k∑

i=1

wiRan(U(x, t0), αi,νi) .

We transport each contribution of U with the corresponding transport equation where
we have frozen the transport coefficients at time t0, i.e.

(4.2) a2(x) := u(U(x, t0))

(4.3) aan,i(x) := u(U(x, t0)) + c(U(x, t0))νi, i = 1, 2, . . . , k .

Hence the transported quantities R2 and Ran(αi,νi) will be approximated by

(4.4) R
(1)
2 (x, t) and R

(1)
an,i(x, t)

8



and satisfy the following initial value problems

(4.5) φ2 =
∂R(1)

2 (x, t)

∂t
+∇ · (R(1)

2 (x, t) aT
2 (x)) = 0 for t ≥ t0, x ∈ lRN

(4.6) R
(1)
2 (x, t0) = R2(U(x, t0)) for x ∈ lRN .

Similarly one has for i = 1, 2, . . . , k

(4.7) φan(αi,νi) =
∂R(1)

an,i(x, t)

∂t
+∇ · (R(1)

an,i(x, t) a
T
an,i(x)) = 0 for t ≥ t0, x ∈ lRN

(4.8) R
(1)
an,i(x, t0) = Ran(U(x, t0),αi,νi), for x ∈ lRN .

We approximate then U(x, t0 +∆t) by

(4.9) U(1)(x, t0 +∆t) := R
(1)
2 (x, t0 +∆t) +

k∑

i=1

wiR
(1)
an,i(x, t0 +∆t) .

If the solution is differentiable it can be shown, [2, 5] that

(4.10) U(1)(x, t0 +∆t)−U(x, t0 +∆t) = O(∆t2) .

Independently of the numerical realization of (4.5), (4.6) and (4.7), (4.8), respectively, the
overall numerical scheme will be of first order only. In order to obtain an approximation
to the Euler equation which is of size O(∆t3), Fey showed that one has to replace in (4.1)

and (4.2) R(1)
an,i(x, t) by

R
(2)
an,i = Ran(U(x, t), αi,νi) + αi K νi .

Here K is a lR(N+2)×N matrix with correction terms which depend on U(x, t), its deriva-
tives, ∆t,αi and on νi, i = 1, 2, . . . , k. If this replacement is done in (4.1), (4.7), (4.8)
one then uses

(4.11) U(2)(x, t0 +∆t) = R
(1)
2 (x, t0 +∆t) +

k∑

i=1

wiR
(2)
an,i(x, t+∆t) .

instead of (4.9) and obtains

(4.12) U(2)(x, t0 +∆t)−U(x, t0 +∆t) = O(∆t3) .

For Euler equations these correction terms are given in [6] for N = 2. For the shallow
water equation these correction terms are given in [8], N = 2. For the MHD equations
the correction terms are given in [7] for N = 1.
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The important part in these correction terms is that the modification of (4.7) is an ad-
vection equation and thus one can use the same numerical method to solve the modified
transport initial value problem as one used before. Conceptually one can extend this
approach to even higher order approximations. In the case of the wave equation these
terms are relatively simple but not zero as mentioned before. Thus, we computed them
to fourth order to get a numerical method of O(∆t5). However, for non-linear problems
the computational expenses will drastically rise. We are able to compute the third order
correction terms for the Euler equations for N = 2.

5 The space discretisation and a first order overall

scheme

In Section 4 we have approximatedU(x, t0+∆t) by a first order approximationU(1)(x, t0+
∆t) and a second order approximationU(2)(x, t0+∆t) under the assumption that at t = t0
the approximated solutions are exactly equal to U(x, t0) for all x. Clearly, it is enough
to have a scheme which solves the scalar equation

(5.1) ut +∇ · (u aT ) = 0

exactly where a is the local advection velocity which is a function depending on the space
variable only. This would give an overall first or second order scheme depending whether
we use (4.9) or (4.11). Hence we don’t have to solve (5.1) exactly, it is enough to solve
it in an accuracy not to destroy the overall accuracy. Note, that the correction terms
introduced in the previous section only eliminates the nonlinear decomposition error in
the time integration. To get second order accuracy in space and time for fixed ratio of
∆t/∆x, the approximate solution of (5.1) has to be of second order in time, too.

Schemes to solve (5.1) have been around for a long time, [10, 11, 12]. Here we follow the
approach [13]. We shall now discretize the space domain D ⊂ lRN . However in order that
we don’t have to deal with boundary conditions let us assume D = lRN . D is divided
into computational cells similar as in finite element or finite volume methods. Again for
simplicity we restrict ourselves to N = 2 and to a cartesian grid with the step size ∆x
and ∆y in x and y direction, respectively.

Let xi = i∆x and yj = j∆y and (xi, yj) is the center of the finite volume Vij =
[xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]. Let

(5.2) un
ij =

1

|Vij|

∫

Vij

u(x, y, n∆t) dxdy

be the average value of u over the cell Vij. We assume now that in each control volume
the solution is constant and has the value un

ij. If we assume that a(x, y) is also constant
in this volume, e.g. has the value a(xi, yj), and we ignore effects from neighboring cell
then we can say that the quantity u in Vij is transported by ∆ta(xi, yj), see Figure 1
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\tex{$x_{i - \frac{1}{2}}$} 

∆ta

Ω3 Ω2

Ω7 Ω8

Ω1Ω5

Ω4

Ω6

xi+ 1
2

yj+ 1
2

yj− 1
2

Ω∆t
0

Vij = Ω0

Figure 1: Movement of all points by ∆ta(xi, yj)

Let

(5.3)
Ω∆t

0 = Ω0 +∆ta(xi, yj)

=
{
(x, y) ∈ lR2

∣∣∣ (x, y)−∆ta(xi, yj) ∈ Ω0

}
.

Hence, the contribution of cell Ω0 to cell Ωj is

(5.4)
fΩ0Ωj

= un
ij

∫

Ω∆t
0 ∩Ωj

dxdy

= un
j

∣∣∣Ω∆t
0 ∩ Ωj

∣∣∣ .

The notation fΩ0Ωj
is still related to the idea of flux in hyperbolic equations. Note that

fΩ0Ωj
is in general different from zero even if there is no finite boundary between Ω0 and

Ωj , i.e. contributions to diagonal neighbors.

Collecting all these fluxes gives the final formula

(5.5)

un+1
ij = un

ij −
1

|Vij|

8∑

j=1

(fΩ0Ωj
− fΩjΩ0)

=
1

|Vij|

8∑

j=0

fΩ0Ωj
.

Here Ω0 denotes the control volume Vij and Ωj are the eight neighboring cells. Moreover
we have assumed that ∆t is restricted such that Ω∆t

0 ⊂
⋃8

j=0 Ωj. Clearly, replacing u
locally in space by a piecewise constant leads to a first order scheme.

At this point we should note that the numerical domain of influence in the case ii) of
choosing the νi in Section 3 includes the exact domain of influence. However the choice
i) does not do this, see [8].
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6 A second order overall scheme

To get an overall second order scheme we have to approximate U by piecewise linear
functions. Again it is enough to do this just for the scalar equation (5.1). To obtain a
second order overall scheme we have to do two steps.

I) Transport:

Solve (5.1) to second order if u(x, y, t0) and a(x, y) are piecewise linear. This includes
computing fluxes of the form fΩ0Ωj

and update the cell averages i.e. evaluate (5.5).

II) Reconstruction:

From the averages find a piecewise linear function that has the same cell average and
which would approximate a smooth function to terms of second order, e.g. O(∆x3)
if one assumes ∆x/∆y = constant.

Let us concentrate first on the transport part. Again we restrict ourselves to N = 2
but we use x = (x, y). Hence, (5.1) is

(6.1) ut(x, t) +∇ · (u(x, t) aT (x)) = 0 .

We rewrite this as

(6.2) ut + aT ∇u = −u∇ · aT .

Let z(t) be the characteristic curve belonging to (6.2) through the point x0 i.e.

(6.3) ż(t) = a(z(t)), t ≥ t0 with z(t0) = x0 .

Then u(z(t), t) satisfies

(6.4)

d

dt
u(z(t), t) = −u(z(t), t) ∇ · aT (z(t)) for t ≥ t0

u(z(t0), t0)) = u(x0, t0) .

Observe first that even so a(x) is linear in a cell Ω0, the resulting characteristics z(t) are
not linear. However as we shall see further down for a fixed ∆t the map r(x0) given by
x0 *−→ r(x0) := z(t0+∆t) is an affine map defined in Ω0, where z(t0+∆t) is the solution
of (6.3). The set Ω0 is mapped into a general parallelogram, see Figure 2.
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r[−1](A) Ω7

r[−1](C)

Fig. 2: Sketch of transformation r(x0) and its inverse. Solid lines represent the
underlying grid. The dashed lines represent the boundary of the image
of Ω0 under the map r. The dotted lines represent the underlying grid
under the inverse transformation of r.

The flux fΩ0Ωj
from Ω0 into Ωj in the time interval [t0, t0 +∆t] is given by

(6.5) fΩ0Ωj
=

∫

r(Ω0)∩Ωj

u(z(t0 +∆t), t0 +∆t) dx .

This integral is difficult to evaluate since for each x ∈ r(Ω0) ∩ Ωj we have to compute
x0 = r[−1](x) and then solve the initial value problem (6.4) to obtain u(z(t0+∆t), t0+∆t).
We shall show further down that r is bijective on Ω0 and hence r[−1] exist on r(Ω0). To
avoid the complicated integral (6.5) we map the integration variable back by r[−1]. Let
Gj = r(Ω0) ∩ Ωj then we obtain

(6.6) fΩ0Ωj
=

∫

r
[−1](Gj)

u(x, t0) dx ,

see e.g. [9]. This integral can easily and exactly be computed since r[−1](Gj) ⊂ Ω0 and
u(x, t0) is linear in Ω0. It remains to show that r(x) is an affine map which can be inverted.
Since we assume a(x) to be a linear reconstruction in all Ω0 we can write

(6.7) a(z) = a0 +Az

where A is a constant 2×2 matrix. Hence the right hand side of (6.7) satisfies a Lipschitz
condition and then the solution of the corresponding initial value problem (6.3) is unique.
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hence the map r(x0) is bijective and affine and can be inverted, for details see [9]. r[−1] is
only computed to an accuracy to guarantee that the overall scheme is second order. To
obtain r[−1](Gj) for j = 0, 1, . . . , 8 we just compute r[−1] for the grid points A,B,C. With
this we get easily the inverse map of the coordinate lines and these define then the regions
r[−1](Gj), see Figure 2. With these regions we can compute the fluxes and obtain the
new cell averages un+1

ij using formula (5.5). Note that the integration of the characteristic
takes care of the time accuracy. Thus, the method is second order in time, too, even if
the time integration in (5.5) formally looks like a simple Euler step.

II. Reconstruction. Given the cell averages un
ij we have to replace U and therefore u

in each cell by a linear function in order that the overall scheme becomes second order.
The crucial point is that we have to get approximations to the first partial derivatives.
Following the by now classical ENO upwind idea for nonlinear hyperbolic conservation
laws one is lead to the following problem. While for problems in one space dimension there
are only three different stencils to second order approximations to the first derivative the
number of stencils increases dramatically in two and three space dimensions. For an early
analysis of these possibilities, see [14]. Following the classical approach one introduces a
limiter which turns off the second order terms if one is close to a discontinuity or a critical
point. The second strategy is to just use everywhere central differences. The limiting
process is then based on the non-oscillating character of the first order solution. Hence
one calculates first in the whole computational domain the first order solution (un+1

ij )1

and the second order solution (un+1
ij )2. One checks now in each cell Vij = Ω0, whether the

following holds:

(6.8) min
j∈V

(un+1
j )1 ≤ (un+1

j )2 ≤ max
j∈V

(un+j
j )1 .

Here un+1
j is the value in the cell Ωj and V = {0, 1, 2, . . . , 8}. If (6.8) is satisfied then

the second order solution is used, otherwise the first order is used. To keep the method
conservative the fluxes have to be adapted, for details see [9].

7 Conclusions and outlook

We have presented the method of transport of Fey which is of first and second order.
The scheme is genuinely multidimensional in the sense that the transport is done grid
independent. However the usual limiting process of the state variable does depend on
the grid. The first order is basically non-oscillating and for the second order a new
limiter is used which lifts this property to the second order solution. A basic underlying
philosophy in the construction of the method is that one always tries to use properties of
the solution itself rather than artificially introduced or derived quantities. For example,
using the characteristic directions instead of cell normals, similarly the limiter is not based
on slopes but on state variables.

This concept makes the algorithm robust in the sense that physically positive values
remain positive even in areas where these are close to zero. The scheme is explicit and
can be easily used for parallel computers. Since hanging nodes can be treated in a simple
fashion one can use mesh adaptation and this is currently done by T. Gutzmer of our
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group. The approach can also be used to deal with the viscosity terms in the Navier-
Stokes equations. This task is currently done by J. Maurer of our group. H. Forrer is
investigating the treatment of non cartesian boundary cells. The problem is that small
cells introduced by the geometry should not restrict the stepsize nor the second order of
the scheme. Numerical examples for the Euler equations in gas dynamics, the shallow-
water equations and the MHD equations will be given.
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