
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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Abstract

This work is devoted to a study and summary of different Infinite Ele-
ment (IE) formulations for Helmholtz problems in arbitrary exterior domains.
The theoretical setting for each of the different formulations is presented and
related to the mathematical existence theory. The influences of a bilinear
or a sesquilinear formulation are discussed as well as possible extensions to
other elements. The implementation of the Infinite Element Method (IEM)
incorporates the use of 2D and 3D hp Finite Elements and allows for hp-
adaptive refinements. Numerical results show the computational efficiency of
the coupled Finite-Infinite Element methodology.



1 Introduction

The present paper is motivated by the new concept on various infinite elements by
Burnett [4], Astley et all [1], Cremers et all [5, 6] and our own work [7, 11, 12, 13].
These new IEM are extensions of the original IEM, which was introduced by Bettess [3].

The problem of interest deals with scattering of acoustic waves on elastic or rigid
objects. The mathematical formulation consists of the Helmholtz equation in the exterior
domain accompanied by the Sommerfeld radiation condition and Neumann boundary
condition on the boundary of the scatterer (rigid scattering).

Problems of the described type are usually solved using various versions of the Bound-
ary Element Method (BEM) [9]. The mathematics of the BE approximation (especially
in the Galerkin version) is well established and the method delivers reliable results in
the whole range of wave numbers. The main drawback of the BEM is its cost - the
method becomes prohibitively expensive for large wave numbers. The approach based
on the truncation of the infinite domain to a finite one and application of the so called
absorbing boundary conditions has always been an alternative technique to solve the
problem [14, 15]. Another technique is to approximate the Dirichlet-to-Neumann oper-
ator by solving an auxiliary Riccati equation [17]. The drawback is that this method
and the exact absorbing boundary conditions correspond to nonlocal operators and re-
sult in dense matrices. The local absorbing boundary conditions are not exact but are
computationally attractive. The recent versions of the Infinite Elements that are based
on multipole expansions fit into the local absorbing boundary condition framework and
offer accuracy of arbitrary high order and can be coupled with standard C0 finite ele-
ments. The recent results on convergence of such methods [2, 7, 8] support reliability
of such an approach and add to its attractiveness. An essential difference between the
various versions of the infinite elements has been recently pointed out in [2, 13]. The
difference lies in the fact whether one does or does not use the complex conjugate over
the test functions (sesquilinear vs. bilinear form formulation).

In this paper, we investigate the Galerkin FE/IE formulations for a three dimensional
rigid scattering problem. The FEM is applied in a finite annular domain obtained by the
domain decomposition approach in the exterior of the scatterer. The scatterer is first
enclosed by a sphere of finite radius, forming an artificial boundary inside the acoustic
medium. In the domain between the scatterer and the sphere, a FEM is used for the
numerical solution whereas outside the artificial boundary the solution is approximated
with an IEM. This procedure has been described in detail, together with a convergence
analysis, for the special case of a spherical scatterer [7, 11, 12, 13]. Here, we account for
a general shape of the scatterer, which is located within the unit sphere. In particular,
we study the different variational formulations that can be obtained by using a bilinear
form or a sesquilinear form in the weak formulation. This corresponds to using or not
using the complex conjugate in the weak formulation [13]. Additionally, we present the
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different space settings, that were introduced by Leis [16] and in [7] for the Burnett
formulation. These possible space settings result in different convergence properties of
the IE schemes.

The plan of the presentation is as follows. We begin by formulating the exterior
Helmholtz problem in section 2. The different coupled FE/IE methodologies are pre-
sented in section 3. Aspects regarding the numerical implementation and numerical
experiments are presented in section 4. We finish the presentation with concluding
remarks in section 5.

2 The exterior Helmholtz problem

We first introduce the notation and the classical formulation of the exterior Helmholtz
problem.

2.1 Notation

• Ω ∈ IR3 is a domain occupied by the rigid scatterer and contained in the unit sphere

• Ωe = IR3 − Ω is the domain exterior to the scatterer

• Γs = {x ∈ IR3; |x| = 1} is the surface of the unit sphere

• Ωe
s = {x ∈ IR3; |x| > 1} is the domain exterior to the unit sphere

• Γ = ∂Ω is the surface of the rigid scatterer

• Ωs = {x ∈ IR3; |x| ≤ 1}− Ω is the domain between the unit sphere and the rigid
scatterer

The notation is illustrated in Figure 1 and we emphasize again that we assume without
loss of generality that the scatterer is located within the unit sphere.

2.2 Classical Formulation of the Problem

The goal is to find a function u = u(x) satisfying:

• the Helmholtz equation in the domain exterior to the scatterer,

−∆u− k2u = 0 in Ωe (2.1)

where k is the wave number;
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Figure 1: Notation. Scatterer within a unit sphere.

• a Neumann boundary condition on the scatterer

∇n u = g for x ∈ Γ (2.2)

where g is a prescribed function on Γ;

• the Sommerfeld radiation condition at infinity,

∣

∣

∣

∣

∣

∂u

∂n
− iku

∣

∣

∣

∣

∣

= O
(

1

r2

)

. (2.3)

3 The coupled hp FE/IE methodology

The coupled FE/IE methodology is introduced and analyzed in the following.

3.1 Variational formulations for general exterior domains

The various variational formulations are derived by starting with a given “truncated”
exterior domain Ωe

γ ,

Ωe
γ = Ωe ∩

{

x ∈ IR3 : |x| < γ
}

.

The domain Ωe
γ is a finite subset of Ωe and we note that the truncation occurs by a

spherical surface with a possibly large radius γ. Obviously, Ωe
γ converges to Ωe for γ

approaching infinity. The shape of the scatterer does not need to be spherical. Thus,
the following derivation applies to general scatterers.

The Helmholtz equation is multiplied by a test function v and then integrated over
Ωe. This will clearly lead to a bilinear form. We note that the Helmholtz equation can
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also be multiplied by the complex conjugate of a test function v, i.e. v, and then be
integrated. This results in a sesquilinear form after performing the integration by parts.
The Neumann boundary condition (2.2) contributes with a boundary integral to the
right hand side and for the bilinear and sesquilinear case we obtain respectively

∫

Ωe
γ

∇u ·∇v dΩe
γ − k2

∫

Ωe
γ

u v dΩe
γ −

∫

Sγ

∂u

∂n
v dSγ =

∫

∂Ωe

g v dS , (3.1)

∫

Ωe
γ

∇u ·∇v dΩe
γ − k2

∫

Ωe
γ

u v dΩe
γ −

∫

Sγ

∂u

∂n
v dSγ =

∫

∂Ωe

g v dS , (3.2)

where v is any admissible test function and Sγ is the “truncating” sphere with radius
r = γ. The normal derivative of u on Sγ can be eliminated by applying the Sommerfeld
radiation condition. Therefore, the Sommerfeld radiation condition (2.3) is written in
the form

∂u

∂r
= iku+ ϕ(x) , (3.3)

where ϕ(x) = O (r−2) is an unknown function. This is built into the variational for-
mulation (3.1) and (3.2) by substituting (3.3) for ∂u/∂n = ∂u/∂r in the corresponding
boundary term formula. This leads to

∫

Ωe
γ

∇u ·∇v dΩe
γ − k2

∫

Ωe
γ

u v dΩe
γ − ik

∫

Sγ

uv dSγ =
∫

∂Ωe

g v dS +
∫

Sγ

ϕv dSγ , (3.4)

∫

Ωe
γ

∇u ·∇v dΩe
γ − k2

∫

Ωe
γ

u v dΩe
γ − ik

∫

Sγ

uv dSγ =
∫

∂Ωe

g v dS +
∫

Sγ

ϕv dSγ . (3.5)

Passing formally with γ → ∞, we obtain for both cases
∫

Ωe

∇u ·∇v dΩe − k2
∫

Ωe

u v dΩe − ik lim
γ→∞

∫

Sγ

uv dSγ

=
∫

Γ
g v dS + lim

γ→∞

∫

Sγ

ϕv dSγ,
(3.6)

∫

Ωe

∇u ·∇v dΩe − k2
∫

Ωe

u v dΩe − ik lim
γ→∞

∫

Sγ

uv dSγ

=
∫

Γ
g v dS + lim

γ→∞

∫

Sγ

ϕv dSγ.
(3.7)

The general theory in [16], shows that the leading order term of u|Ωe
s
is of the form

u0(x)
exp(ikr)

r
, x ∈ Γs,

and, consequently, both u and its gradient, ∇u, are not L2-integrable over the exterior
domain. Therefore, it is necessary to enforce the integrability of the not L2-integrable
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terms in the conjugated and unconjugated case. This problem can be resolved in two
different ways. Either by defining appropriate weighted Sobolev spaces or by interpreting
integrals in the Cauchy Principle Value sense. The first approach was introduced by Leis
[16] and is based on a precise mathematical theory and was studied in [1, 5, 6, 11]. The
second approach was introduced by Burnett [4] and a corresponding mathematical theory
does not exist yet. This Burnett formulation was also studied and compared to the Leis
method on a spherical domain in [13]. We note that the integral involving the unknown
function ϕ in (3.6) and (3.7) vanishes in both approaches if γ → ∞. Both methods are
described in the following for general scatters.

The Leis method employs test functions of orderO (r−3) in Ωe
s. This makes it possible

to interprete the integrals in the usual Lebesgue sense. This particular choice of the test
functions does not allow one to build the radiation condition into the weak formulation,
and the Sommerfeld condition has to be included directly in the definition of the spaces.
This leads to the definition of the following weighted Sobolev space

H1
w(Ω

e) =
{

u : ‖u‖1w < ∞
}

(3.8)

with the norm ‖u‖1w corresponding to the inner product

(u, v)1w =
∫

Ωe

w u v + w∇u ·∇v dΩe +
∫

Ωe

(

∂u

∂r
− iku

)(

∂v

∂r
− ikv

)

dΩe. (3.9)

Two particular weights are of interest,

w(x) =







1 for r = |x| ≤ 1
1

r2
for r = |x| > 1

and a “dual” weight

w∗(x) =

{

1 for r = |x| ≤ 1
r2 for r = |x| > 1.

The variational formulation reads in the bilinear and sesquilinear case











Find u ∈ H1
w(Ω

e) such that
∫

Ωe

∇u ·∇v dΩe − k2
∫

Ωe

u v dΩe =
∫

∂Ωe

g v dS ∀ v ∈ H1
w∗(Ωe)

, (3.10)











Find u ∈ H1
w(Ω

e) such that
∫

Ωe

∇u ·∇v dΩe − k2
∫

Ωe

u v dΩe =
∫

∂Ωe

g v dS ∀ v ∈ H1
w∗(Ωe)

. (3.11)

Remarks:
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1. The proposed variational formulation corresponds to an extension of the operator
setting of Leis [16], where the domain of the operator is restricted to a subspace of
H1

w(Ω
e) consisting of all functions for which the (Helmholtz) operator value is in

the weighted L2
w∗(Ωe) space. With these assumptions, Leis proves the uniqueness

and existence of solutions, showing that the resulting operator is bounded below
with a constant locally independent of the wave number k.

2. The Leis method is formally identical in the bilinear and sesquilinear formulation
but the application of the complex conjugate renders the convergence properties
of the Leis formulation, as was studied in [2, 13].

3. The integrals that correspond to the infinite elements can be computed more easily
in the conjugated case, compare section 4.

The Burnett method [4] is based on the fact that both solution u and test function v
are represented outside of the unit sphere in the form

u(r, θ,φ) =
exp(ikr)

r
u0(θ,φ) + U(r, θ,φ),

v(r, θ,φ) =
exp(ikr)

r
v0(θ,φ) + V (r, θ,φ),

(3.12)

where r, θ,φ are spherical coordinates. The functions u0(θ,φ) and v0(θ,φ) denote the
radiation patterns, and functions U(r, θ,φ), V (r, θ,φ) are from H1(Ωe

s), i.e. both U , V
and their gradients ∇U , ∇V are square-integrable. Function u of this form satisfies
automatically the Sommerfeld radiation condition. Upon substituting formulas (3.12)
into (3.1), (3.2) and cancelling out terms involving the radiation patterns, one can pass
to the limit with γ → ∞. Contrary to the weighted spaces formulation, the integral over
Sγ involving the radiation patterns will not vanish in the limit. In this case, the bilinear
and sesquilinear formulation following the Burnett approach read as































Find u ∈ H1
w(Ω

e) such that
∫

Ωe

∇u ·∇v dΩe − k2
∫

Ωe

u v dΩe − ik lim
γ→∞

∫

Sγ

uv dSγ

=
∫

∂Ωe

g v dS ∀ v ∈ H1
w(Ω

e),

(3.13)































Find u ∈ H1
w(Ω

e) such that
∫

Ωe

∇u ·∇v dΩe − k2
∫

Ωe

u v dΩe − ik lim
γ→∞

∫

Sγ

uv dSγ

=
∫

∂Ωe

g v dS ∀ v ∈ H1
w(Ω

e),

(3.14)
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respectively. The integrands in formulations (3.13) and (3.14) are understood in the
Cauchy Principle Value sense and we emphasize that precisely the integrands that are
not L2 integrable do cancel each other out. In particular, in the sesquilinear formulation
there is a contribution of the additional surface integral that is present in the weak
formulation, for details compare [13]. It is further evident that the space setting in the
Burnett approach is symmetric, whereas the Leis approach employs a non-symmetric
space setting and results in a non-symmetric global linear system, although the bilinear
and sesquilinear forms are symmetric.

3.2 Separation of Variables in Ωe

s

For completeness we review shortly the results of the separation of variables procedure
that motivate the IEM. For a detailed discussion see [11]. The form of the solution
outside the unit sphere is:

u(r, θ,φ) =
∞
∑

n=0

n
∑

m=0

hn(kr)P
m
n (cos θ) (Anm cos(mφ) + Bnm sin(mφ)) (3.15)

where Pm
n (cos θ) are the Legendre functions and hn(kr) are the spherical Hankel func-

tions of the first kind. It is clear that the coefficients Anm and Bnm cannot be determined
unless a boundary condition is given on Γs. We note that the spherical Hankel functions
of the first kind can be represented by

hn(kr) =
n
∑

m=0

exp (ikr)

rm+1

exp (−iπ2 (n+ 1))

k(2k)m
im

(

n+
1

2
, m

)

, (3.16)

with
(

n +
1

2
, m

)

=











1 m = 0
m
∏

k=1

(n + k) ·
m
∏

k=1

(n−m+ k)

k
m ≥ 1 .

3.3 Definition of the hp-infinite element

The following definition of shape functions in the radial direction is motivated by the
form of the solution outside the sphere, i.e. by (3.15) and (3.16):
the trial functions

ψj(r) =
exp (ikr)

rj
, j ≥ 1, (3.17)

the test functions

ψ̃j(r) =
exp (ikr)

rj+m
, j ≥ 1, (3.18)

with m = 2 in the Leis formulation and m = 0 in the Burnett formulation.
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Note in the Leis formulation the different powers of r in the denominators. The use
of the sesquilinear formulation does eliminate the necessity to integrate the oscillatory
component exp(ikr), see section 4.

The infinite element shape functions are then given as tensor products of 2D hp finite
element shape functions and the functions introduced in (3.17) and (3.18) respectively,
i.e. a typical infinite element trial shape function Nl(r,x) is given by

Nl(r,x) = Nl(i,j)(r,x) = ψj(r) · ϕi(x) , r > 1, x ∈ Γs. (3.19)

In order to minimize the interaction between infinite elements and 3D hp finite elements
Ωs, the IE trial shape functions are now modified as follows

Nl(i,j)(r,x) =

{

exp (−ik) ψj(r) ϕi(x) j = 1, r > 1, x ∈ Γs

exp (−ik) (ψj(r)− ψ1(r)) ϕi(x) j ≥ 2, r > 1, x ∈ Γs
(3.20)

with an identical modification for the test functions. In this way, all the shape functions
corresponding to j ≥ 2 will contribute to basis functions with support outside of the unit
sphere only. Inclusion of the exponential factor exp (−ik) in the new definition forces
the infinite element shape functions to coincide with the standard 3D hp finite element
shape functions on the surface of the sphere.

It is evident that this definition of IE shape functions applies to the Leis and Burnett
formulation in the bilinear and sesquilinear form. Also, the definition is valid for other
2D and 3D master elements. In the following we use triangular prismatic elements in
Ωs and triangular elements on the surface of the unit sphere. It is also possible to apply
quadrilateral elements on the surface of the unit sphere and cubic elements in Ωs. A
combination of triangular and tetrahedral elements is also possible. The different choices
of master elements only affect the definition of functions ϕi in (3.20) but otherwise the
IE shape functions Nl(i,j) remain the same.

3.4 hp-adaptive discretization

The domain Ωs in between the scatterer and the truncating sphere is discretized using
triangular prismatic hp-elements. The faces of such elements are triangles and therefore
the infinite elements are based on triangular 2D elements, which are extended towards
infinity, compare Figure 2. The prismatic and triangular elements can be easily replaced
by other elements, e.g. tetrahedral elements or cubic elements in combination with
rectangular elements on the surface and we hope to report on such an extension in a
forthcoming publication.

The prismatic hp master element, shown in Figure 3, consists of six vertex nodes and
fifteen higher-order nodes: nine mid-edge, two mid-base, three mid-side and one middle
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Figure 2: Infinite Element.

node. The corresponding shape functions are tensor products of the 2D triangle shape
functions χi(ξ1, ξ2) discussed in [10] and 1D incremental shape functions, i.e. χj(ξ3)

χk(ξ1, ξ2, ξ3) = χi(ξ1, ξ2) · χj(ξ3), k = k(i, j). (3.21)

For j = 1, 2, functions χj(ξ3) are the regular linear shape functions. Given a particular
order of approximation q in the “vertical” (ξ3) direction, functions χj(ξ3), j = 3, . . . , q+1,
coincide with the regular 1D Lagrange shape functions of order q, vanishing at the
endpoints. Consequently, the mid-side and the middle node have two corresponding
orders of approximations: a horizontal p and a vertical order q. For that reason, we are
able to have a variable approximation order within the element, which allows for a full
hp-computation. The 2D hp master triangle is defined in a similar way, compare Figure
3, and also allows for a varying polynomial approximation order within the element. For
all details concerning the definition of the master elements we refer to [10].

Figure 4 shows three quarters of a typical initial FE mesh for the scatterer being a
sphere with radius 0.5, which is inside the unit sphere. The infinite elements are not
shown, but the mesh on the surface of the unit sphere is clearly visible and sufficient
for the infinite element computations. In this example there are 2 layers of 3D finite
elements with 24 elements per layer, angular polynomial approximation order p = 4,
radial polynomial approximation order q = 2 and 24 elements on the surface of the unit
sphere, which represent 24 infinite elements.
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4 Numerical Implementation

4.1 Element computations

The implementation of the 3D finite elements is done in the standard way and the com-
putations for the infinite elements are similar to 2D FE computations. The integration
of the IE shape functions in the radial direction involves the following integrals in the
conjugated formulations

∫

∞

1

exp (ikr) exp (−ikr)

rj
dr =

1

j − 1
, j ≥ 2, (4.1)

and this is simply used in the element computations. In the unconjugated version terms
of the form

∫

∞

1

exp (ikr) exp (ikr)

rj
dr =

∫

∞

1

exp (2ikr)

rj
dr (4.2)

do appear, which can be evaluated using the exponential integral. The following repre-
sentation is used to obtain a form of the radial integral that can easily be integrated,

∫

∞

1

exp (2ikr)

rn
dr =

n−1
∑

l=1

−(−i2k)l−1 exp (2ik)
∏l

l̂=1
−n + l̂

+
(−i2k)n−1

∏n−1
l̂=1

−n+ l̂

∫

∞

1

exp (2ikr)

r
dr, (4.3)

where n ≥ 1,
∑0

l=1 := 0 and
∏0

l̂=1
:= 1. The representation (4.3) can be easily verified

by induction. Having these integrals computed ahead of time, the calculation of the
infinite element stiffness matrices is straightforward and reduces to standard 2D FE-like
calculations. The element contributions are then assembled by a generalized assembling
procedure [10], which is adapted to handle complex valued matrices and can also deal
with general hp meshes. The element load vector is calculated similarly. It should be
noted that the final global system may not be symmetric.

4.2 Scattering of a Plane Wave by a Rigid Sphere

In [11] we derived the form of the scattered wave ps on a rigid sphere with radius 0.5
corresponding to an incident plane wave:

ps =
∞
∑

n=0

hn(kr)P
m
n (cos θ)An , (4.4)

with An given by

An =
−Pinc(2n+ 1)in ∂jn(kr)

∂r

∣

∣

∣

r=0.5
∂hn(kr)

∂r

∣

∣

∣

r=0.5

∀ n ≥ 1. (4.5)
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4.3 Error Calculations

The weighted H1-norm is consistent with the trial function space and can be used
to compute the error between the exact solution u and the numerical solution uh in
Ωe

s. Although this norm is consistent with the mathematical theory by Leis [16] for
the Helmholtz equation, it should only be used for the conjugated IEM, i.e. in the
sesquilinear case. The stability and convergence analysis presented in [2, 13] show that
the unconjugated IEM fails to converge in the far field, but converges rapidly in the near
field. Therefore it does not make any sense to use the weighted H1-norm to measure the
error for the unconjugated IEM. The L∞-norm on the surface of the scatterer is used
instead of the weighted H1-norm in the bilinear formulation, which has also been used
in [2, 13]. In the bilinear formulations we compute

‖u− uh‖∞ = sup
x∈Γ

|u(x)− uh(x)|, (4.6)

which is being done by replacing supx∈Γ with the maximum over all Gausspoints for
each element in Γ. In the sesquilinear formulations we meassure the error in the weighted
H1-norm, where

‖u− uh‖
2
1,Ωe = ‖u− uh‖

2
1,Ωe

s
+ ‖u− uh‖

2
1,Ωs

(4.7)

with

‖u− uh‖
2
1,Ωe

s
=

∫

Ωe
s

1

r2
|u− uh|

2 dΩe
s +

∫

Ωe
s

1

r2
|∇(u− uh)|

2 dΩe
s (4.8)

and
‖u− uh‖

2
1,Ωs

=
∫

Ωs

|u− uh|
2 dΩs +

∫

Ωs

|∇(u− uh)|
2 dΩs. (4.9)

The rigid scattering of a plane wave on a sphere allows to determine the exact solution,
which is the basis for a numerical convergence study. The exact solution u for the rigid
scattering on a sphere with radius 0.5 is given by (4.4) and the numerical solution in Ωe

s

can be represented in the form

uh(r,x) =
N
∑

j=1

M
∑

i=1

ujiNl(i,j)(r,x), x ∈ Γs, r > 1, (4.10)

where Nl(i,j) represent hp-basis functions of the IE and uji denote the corresponding
degrees of freedom. In Ωs the numerical solution is given by

uh =
nrdof
∑

i=1

uiϕi, (4.11)

where ϕi, i = 1, . . . , nrdof , represents the 3D finite element shape functions. The
evaluation of the error is done similar to the standard FE computations, for more details
we refer to [11, 13].
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Figure 5: Scattering of a plane wave on a rigid sphere. Experimental p-convergence
rates with 72 3D finite elements and 24 infinite elements with k = 10.

4.4 Numerical results

In the following discussion we present numerical results for the sesquilinear Leis formula-
tion for different examples of finite-infinite element meshes. It focuses on the question of,
how the number of the shape functions in the radial direction affects the approximation
of the exact solution.

The p-convergence rates are studied in terms of the weighted H1-error norm on
Ωe, compare (4.7). The error is analyzed in context of the order of approximation in
the angular direction p and the order of approximation q in the radial direction. The
influence of the number of IE shape functionsN on the numerical approximation becomes
evident from the numerical results. In our numerical results we set the wave number k
to 10 and use up to 3 layers of 3D finite elements.

Figure 5 shows the p-convergence rates for different q and number of radial shape
functions respectively. An incident plane wave problem, described in section 4.2, is
assumed. This incident plane wave generates a scattered wave, which has an infinite
number of terms in the radial direction. For the computations this series is truncated
after 10 terms. The “y-axis” shows the error in percent of the weighted H1-norm of the
exact solution and the “x-axis” shows the order of approximation p.

These graphs clearly indicate that at a certain point it does not make any sense to
increase the number of dof on the surface, unless the number of dof in radial direction is
increased. Further, it is evident, that only enough dof in the angular and radial direction,
e.g. high p and q, or more finite elements, and the number of dof in radial direction
of the infinite element sufficiently large does lead to a satisfactory result, i.e. the error
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with p = 5, q = 3, N = 6 and three layers of finite elements is below 1.6%, see Figure 5.
This clearly indicates that the discretization in the angular and the radial directions of
the 3D finite elements is fine enough to obtain a reliable numerical solution.

It is also obvious that we do not observe the exponential shape of the p-convergence
rates, as it might be expected. The reason for this behavior is that only one param-
eter, the polynomial degree in angular direction p, is varied, and that the quality of
the approximation cannot be improved, if, for example, the discretization in the radial
direction is not fine enough. In summary, Figure 5 clearly indicates, that p-, q- and/or
h-mesh refinements for the 3D-FE mesh have to be performed simultaneously, along
with a sufficient number of terms used in the radial direction of the infinite element.

Further, it is evident that the investigated finite-infinite element method works well
for wave number k = 10. The results show that the method is reliable, provided suffi-
ciently fine meshes are used. We emphasize here that all computations are done on a
workstation and that the numerical solution is obtained within fifteen minutes for fine
meshes. This is a significant advantage compared to the execution time of standard
boundary element formulations.

In Figure 6 we show the numerical solution for the rigid scattering on a finite cylinder
with spherical incaps. The cylinder is assumed to be within the unit sphere and the
Neumann boundary condition on the surface of the cylinder corresponds to an incident
plane wave. The IEM is used to compute the numerical solution for the rigid scattering
with wave number k = 10. The finite element mesh contains three layers of finite
elements with 216 finite elements per layer, p = 3 and q = 2. There are 216 infinite
elements with p = 3 and 6 radial shape functions. Altogether, 864 elements are used.
The computation of the numerical solution with the coupled FE/IE methodology takes
about twenty minutes on a workstation. We remark that the high demand of CPU time
and memory makes it extremely difficult to obtain the numerical solution with the BEM
for higher wave numbers. Figure 7 shows an adapted finite/infinite element mesh and
indicates that the coupled finite/infinite element methodology can be incorporated into
the standard adaptive mesh refinement technologies.

5 Conclusions

Different infinite element formulation for the exterior Helmholtz problem are analyzed.
The presented methodologies apply to rigid scattering problems with general shape of
the scatterers. The analyzed formulations combine a variable order hp-FE discretization
between the scatterer and the unit sphere with an infinite element discretization on the
boundary of the unit sphere. The infinite elements are obtained by combining 2D hp-
FE shape functions with a spectral approximation in the third direction. The radial IE
shape functions are motivated from the separation of variables approach.
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Figure 6: FEM/IEM. Scattering of a plane wave on a rigid cylinder with spherical incaps.

Figure 7: hp-adaptive finite-infinite element mesh.
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The theoretical results [2, 11, 13] show that the method is reliable and computa-
tionally advantageous. The numerical results support this conclusion. The advantages
and disadvantages of the conjugated and unconjugated formulations have already been
pointed out in [2, 13] and the question for the optimal formulation is problem depen-
dent, i.e. if only the near field solution is needed or if the solution is needed in the whole
exterior domain.

References

[1] R. J. Astley, G. J. Macaulay and J. P. Coyette, “Mapped Wave Envelope Elements
for Acoustical Radiation and Scattering”, Journal of Sound and Vibration, vol. 170,
no. 1, pp. 97-118, 1994.

[2] I. Babuska and J. J. Shirron, “Solution of Exterior Helmholtz Problems using Finite
and Infinite Elements”, Dissertation preprint

[3] P. Bettess, Infinite Elements, Penshaw, Sunderland, UK, 1992.

[4] D. S. Burnett, “A Three-Dimensional Acoustic Infinite Element Based on a Prolate
Spheroidal Multipole Expansion”, Journal of the Acoustical Society of America,
vol. 96, pp. 2798-2816, 1994.

[5] L. Cremers, K. R. Fyfe and J. P. Coyette, “A Variable Order Infinite Acoustic Wave
Envelope Element”, Journal of Sound and Vibration, vol. 171, no. 4, pp. 483-508,
1994.

[6] L. Cremers and K. R. Fyfe, “On the use of Variable Order Infinite Wave Envelope
Elements for Acoustic Radiation and Scattering”, Journal of the Acoustical Society
of America, vol. 97, no. 4, pp. 2028-2040, 1995.

[7] L. Demkowicz and K. Gerdes, “Convergence of the Infinite Element Methods for
the Helmholtz Equation”, to appear in Numerische Mathematik.

[8] L. Demkowicz and F. Ihlenburg, “Analysis of a Coupled Finite-Infinite Element
Method for Exterior Helmholtz Problems”, TICAM Report 96-52, 1996.

[9] L. Demkowicz and J. T. Oden, “Recent Progress on Application of hp-Adaptive
BE/FE Methods to Elastic Scattering”, International Journal for Numerical Meth-
ods in Engineering, vol. 37, pp. 2893-2910, 1994.

[10] K. Gerdes, L. Demkowicz, A. Bajer and C. Schwab, “A general 2D-hp-adaptive FE
code based on triangular and quadrilateral elements”, in preparation.

16



[11] K. Gerdes and L. Demkowicz, “Solutions of 3D-Laplace and Helmholtz Equations
in Exterior Domains using hp Infinite Elements”, Comput. Methods Appl. Mech.
Engrg. 137 (1996) 239-273.

[12] K. Gerdes, “Solution of the 3D Helmholtz equation in exterior domains of arbitrary
shape using hp-finite infinite elements”, SAM Report 96-21, submitted to Finite
Elements in Analysis and Design.

[13] K. Gerdes, “The conjugated vs. the unconjugated infinite element method for the
Helmholtz equation in exterior domains”, to appear inComputer Methods in Applied
Mechanical Engineering.

[14] D. Givoli and J. B. Keller, “Special finite elements for use with high-order boundary
conditions”, Comp. Methods Appl. Mech. Engrg. 119 (1994), 199-213.

[15] A. Kirsch and P. Monk, “An analysis of the coupling of finite element and Nyström
methods in acoustic scattering”, IMA J. Num. Anal. (1994) 14, 523-544.

[16] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Teub-
ner, 1986.

[17] J. P. Wolf and C. Song, Finite-element modelling of unbounded media, Wiley,
1996.

17



Research Reports

No. Authors Title

97-11 K. Gerdes A summary of infinite element formulations
for exterior Helmholtz problems

97-10 R. Jeltsch, R.A. Renaut,
J.H. Smit

An Accuracy Barrier for Stable Three-Time-
Level Difference Schemes for Hyperbolic
Equations

97-09 K. Gerdes, A.M. Matache,
C. Schwab

Analysis of membrane locking in hp FEM for
a cylindrical shell

97-08 T. Gutzmer Error Estimates for Reconstruction using
Thin Plate Spline Interpolants

97-07 J.M. Melenk Operator Adapted Spectral Element
Methods. I. Harmonic and Generalized Har-
monic Polynomials

97-06 C. Lage, C. Schwab Two Notes on the Implementation of Wavelet
Galerkin Boundary Element Methods

97-05 J.M. Melenk, C. Schwab An hp Finite Element Method for convection-
diffusion problems

97-04 J.M. Melenk, C. Schwab hp FEM for Reaction-Diffusion Equations.
II. Regularity Theory

97-03 J.M. Melenk, C. Schwab hp FEM for Reaction-Diffusion Equations.
I: Robust Exponentiel Convergence
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