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Switzerland



Operator Adapted Spectral Element Methods
I: Harmonic and Generalized Harmonic Polynomials

J.M. Melenk

Seminar für Angewandte Mathematik
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Compared with standard polynomials, these operator adapted systems have
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1 Introduction

The Finite Element Method (FEM) is a widely used tool for the numerical approximation
of solutions to partial differential equations. One of the reasons for its success is that, for
second order strongly elliptic equations, the FEM is quasi-optimal, i.e., the FEM essentially
minimizes the error (in the “energy norm”) over the conforming finite element space. In such
a setting, therefore, the performance of the FEM is completely determined by the choice of
the conforming finite element space.
In the standard h, p, and hp versions of the FEM, the approximation properties of the
finite element spaces are determined by the (local) approximation properties of polynomials.
Thus, the classical FEM can be expected to perform well only when the exact solution can be
approximated well locally by polynomials. In essence, this is a condition on the smoothness
of the exact solution, i.e., on bounds on higher derivatives. However, for some parameter
dependent problems such as the Helmholtz equation at high wave numbers or equations with
rough coefficients arising, for example, in the modelling of problems with microstructure, the
approximation properties of polynomials are poor. The poor performance of the standard
FEM manifests itself typically as a “non-robustness” issue: The onset of the asymptotic
behavior of the FEM depends on the smallest length scale of the solution and may not
even be reachable by practicable values of the discretization parameter h or p. Due to this
non-robustness, finite element calculations become more and more expensive when the wave
number is increased or the scale of the microstructure is decreased. Similar situations are
given by problems with boundary layers or singular solution.
For many of these problems the local regularity of the solution is available. The theory
of homogenization for problems with (periodic) microstructure, asymptotic expansions for
boundary layers, and Kondrat’ev’s corner expansions are a few examples of mathematical
techniques yielding knowledge about the local properties of the solution. This knowledge
may be used to construct local approximation spaces which can capture the behavior of the
solution much more accurately than the standard polynomials for a given number of de-
grees of freedom. Exploiting such information may therefore be much more efficient than
the standard methods; in particular, for the above mentioned parameter dependent prob-
lems, incorporating this additional information into the method can greatly improve the
robustness, [19, 23].
In [15, 24], the Partition of Unity Method (PUM) was proposed which provides a unified
platform for constructing conforming ansatz spaces from user-provided local approximation
spaces in such a way that the space constructed by the PUM inherits the approximation
properties of the local, user-provided spaces. Therefore, the PUM can be used as a tool
to create conforming ansatz spaces from operator adapted local approximation spaces cap-
turing the local behavior of the solution. Let us briefly recall the main ingredients of the
PUM, formulated in an H1 setting, typical for second order strongly elliptic problems—other
situations such as H2 settings for fourth order problems, however, are completely analogous.

Definition 1.1. Let an open cover (Ωi)Ni=1 of Ω ⊂ lR
d, d ∈ lN, be given which satisfies an

overlap condition, i.e., there is M ∈ lN such that

card{i | x ∈ Ωi} ≤ M ∀x ∈ Ω.

Let a Lipschitz continuous partition of unity (ϕi)Ni=1 subordinate to that cover (i.e., supp ϕi ⊂
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Ωi) be given which satisfies the following conditions: There are CG, C∞ > 0 such that

∑

i

ϕi ≡ 1 on Ω, ‖ϕi‖L∞(lRd) ≤ C∞, ‖∇ϕi‖L∞(lRd) ≤
CG

diam(Ωi)
, i = 1, . . . , N.

(1)
The sets Ωi are called patches. Let Vi ⊂ H1(Ωi ∩ Ω), i = 1, . . . , N , be local approximation
spaces. We define the PUM space by

VPUM :=
∑

i

ϕiVi = {
∑

i

ϕivi | vi ∈ Vi} ⊂ H1(Ω). (2)

Theorem 1.2. Let a partition of unity and a collection of local approximation spaces be
given as in Definition 1.1. Assume that the function u ∈ H1(Ω) can be approximated locally
on the patches, i.e., for each Ωi there is vi ∈ Vi with

‖u− vi‖L2(Ωi∩Ω) ≤ ε1(i), ‖∇(u− vi)‖L2(Ωi∩Ω) ≤ ε2(i).

Then the global approximant v :=
∑

i ϕivi ∈ VPUM satisfies

‖u− v‖L2(Ω) ≤
√
MC∞

(
∑

i

ε1(i)
2

)1/2

,

‖∇(u− v)‖L2(Ω) ≤
√
2M

(
∑

i

(
CG

diam(Ωi)

)2

ε1(i)
2 + C2

∞ε2(i)
2

)1/2

.

Proof. See [19, 15].

Theorem 1.2 states that the global approximation properties of the space VPUM are as good as
the approximation properties of the local spaces Vi permit. It is therefore sufficient to identify
good local approximation spaces and analyze their approximation properties. In the present
paper, we focus on the properties of a specific type of local approximation spaces, namely,
generalized harmonic polynomials, which are well-suited for the approximation of solutions
to scalar elliptic equations with analytic coefficients and homogeneous (or simple) right
hand side. We analyze the approximation properties of generalized harmonic polynomials
and give rates of convergence as the dimension of these local spaces (the “degree” of the
generalized harmonic polynomials) is increased—in this sense, the methods presented here
may be called “operator adapted spectral element methods”. The results obtained here will
be used in the second and third part of this series of papers in the analysis of operator adapted
spectral element methods for the systems of the two dimensional elasticity equations, [17],
and a more detailed analysis of Helmholtz’s equation, [18]. An application to problems from
homogenization will be given elsewhere.

The prototype of the equations under consideration here is Laplace’s equation in two di-
mensions. It is well-known that harmonic functions, i.e., the solutions of Laplace’s equation,
can be represented as the real parts of holomorphic functions. A direct consequence is that
harmonic functions can be approximated locally by harmonic polynomials of degree p, that
is, span {Re zn, Im zn, 0 ≤ n ≤ p} with z = x+ iy.
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The aim of Section 2 is to analyze the approximation properties of harmonic polynomials for
the approximation of harmonic functions in terms of Sobolev-regularity of the function to be
approximated and in terms of the geometry of the local patches. It is shown that the space of
dimension 2p+1 of harmonic polynomials of degree p has essentially the same approximation
properties as the space of full polynomials of degree p, which has dimension O(p2). Special
attention is placed on the approximation of singular functions arising typically in corners.
Section 3 extends the results for Laplace’s equation to general elliptic equations with an-
alytic coefficients. It is shown that the so-called Bergman-Vekua operator, which provides
a bijection between solutions of Laplace’s equation and the solutions of such equations, is
bicontinuous in Sobolev norms. Thus, the approximation results for Laplace’s equation can
be transferred to the general case if harmonic polynomials are replaced with generalized
harmonic polynomials, the images of harmonic polynomials under the Bergman-Vekua oper-
ator. It should be added that in general the Bergman-Vekua operator is not known explicitly.
However, although the Bergman-Vekua operator was originally introduced as a global oper-
ator, it is possible to replace it with local variants thereby making it amenable to efficient
numerical realizations by, e.g., series representations, [3, 22].
Section 4 concludes the paper with an example of an operator adapted spectral element
method for Laplace’s equation. In the framework of the PUM local spaces consisting of
harmonic polynomials are used, and it is shown that this approach is superior to the classical
p version in terms of error versus degrees of freedom. This is due to the fact that, locally, the
space of dimension 2p+1 of harmonic polynomials has very similar approximation properties
for the approximation of harmonic functions as the full space of polynomials of dimension
O(p2).

We close our introduction with a brief discussion of related operator adapted techniques.
The PUM can be viewed as a unified approach for using custom-tailored ansatz spaces, and
it is therefore a generalization of a variety of methodologies found in the literature, in par-
ticular, the “singular function method” (also known as “augmented Galerkin”, “enriched
spaces method”) and methods known as “Trefftz method” or “boundary method”. In the
singular function method, [8], a standard finite element space is augmented by a few sin-
gular functions so as to resolve a corner singularity. Since the standard finite element hat
functions form a partition of unity, this singular function method can be understood as a
special case of the PUM with polynomial local approximation spaces away from the corners
and local approximation spaces consisting of polynomials augmented by the appropriate
singular functions in the vicinity of the corners. In the Trefftz and boundary methods the
solution is approximated everywhere by operator adapted systems of functions. For example,
[3, 22] approximate with operator adapted systems (in fact, generalized harmonic polyno-
mials are used) and minimize the residual on the boundary in appropriately chosen points.
In the classical Trefftz method (see [29] for an overview) the L2 error on the boundary is
minimized. These classical operator adapted methods are global in that they use operator
adapted systems on the whole domain of interest. In order to localize the use of such sys-
tems, non-conforming methods have been proposed (e.g., [11, 13]). In these non-conforming
methods, approximation with operator adapted systems is performed on subdomains and
the continuity across subdomain boundaries is enforced in a weak sense through either the
use of “mortar elements” or by minimizing the jump (or the jump of derivatives) across
subdomain boundaries. In contrast to these non-conforming methods, using local operator
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adapted systems of functions in the framework of the PUM leads naturally to a conforming
method. This is an attractive feature as the resulting discrete problem inherits many of the
properties of the original continuous problem such as, e.g., coercivity and symmetry of co-
ercive, symmetric problems. Nevertheless, the new approximation results obtained here can
also be used independently from the PUM for an analysis of the non-conforming methods
mentioned above.
Related to the idea of exploiting knowledge about the structure of the underlying differential
equation is for example the “sparse grid” h version approach of [28]. There, extra regularity of
the solution is exploited to choose judiciously subspaces of the classical piecewise polynomial
spaces which share the approximation properties of the full spaces but have greatly reduced
dimension. The approach discussed in Section 2 may be considered as a p version analog of
this: Not the full space of polynomials of degree p is needed but merely the “sparse” set of
those polynomials which also solve the differential equation is needed.

2 Approximation by Harmonic Polynomials

In this section we analyze the approximation properties of polynomials in the complex domain
for the approximation of holomorphic functions which is closely related to the approximation
of harmonic functions by harmonic polynomials. This question has been addressed in an L∞

setting a long time ago. We mention the classical result by Runge,[14], on the density of
polynomials in the set of holomorphic functions on a bounded domain and refer to [27, 20]
for a detailed analysis in a Hölder space setting. In contrast to those classical results,
we present approximation theory in a Sobolev space setting suitable in the context of the
FEM. We will be particularly interested in H1 estimates although the results generalize
naturally to other Sobolev space settings. The main results are Theorems 2.9 and 2.11.
Theorem 2.9 answers the question of approximability of holomorphic functions f in terms
of the regularity of f (i.e., in which Sobolev space Hk(Ω) the function f lies) and in terms
of the geometry of Ω (the angle of exterior cones). Theorem 2.11 addresses the question
of approximating singular functions (e.g., of the form zα) by polynomials. It is shown
that for the approximation of such singlar functions on domains with a convex corner at the
singularity, polynomials have even better approximation properties than those guaranteed by
Theorem 2.9. The numerical examples of Section 2.6 indicate that the approximation results
of Theorems 2.9, 2.11 are essentially sharp. In Section 2.5 finally, it is shown that additionally
the approximating polynomials can be chosen to have some super-approximabiltiy properties
on compact subsets.
It should be mentioned that polynomials are not the only choice for the approximation
of holomorphic functions. On bounded domains, the set of rational functions, the set of
functions {enz |n ∈ lN0}, or {eaz | a in some dense subset of the unit circle} are dense (in
Sobolev norms) in the set of holomorphic functions as well. An approximation-theoretical
justification for considering polynomials is that they are optimal in the sense of n–width
([21]) for the approximation of rotationally invariant classes of holomorphic functions on
discs, [24].
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2.1 Properties of Conformal maps and Miscellaneous Lemmas

In this section, we consider bounded, simply connected Lipschitz domains Ω ⊂ Cl . We
introduce the following semi norms on the space of holomorphic functions. For k ∈ lN0,
s ∈ (0, 1), and f holomorphic on Ω we define Sobolev norms of fractional order as follows:

|f |k,Ω =

(∫

Ω

|f (k)(z)|2dxdy
)1/2

,

‖f‖k,Ω =

(
k∑

n=0

∫

Ω

|f (n)(z)|2dxdy

)1/2

,

|f |s,Ω =

(∫

z∈Ω

∫

ζ∈Ω

|f(z)− f(ζ)|2

|z − ζ |2+2s
dξdη dxdy

)1/2

,

‖f‖k+s,Ω =
(
‖f‖2k,Ω + |f (k)|2s,Ω

)1/2
,

and we define the Sobolev spaces Hk(Ω), k ≥ 0, of holomorphic functions

Hk(Ω) := {f holomorphic on Ω | ‖f‖k,Ω < ∞}.

Definition 2.1. Let Ω be a bounded, simply connected Lipschitz domain. Denote by ϕΩ

the conformal map ϕΩ from the exterior of the unit ball B1(0) onto the exterior of Ω which
satisfies ϕΩ(∞) = ∞ and ϕ′

Ω(∞) > 0. We introduce for h > 0 the level–lines Lh by

Lh := {ϕΩ(z) ∈ Cl | |z| = 1 + h}.

Since the level–lines are closed, non–selfintersecting, analytic curves, the set Cl \Lh has two
components of connectedness. Int(Lh) denotes the bounded component of connectedness and
Ext(Lh) the unbounded component.
We say that Ω satisfies an exterior cone condition with angle 0 < λπ < 2π if for any
z ∈ Cl \ Ω there is a cone C with vertex in z such that C ⊂ Cl \ Ω and C is congruent to a
fixed reference cone C0(λπ, ρ) of the form

C0(λπ, ρ) := {z ∈ Cl | 0 < arg z < λπ, |z| < ρ}.

Similarly, we define an interior cone condition. We call Ω star-shaped with respect to z0, if
for all z ∈ Ω the line segment [z0, z] is completely contained in Ω. We call Ω star-shaped
with respect to the ball Br(z0), if Ω is star-shaped with respect to every z ∈ Br(z0).

Since Ω is Lipschitz, the map ϕΩ has a continuous extension to ∂Ω. Note that Ω ⊂ Int(Lh)
for all h > 0. One essential tool for our approximation results are bounds on the distance of
level–lines Lh to the boundary ∂Ω.

Lemma 2.2. Let Ω be a bounded Lipschitz domain satisfying an exterior cone condition
with angle λπ and an interior cone condition with angle Λπ and let ϕΩ be the corresponding
conformal map as in Definition 2.1. Then there are constants C1, C2, C3 > 0 depending
only on Ω such that

dist(Lh, Lh′) ≥ C1h|h− h′|, 0 < h < h′ < 1,

C2h
2−Λ ≤ dist(Lh, ∂Ω) ≤ C3h

λ, 0 < h < 1,

|ϕ′
Ω(z)| ≤ ϕ′

Ω(∞)
|z|

|z|− 1
∀ |z| > 1.
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Proof. These are classical estimates. The first may be proved using Koebe’s distortion
Theorem ([14]). The second estimates follow from a comparison of the level–lines of Ω with
the level–lines of appropriately chosen polygons, for which the conformal maps are explicitly
known owing to the Schwarz–Christoffel formulae. Finally, the last one follows from the area
formula ([14]).

Lemma 2.3 (interior estimates). Let Ω be a domain. For ε > 0 define Ωε := {z ∈ Ω |Bε(z) ⊂
Ω}. Then, for f ∈ Hk(Ω), 0 ≤ k ≤ 1,

‖f‖L∞(Ωε) ≤ π−1/2ε−1‖f‖0,Ω, (3)

‖f ′‖0,Ωε ≤ ε−(1−k)|f |k,Ω, (4)

‖f (m)‖0,Ωε ≤ mm−kε−(m−k)|f |k,Ω, m ∈ lN. (5)

Proof. The first estimate can be found in [14]. For the second one, we distinguish the cases
k = 0 and 0 < k < 1, the case k = 1 being obvious. For k = 0, we have by Cauchy’s integral
formula for every 0 < r < ε:

f ′(z) =
1

2πi

∫

∂Br(z)

f(t)

(z − t)2
dt =

1

2π

∫ 2π

0

f(z + reiϕ)

reiϕ
dt ∀z ∈ Ωε.

Taking squares on both sides and integrating in the z variable over Ωε, gives with the change
of variables ζ = z + reiϕ

‖f ′‖20,Ωε
≤

1

r2
‖f‖20,Ω.

Letting r tend to ε finishes the argument for the case k = 0. Let us now consider the case
0 < k < 1. Cauchy’s integral formula gives for 0 < r < ε

f ′(z) =
1

2πi

∫

∂Br(z)

f(t)

(z − t)2
dt =

1

2πi

∫

∂Br(z)

f(t)− f(z)

(z − t)2
dt ∀z ∈ Ωε.

The Cauchy-Schwarz inequality gives

|f ′(z)|2 ≤
1

4π2

∫

∂Br(z)

|f(t)− f(z)|2

|z − t|2+2k
|dt|

∫

∂Br(z)

1

|z − t|2−2k
|dt|

≤
2π

4π2
r−(1−2k)

∫

∂Br(z)

|f(t)− f(z)|2

|z − t|2+2k
|dt|.

Multiplying both sides of this inequality with r1−2k, integrating over r from 0 to ε and then
integrating in z over Ωε finishes the proof of the second estimate. The third inequality follows
by applying the second one repeatedly: For δ = ε/m define domains Ωε = Ωmδ ⊂ Ω(m−1)δ ⊂
· · · ⊂ Ωδ ⊂ Ω and use the second estimate to obtain

|f (m)|0,Ωε ≤ δ−1|f (m−1)|0,Ω(m−1)δ
≤ · · · ≤ δ−(m−1)|f ′|0,Ωδ

≤ δ−(m−1)δ−(1−k)|f |k,Ω

which finishes the proof of the third inequality.

Lemma 2.4. Let Ω be a bounded simply connected domain, z0 ∈ Ω, f ∈ H0(Ω). Then there
is C > 0 depending only on the shape of Ω such that the function F (z) =

∫ z
z0
f(t)dt satisfies

‖F‖0,Ω ≤ C diam(Ω)‖f‖0,Ω.
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Proof. We will restrict ourselves to the case diam(Ω) = 1. The general case follows by a
scaling argument. Choose ε > 0 such that B2ε(z0) ⊂ Ω. By a classical Poincaré inequality
there is a constant C > 0 such that

‖F‖0,Ω ≤ C
(
|f |0,Ω + ‖F‖0,Bε(z0)

)
.

The term ‖F‖0,Bε(z0) can be bounded by the first estimate of Lemma 2.3.

We finally need the following Bramble–Hilbert type lemma.

Lemma 2.5. Let Ω be a bounded simply connected domain, f ∈ Hk+s(Ω), k ∈ lN0, s ∈ [0, 1),
and z0 ∈ Ω. Denote Tk the k-th order Taylor polynomial of f about the point z0 and set
T−1 ≡ 0. Then

‖f − Tk‖k,Ω ≤ C|f (k)|s,Ω if s > 0,

‖f − Tk−1‖k,Ω ≤ C‖f (k)‖0,Ω if s = 0

where C > 0 depends only on Ω, z0, and k, s.

Proof. Let us first consider the case s > 0. Repeated application of Lemma 2.4 yields

|f − Tk|j,Ω ≤ (C diam(Ω))k−j |f (k) − f (k)(z0)|0,Ω 0 ≤ j ≤ k.

For a fixed K ⊂⊂ Ω there is, by Poincaré, C > 0 such that

|g|0,Ω ≤ C (|g|0,K + |g|s,Ω) ∀g ∈ Hs(Ω).

On setting g = f (k) − f (k)(z0), we obtain

|f (k) − f (k)(z0)|0,Ω ≤ C
(
|f (k) − f (k)(z0)|0,K + |f (k)|s,Ω

)

≤ C
(
|f (k+1)|0,K + |f (k)|s,Ω

)
≤ C|f (k)|s,Ω

where use made use of Lemmas 2.4, 2.3. Let us now turn to the case s = 0 and assume that
k ≥ 1 (k = 0 is trivial). Repeated application of Lemma 2.4 yields for 0 ≤ j ≤ k − 1

|f − Tk−1|j,Ω ≤ (C diam(Ω))k−1−j |f (k−1) − f (k−1)(z0)|0,Ω ≤ (C diam(Ω))k−j |f (k)|0,Ω.

As T (k)
k−1 = 0, we get |f − Tk−1|k,Ω = |f (k)|0,Ω and therefore obtain the desired bound for

‖f − Tk−1‖k,Ω.

2.2 Exponential Approximability of Harmonic Functions

We first address the question of polynomial approximation of functions which are holomor-
phic on domains properly containing the domain of interest. The rate of approximability in
this case is exponential.

Theorem 2.6 (Szegö). Let Ω be a bounded, simply connected Lipschitz domain satisfying
an interior and exterior cone condition. Let f ∈ L∞(Int(L2h)) be holomorphic on Int(L2h).
Then there are C, α ≥ 0 depending only on Ω and a sequence (Pp)∞p=0 of polynomials of
degree p such that

‖f − Pp‖L∞(Int(Lh/2)) ≤ Ch−α(1 + h)−p‖f‖L∞(Int(L2h)).
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Proof. See [20] or [16]. We will, however, sketch the proof. The polynomials Pp will be
constructed explicitly by interpolating f in p+ 1 points.
Let ϕ be the conformal map of Definition 2.1. Define polynomials ωp(z) of degree p by
ωp(z) =

∏p−1
n=0 (z − ϕ(exp (2πin/p))). We claim that there is C > 0 such that for h sufficiently

small
hC |ϕ′(∞)|p(1 + h)p ≤ |ωp(z)| ≤ h−C |ϕ′(∞)|p(1 + h)p ∀z ∈ Lh. (6)

We observe that ln |ωp(z)|1/p can be interpreted as a Riemann sum of the integral (2π)−1/2
∫ 2π

0 ln |z−
ϕ(eiθ)|dθ. On setting w = ϕ−1(z) for z ∈ Lh this integral can be evaluated:

1

2π

∫ 2π

0

ln
∣∣z − ϕ(eiθ)

∣∣ dθ = Re
1

2π

∫

|t|=1

ln
ϕ(w)− ϕ(t)

w − t

dt

it
+ Re

1

2π

∫

|t|=1

ln(w − t)
dt

it

= Re lnϕ′(∞) + Re lnw = ln |ϕ′(∞)ϕ−1(z)|

The difference between the Riemann sum and the integral can be bounded by 1/p times the
variation of integrand which, for h sufficiently small, can be estimated by

1

p

∫

t∈∂Ω

1

|z − t|
ds ≤

C

p
| lnh|

where for the last estimate we used the fact that ∂Ω is Lipschitz and that z ∈ Lh. This
proves (??).
Let Pp now be the polynomial which interpolates f in the p + 1 points ϕ(exp (2πin/p)),
n = 0, . . . , p− 1. Hermite’s formula for the remainder (see [6]) gives

f(z)− Pp(z) =
1

2πi

∫

L2h

ωp(z)

ωp(t)

f(t)

z − t
dt ∀z ∈ Int(Lh/2),

and the claim of Theorem 2.6 follows from Lemma 2.2 and (6).

The classical formulation of Theorem 2.6 is concerned with L∞ estimates. However, by
Cauchy’s integral theorem, estimates on higher derivatives are straightforward. We record
this observation for further reference in

Corollary 2.7. With the hypotheses of Theorem 2.6 and f ∈ H0(Int(L4h)) there is a sequence
(Pp)∞p=0 of polynomials of degree p such that

|(f − Pp)
(j)|L∞(Ω) ≤ Cjh

−βj(1 + h)−p‖f‖0,Int(L4h), j ∈ lN0,

where Cj, βj ≥ 0 depend only on Ω, k, s, and j.

Proof. By Cauchy’s formula for (f − Pp)(j), j ∈ lN0, and with the estimate Ch−(2−Λ) ≤
dist(Lh/2, ∂Ω) (Lemma 2.2), Theorem 2.6 implies that the polynomials Pp of Theorem 2.6
actually satisfy

‖(f − Pp)
(j)‖L∞(Ω) ≤ Cjh

−j(2−Λ)h−α(1 + h)−p‖f‖L∞(Int(L2h)) (7)

where the constants Cj depend only on j and Ω. Finally, the estimate on the distance of
level-lines (Lemma 2.2) and the interior estimate (3) allow us to bound ‖f‖L∞(Int(L2h)) by
‖f‖0,Int(L4h) at the expense of some negative powers of h.
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2.3 Approximation in Sobolev Spaces

Let us first prove the density of polynomials in Sobolev spaces of holomorphic functions.

Proposition 2.8. Let Ω be a bounded simply connected Lipschitz domain. Then polynomials
are dense in H0(Ω) and H1(Ω).

Proof. The density in H0(Ω) is proved in [14]. For the density in H1(Ω), let f ∈ H1(Ω),
z0 ∈ Ω, and ε > 0 be given. By the density of polynomials in H0(Ω) there is a polynomial Q
such that ‖f ′ −Q‖0,Ω ≤ ε. By Lemma 2.4 the polynomial P (z) = f(z0) +

∫ z

z0
Q(t)dt satisfies

‖f − P‖0,Ω ≤ C‖f ′ −Q‖0,Ω ≤ Cε.

This finishes the proof.

The main theorem of this section is

Theorem 2.9. Let Ω be a bounded Lipschitz domain, star-shaped with respect to a ball.
Assume that Ω satisfies an exterior cone condition with angle λπ. Let f ∈ Hk+s(Ω), k ∈ lN0,
s ∈ [0, 1). Then there is a sequence (Pp) of polynomials of degree p ≥ k + s− 1 such that

|f − Pp|j,Ω ≤ C (diam(Ω))k+s−j

(
ln(p+ 2)

p+ 2

)λ(k+s−j)

|f (k)|s,Ω, j = 0, . . . , k,

where the constant C > 0 depends only on k, s, and the shape of Ω.

The proof of Theorem 2.9 proceeds in two steps. In the first step, an approximation Tk is
constructed which is holomorphic on a domain Ωε properly containing Ω. In the second step,
Tk is approximated by polynomials using Corollary 2.7. The following lemma formulates the
procedure of the first step.

Lemma 2.10. Assume the hypotheses of Theorem 2.9 and assume that Ω is star-shaped with
respect to the ball Bρ(0), ρ > 0. For 0 < ε < 1

2 define

Ωε = (1− ε)−1Ω, (8)

Tk(z) =
k∑

n=0

1

n!
f (n)((1− ε)z)(εz)n. (9)

Then Tk is holomorphic on Ωε and

C1ε ≤ dist(∂Ωε,Ω) ≤ C2ε, (10)

|f − Tk|j,Ω ≤ C3ε
k+s−j|f (k)|s,Ω, j = 0, . . . , k, (11)

|Tk|0,Ωε ≤ C4‖f‖k,Ω, (12)

where C1, C2, C3, and C4 depend only on Ω, k, and s.

9



Proof. By a simple geometrical consideration, we have

ρ

1− ε
ε ≤ dist(∂Ωε,Ω) ≤ diam(Ω)

ε

1− ε
(13)

and therefore (10) follows. Estimate (12) follows by the change of variables ζ = (1− ε)z.
Since Tk is the k-th order Taylor polynomial of f , the integral form of the remainder gives

f(z)− Tk(z) =
1

k!

∫ z

(1−ε)z

f (k+1)(t)(z − t)kdt

=
1

k!
εk+1

∫ 1

τ=0

f (k+1) ((1− ετ)z) zk+1τkdτ. (14)

Let us first consider the case j = 0. If 0 = j = k + s, then estimate (11) follows directly
from the change of variables ζ = (1− ε)z. Let therefore 0 = j < k + s. Choose 0 < δ < 1/2
such that 2(k + s+ δ − 1) > −1. (14) yields

|f − Tk|20,Ω ≤
1

(k!)2
ε2(k+1)

∫

z∈Ω

∣∣∣∣

∫ 1

τ=0

f (k+1) ((1− ετ)z) zk+1τkdτ

∣∣∣∣

2

dxdy

≤
(diam(Ω))2(k+1)

(k!)2(1− 2δ)
ε2(k+1)

∫

z∈Ω

∫ 1

τ=0

∣∣f (k+1) ((1− ετ)z)
∣∣2 τ 2(k+δ)dτdxdy

≤ Cε2(k+1)

∫ 1

τ=0

τ 2(k+δ)

∫

z∈(1−ετ)Ω

∣∣f (k+1)(z)
∣∣2 dτdxdy.

Reasoning analogously to (13), we see that dist((1− ετ)Ω, ∂Ω) ≥ ρετ . Hence, we can apply
estimate (4) of Lemma 2.3 to obtain

|f − Tk|20,Ω ≤ Cε2(k+1)

∫ 1

τ=0

τ 2(k+δ)(ετ)−2(1−s)|f (k)|2s,Ωdτ

≤ Cε2(k+s)|f (k)|2s,Ω

where we used the fact that 2(k + s + δ − 1) > −1. This concludes the proof of the case
j = 0. Let us now consider the case 0 < j ≤ k. For s = 0 the claim follows directly from
the Definition (9) by taking the jth derivative and then applying estimate (5) of Lemma 2.3
to each of the terms. For the remaining case s > 0, we see that by differentiating under
the integral sign in the remainder formula (14) we have to estimate terms which are very
similar to the ones in the case j = 0 above except that instead of f (k+1) higher derivatives
f (k+1+j′), 0 ≤ j′ ≤ j, are involved. Mutatis mutandis, the arguments of our analysis of the
case j = 0 apply if we use (5) instead of (4) of Lemma 2.3 and choose δ ∈ (0, 1/2) such that
2(k + s+ δ − 1− j′) > −1.

We are now in position to prove Theorem 2.9.
Proof of Theorem 2.9: Without loss of generality, we may assume that Ω is star shaped
with respect to a ball Bρ(0), ρ > 0. The factor (diam(Ω))k+s−j is obtained by the usual
scaling argument. We may therefore restrict ourselves to the case diam(Ω) = 1.
For ε > 0 to be chosen appropriately below, let Tk be defined as in Lemma 2.10. We have

|f − Tk|j,Ω ≤ Cεk+s−j|f (k)|s,Ω. (15)
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Let us now approximate Tk by polynomials Pp of degree p ≥ k + s − 1. To that end, we
note that by (10) of Lemma 2.10 and Lemma 2.2 there is C > 0 such that the inclusion
Int(L4h) ⊂ Ωε holds for

h := Cε1/λ.

An application of Corollary 2.7 to the function Tk ∈ H0(Int(L4h)) gives the existence of
polynomials Pp of degree p such that

|Tk − Pp|j,Ω ≤ Cjh
−βj(1 + h)−p‖Tk‖0,Int(L4h), j ∈ lN0.

Estimate (12) and the restriction j ≤ k imply

|Tk − Pp|j,Ω ≤ Ch−β(1 + h)−p‖f‖k,Ω, j ≤ k,

for some C, β ≥ 0. Thus, the total error is (recalling h = Cε1/λ)

|f − Pp|j,Ω ≤ |f − Tk|j,Ω + |Tk − Pp|j,Ω
≤ C

[
εk+s−j + ε−β/λ(1 + Cε1/λ)−p

]
‖f‖k+s,Ω, j = 0, . . . , k.

Choosing

ε =

(
K

ln(p + 2)

p+ 2

)λ

(16)

for sufficiently large K leads to the bound

|f − Pp|j,Ω ≤ C

(
ln(p+ 2)

p+ 2

)λ(k+s−j)

‖f‖k+s,Ω, j = 0, . . . , k. (17)

Replacing the full ‖ · ‖k+s,Ω by the appropriate semi norm on the right hand side follows
now by a standard argument with the aid of Lemma 2.5: Let p0 be the smallest integer such
that p0 ≥ k + s− 1. Applying estimate (17) to the function f − T̃p0 where T̃p0 is the Taylor
polynomial of order p0 of f about the origin 0 ∈ Ω, we get the existence of polynomials P̃p,
p ≥ p0 such that

|f − P̃p|j,Ω ≤ C

(
ln(p+ 2)

p+ 2

)λ(k+s−j)

‖f − T̃p0‖k+s,Ω

≤ C

(
ln(p+ 2)

p+ 2

)λ(k+s−j)

|f (k)|s,Ω, j = 0, . . . , k.

2.4 Approximation of Singular Functions zα, zα ln z

In the preceding section, we analyzed the approximation properties of polynomials for the
approximation of functions f ∈ Hk+s(Ω). No assumptions on a possible continuation of
f across (parts of) ∂Ω were made. Singular functions of the form zα, zα ln z, which are of
practical importance as they arise typically as the solutions of Laplace’s equation in domains
with corners, permit analytic continuation across parts of ∂Ω. This observation motivates
the analysis of the approximation of functions f ∈ Hk+s(Ω) which can be extended across
∂Ω except at a singularity z0 ∈ ∂Ω. The following theorem shows that for the approximation
of such functions, the results of Theorem 2.9 can be improved provided that the singularity
z0 is located at a convex corner of the domain Ω.
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Theorem 2.11. Let Ω ⊂ Ω0 be bounded Lipschitz domains with piecewise C1 boundaries.
Assume that Ω satisfies an exterior cone condition with angle λπ > π at z0 ∈ ∂Ω, and
assume that there is γ > 0 such that

dist(z, ∂Ω0) ≥ γ|z − z0| ∀z ∈ ∂Ω. (18)

Let f ∈ Hk+s(Ω0), k ∈ lN0, s ∈ [0, 1). Then there is C > 0 depending only γ and the shapes
of Ω, Ω0, and a sequence (Pp) of polynomials of degree p ≥ k + s− 1 such that

|f − Pp|j,Ω ≤ C (diam(Ω0))
k+s−j

(
ln(p+ 2)

p + 2

)λ(k+s−j)

|f (k)|s,Ω0, j = 0, . . . , k.

The geometric interpretation of condition (18) is that ∂Ω and ∂Ω0 can only meet in the point
z0 and they can only meet in a “non–tangential” way (cf. Fig. 1).

K Ω

Lh
Ω0

Re z

Im z

(2− λ)π

Figure 1: Setting of Theorem 2.11

Before proving Theorem 2.11, let us note

Corollary 2.12. Let f be of the form zα or zα lnβ z with α, β ≥ 0. Let Ω be a bounded
Lipschitz domain with exterior angle λπ at 0 ∈ ∂Ω. Then there is a sequence (Pp)∞p=0 of
polynomials of degree p such that for all ε > 0

|f − Pp|j,Ω ≤ Cε(p+ 1)−λ(α+1−j)+ε, j = 0, 1,

where Cε depends only on ε, Ω, and f .

Proof. The corollary follows immediately from Theorem 2.11 for the case λπ > π and from
Theorem 2.9 for the case λπ ≤ π if we observe that f ∈ Hα+1−ε(Ω) for all ε > 0.

Remark 2.13 This corollary shows more clearly the difference between Theorem 2.11 and
Theorem 2.9. Whereas, in order to apply Theorem 2.9 one has to assume λ ≤ 1, Theorem 2.11
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allows us to infer improved rates of convergence if the singularity of the function is located
in a convex corner of the domain. For the approximation of functions zα in the H1 norm,
Corollary 2.12 yields – for the approximation in the H1 norm – the rate (p+ 1)−λα+ε where
λ > 1 for a convex corner; Theorem 2.9 only yields (p+ 1)−α+ε for the approximation in the
H1 norm. This result for the approximation of singular functions is similar to the “doubling
of the rate of convergence” in the standard p version: In [25] the approximation of functions
of the form g(r, θ) = rαΦ(θ), (Φ smooth) by spaces of full polynomials on triangles T is
considered. It is assumed that one vertex of T is located in the origin and that the angle at
that vertex is less than π/2. Then there are polynomials Qp of degree p and C > 0 such that

‖g −Qp‖H1(T ) ≤ C(p+ 1)−2α ∼ CN−α

where N stands for the number of degrees of freedom. On the other hand, approximating a
harmonic function of the form u = Im zα on such a triangle T gives by Theorem 2.11 with
λ = 3/2 the existence of harmonic polynomials up such that ‖u−up‖H1(T ) ≤ C(p+1)−λα+ε ∼
CN−3/2α+ε.

Proof of Theorem 2.11: The proof of Theorem 2.11 is very similar to the proof of Theo-
rem 2.9. Again, we will restrict ourselves to the case diam(Ω0) = 1 and obtain the general
case by a scaling argument. As in the proof of Theorem 2.9, we construct a function Tk with
f − Tk small and Tk being holomorphic on a domain properly containing Ω. Approximating
Tk by polynomials then concludes the argument.
Without loss of generality let us assume that z0 = 0 and that the exterior cone condition
satisfied by Ω at the point z0 is such that (for some ρ > 0)

{z ∈ Bρ(0) | |arg z| > (2− λ)π/2} ⊂ Cl \ Ω (19)

The approximation Tk is then defined by

Tk(z) =
k∑

n=0

1

n!
f (n)(z + ε)(−ε)n, (20)

which is holomorphic on Ω−ε. In order to imitate the proofs of Lemma 2.10 and Theorem 2.9
we need the following two properties:

1. There is C > 0 such that
Chλ + Int(Lh) ⊂ Ω0. (21)

2. There are κ > 0, ε0 > 0 such that

∪z∈ΩBκε(z + ε) ⊂ Ω0 ∀ 0 < ε < ε0. (22)

Let us postpone the proof of these two properties. Since Tk is the Taylor polynomial of f
about the point z + ε evaluated at z = (z + ε) − ε we have again the integral remainder
formula:

f(z)− Tk(z) =
1

k!

∫ z

z+ε

f (k+1)(t)(z − t)kdt

=
1

k!
(−ε)k+1

∫ 1

τ=0

f (k+1)(z + ετ)τkdτ.
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Similar arguments as in the proof of Lemma 2.10 (here we need (22)) produce

|f − Tk|j,Ω ≤ Cεk+s−j|f (k)|s,Ω0, j = 0, . . . , k.

Let us now turn to the approximation of Tk by polynomials. (21) gives the existence of
C > 0 such that for

h := Cε1/λ

the inclusion ε+ Int(L4h) ⊂ Ω0 holds. Applying Corollary 2.7 to the approximation Tk gives
the existence of polynomials Pp of degree p such that

|Tk − Pp|j,Ω ≤ Cjh
−βj(1 + h)−p|Tk|0,Int(L4h), j ∈ lN0.

Observing that ε + Int(L4h) ⊂ Ω0, the change of variables ζ = z + ε on the right hand side
gives

|Tk − Pp|j,Ω ≤ Ch−β(1 + h)−p‖f‖k,Ω0, j = 0, . . . , k.

Just as in the proof of Theorem 2.9 setting ε = K {ln(p+ 2)/(p+ 2)}λ for sufficiently large
K produces the estimate

|f − Pp|j,Ω ≤ C

(
ln(p+ 2)

p+ 2

)λ(k+s−j)

‖f‖k+s,Ω, j = 0, . . . , k.

Again, an application of Lemma 2.5 allows us to replace the full ‖ · ‖k+s,Ω norm on the right
hand side by the desired semi norm.
Let us now check the validity of assertions (21), (22). (22) follows from simple geometrical
considerations: ∂Ω0 approaches Ω only in z0 = 0 and z0 = 0 is a convex corner of Ω.
Because the boundaries of Ω and Ω0 are piecewise smooth, there are ρ′, δ > 0 such that (cf.
Fig. 1)

{z ∈ Bρ′(0) | |arg z| < (2− λ)π/2 + δ} ⊂ Ω0. (23)

Define
K := {z ∈ Bρ′(0) | |arg z| > (2− λ)π/2 + δ}.

Then it follows from the properties of conformal maps and the fact that Ω satisfies an exterior
cone condition with angle λπ that there is C > 0 such that

dist(z, 0) ≤ Chλ ∀ z ∈ Lh ∩K. (24)

(21) follows now because for z ∈ Lh ∩K (24) and (23) give z + Chλ ∈ Ω0 for C sufficiently
large, and for z ∈ Lh \K either |z| > ρ′, in which case (21) follows for h sufficiently small
by (18), or |z| < ρ′, in which case z ∈ Ω0 and thus z + Chλ ∈ Ω0.

Remark 2.14 Theorem 2.11 can be extended to the case of curvilinear polygons, star
shaped with respect to a ball Bρ(z0). Letting z1, . . . , zN be the corners of Ω and assuming
that Ω satisfies a cone condition with angle λπ at each corner and that

dist(z, ∂Ω0) ≤ γ
N∏

j=1

|z − zj |, z ∈ ∂Ω,
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the assertion of Theorem 2.11 still holds true. To see this, it is enough to set

Tk(z) =
k∑

n=0

1

n!
f (n)((1− ε)(z − z0))(ε(z − z0))

n

and reasoning as in the proof of Theorem 2.11 yields the desired result.

2.5 Super-Approximability on Compact Subsets

In this subsection we will briefly discuss the question whether it is possible to construct
approximating polynomials which have good approximation properties on the whole domain
of interest and at the same time approximate the given function even better on compact
subsets. In view of the fact that both the function to be approximated and the approximating
functions are holomorphic, such a result may be expected from the maximum principle. We
will discuss here the approach that makes use of “Fourier expansions” (i.e., expansions in
terms of an orthonormal basis) of the given function. We demonstrate this tool for two
simple cases only, viz., the case of a domain with an analytic boundary and the case of a
rectangle. Further, we will outline how the proof of Theorem 2.11 can be modified to obtain
super-approximability on compact subsets for singular functions.

Proposition 2.15. Let Ω be a bounded, simply connected domain with analytic boundary.
Assume that f ∈ Hk+s(Ω), k ∈ lN0, s ∈ [0, 1). Then there is a sequence (Pp) of polynomials
of degree p ≥ k + s− 1 such that

∀ε ≥ 0 |f − Pp|j,Ωε ≤ Cdk+s−jp−(k+s−j)e−γpε/d|f (k)|s,Ω, j = 0, . . . , k,

where
d = diam(Ω), Ωε = {z ∈ Ω | dist(z, ∂Ω) > ε}, 0 ≤ ε/d ≤ γ0,

and the constants C, γ, γ0 > 0 depend only on the shape of Ω, k, and s.

Remark 2.16 Note that the polynomials Pp are independent of ε. Setting ε = 0 (i.e.,
considering the whole domain Ω), we obtain an estimate which is essentially the same as an
application of Theorem 2.9 with λ = 1 yields. However, the ln(p+2) term could be removed
due to the assumption of analyticity of ∂Ω.

Proof. Without loss of generality we may assume that diam(Ω) = 1. The general case is
proved by a scaling argument. Let ψ be a conformal map from Ω onto B1(0). Let us first
see that ψ can be extended to a neighborhood Ω̃ of Ω ∪ ∂Ω and that |ψ′| > 0 on Ω ∪ ∂Ω.
The reflection principle (∂Ω, ∂B1(0) are analytic) allows us to extend ψ to a neighborhood
of Ω ∪ ∂Ω. Similarly, we can extend ψ−1 to a holomorphic function on a ball Bρ(0), ρ > 1.
Hence ψ is invertible on a neighborhood Ω̃ of Ω ∪ ∂Ω and therefore |ψ′| > 0 on Ω̃.
An L2 orthonormal basis ofH0(Ω) is given by {

√
(n+ 1)/πψnψ′} as can be easily ascertained

from the change of variables w = ψ(z) (see, e.g., [14]). In fact, we can write

f(z) =
∞∑

n=0

an
√

(n+ 1)/πψn(z)ψ′(z) (25)
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where the coefficients an
√
(n + 1)π are the Taylor coefficients of the function

f̃(w) =
∞∑

n=0

an
√
(n + 1)/πwn =

f (ψ−1(w))

ψ′ (ψ−1(w))
∈ Hk+s(B1(0)).

Thus, we have

∞∑

n=0

|an|2(n+ 1)2m ≤ C(m,Ω)‖f‖2m,Ω, 0 ≤ m ≤ k + s. (26)

Let us further remark that, by the properties of conformal maps, there is κ > 0 such that

{w = ψ(z) | z ∈ Ωε} ⊂ B1−κε(0). (27)

Let us split the sum in (25) in two parts

f(z) =
N−1∑

n=0

an
√

(n+ 1)/πψn(z)ψ′(z) +
∞∑

n=N

an
√

(n+ 1)/πψn(z)ψ′(z) =: TN +RN

where the number N ∈ lN will be chosen below depending on the polynomial degree p. Let
h > 0 be so small that Int(L4h) ⊂ Ω̃. By Corollary 2.7 applied to TN there are polynomials
Pp such that

|TN − Pp|j,Ω ≤ Ch−β(1 + h)−pN‖ψ′‖L∞(Ω̃)‖ψ‖
N
L∞(Ω̃)

‖f‖0,Ω, j = 0, . . . , k,

where we used estimate (26) with m = 0. Let us now turn to estimating RN . The change of
variables w = ψ(z) (together with (27)) provides us with the bound

|RN |20,Ωε
≤ |

∞∑

n=N

an
√

(n+ 1)/πwn|20,B1−κε(0) =
∞∑

n=N

|an|2(1− κε)2n+2

≤ CN−2(k+s)(1− κε)2N+2‖f‖2k+s,Ω

where we used estimate (26). Note that C > 0 is independent of ε. Similarly, we obtain for
0 ≤ j ≤ k

|RN |2j,Ωε
≤ CN−2(k+s−j)(1− κε)2(N−j)+2‖f‖2k+s,Ω

where C > 0 depends on ‖ψ‖W k+1,∞(Ω̃) and on |ψ′|−1
L∞(Ω). We conclude that

|f−Pp|j,Ωε ≤ C
(
h−β(1 + h)−p‖ψ‖N

L∞(Ω̃)
N +N−(k+s−j)(1− κε)N−j+1

)
‖f‖k+s,Ω, j = 0, . . . , k.

Choosing N = νp with ν so small that q := (1 + h)−1‖ψ‖ν
L∞(Ω̃)

< 1 results in

|f − Pp|j,Ω ≤ C
(
p−(k+s−j)e−γεp + pqp

)
‖f‖k+s,Ω, j = 0, . . . , k.

The term pqp can be absorbed in the first term. Finally, the full ‖ · ‖k+s,Ω norm can be
replaced by the desired semi norm by the application of Lemma 2.5.
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The essential tool of Proposition 2.15 is the availability of an orthonormal basis of H0(Ω).
For rectangular domains similar ideas can be used. We illustrate this in the next proposition
for harmonic functions.

Proposition 2.17. Let Ω be a rectangle, u : Ω → lR be harmonic, u ∈ Hk+s(Ω), k ∈ lN,
s ∈ [0, 1). Then there is a sequence (up) of harmonic polynomials of degree p ≥ k + s − 1
such that

∀ε > 0 ‖u− up‖Hj(Ωε) ≤ Cdk+s−jp−(k+s−j)e−γpε/d|u|k+s,Ω, j = 0, . . . , k, (28)

with
d = diam(Ω), Ωε = {z ∈ Ω | dist(z, ∂Ω) > ε}, 0 ≤ ε/d ≤ γ0,

where the constants C, γ, γ0 > 0 depend only on the shape of Ω and k, s.

Proof. The proof is based on very similar ideas as the proof of Proposition 2.15. We will
therefore merely sketch the main steps. For convenience’s sake, let us assume that Ω =
(0, π) × (0, a) and that s 1= 0. After subtracting an appropriate harmonic polynomial, we
may assume that all derivatives of u up to order k− 1 vanish in the four vertices. Hence, we
can write u = u1 + · · · + u4, where the ui are harmonic and vanish on three edges and are
equal to u on the fourth edge. We may therefore approximate each of these four functions
separately. Consider u1, whose restriction to the boundary ∂Ω is supported by (0, π)× {0}.
Expanding u1(x, 0) in a Fourier series gives

u1(x, 0) =
∞∑

n=1

cn sin nx,

∞∑

n=1

|cn|2n2(k+s)−1 ≤ C‖u‖2k+s,Ω.

Thus, the function u1 is given by

u1(x, y) =
∞∑

n=1

cn sin nx
sinh n(a− y)

sinhna
.

Noting that the functions {sin nx sinhn(a− y)} are orthogonal on Ω and that the functions
sinh n(a−y)/ sinhna decay very fast away from y = 0 we may infer the claim (28) by similar
reasoning as in the proof of Proposition 2.15, viz., splitting the sum into two parts.

If the function u to be approximated satisfies certain boundary conditions, it may be of
interest to approximate with polynomials which also satisfy these boundary conditions.

Proposition 2.18. Assume the same hypotheses of Proposition 2.17. Let Γ1 be one of
the four edges of Ω. Assume additionally that u satisfies u|Γ1 = 0 (∂nu|Γ1 = 0). Then the
harmonic polynomials up in Proposition 2.17 may be chosen to be antisymmetric (symmetric)
with respect to Γ1 and assertion (28) holds with Ωε defined as

Ωε = {z ∈ Ω | dist(z, ∂Ω \ Γ1) > ε}.
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Proof. We will only consider the case of u vanishing on Γ1, the case of the ∂nu vanishing on
Γ1 being similar. Without loss of generality we may assume that Γ1 = (0, π)× {0} and that
Ω = (0, π) × (0, a). By the reflection principle, the antisymmetric extension of u across Γ1

is harmonic on Ω̃ = (0, π)× (−a, a) and is in Hk+s(Ω̃). Hence Proposition 2.17 is applicable
with the rectangle Ω̃. Let up be the harmonic polynomials given by Proposition 2.17. Now,
the harmonic polynomials ũp(x, y) = −up(x,−y) satisfy the same error estimates as the
functions up due to the antisymmetry of u. Hence, the average (up + ũp)/2 also satisfies the
same error estimates and, additionally, is antisymmetric with respect to Γ1.

Let us now analyze the case of singular functions as they arise in corner singularities, that is,
the case considered in Theorem 2.11. Since the function f is assumed to be holomorphic on
Ω0 which approaches Ω only in the point z0 (the singularity), we may expect to get improved
rates on compact subsets as soon as we stay away from z0. This is formalized in the following
theorem.

Theorem 2.19. Assume the same hypotheses as Theorem 2.11. Assume additionally that
there is a line g passing through z0 such that ∂Ω ∩ g = {z0} (i.e., Ω is completely contained
in one of the half planes determined by g). Then for each K > 0 there are polynomials (Pp)
of degree p ≥ k + s− 1 such that for all δ > 0

|f − Pp|j,Ω\Bδ(z0) ≤ CKd
k+s−j

[(
ln p

p

)λ(k+s−j)

e−γKpδ/d + p−K

]

|f (k)|s,Ω0

for j = 0, . . . , k and d = diam(Ω0). The constants CK , γK > 0 depend only on K, k, s, and
the shapes of Ω, Ω0.

Remark 2.20 If we set δ = 0 in Theorem 2.19 we get the result of Theorem 2.11.

Proof. We may assume that d = 1. The general case follows from a scaling argument. The
proof follows along the lines of the proof of Theorem 2.11. We will therefore merely delineate
the main steps. Without loss of generality we may assume that g = {iy | y ∈ lR}, z0 = 0
and Ω ⊂ {z ∈ Cl |Re z > 0}. The essential idea of the proof of Theorem 2.11 is to produce
an approximation Tk of f by an appropriate “shift” by ε. In order to get approximations
which are better on compact subsets, we have to replace this “uniform” shift by a highly
non–uniform one. In fact, we consider

Tk(z) :=
k∑

n=0

1

n!
f (n)(z + εζ(z))(−εζ(z))n,

ζ(z) = e−κz/ε,

where the parameter κ > 0 is chosen so small that the following two properties are satisfied:

1. There is C > 0 such that for ε := Chλ

{z + εζ(z) | z ∈ Int(L4h)} ⊂ Ω0.
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2. There are ε0, κ > 0, such that for all 0 < ε < ε0

∪z∈ΩBκε (z + εζ(z)) ⊂ Ω0.

A careful analysis based on distinguishing the cases |z| > ε and |z| ≤ ε shows that these two
conditions can be meet for sufficiently small κ > 0.
Taylor’s formula for the remainder gives

f(z)− Tk(z) =
1

k!
(−εζ(z))k+1

∫ 1

τ=0

f (k+1)(z + τεζ(z))τkdτ.

Observe now that

|ζ (j)(z)| ≤ Cjε
−je−γδ/ε ∀z ∈ Ω \Bδ(0), j ∈ lN0,

for some γ > 0. This estimate together with the treatment of Taylor’s remainder formula
analogous to the proof of Theorem 2.11 yields

|f − Tk|j,Ω\Bδ(0) ≤ C
(
εe−γδ/ε

)k+s−j |f (k)|s,Ω0, j = 0, . . . , k.

On the other hand, according to Corollary 2.7 the function Tk can be approximated by
polynomials such that

|Tk − Pp|j,Ω ≤ Ch−β(1 + h)−p‖Tk‖0,Int(L4h), j = 0, . . . , k.

Combining these two estimates and observing that ε = Chλ, we arrive at

|f − Pp|j,Ω ≤ C

[(
hλe−γδ/hλ

)k+s−j
+ h−β(1 + h)−p

]
‖f‖k+s,Ω0 j = 0, . . . , k. (29)

Choosing for K > 0 the parameter h := K(ln p)/p, inserting this choice in (29), and using
the fact that λ > 1 allows us to conclude the argument. An application of Lemma 2.5
replaces the full norm on the right hand side by the desired semi norm.

Remark 2.21 In the proof of Theorem 2.19 we ultimately made the choice h = K(ln p)/p.
This leads to the term p−K , algebraic of any desired order. Other choices may lead to
sharper estimates. For example, choosing h = Kp−(1−µ) ln p for some µ ∈ [0, 1) allows us to
get sharper estimates on the second term at the expense of the first one.

2.6 Numerical Example

The aim of the following numerical experiments is to illustrate the results of Theorems 2.9, 2.11
and to show numerically that the rates obtained there are essentially sharp. To that end, we
consider the approximation of the harmonic functions uα = Im zα (α = 1/2 and α = 3/2) by
harmonic polynomials of degree p on the sectors S(ω) of aperture ω at the origin given by

S(ω) := {z ∈ Cl | |z| < 1 and | arg z| < ω/2}, 0 < ω < 2π.
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Table 1: Theoretical and Numerical rates for various angles ω and values α
ω π/8 π/4 π/2 2π/3 π 3/2π 5/3π

λ = (2π − ω)/π 15/8 7/4 3/2 4/3 1 1/2 1/3
λα for α = 1/2 0.9375 0.875 0.75 0.667 0.5 0.25 0.1667

numerical rate; α = 1/2 0.9313 0.8692 0.7450 0.6622 0.4967 0.2454 0.1565
λα; α = 3/2 2.8125 2.625 2.25 2 1.5 0.75 0.5

numerical rate; α = 3/2 2.7942 2.6080 2.2355 1.9872 1.4905 0.7428 0.4893

In our numerical examples we focus on the effect of ω on the following best approximation
problem in the H1 semi norm (the “energy norm”):

E(ω,α, p) := min{|∇(uα − vp)|L2(S(ω)) | vp harmonic polynomial of degree p}. (30)

For every ω, the functions uα are in Hα+1−ε(S(ω)) (ε > 0 arbitrary). Theorems 2.9, 2.11
therefore yield bounds of the form E(ω,α, p) ≤ Cp−λα+ε with λ = (2π − ω)/π. The com-
putational results are depicted in Figs. 2 and 3 where we plot E2(ω,α, p) (the “energy”)
versus the polynomial degree p. As predicted by Theorem 2.9, the rate of the approxima-
tion deteriorates for ω → 2π, and it improves as the aperture ω → 0, the latter being in
agreement with the results of Theorem 2.11. A quantitative analysis of these observations
can be found in Table 1: For our choices of apertures ω we compare the bounds Cp−λα of
Theorems 2.9, 2.11 with the rates of convergence observed numerically in Figs. 2, 3. We
see that the numerically observed rates of convergence are very close to the rates predicted
by Theorems 2.9, 2.11, which shows that the rates of convergence presented in these two
theorems are essentially the best possible ones.
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Figure 2: Approximation of Im z1/2 on S(ω) for ω = π/8, π/4, π/2, 2π/3, π, 3/2π, 5/3π (in
ascending order)
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Figure 3: Approximation of Im z3/2 on S(ω) for ω = π/8, π/4, π/2, 2π/3, π, 3/2π, 5/3π (in
ascending order)

3 Generalized Harmonic Polynomials

3.1 Preliminaries

We consider now the general elliptic equation

Lu := −∆u+ a(x, y)ux + b(x, y)uy + c(x, y)u = 0 on D ⊂ lR
2 (31)

where the functions a, b, and c are real analytic on D. We assume that D ⊂ lR
2 is a bounded

Lipschitz domain.
S. Bergman and I.N. Vekua derived independently an operator ReV, the so-called Bergman-
Vekua operator, that maps holomorphic functions (normalized to be real in an arbitrary
point) onto solutions of (31), [1, 26]. In fact, this operator is injective and onto. We show
here that this operator is additionally bicontinuous (i.e., it is continuous and its inverse is
also continuous) with respect to Sobolev norms ‖ · ‖Hk .
In Section 2, we analyzed the approximation of holomorphic functions f ∈ Hk by complex
polynomials. The bicontinuity result of the Bergman-Vekua operator ReV implies that for
each polynomial approximation result of Section 2, an analogous result for solutions u ∈ Hk

of (31) can be formulated for generalized harmonic polynomials, i.e., the functions ReV(1),
ReV(z), ReV(iz), ReV(z2) . . ..
Before we embark on the proof the bicontinuity result, let us comment on the difference
between the theories of Bergman and Vekua. Bergman constructed a series representation
of the operator ReV directly from the data a, b, c. His approach therefore leads immediately
to concrete realizations of the operator ReV, [2, 3, 22] (see also the discussion on localized
versions of ReV in Section 3.3). In contrast to Bergman’s definition of the operator ReV,
Vekua introduced ReV in terms of the Riemann function G, which is the solution of an
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appropriate auxiliary problem. This abstract definition of the Bergman-Vekua operator is
more suitable for our analysis, and we will use it in the following exposition. Nevertheless,
the existence proof for G given by Vekua is constructive as it identifies G as the solution
of an appropriate Volterra integral equation which can be solved by Picard iterations. This
procedure may be imitated for constructing good approximations of ReV(zk), ReV(izk) (see
also Section 3.3).
Remark 3.1 The theory of Bergman and Vekua is restricted to elliptic equations in two
dimensions. However, representation formulas for solutions of elliptic equations in three
variables are available in terms of two holomorphic functions, [4, 5, 9].

Remark 3.2 We concentrate in the present section on the approximation properties of
generalized harmonic polynomials, the images of (complex) polynomials under the Bergman-
Vekua operator. However, it is worth noting that the Bergman-Vekua operator maps any
system of functions which are dense in the set of holomorphic functions (in some Sobolev
norm) onto a dense set of solutions of (31). It should be mentioned in this context that
approaches for the construction of complete systems which are not based on the Bergman-
Vekua operator have been been proposed in the literature. Typically, these approaches rely
on the knowledge of a Green’s function, [10].

We identify lR
2 with the complex plane Cl via z = x+ iy and introduce the two differential

operators ∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
, ∂
∂z = 1

2

(
∂
∂x + i ∂

∂y

)
. Let D ⊂ Cl be such that D∪∂D ⊂ D. We

assume that the real analytic functions a, b, and c permit analytic continuations to D × D
of the form

A(z, ζ) =
1

4

(
a
(z + ζ

2
,
z − ζ

2i

)
+ ib

(z + ζ

2
,
z − ζ

2i

))
,

B(z, ζ) =
1

4

(
a
(z + ζ

2
,
z − ζ

2i

)
− ib

(z + ζ

2
,
z − ζ

2i

))
,

C(z, ζ) =
1

4
c
(z + ζ

2
,
z − ζ

2i

)

such that the functions A, B, C are analytic on D ×D. By [26], we have

Theorem 3.3 (Vekua). The solution u of (31) can be continued analytically to a solution

U(z, ζ) = u
(z + ζ

2
,
z − ζ

2i

)
, (z, ζ) ∈ D ×D,

of the equation

LU ≡
∂2

∂z∂ζ
U + A(z, ζ)

∂U

∂z
+B(z, ζ)

∂U

∂ζ
+ C(z, ζ)U = 0.

In order to define the operator ReV which is used for the characterization of the solutions
of (31), we introduce the notion of the Riemann function G associated with the operator L.

Definition 3.4. The Riemann function

G : D ×D ×D ×D → Cl

(z, ζ , t, τ) 2→ G(z, ζ , t, τ)
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solves the problem

L∗G ≡
∂2G

∂z∂ζ
−

∂AG

∂z
−

∂BG

∂ζ
+ CG = 0,

G(t, τ, t, τ) = 1, (t, τ) ∈ D ×D,
∂

∂z
G(z, τ, t, τ)−B(z, τ)G(z, τ, t, τ) = 0, z ∈ D, t, τ ∈ D,

∂

∂ζ
G(t, ζ , t, τ)− A(t, ζ)G(t, ζ , t, τ) = 0, t ∈ D, ζ , τ ∈ D.

The Riemann function G can be written as the solution of a Volterra integral equation which
may be solved by Picard iterations. It follows that G is continuous on D ×D ×D ×D and
that it is holomorphic in each of the four variables ([26] for the details).
Example 3.5 For Laplace’s equation, i.e., a = b = c = 0, the Riemann function is G ≡ 1.
For Helmholtz’s equation, i.e., a = b = 0, c = k2, k > 0, the Riemann function is

G(z, ζ , t, τ) = J0

(
k
√
(z − t)(ζ − τ)

)
where J0 is the Bessel function of the first kind of

order 0. Similarly, in the case a = b = 0, c = −k2, G(z, ζ , t, τ) = I0
(
k
√

(z − t)(ζ − τ)
)
,

where I0 is the modified Bessel functions of order 0.

Definition 3.6. For z0 ∈ D introduce the integral operator I[ϕ, z0] acting on holomorphic
functions ϕ by

I[ϕ, z0](z, ζ) =
1

2

(
G(z, z0, z, ζ)ϕ(z) +

∫ z

z0

ϕ(t)H(t, z0, z, ζ) dt+

G(z0, ζ , z, ζ)ϕ(z) +

∫ ζ

z0

ϕ(τ )H∗(z0, τ, z, ζ) dτ
)
.

Here, the integrals are path-independent and the kernels H, H∗ are given by

H(t, τ, z, ζ) = B(t, τ)G(t, τ, z, ζ)−
∂G

∂t
(t, τ, z, ζ),

H∗(t, τ, z, ζ) = A(t, τ)G(t, τ, z, ζ)−
∂G

∂τ
(t, τ, z, ζ).

Restricting ζ = z in the function I[ϕ, z0](z, ζ), we obtain (using the assumption that the
coefficients a, b, c are real)

ReV[ϕ, z0](z) := I[ϕ, z0](z, z) = Re

{
G(z, z0, z, z)ϕ(z) +

∫ z

z0

ϕ(t)H(t, z0, z, z) dt

}
. (32)

Theorem 3.7 (Vekua). Let D ⊂ Cl be a simply connected, bounded Lipschitz domain. Fix
z0 ∈ D and let u be a solution of (31). Then there is a unique holomorphic ϕ with ϕ(z0) real
such that

u(x, y) = ReV[ϕ, z0](z), z = x+ iy,

U(z, ζ) = I[ϕ, z0](z, ζ), (z, ζ) ∈ D ×D.

Moreover, the function ϕ can be expressed in terms of U by

ϕ(z) = 2U(z, z0)− U(z0, z0)G(z0, z0, z, z0).
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Theorem 3.7 states essentially that the map I is a bijection between the holomorphic func-
tions (which are real at the point z0) and the (real) solutions of (31). The next section shows
that this operator (and its inverse) are continuous in Sobolev norms.

3.2 Regularity of u vs. Regularity of ϕ

In [7], it was shown that if a solution u of (31) is in a Hölder space, then the holomorphic
function ϕ corresponding to u by Theorem 3.7 is in the same Hölder space and vice versa.
Theorems 3.8, 3.11 show that an analogous result holds true in a Sobolev space setting.

Theorem 3.8. Let D ⊂ Cl be a simply connected, bounded Lipschitz domain. Fix z0 ∈ D,
k ≥ 1. Then there is C(L, z0, D, k) > 0 depending only on z0, the differential operator L,
the domain D, and k such that the following holds. Let u ∈ Hk(D) satisfy (31) and let ϕ be
the holomorphic function corresponding to u by Theorem 3.7. Then

‖ϕ‖Hk(D) ≤ C(L, z0, D, k)‖u‖Hk(D).

In order to prove Theorem 3.8, we need a few technical lemmas.

Lemma 3.9 (Interior estimates). Let D1 be star shaped with respect to z1 and denote d =
diam (D1). Assume that there is α ∈ (0, 1/2) such that B2αd(z1) ⊂ D1 ⊂ Bd(z1). Then there
is C(α, L) depending only on α and the coefficients of L such that every u ∈ H1(D1) with
Lu = 0 on D1 there holds

‖u‖L∞(Bαd(z1)) + ‖∇u‖L∞(Bαd(z1)) ≤ C(α, L)(1 + d−1)‖u‖H1(D1), (33)

‖D2u‖L∞(Bαd(z1)) ≤ C(α, L)(1 + d−2)‖u‖H1(D1), (34)
∫ 1

s=0

‖u
(
s(z − z1) + z1

)
‖2L2(D1) ds ≤ C(α, L)

(
d2‖u‖2L∞(Bαd(z1))

+ ‖u‖2L2(D1)

)
, (35)

∫ 1

s=0

‖∇u
(
s(z − z1) + z1

)
‖2L2(D1) ds ≤ C(α, L)(1 + d)2‖u‖2H1(D1). (36)

Proof. The first two estimates are standard. Without loss of generality, we may assume that
z1 = 0. For (35), we split the integral into two parts by integrating from 0 to α and from α
to 1. We have ∫ α

s=0

‖u(sz)‖2L2(D1) ds ≤ area (D1)‖u‖2L∞(Bαd(z1))
.

For the second part, the change of variables z′ = sz implies

∫ 1

s=α

‖u(sz)‖2L2(D1) ds =

∫ 1

s=α

‖u(z)‖2L2(sD1)

ds

s2
≤

1− α

α2
‖u‖2L2(D1),

and (35) follows. For the last estimate, we apply (35) to the components of ∇u to arrive at

∫ 1

s=0

‖∇u(sz)‖2L2(D1) ds ≤ C
(
d2‖∇u‖2L∞(Bαd(z1))

+ ‖∇u‖2L2(D1)

)

and (36) follows by (33).
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Lemma 3.10. Let D1 be star shaped with respect to z1, d = diam (D1) ≤ R for some
R > 0 and α ∈ (0, 1/2) such that Bαd(z1) ⊂ D1 ⊂ Bd(z1). Let M : D1 × D1 × D1 →
Cl be Lipschitz continuous with Lipschitz constant M ′, i.e., |M(z, t1, τ1) − M(ζ , t2, τ2)| ≤
M ′ (|z − ζ |+ |t1 − t2|+ |τ1 − τ2|). Let u ∈ H1(D1) satisfy Lu = 0 and let U be the extension
of u as in Theorem 3.7. Upon setting ‖M‖W 1,∞ := ‖M‖L∞ + dM ′ there is C1 = C1(α, L, R)
such that
∥∥∥∥

∫ z

z1

U(t, t)M(z, t, t) dt

∥∥∥∥
L2(D1)

+

∥∥∥∥

∫ z

z1

∂1U(t, t)M(z, t, t) dt

∥∥∥∥
L2(D1)

≤ C1‖M‖L∞d‖u‖H1(D1).

If furthermore u ∈ H1+k(D1), k ∈ (0, 1), there is C2 = C2(α, L, k, R) such that
∣∣∣∣

∫ z

z1

U(t, t)M(z, t, t) dt

∣∣∣∣
Hk(D1)

≤ C2‖M‖W 1,∞

(
d|u|Hk(D1) + d1−k‖u‖H1(D1)

)
,

∣∣∣∣

∫ z

z1

∂1U(t, t)M(z, t, t) dt

∣∣∣∣
Hk(D1)

≤ C2‖M‖W 1,∞

(
d|∇u|Hk(D1) + d1−k‖u‖H1(D1)

)
.

In all cases the path of integration is the straight line connecting z1 with z.

Proof. The proof is very similar to our procedure in Lemma 2.3. We will therefore merely
sketch the proof of the last estimate. Without loss of generality, we may assume that z1 = 0.
We have to estimate

∫

(z,ζ)∈D1×D1

|z − ζ |−2−2k

∣∣∣∣

∫ 1

s=0

∂1U(sz, sz)zM(z, sz, sz)− ∂1U(sζ , sζ)ζM(ζ , sζ , sζ)

∣∣∣∣

2

.

Hence, after using Schwarz’s inequality we have to bound

I1 :=

∫ 1

s=0

∫

(z,ζ)∈D1×D1

|z − ζ |−2−2k|∂1U(sz, sz)− ∂1U(sζ , sζ)|2|zM(z, sz, sz)|2 ds,

I2 :=

∫ 1

s=0

∫

(z,ζ)∈D1×D1

|∂1U(sζ , sζ)|2|z − ζ |−2−2k|zM(z, sz, sz)− ζM(ζ , sζ , sζ)|2 ds.

Because ∂1U(z, z) = (ux(Re z, Im z)− iuy(Re z, Im z))/2, we obtain for I1:

I1 ≤ Cd2‖M‖2L∞

∫ 1

s=0

∫

(z,ζ)

|∇u(sz)−∇u(sζ)|2

|z − ζ |2+2k
ds.

We split the integration over s into an integral from 0 to α and from α to 1. We observe for
s ∈ (0,α) that sD1 ⊂ Bαd(z1) ⊂ D1 and thus |∇u(sz)−∇u(sζ)| ≤ s|z− ζ |‖D2u‖L∞(Bαd(z1)).
For s ∈ (α, 1) we use the change of variables z′ = sz, ζ ′ = sζ and the definition of the Hk

semi norm to get

I1 ≤ C(α, k)d2‖M‖2L∞

[
d2−2kd2‖D2‖2L∞(Bαd(z1))

+ |∇u|2Hk(D1)

]

and thus I1 can be bounded in the desired fashion by appealing to Lemma 2.3. For I2, we
use the Lipschitz continuity of M to get

|zM(z, sz, sz)− ζM(ζ , sζ , sζ)| ≤ C‖M‖W 1,∞|z − ζ |.
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Splitting again the s integration into an integral from 0 to α and from α to 1 allows us to
conclude

I2 ≤ Cd2−2k‖M‖2W 1,∞

[
d2‖∇u‖2L∞(Bαd(z1))

+ ‖∇u‖2L2(D1)

]

and hence I2 can also be bounded in the desired fashion using Lemma 2.3.

Proof of Theorem 3.8: By [12], the extended function U(z, ζ) satisfies

U(z, ζ) = U(ζ , ζ)G(ζ, ζ , z, ζ)+∫ z

ζ

U(t, t)
[
∂2G(t, t, z, ζ)− A(t, t)G(t, t, z, ζ)

]
dt+

[
B(t, t)U(t, t) + ∂1U(t, t)

]
G(t, t, z, ζ) dt

where the integral is in fact path independent. Together with the formula for ϕ (cf. Theo-
rem 3.7)

ϕ(z) = 2U(z, z0)− U(z0, z0)G(z0, z0, z, z0)

we arrive at the representation

ϕ(z) = U(z0, z0)G(z0, z0, z, z0)+ (37)

2

∫ z

z0

U(t, t)
[
∂2G(t, t, z, z0)−A(t, t)G(t, t, z, z0)

]
dt+

[
B(t, t)U(t, t) + ∂1U(t, t)

]
G(t, t, z, z0) dt.

Let us first bound ‖ϕ‖L2(D). As D is assumed to be a bounded Lipschitz domain, there
are finitely many points (zi)Ni=1 ⊂ D and corresponding domains (Di)Ni=1 ⊂ D star shaped
with respect to the points zi such that ∪N

i=1Di = D. For each i, we choose a path pi ⊂ D
connecting z0 with zi. Using the path independence of (37), we write for ϕ on Di:

ϕ(z) = U(z0, z0)G(z0, z0, z, z0) + 2

∫ zi

z0

+2

∫ z

zi

.

Let us first consider the second integral. It is of the form considered in Lemma 3.10 and
by the assumption D ∪ ∂D ⊂ D, the assumptions of Lemma 3.10 are satisfied. Hence,
there is C > 0 with ‖ϕ‖L2(Di) ≤ C‖u‖H1(Di) where we exploited that U(t, t) = u(Re t, Im t),
∂1U(t, t) = (ux(Re t, Im t)−iuy(Re t, Im t))/2. For the remaining terms, the interior estimates
of Lemma 3.9 yield the existence of Ci > 0 such that ‖u‖L∞(pi), ‖∇u‖L∞(pi) ≤ Ci‖u‖H1(D). A
compactness argument concludes the proof of the L2 bound of ϕ. Let us now outline how the
proof for higher derivatives of ϕ proceeds. Let k = [k]+ s, [k] ∈ lN, s ∈ [0, 1). Differentiating
(37) [k] times, reveals that ϕ([k])(z) is of the form

d[k]

dz[k]
ϕ(z) = U(z0, z0)∂

[k]
3 G(z0, z0, z, z0) +

[k]∑

n=0

∂n
1U(z, z)Cn(z, z, z0, z0)+

2

∫ z

z0

U(t, t)
[
∂[k]
3 ∂2G(t, t, z, z0)−A(t, t)∂[k]

3 G(t, t, z, z0)
]
dt+

[
B(t, t)U(t, t) + ∂1U(t, t)

]
∂[k]
3 G(t, t, z, z0) dt

for some analytic functions Cn which depend only on the analytic functions G, A, B, C
and their derivatives up to order [k]. Hence, similar reasoning as above allows us to bound
‖ϕ‖Hk(D) by ‖u‖Hk(D).
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Theorem 3.11. Let D ⊂ Cl be a bounded, simply connected Lipschitz domain and fix z0 ∈ D,
k ≥ 0. Then there is C(z0, L,D, k) such that for all ϕ ∈ Hk(D) holomorphic on D,

‖ReV[ϕ, z0]‖Hk(D) ≤ C(z0, L,D, k)‖ϕ‖Hk(D).

Proof. The proof is very similar to the procedure of the proof of Theorem 3.8. The functions
H , G appearing in the definition of ReV satisfy all the assumptions of Lemma 3.10 and the
necessary interior estimates are provided by Lemma 2.3.

3.3 Localization of the Bergman-Vekua Operator

In the preceding section, we fixed z0 and were able to show that the Bergman-Vekua operator
ReV is a bijection between the set of holomorphic functions (normalized to be real at z0)
and the solutions u of Lu = 0. Moreover, this operator is bicontinuous in Sobolev norms
Hk, k ≥ 1.
For fixed z0, the operator ReV is a non-local operator; it is only a local operator in a
neighborhood of z0. For practical purposes, it is important to have local versions of the
operator ReV as it not known explicitly in general. As mentioned in the introduction to
this section, there are two approaches to approximating ReV. In Bergman’s approach, ReV
admits series expansions about the point z0 which can be expected to converge rapidly in
the neighborhood of z0 (cf. [2, 3, 22] for global implementations ReV). Vekua showed the
existence of G be means of Picard iterations of a Volterra integral equation which again can
be expected to converge fast in the neighborhood of z0.
The ensuing corollary shows that local versions of Theorems 3.8, 3.11 hold which eliminate
the explicit dependence of the constants of Theorems 3.8, 3.11 on the point z0.

Corollary 3.12. Let D be a bounded domain, and let D0 ⊂ D be star shaped with respect to
z0 ∈ D0, Denote d = diam (D0) ≤ diam (D) and assume that there is α ∈ (0, 1/2) such that
Bαd(z0) ⊂ D0 ⊂ Bd(z0). Let u ∈ Hk(D0), k ≥ 1 solve Lu = 0 on D0 and let ϕ be such that
u = ReV[ϕ, z0]. Then there are constants C(α, L, k) depending only on α, L and k such that

‖ϕ‖Hk(D0) ≤ C(α, L, k)‖u‖Hk(D0).

Furthermore, for every k ≥ 0, there is C(α, L, k) > 0 such that

‖ReV[ϕ, z0]‖Hk(D0) ≤ C(α, L, k)‖ϕ‖Hk(D0)

for all functions ϕ holomorphic on D0

Proof. Follows immediately by tracking the dependence of the constants on the point z0 in
the proof of Theorem 3.8.

3.4 Generalized Harmonic Polynomials

Definition 3.13 (Generalized Harmonic Polynomials). The set of generalized harmonic
polynomials of degree p is given by

G(p, z0) := span {ReV[1, z0],ReV[z, z0],ReV[iz, z0], (38)

ReV[z2, z0],ReV[iz
2, z0], . . . ,ReV[z

p, z0],ReV[izp, z0]},

and dimG(p, z0) = 2p+ 1.
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Example 3.14 For the case of Laplace’s equation, G ≡ 1 by Example 3.5 and therefore
the operator ReV reduces to taking the real part. G(p, z0) is therefore precisely the set of
harmonic polynomials of degree p.
For the case of Helmholtz’s equation, a = b = 0, c = k2, a calculation shows that

ReV[zn, 0](x, y) = n!(2/k)n cos(nθ)Jn(kr),

ReV[izn, 0](x, y) = −n!(2/k)n sin(nθ)Jn(kr),

where we used polar coordinates x = r cos θ, y = r sin θ. The functions Jn are Bessel’s
functions of the first kind of order n.
Similarly, if a = b = 0, c = −k2 above expressions for the generalized harmonic polynomials
for Helmholtz’s equation hold true with the Bessel functions Jn replaced with the modified
Bessel functions In.

Remark 3.15 We mentioned at the outset of Section 2 that there are many systems of
functions that are dense in the set of all holomorphic functions. Any such system generates
by the continuity of the Bergman-Vekua operator ReV a dense system for the solutions of
(31). For example, in the case of Helmholtz’s equation, systems of plane waves are closely
related to the holomorphic functions {eakz} where k is the wave number and the parameter
a ∈ Cl is constrained to satisfy |a| = 1.

Theorem 3.16. Let D be star shaped with respect to a ball and let the exterior angle of D
be bounded from below by λπ at each boundary point. Let z0 ∈ D be fixed and generalized
harmonic polynomials be defined by (38). Assume that u ∈ Hk(D), k > 1, satisfies (31).
Then there are generalized harmonic polynomials Gp ∈ G(p, z0) of degree p ≥ k−1 such that

‖u−Gp‖Hj(D) ≤ C(diam(D))k−j

(
ln p

p

)λ(k−j)

‖u‖Hk(D), j = 0, 1,

where C > 0 depends only on the shape of D, the relative position of z0 within D, and the
coefficients of the differential operator of (31).

Proof. For the fixed point z0 ∈ D, let ϕ be the holomorphic function corresponding to u
by Theorem 3.7. By Corollary 3.12, ‖ϕ‖Hk(D) ≤ C‖u‖Hk(D). By Theorem 2.9 there are
polynomials Pp of degree p such that

‖ϕ− Pp‖Hj(D) ≤ C(diam(D))k−j

(
ln p

p

)λ(k−j)

‖u‖Hk(D), j = 0, 1.

By the continuity of the operator ReV[·, z0] in Sobolev norms (Corollary 3.12) and the
linearity of ReV[·, z0], we get with u = ReV[ϕ, z0], Gp := ReV[Pp, z0]

‖u−Gp‖Hj(D) ≤ C(diam(D))k−j

(
ln p

p

)λ(k−j)

‖u‖Hk(D), j = 0, 1.

Remark 3.17 The bicontinuity of ReV allows us to obtain for each result of Section 2 an
analogous result for the approximation with generalized harmonic polynomials. In particular,
the analog of Theorem 2.11 holds. Furthermore, the results on super-approximability of
Section 2.5 hold for generalized harmonic polynomials.
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4 Numerical Example

In this section, we present an application of our approximation results for “operator-adapted”
shape functions to Laplace’s equation. An application to Helmholtz’s equation will be pre-
sented in [18] (see also [16, 24]). We consider here the problem

−∆u = 0 on Ω := (0, 1)× (0, 1),
−∂nu = g := Re

(
1

a2+z2 +
1

a2−z2

)
on ∂Ω where a > 1.

(39)

The solution of problem (39) is unique up to a constant. The weak formulation is given by:
find u ∈ H1(Ω) such that

B(u, v) :=

∫

Ω

∇u ·∇u dx = F (v) :=

∮

∂Ω

gv ds ∀v ∈ H1(Ω). (40)

Again, the solution u is unique up to a constant which may be fixed imposing zero mean on
u. Associated with this problem is the notion of an energy given by B(u, u) = ‖∇u‖2L2(Ω)

and an “energy norm” being the square root of the energy, i.e., the H1 semi norm. In the
finite element method, a (finite dimensional) space VFE ⊂ H1(Ω) is chosen, and the FEM
reads:

find uFE ∈ VFE such that B(uFE, v) = F (v) ∀v ∈ VFE. (41)

Céa’s Lemma gives that

‖∇(u− uFE)‖L2(Ω) = B(u− uFE, u− uFE)
1/2 = inf

v∈VFE

‖∇(u− v)‖L2(Ω). (42)

The quality of the finite element approximation uFE is therefore completely determined by
the approximability of the exact solution u in the space VFE ⊂ H1(Ω).
The approximation theory of Section 2 guarantees that, locally, harmonic polynomials have
very good approximation properties for the approximation of the solution u of (39). The
PUM, as presented in the Introduction allows us to construct a global, conforming ansatz
space VPUM from local spaces of harmonic polynomials with the aid of a partition of unity.
One important class of examples of partition of unity that satisfy the conditions of Def-
inition 1.1 is given by the classical finite element hat functions on shape-regular meshes
(the shape-regularity implies that the conditions (1) on the partition of unity functions are
satisfied). Our numerical examples are based on partitions of unity of that type.
Example 4.1 The classical bilinear finite element hat functions. Let Ω = (0, 1)2, n ∈ lN

be given. Set h = 1/n and subdivide Ω into n2 squares. Denote (xi, yj), i, j = 0, . . . , n the
nodes obtained in this way where xi = ih, yj = jh and associate with each node the usual
continuous, piecewise bilinear pyramid function ϕi,j, which takes the value 1 at node (xi, yj)
and vanishes in all other nodes, i.e., is given by ϕi,j(x, y) = ϕ

(
(x− xi)/h, (y − yj)/h

)
with

ϕ(x, y) = (1− x)(1− y) for (x, y) ∈ [0, 1]× [0, 1]
(1 + x)(1− y) for (x, y) ∈ [−1, 0]× [0, 1]
(1 + x)(1 + y)
for (x, y) ∈ [−1, 0]× [−1, 0]
(1− x)(1 + y) for (x, y) ∈ [0, 1]× [−1, 0]
0 elsewhere.

(43)
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The patches, i.e., the supports of the functions ϕij , are the closure of the sets Ωi,j =
{(x, y) | |x− xi| < h, |y − yj| < h}, i, j = 0, . . . , n.

The second example of a partition of unity is variation of the previous example where the
partition of unity functions in the interior are kept and only the ones at the boundary are
modified. For notational convenience, we will construct the partition of unity functions by
a tensor product argument.
Example 4.2 First, construct a partition of unity in one dimension for (0, 1) as follows. Let
n ∈ lN, h = 1/n, and denote ϕ̃i(x) the usual piecewise linear hat functions associated with
the nodes xi = ih, i = 0, . . . , n. Introduce now the partition of unity (ϕi)

n−1
i=1 by ϕi = ϕ̃i if

2 ≤ i ≤ n− 2, ϕ1 = ϕ̃0 + ϕ̃1, ϕn−1 = ϕ̃n−1 + ϕ̃n. For Ω = (0, 1)2 define the two dimensional
partition of unity (ϕij)

n−1
i,j=1 by ϕij(x, y) = ϕi(x)ϕj(y). Note that there are only (n − 1)2

partition of unity functions as opposed to the preceding example where there are (n+ 1)2.

The ansatz space VFE in (41) is taken as VPUM of Definition 1.1 where the partition of unity is
of the type described in Examples 4.1, 4.2, and the local approximation spaces Vj are chosen
as spaces of harmonic polynomials of degree p, i.e., Vj := span {Re (x+iy)n, Im (x+iy)n, |n =
0, . . . , p}. In the numerical examples, the parameter a of (39) is either a = 1.05 or a = 1.5.
Hence, the approximation results of Section 2 apply. If the partition of unity is fixed and the
size of the local spaces (i.e., the degree p of the harmonic polynomials) is increased, we may
speak of the “p version” of the PUM and Theorem 2.6 together with Theorem 1.2 implies
that

inf
v∈VPUM

‖∇(u− v)‖L2(Ω) ≤ Ce−σp, p = 0, 1, . . . (44)

where C, σ > 0 and independent of p. On the other hand, if the size of the local ap-
proximation spaces is fixed (i.e., the polynomial degree p is fixed) and the support of the
partition of unity functions is varied, we may speak of an “h version” of the PUM. In this
case, Theorem 2.9 together with Theorem 1.2 implies bounds of the form

inf
v∈VPUM

‖∇(u− v)‖L2(Ω) ≤ Chp, h =
1

n
, (45)

with C > 0 independent of h.
Let us first consider the partition of unity of Example 4.1 and a = 1.05. In Fig. 4 the “p
version” of the PUM is compared with two variants of the classical p version of the FEM,
the spaces of tensor product polynomials Qp and the trunk spaces (also called serendipity
elements) Q′

p. The partition of unity is fixed (n = 8) and the polynomial degree p of the
harmonic polynomials in the local spaces Vj is increased. The two classical p versions are
based on the same 8× 8 mesh. We see that the PUM, based on the operator adapted local
approximation spaces, achieves the same accuracy as the two classical p versions with less
degrees of freedom. The discrepancy between the methods increases as the accuracy require-
ment is increased. This is agreement with the approximation properties of polynomials and
harmonic polynomials for this problem: In both cases we get exponential rates of conver-
gence in terms of p; however, the number of degrees of freedom N = O(p2) for the classical
p version and only N = O(p) for the PUM based on harmonic polynomials. We refer to [15]
for a detailed performance study concerning the three parameters p, n, and a.
In Figs. 5–7 the PUM is based on the partition of unity of Example 4.2. The numerical
results of the “p version” of the PUM are presented in Figs. 5, 6. For a = 1.05 and each fixed
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partition of unity (n = 2, 4, 8, 16), the degree p of the harmonic polynomials is increased.
Fig. 6 confirms the exponential rate of convergence (in p) predicted by Theorem 2.6 (cf.
(44)).
For the case a = 1.5, the results of the “h version” of the PUM are shown in Fig. 7. The
local spaces are fixed as spaces of harmonic polynomials of degree p (p ranges from 0 to 4)
and the support of the partition of unity functions is varied by increasing n from 2 to 32. In
terms of degrees of freedom N ∼ pn2, the error bounds (45) are of the form O(N−p/2) which
are indeed obtained in Fig. 7.
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