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Abstract

We analyze an hp FEM for convection-diffusion problems. Stability is
achieved by suitably upwinded test functions, generalizing the classical α-
quadratically upwinded and the Hemker test-functions for piecewise linear
trial spaces (see, e.g., [12] and the references there). The method is proved
to be stable independently of the viscosity. Further, the stability is shown to
depend only weakly on the spectral order. We show how sufficiently accurate,
approximate upwinded test functions can be computed on each element by
a local least squares FEM. Under the assumption of analyticity of the input
data, we prove robust exponential convergence of the method. Numerical
experiments confirm our convergence estimates and show robust exponential
convergence of the hp-FEM even for viscosities of the order of machine preci-
sion, i.e., for the limiting transport problem.
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1 Convection-Diffusion Problem

1.1 Problem Formulation

In Ω = (−1, 1) we consider the model convection diffusion problem

Lεuε := −εu′′
ε + a(x)u′

ε + b(x)uε = f(x) (1.1)

with the boundary conditions
u(±1) = α± ∈ lR. (1.2)

Here ε > 0 is the diffusivity, u(x) is, for example, concentration of a transported substance,
a(x) is the velocity of the transporting medium, b(x) specifies losses/ sources of the
substance and f(x) is an external source term. Throughout this work, we make the
following assumptions on the coefficients a ∈ C1[−1, 1], b ∈ C0[−1, 1]: There are constants
b ∈ lR, a, γ1, γ2 > 0 such that for all ε ∈ (0, 1]

a(x) ≥ a, b(x) ≥ b, min {a2, a2 + 4bε} ≥ γ2
1 ,

max

{
a−

√
a2 + 4bε

2ε
, 0

}

≤ γ2.
(1.3)

As we will also consider the adjoint problem of (1.1) (cf. Section 2 ahead) we stipulate
the existence of b∗ ∈ lR and γ∗

1 , γ
∗
2 > 0 such that

a(x) ≥ a > 0, b(x)− a′(x) ≥ b∗, min {a2, a2 + 4b∗ε} ≥ (γ∗
1)

2,

max

{
a−

√
a2 + 4b∗ε

2ε
, 0

}

≤ γ∗
2 .

(1.4)

(1.3) ensures the unique solvability of (1.1), (1.2) while (1.4) guarantees the unique solv-
ability of the adjoint problem. Note that for given a, b, the constants γ1, γ2, γ∗

1 , γ
∗
2 exist

under the assumption that the diffusivity ε is sufficiently small.

The finite element approximation of (1.1), (1.2) for small ε is nontrivial due to the singular
perturbation character of the problem which manifests itself in two distinct phenomena:

First, the solution uε exhibits a boundary layer near the outflow boundary x = 1; we will
characterize the boundary layer behavior of the solution uε more precisely in Section 1.2
ahead. The second difficulty arises from the well-known fact that symmetric variational
formulations of (1.1), (1.2) based on H1

0 as trial and test space are not uniformly stable
with respect to the parameter ε. One possible remedy is the use of streamline-diffusion
techniques which amount in effect to a nonconforming method (see, e.g., [14] and the
references there). Crucial to the convergence analysis of streamline diffusion FEM are
H2 regularity of the solution and certain elementwise inverse inequalities which allow to
control the higher order derivatives introduced into the variational formulation through
the streamline-diffusion term. While this idea is, in principle, also feasible for p- or spectral
element methods, the convergence rates obtained that way will be suboptimal due to
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the higher loss of derivatives in inverse inequalities for polynomials. This is even more
pronounced for the combined hp-type FEM, in particular in two and three dimensions,
where the optimal approximation of boundary layers mandates elements of arbitrary high
aspect ratio (see [16]) for which suitable inverse inequalities do not seem to be available.
The hp-FEM is nevertheless very attractive for such problems, since hp-trial spaces have
approximation properties superior to both, h-version FEM and spectral methods. For
example, hp-FEM can be shown to approximate boundary layers and corner singularities
at a robust exponential convergence rate (see [15, 16]). This will also be true for any
stable projection method based on these trial spaces. To achieve stability, we use Petrov-
Galerkin methods where test- and trial-spaces are distinct, an approach that has been
followed by numerous authors in the finite difference and finite volume setting (see [12,
14, 11] for an account of this work and many references). We base the hp-FEM on the
variational framework from [18, 19] where the h-version FEM was analyzed and optimal
convergence rates, uniform in ε, were shown. Asymptotically exact h-version a-posteriori
error estimators for this variational formulation have also been developed in [19] and
it was shown that the numerical solutions exhibit few spurious oscillations and good
pointwise convergence. The crucial ingredient in [18, 19] was the construction of suitable,
upwinded test functions by asymptotic analysis of the elemental adjoint problem. The
generalization of this asymptotic analysis to high order elements and higher dimensions
is not straightforward.

Here we propose therefore a fully numerical method. More precisely, we show how for hp-
trial spaces with any mesh-degree combination sufficiently accurate approximate upwinded
test functions can be stably computed. The calculation of the test functions is completely
localized to either a single element or a patch of elements and done by a least-squares
like method (which is uniformly stable in ε). This can be simply performed as part of the
usual element stiffness matrix generation in the hp-FEM. Our analysis shows that a) the
approximate test functions thus obtained do ensure stability and that b) already fairly
crude approximations of the test functions suffice, so that the work spent in computing
these test functions can be expected to be moderate. Most importantly, no analytical
input in the form of asymptotic expansions or boundary layer functions is necessary –
the method is fully computational and conceptually generalizes readily to two- and three-
dimensional problems. Here we analyze the method in detail for the one-dimensional
model problem (1.1), (1.2), where new regularity results for the solution allow us to prove
robust exponential convergence. The analysis for two and three dimensional problems
will be given elsewhere [10].

1.2 Regularity

Let us consider (1.1) on Ω = (−1, 1) with analytic input data a(x), b(x), f(x) satisfying

‖a(n)‖L∞(Ω) ≤ Caγ
n
a ∀n ∈ lN0 (1.5)

‖b(n)‖L∞(Ω) ≤ Cbγ
n
b ∀n ∈ lN0 (1.6)

‖f (n)‖L∞(Ω) ≤ Cfγ
n
f ∀n ∈ lN0 (1.7)

for some constants Ca, Cb, Cf , γa, γb, γf > 0. Assumptions (1.3) and (1.5)–(1.7) ensure the
existence of a unique, analytic solution uε of (1.1), (1.2). The purpose of this subsection
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is to illuminate the regularity properties of uε in dependence on the parameter ε and
the constants of (1.3), (1.5)–(1.7). These regularity results are necessary for the proof of
robust exponential convergence of the hp-FEM obtained in the present paper. Although
regularity results related to the ones presented here are in the literature ([14], [12]), the
specific derivative bounds seem to be new (see also [9] for the related case of a reaction
diffusion equation).

The solution uε of (1.1), (1.2) is analytic on Ω; however, for small values of ε, it exhibits
a boundary layer at the outflow boundary. This boundary behavior can be characterized
with the aid of asymptotic expansions: For any expansion order M ∈ lN0, we have the
standard decomposition (see, e.g., [4])

uε = wM + CMu+
ε + rM . (1.8)

Here, uM is the asymptotic part given by

wM :=
M∑

j=0

εjuj + α−e−Λ(x)

uj+1(x) := e−Λ(x)
∫ x

−1

eΛ(t)

a(t)
u′′
j (t)dt j = 0, . . . ,M − 1

u0(x) := e−Λ(x)
∫ x

−1

eΛ(t)

a(t)
f(t) dt

Λ(x) :=
∫ x

−1
λ(t)dt

λ(x) :=
b(x)

a(x)

The outflow boundary layer u+
ε solves the problem

Lεu
+
ε = 0 on Ω, u+

ε (−1) = 0, u+
ε (1) = 1, (1.9)

and CM is given by
CM := α+ − wM(1). (1.10)

Finally, the remainder rM is given as the solution of

LεrM = εM+1u′′
M on Ω, rM(±1) = 0 (1.11)

Note that for M = 0 the function w0 solves the limiting transport problem given by (1.1)
with ε = 0 and the boundary condition w0(−1) = α−.

Theorem 1.1 Let uε be the solution of (1.1), (1.2). Then there are constants C, K
depending only on the constants in (1.5)–(1.7) and on the constants a, γ1, γ2 such that

‖u(n)
ε ‖L∞(I) ≤ CKn max (n, ε−1)n ∀n ∈ lN0 (1.12)

|u+
ε
(n)

(x)| ≤ CKn max (n, ε−1)ne−a(1−x)/(2ε) ∀n ∈ lN0, x ∈ I. (1.13)
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Furthermore, under the assumption 0 < εMK ≤ 1, the terms in the decomposition (1.8)
satisfy

‖w(n)
M ‖L∞(I) ≤ CKnn! ∀n ∈ lN0 (1.14)

‖r(n)M ‖L∞(I) ≤ Cε1−n(εMK)M n = 0, 1, 2 (1.15)

|CM | ≤ C (1.16)

The proof of Theorem 1.1 is given in Appendix B.

2 Variational Formulation

Without loss of generality, we may analyze (1.1) with homogeneous Dirichlet data

α± = 0 (2.1)

by the standard argument of seeking uε in the form uε = ũε + u0 (where u0 is linear and
satisfies the boundary conditions (1.2)) and then noting that this leads to (1.1),(2.1) for
ũε with the same operator Lε and suitably adjusted right hand side f which is analytic
and independent of ε.

To motivate our variational formulation, we observe that multiplication of (1.1) by a
test function v and twofold integration by parts gives a so-called very weak variational
formulation: Find u ∈ L2(Ω) such that

B(u, v) :=
∫

Ω
uL∗

εvdx =
∫

Ω
fvdx =: F (v) ∀v ∈ H2 ∩H1

0 (Ω).

Here, L∗
ε denotes the adjoint of Lε, i.e.

L∗
εu = −εu′′ − a(x)u′ + (b− a′)(x)u (2.2)

which is defined when a ∈ C1([−1, 1]). There are several drawbacks with FEM based on
very weak variational formulations: first, a′ is in general not globally continuous, but only
elementwise smooth (if it stems, for example, from linearization of the nonlinear problem
around a FE-approximation of u), second, to obtain a good test-space for a given trial
space of possibly discontinuous functions, a global adjoint problem must be solved for
each basis function and third, the essential boundary conditions (1.2) are generally not
satisfied by FE solutions. This leads us to a formulation which is situated “between” the
weak one based on H1

0 ×H1
0 and the very weak one based on L2 ×H2 ∩H1

0 .

We present Sobolev spaces with mesh-dependent norms introduced in [19]. For a collection
of nodes {−1 = x0 < x1 < ... < xN = 1}, we introduce the notation Ij := (xj−1, xj),
hj := |Ij | = xj − xj−1, mj = (xj−1 + xj)/2 for j = 1, ..., N . The elements Ij form a mesh
T = {Ij : j = 1, . . . , N} on Ω. Let further {ρj}N−1

j=1 be a sequence of positive numbers
and set ρ := ρ1 + ρ2 + ... + ρN−1, h := max{hj : j = 1, ..., N}. Then we define the trial
space H0

T as completion of H1
0 (Ω) with respect to the mesh dependent norm

‖u‖H0
T

:=




∫ 1

−1
|u|2 dx+

N−1∑

j=1

ρj |u(xj)|2



1/2

. (2.3)
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The space H0
T thus obtained is a Hilbert space and is isomorphic to L2(Ω)⊕ lR

N−1 so that
every u ∈ H0

T is of the form u = (ũ, d1, d2, ..., dN−1) and

‖u‖H0
T

=



‖ũ‖2L2 +
N−1∑

j=1

ρj |dj|2



1/2

. (2.4)

If u ∈ H0
T ∩H1 then ũ ∈ H1 and dj = ũ(xj). If u ∈ L2(Ω) is discontinuous at the nodes

xj but piecewise smooth, then ũ = u and dj = (u(x+
j ) + u(x−

j ))/2 where u(x±
j ) denotes

the left and right limits of u at xj .

Next, we introduce the test space

H2
T :=

{
v ∈ H1

0 (Ω) : v|Ij ∈ H2(Ij), j = 1, ..., N.
}

(2.5)

On the pair H0
T ×H2

T we define the bilinear form BT (·, ·) by

BT (u, v) :=
N∑

j=1

∫

Ij
ũL∗

εvdx−
N−1∑

j=1

dj [εv
′(xj)] (2.6)

where [v′(xj)] denotes the jump of v′ at xj ∈ T . We equip the space H2
T with the norm

‖v‖H2
T

:=




N∑

j=1

‖L∗
εv‖

2
L2(Ij)

+
N−1∑

j=1

|[εv′(xj)]|2

ρj




1/2

. (2.7)

We remark in passing that so far we have used a(x) ∈ C0([−1, 1]) ∩ C1(Īj), j = 1, ..., N ,
rather than a ∈ C1[−1, 1]. With these definitions we have

Proposition 2.1 For any mesh T and any positive sequence {ρj}N−1
j=1 , the bilinear form

BT (·, ·) satisfies
|BT (u, v)| ≤ ‖u‖H0

T

‖v‖H2
T

∀u ∈ H0
T , v ∈ H2

T , (2.8)

inf
0$=v∈H2

T

sup
0$=u∈H0

T

BT (u, v)

‖u‖H0
T

‖v‖H2
T

≥ 1, (2.9)

and
∀0 += u ∈ H0

T : sup
v∈H2

T

BT (u, v) > 0. (2.10)

Proof : The bound (2.8) follows directly from the definition of the norms and the Schwarz
inequality.

To show (2.9), for given v ∈ H2
T , we select uv = (ũ, d1, ..., dN1) ∈ H0

T as follows:

ũ|Ij = sgn(L∗
εv|Ij)

∣∣∣L∗
εv|Ij

∣∣∣ , j = 1, ..., N,

dj = −ρ−1
j [v′(xj)] j = 1, ..., N − 1.

Then ‖uv‖H0
T

≤ ‖v‖H2
T

and BT (uv, v) = ‖v‖2H2
T

, whence for every 0 += v ∈ H2
T

sup
0$=u∈H0

T

BT (u, v)

‖u‖H0
T

‖v‖H2
T

≥
BT (uv, v)

‖uv‖H0
T

‖v‖H2
T

≥
BT (uv, v)

‖v‖2H2
T

= 1
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which proves (2.9) and (2.10).

!

Proposition 2.1 allows us to prove the existence of a solution u ∈ H0
T of the problem:

u ∈ H0
T BT (u, v) = F (v) ∀v ∈ H2

T . (2.11)

Proposition 2.2 Under the assumption (1.3), for every f ∈ L1(Ω), every 0 < ε ≤ 1, and
every mesh T and every positive sequence {ρj}N−1

j=1 , the problem (2.11) admits a unique
solution u ∈ H0

T .

Proof : We proceed in two steps.

Step i) We claim that for any mesh T , any positive sequence {ρj}N−1
j=1 and any ε ∈ (0, 1],

assumptions (1.3) imply

‖v‖L∞(Ω) ≤ C1max{1,
√
ρ} ‖v‖H2

T

, (2.12)

where C1 is independent of ε and T . To prove it, we note that (1.3) implies the existence
of a Green’s function G(x, y) for the problem (1.1), (1.2) which is bounded uniformly with
respect to x, y, ε (see [18], Theorem 2.7),i.e.

max
(x,y)∈[−1,1]2

|G(x, y)| ≤ CG.

For v ∈ H2
T , we can write

v(y) =
N∑

j=1

∫

Ij
G(x, y)(L∗

εv)(x)dx−
N−1∑

j=1

[εv′(xj)]G(xj , y), ∀y ∈ [−1, 1].

Using the boundedness of G(x, y), we estimate then

|v(y)| ≤ CG






N∑

j=1

∫

Ij
|L∗

εv| dx+
N−1∑

j=1

ρ−1/2
j |[εv′(xj)]| ρ1/2j






≤
√
2CGmax{

√
2,
√
ρ} ‖v‖H2

T

which proves (2.12).

Step ii) For f ∈ L1(Ω) and v ∈ H2
T , we therefore have

|F (v)| ≤ ‖f‖L1(Ω) ‖v‖L∞(Ω) ≤ C1max{1,√ρ} ‖f‖L1(Ω) ‖v‖H2
T

.

Hence, F (·) is a continuous, linear functional on H2
T the norm of which is bounded uni-

formly with respect to ε and T . By Propositions 2.1 and A.2, we have also

inf
0$=u∈H0

T

sup
0$=v∈H2

T

BT (u, v)

‖u‖H0
T

‖v‖H2
T

≥ 1,

∀0 += v ∈ H2
T : sup

u∈H0
T

BT (u, v) > 0.
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This implies with F ∈ (H2
T )

′ and Proposition A.1 that (2.11) admits a unique solution
and that the a-priori estimate

‖u‖H0
T

≤ C1max{1,
√
ρ} ‖f‖L1(Ω) (2.13)

holds.

!

Remark 2.3 In Step ii) of the proof of Proposition 2.2, we exploit the fact that the
embedding H2

T ⊂ H1
0 (Ω) ⊂ C(Ω) is continous. Hence, the right hand side functional

F may actually be represented by an L1 function f plus a (finite) number of Dirac
distributions.

The variational formulation (2.11) is the basis of the FE-discretization.

3 hp Finite Element Discretization

3.1 The Finite Element spaces

We associate with each element Ij a polynomial degree pj ≥ 1 and combine the pj in the
degree-vector &p. We also set p := max{pj : 1 ≤ j ≤ N}. The trial spaces S"p,#

0 (T ) of our
finite element method are the usual spaces of continuous, piecewise polynomials of degree
pj satisfying the homogeneous boundary conditions (2.1) at ±1:

S"p,#(T ) :=
{
u ∈ H#(Ω) : u|Ij ∈ Πpi(Ij), j = 1, ..., N

}
, ' = 1, 2, . . .

S"p,#
0 (T ) := S"p,#(T ) ∩H1

0 (Ω)
(3.1)

If ' = 1, we simply write S"p
0(T ).

As test space we choose, following [19], the space of L-splines of degree &p defined by

S"p
L(T ) :=

{
v ∈ H1

0 (Ω) : (L∗
εv)|Ij = 0 if pj = 1, (L∗

εv)|Ij ∈ Πpj−2(Ij) if pj ≥ 2
}
. (3.2)

Note that (1.3), (1.4) imply that Lε and L∗
ε are injective. Hence (3.2) makes sense and

the test functions belong to H2(Ij), j = 1, ..., N . We omit the argument T when it is
clear from the context which mesh is meant. Note that, due to (2.2), the space S"p

L is
well-defined even if the coefficient a(x) is only piecewise C1. We also observe that

M = dim(S"p
0) = −1 +

N∑

j=1

pj = dim(S"p
L). (3.3)

The finite element approximation uM is then obtained in the usual way:

uM ∈ S"p
0 BT (uM , v) = F (v) ∀v ∈ S"p

L. (3.4)

Due to (3.3), problem (3.4) amounts to solving a linear system of M equations for the M
unknown coefficients of uM .
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3.2 Stability

Our main result in this section is

Theorem 3.1 Select

ρj := (hj + hj+1)/2, j = 1, ..., N − 1. (3.5)

Then for all 0 < ε ≤ 1, T and &p there holds

inf
0$=v∈S!p

L

sup
0$=u∈S!p

0

BT (u, v)

‖u‖H0
T

‖v‖H2
T

≥
1

γM
(3.6)

with γM = max{
√
5,
√
p+ 3}.

Proof : We show that for every v ∈ S"p
L there exists uv ∈ S"p

0 such that

BT (uv, v) ≥ ‖v‖2H2
T

, ‖uv‖H0
T

≤ γM ‖v‖H2
T

.

To this end, we write

uv|Ij =
pj∑

i=0

aijLi

(

2
x−mj

hj

)

, (3.7)

where Li denotes the ith Legendre polynomial on (−1, 1) normalized such that Li(1) = 1.

A basis for S"p
L can be obtained as follows: First, we define external, nodal upwinded shape

functions ψ−1,j ∈ H1
0 (Ij−1 ∪ Ij) by

L∗
εψ−1,j = 0 in Ij−1 ∪ Ij , j = 2, ..., N,

ψ−1,j(xk) = δj,k+1, k = 1, ..., N,
ψ−1,j = 0 elsewhere.

(3.8)

Note that ψ−1,j ∈ H2(Ij), j = 1, ..., N . The nodal shape functions ψ−1,j are augmented
for pj ≥ 2 by internal, upwinded shape functions ψi,j ∈ (H2 ∩H1

0 ) (Ij). They are defined
by

L∗
εψi,j = Li

(

2
x−mj

hj

)

in Ij , i = 0, ..., pj − 2, j = 1, ..., N

ψi,j = 0 elsewhere.
(3.9)

Any v ∈ S"p
L can be written as

v(x) =
N∑

j=2

v(xj−1)ψ−1,j(x) +
N∑

j=1

pj−2∑

i=0

bijψi,j(x) (3.10)

where bij are the Legendre coefficients of L∗
εv|Ij . Further, from the definition (3.8) of the

ψ−1,j we have

L∗
εv|Ij =

pj−2∑

i=0

bijLi

(

2
x−mj

hj

)

, j = 1, ..., N
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which yields with the orthogonality properties of the Legendre polynomials and a scaling
argument

N∑

j=1

‖L∗
εv‖

2
L2(Ij)

=
N∑

j=1

hj

pj−2∑

i=0

|bij |2

2i+ 1
=:

N∑

j=1

hjSj. (3.11)

Combining (3.11) with (2.7), we obtain for v ∈ S"p
L an expression for ‖v‖H2

T

in terms of
the bij :

‖v‖H2
T

=




N∑

j=1

hj

pj−2∑

i=0

|bij |2

2i+ 1
+

N−1∑

j=1

|[εv′(xj)]|2

ρj




1/2

∀v ∈ S"p
L. (3.12)

Writing v(x) in the form (3.10) and uv(x) as in (3.7) and inserting into (2.6), we find in
the same way

BT (uv, v) =
N−1∑

j=1




hj

pj−2∑

i=0

aijbij
2i+ 1

−
N−1∑

j=1

uv(xj) [εv
′(xj)]




 . (3.13)

For given v ∈ S"p
L, i.e. for given bij , we choose now aij as follows: first, we select

aij = bij i = 0, ..., pj − 2 (3.14)

which leaves apj−1,j, apj ,j to be determined, for each Ij . Since uv must be continuous,
two conditions per interval must be enforced. We prescribe uv at each endpoint of Ij as
follows (by uv(x±) we denote the right/left limit of uv at x):

uv(x
+
j−1) = a−j :=

{
− [εv′(xj−1)] /ρj−1 if j > 1,

0 if j = 1
(3.15)

and

uv(x
−
j ) = a+j :=

{
− [εv′(xj)] /ρj if j < N,

0 if j = N.
(3.16)

Conditions (3.15), (3.16) ensure continuity of uv. Since Li(±1) = (±1)i implies

uv(x
+
j−1) =

pj∑

i=0

(−1)iaij , uv(x
−
j ) =

pj∑

i=0

(−1)iaij

we get with (3.14) the linear system

[
(−1)pj−1 (−1)pj

1 1

] [
apj−1,j

apj ,j

]

=





a−j −
pj−2∑

i=0

(−1)ibij

a+j −
pj−2∑

i=0

bij




. (3.17)

Its determinant is nonzero for any pj , therefore uv is uniquely determined by (3.14) and
(3.17).

From (3.13), (3.14) and (3.15), (3.16) we get

BT (uv, v) = ‖v‖2H2
T

.



10

It remains therefore to show
‖uv‖H0

T

≤ γM ‖v‖H2
T

(3.18)

with γM as in (3.6).

Since uv is continuous, we have

‖uv‖2H0
T

=
N∑

j=1

‖uv‖2L2(Ij)
+

N−1∑

j=1

ρj |uv(xj)|2

=
N∑

j=1

hj

pj∑

i=0

|aij |2

2i+ 1
+

N−1∑

j=1

ρj
∣∣∣a+j

∣∣∣
2

=
N∑

j=1




hj

pj−2∑

i=0

|bij |2

2i+ 1
+ hj

pj∑

i=pj−1

|aij |2

2i+ 1




+
N−1∑

j=1

ρ−1
j |[εv′(xj)]|2

= ‖v‖2H2
T

+
N∑

j=1

hj

pj∑

i=pj−1

|aij|2

2i+ 1
.

(3.19)

We estimate |aij |2 for i = pj − 1, pj. From (3.17), we get
[
apj−1,j

apj ,j

]

=
1

2(−1)pj

(
1 (−1)pj−1

−1 (−1)pj−1

)(
a−j −∑pj−2

i=0 (−1)ibij
a+j −∑pj−2

i=0 bij

)

=
1

2(−1)pj





a−j + (−1)pj−1a+j +
pj−2∑

i=0

bij((−1)pj − (−1)i)

−a−j + (−1)pj−1a+j +
pj−2∑

i=0

bij((−1)i + (−1)pj )




.

We estimate

max{|aij | : i = pj − 1, pj} ≤
1

2

(∣∣∣a−j
∣∣∣+

∣∣∣a+j
∣∣∣
)
+

pj−2∑

i=0

|bij |

and get with (3.15), (3.16) that

max{|aij |2 : i = pj − 1, pj} ≤ ε2
(
|[v′(xj−1)]|2

ρ2j−1

+
|[v′(xj)]|2

ρ2j

)

+ 2




pj−2∑

i=0

|bij |




2

.

With the understanding that [v′(x0)] = [v′(xN)] = 0 and ρ0 = ρN = ∞ we estimate
further

N∑

j=1

hj

pj∑

i=pj−1

|aij |2

2i+ 1

≤
N∑

j=1

hj

2pj − 1





|[εv′(xj−1)]|2

ρ2j−1

+
|[εv′(xj)]|2

ρ2j
+ 2




pj−2∑

i=0

|bij |




2





≤
N∑

j=1

hj

2pj − 1





|[εv′(xj−1)]|2

ρ2j−1

+
|[εv′(xj)]|2

ρ2j
+ 2

pj−2∑

i=0

(2i+ 1)
pj−2∑

i=0

|bij |2

2i+ 1






=
N∑

j=1

hj

2pj − 1





|[εv′(xj−1)]|2

ρ2j−1

+
|[εv′(xj)]|2

ρ2j
+ 2(pj − 1)2

pj−2∑

i=0

|bij |2

2i+ 1




 .



11

Now using hj/ρj ≤ 2, hj/ρj−1 ≤ 2 and

max{
2(pj − 1)2

2pj − 1
: j = 1, ..., N} ≤ p+ 2

we arrive at
N∑

j=1

hj

pj∑

i=pj−1

|aij |2

2i+ 1
≤ 4

N−1∑

j=1

|[εv′(xj)]|2

ρj
+ (p+ 2)

N∑

j=1

hj

pj−2∑

i=0

|bij |2

2i+ 1

≤ max{4, p+ 2} ‖v‖2H2
T

where we used (2.7) and (3.11). Referring to (3.19) completes the proof.

!

Remark 3.2 In Theorem 3.1, we selected a specific sequence {ρj}. Inspection of the
proof shows that any positive sequence is admissible. Then, however,

γM ≥ C
√
p max
1≤j≤N

{hj/ρj , hj/ρj−1} . (3.20)

This shows that in order for γM to be independent of T , the weights ρj must essentially
be of the order of the local meshwidth.

3.3 Consistency and Convergence

Theorem 3.1 implies with Proposition A.4 and (2.8), (2.9) that

inf
0$=u∈S!p

0

sup
0$=v∈S!p

L

BT (u, v)

‖u‖H0
T

‖v‖H2
T

≥
1

γM
, (3.21)

∀0 += v ∈ S"p
L : sup

u∈S!p
0

B(u, v) > 0. (3.22)

Referring to (2.10), we deduce from (3.21) and from Proposition A.3 that for every mesh-
degree combination (&p, T ) there exists a unique FE-solution uM of (3.4). In particular, the
M ×M (generally nonsymmetric) stiffness matrix corresponding to (3.4) is nonsingular.
Moreover, the FE-solution uM is quasi-optimal, i.e.

‖u− uM‖H0
T

≤ (1 + γM) ‖u− w‖H0
T

∀w ∈ S"p
0 . (3.23)

The rate of convergence of the FEM (3.4) is therefore determined by the approximability
of the exact solution u from the trial space S"p

0 . We show that proper selection of the mesh
T and of the polynomial degree distribution &p yields an exponential rate of convergence,
uniform in ε. We will consider the approximation of two types of solutions uε. In Sec-
tion 3.3.1, we consider the case of analytic right hand sides f . In that case, the solution uε

exhibits only a boundary layer at the outflow boundary and thus a “two-element” mesh
with one small element in the outflow boundary layer. In Section 3.3.2, we analyze the ap-
proximation of solutions stemming from right hand sides that contain Dirac distributions
(Note that such right hand sides are admissible by Remark 2.3). Such solutions exhibit
internal layers and in the limit (as ε → 0) such solutions correspond to shocks. We show
in Section 3.3.2 that the addition of a small element in each resolves these smeared-out
shocks robustly.
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3.3.1 Approximation of boundary layers

Theorem 3.3 Let uε be the solution of (1.1), (2.1), and assume that the coefficients a,
b and the right hand side f satisfy (1.3), (1.5)–(1.7). For every ε, κ > 0 let the degree
vector &p and the mesh T = Tκ,ε be given by

&p = {p, p}, Tκ,ε = {I1, I2} if κpε < 1,
&p = {p}, Tκ,ε = {Ω} if κpε ≥ 1.

(3.24)

where
I1 = (−1, 1− κpε), I2 = (1− κpε, 1).

Then there is a constant κ0 depending only on the constants of (1.3), (1.5)–(1.7) such that
for every 0 < κ < κ0 there are C, σ > 0 independent of p and ε such that

inf
vp∈S

!p,1
0 (Tκ,ε)

‖uε − vp‖L∞(Ω) ≤ Ce−σp ∀p ∈ lN. (3.25)

Let us comment on Theorem 3.3 before proving it. As ‖uε − vp‖2H0
T

≤ 3‖uε − vp‖2L∞(Ω),

Theorem 3.3 shows with (3.23) that for analytic input data robust exponential convergence
can be achieved by the FE scheme (3.4) provided the space S"p

0 is designed properly (ie.
with one element of size O(pε) in the outflow boundary layer) and provided that the
corresponding stable test space S"p

L(T ) is available. Results analogous to Theorem 3.3 hold
also true when f(x) is piecewise analytic on [−1, 1]; then, however, additional internal
layers arise at points of nonanalyticity of f which must be accounted for by adding further
O(εp) elements.

Remark 3.4 An estimate on the value of the constant κ0 is in principle available from
the proof of Theorem 3.3. For constant coefficients a, b, the value of κ0 can be determined
explicitly ([15]): κ0 = 4/(eλ) where λ = (a +

√
a2 + 4bε)/2 ≥ a/2 by assumption (1.3).

The numerical experiments of [15] show moreover, that the approximation properties of
piecewise polynomials on the meshes Tκ,ε are fairly insensitive to the precise choice of κ.

In order to prove Theorem 3.3, we need two lemmas on the approximation of analytic
functions by their Gauss-Lobatto interpolants. Let I = [−1, 1] and define on C(I) inter-
polation operator ip by interpolation in the p+ 1 Gauss-Lobatto points. By [17] we have
the following stability result

‖ipu‖L∞(I) ≤ CGL(1 + ln p)‖u‖L∞(I) ∀u ∈ C(I), p ∈ lN. (3.26)

A direct consequence of this stability estimate and Markov’s inequality, ‖v′p‖L∞(I) ≤
p2‖vp‖L∞(I), valid for all polynomials vp of degree p, is the following

Lemma 3.5 Let u ∈ C2(I). Then

‖ (u− ipu)
(l) ‖L∞(I) ≤ ‖u(l)‖L∞(I) + CGL(1 + ln p)p2l‖u‖L∞(I), l = 0, 1, 2.

For analytic functions u, we have
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Lemma 3.6 Let u ∈ C∞(I) satisfy

‖u(n)‖L∞(I) ≤ Cuγ
nn! ∀n ∈ lN0.

Then there are constants C, σ > 0 depending only on CGL and γ such that

‖u− ipu‖L∞(I) + ‖ (u− ipu)
′ ‖L∞(I) + ‖ (u− ipu)

′′ ‖L∞(I) ≤ CCue
−σp ∀p ∈ lN.

Proof : The growth estimates on the derivatives of u imply that u is analytic on the closed
set I. By standard theory, there are polynomials Pp of degree p (e.g., by interpolating u
in the Tschebyscheff points; cf. [3], Chap. 4 for the details) such that

‖u− Pp‖L∞(I) + ‖ (u− Pp)
′ ‖L∞(I) + ‖ (u− Pp)

′′ ‖L∞(I) ≤ CCue
−σp ∀p ∈ lN

for some C, σ > 0 depending only on γ. As the interpolation operator ip reproduces
polynomials, we have u− ipu = (u− Pp)− ip(u− Pp) and the desired result follows from
an application of Lemma 3.5 to u− Pp.

!

Proof of Theorem 3.3: We will choose the approximant vp as the (piecewise) Gauss-
Lobatto interpolant of uε. Because the endpoints of the elements are sampling points of
the Gauss-Lobatto interpolation operator and because uε(±1) = 0, the piecewise Gauss-
Lobatto interpolant is in S"p,1

0 (Tκ,ε), and we merely have to control the approximation error
on the sub-intervals.

Let us first consider the asymptotic case, i.e., κpε ≥ 1. By Theorem 1.1, we have

‖u(n)
ε ‖L∞(Ω) ≤ CKnmax (n, ε−1)n ∀n ∈ lN0.

Furthermore, we have by Stirling’s formula the existence of C > 0 such that

max (n, ε−1)n ≤ max (nn, n!ε−n/n!) ≤ max (nn, n!e1/ε) ≤ Cn!ene1/ε. (3.27)

Lemma 3.6 allows us to conclude that there are C, σ > 0 independent of p, ε such that

‖uε − ipuε‖L∞(Ω) ≤ Ce1/εe−σp.

The assumption κpε ≥ 1 implies e1/ε ≤ eκp and thus the claim of the theorem follows in
the asymptotic regime provided that 0 < κ < κ0 ≤ σ.

In the pre-asymptotic case κpε < 1, we use the decomposition (1.8) with expansion order
M given by

M = µκp with µ such that µK =: β < 1 (3.28)

where K > 0 is the constant of Theorem 1.1 (strictly speaking, we should take M as
the integer part of µκp— for notational convenience, however, we will ignore this point
henceforth). This choice of µ guarantees that the statements of Theorem 1.1 on the terms
of the decomposition (1.8) hold true because κpε ≤ 1. Denote by l1, and l2 the two linear
maps which map the reference interval I onto the physical elements I1, I2, and define, for
u ∈ C[−1, 1], the piecewise Gauss-Lobatto interpolant πp(u) ∈ S"p,1(Tκ,ε) of u by

πp(u)|Ii = ip(u ◦ li) ◦ l−1
i . (3.29)
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Let us now consider the difference between the terms of the decomposition (1.8) and their
Gauss-Lobatto interpolants.

First, let us analyze the term wM . As the maps li are linear with |l′i| ≤ 1, i = 1, 2,
Theorem 1.1 allows us to infer that the functions wM ◦ li defined on the reference element
I satisfy the derivative growth estimates

‖ (wM ◦ li)(n) ‖L∞(I) ≤ CKnn! ∀n ∈ lN0

with C, K given by Theorem 1.1. Thus, by Lemma 3.6 there are C, σ > 0 such that

‖wM ◦ li − ip (wM ◦ li) ‖L∞(I) ≤ Ce−σp ∀p ∈ lN, i = 1, 2

from whence we immediately get that

‖wM − πp(wM)‖L∞(Ω) ≤ Ce−σp.

Consider now the approximation of CMu+
ε on the small boundary layer element I2. First,

observe that CM ≤ C independently of M , ε by our choice of µ. With the aid of Theo-
rem 1.1, the fact that l′2 = κpε/2, and the assumption κpε ≤ 1, we obtain

‖
(
u+
ε ◦ l2

)(n)
‖L∞(I) ≤ CKn(κpε/2)nmax (n, ε−1)n ≤ C(K/2)nmax (κpεn, κp)n

≤ C(K/2)nmax (nn, n!(κp)n/n!) ≤ C(K/2)nn!eneκp.

Hence, Lemma 3.6 allows us to conclude the existence of C, σ > 0 independent of ε, p
such that

‖u+
ε ◦ l2 − ip

(
u+
ε ◦ l2

)
‖L∞(I) ≤ Ceκpe−σp. (3.30)

This term is exponentially small provided that κ < κ0 ≤ σ. Let us now turn our attention
to the approximation of CMu+

ε on I1. By Theorem 1.1, we have that

‖u+
ε ◦ l1‖L∞(I) ≤ Ce−aκp/2.

Thus, by Lemma 3.5
‖u+

ε ◦ l1 − ip(u
+
ε ◦ l1)‖L∞(I) ≤ Ce−σp (3.31)

for some properly chosen σ > 0. Combining (3.30), (3.31) allows us to conclude that

‖CMu+
ε − πp

(
CMu+

ε

)
‖L∞(Ω) ≤ Ce−σp

for appropriate σ > 0. Finally, for the remainder, Theorem 1.1 yields with our choice of
µ

‖rM‖L∞(Ω) ≤ Cε(εµκpK)M ≤ Cε(εMK)M ≤ Cβµκp (3.32)

with β < 1. Thus, the remainder rM is exponentially small on Ω, and an appropriate
application of Lemma 3.5 allows us to conclude the proof of Theorem 3.3 by observing
that

‖rM − πp(rM)‖L∞(Ω) ≤ Cβµκp = Ce−σp, σ = µκ| lnβ|.

!
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3.3.2 Approximation of shocks

In this section, we want to demonstrate that the ideas of the “two-element” mesh of the
preceding section can be used for the approximation of solutions uε which are smeared-out
shocks. To that end, let us consider

Lεuε = f + δ0 on Ω, uε(±1) = α± (3.33)

where δ0 denotes the Dirac distribution concentrated at the point x = 0. The following
analog of Theorem 3.3 holds.

Theorem 3.7 Let uε be the solution of (3.33) and assume that the coefficients a, b and
the right hand side f satisfy (1.3), (1.5)–(1.7). For every ε, κ > 0 let the degree vector &p
and the “four-element” mesh T = T 4

κ,ε be given by

&p = {p, p, p, p}, T 4
κ,ε = {I1, I2, I3, I4} if κpε < 1/2,

&p = {p}, T 4
κ,ε = {Ω} if κpε ≥ 1/2.

(3.34)

where

I1 = (−1,−κpε), I2 = (−κpε, 0), I3 = (0, 1− κpε), I4 = (1− κpε, 1).

Then there is ε0 > 0 depending only on the constants (1.3), (1.5)–(1.7) such that for
every 0 < ε ≤ ε0 the following holds. Then there is a constant κ0 also depending only
on the constants of (1.3), (1.5)–(1.7) such that for every 0 < κ < κ0 there are C, σ > 0
independent of p and ε such that

inf
vp∈S

!p,1
0 (T 4

κ,ε)
‖uε − vp‖L∞(Ω) ≤ Ce−σp ∀p ∈ lN.

Proof : Let us first define a function uδ with the property that Lεuδ = δ0. To that end,
let us introduce the following two auxiliary functions, uL, uR:

LεuL = 0 on (−1, 0), uL(−1) = 0, uL(0) = 1
uR = e−Λ(x)+Λ(0) on (0, 1)

where the function Λ is defined in (1.8). Note that uL(0) = uR(0) and that uR is smooth
and independent of ε. In particular, u′

R(0) = −λ(0) independently of ε. Lemma B.3 gives
the existence of C1, C2 > 0 independent of ε such that C1ε−1 ≤ u′

L(0) ≤ C2ε−1. Defining

Dε := −
(
εu′

R(0)− εu′
L(0)

)
(3.35)

we see that there are C ′
1, C

′
2 > 0 independent of ε such that

0 < C ′
1 ≤ Dε ≤ C ′

2 ∀ 0 < ε ≤ ε0 (3.36)

provided that ε0 sufficiently small. Define now

uδ := −
1

Dε

{
uL(x) if −1 ≤ x ≤ 0
uR(x) if 0 ≤ x ≤ 1

(3.37)
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Then uδ is continuous on Ω, satisfies Lεuδ = 0 on (−1, 0)∪ (0, 1), and the jump of −εu′
δ at

x = 0 is 1 by the choice of Dε. Thus, uδ satisfies Lεuδ = δ0 in the sense of distributions.

By superposition, the solution uε of (3.33) can be written as

uε = uδ + ũε

where ũε solves the auxiliary problem

Lεũε = f on Ω, ũε(−1) = α−, ũε(1) = α+ − uδ(1) (3.38)

By Theorem 3.3, the function uL can be approximated with the desired exponential ac-
curacy on a two-element mesh on (−1, 0). Such a two-element mesh is contain in the
“four-element” mesh consider here. The function uR is analytic and independent of ε and
thus can be approximated well by polynomials on (0, 1). Noting that the factor 1/Dε

appearing in the definition of uδ can be bounded uniformly in ε (for ε ≤ ε0) finishes
the approximation argument for uδ. By this uniform bound on 1/Dε and by the inde-
pendence of uR of ε, we conclude that uδ(1) can be bounded uniformly in ε and thus
Theorem 3.3 allows us to approximate ũε to the desired accuracy on a two-element mesh
for Ω. Such a two-element mesh is contained in the “four-element mesh” considered here
which concludes the proof.

!

4 Approximate test functions

Theorem 3.1 shows that the use of the upwinded test space S"p
L in (3.2) gives rise to a

stable numerical scheme. Unfortunately, however, the shape functions ψk,j in (3.8), (3.9)
are themselves solutions of (local) convection-diffusion problems. For the case p = 1 and
constant coefficients a, b, these upwinded test functions can be computed explicitly and
lead to the so-called “Hemker test functions” [7]. For non-constant coefficients, however,
they are not explicitly available. We show therefore now that stability can be retained
even if the ψk,j are known only approximately. The perturbation analysis of Section 4.1
shows that fairly weak accuracy requirements on the test functions ψij suffice to ensure
stability of the FEM. Especially for low p rather “crude” approximations to the L-splines
ψij are sufficient; this is the reason why techniques such as α-quadratic upwinding ([2];
see also [12] for an up-to-date account on these methods) and the use of Hemker test
functions ([5, 6]) obtained by freezing coefficients lead to stable FEM. All these methods
are in fact covered by our perturbation analysis.

4.1 Stability with approximate test functions

We introduce the approximate test space

S̃"p
L = span

{
ψ̃k,j : k = −1, j = 2, ..., N and k = 0, ..., pj − 2, j = 1, ..., N

}
(4.1)
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where the approximate test functions ψ̃k,j ∈ H1
0 (Ω) ∩H2(Ij), j = 1, ..., N are assumed to

satisfy:
L∗
εψ̃−1,j = η−1,j in Ij−1 ∪ Ij , j = 2, ..., N,
ψ̃−1,j = 0 elsewhere,

ψ̃−1,j(xk) = δj,k+1, k = 1, ..., N,
(4.2)

and

L∗
εψ̃i,j = Li

(

2
x−mj

hj

)

+ ηi,j in Ij , i = 0, ..., pj − 2, j = 1, ..., N,

ψ̃i,j = 0 elsewhere.
(4.3)

The question how to obtain such approximate test functions will be addressed below.

We show first that the bilinear form BT (·, ·) is stable on S"p
0 × S̃"p

L provided the residuals
ηi,j in (4.2), (4.3) are sufficiently small.

Theorem 4.1 Assume that ρj is as in (3.5) and that the approximate test functions ψ̃k,j

satisfy (4.2), (4.3) with ηk,j such that

Λ1 ≤ cmin{
1

4C1
, γ−4

M }, Λ2 ≤ cmin{
1

10
, γ−4

M } (4.4)

where c < 1,

Λ1 :=
N∑

j=1

‖η−1,j‖2L2(Ij)
+ ‖η−1,j+1‖2L2(Ij)

, (4.5)

Λ2 := max
1≤j≤N




h
−1
j

pj−2∑

i=0

(2i+ 1) ‖ηij‖2L2(Ij)




 (4.6)

(we set Λ2 := 0 if p = 1 and η−1,1 = η−1,N+1 = 0) and C1 is the constant in (2.12).

There exists C > 0 independent of ε, &p and T such that

inf
0$=v∈S̃!p

L

sup
0$=u∈S!p

BT (u, v)

‖u‖H0
T

‖v‖H2
T

≥
C

γM
> 0. (4.7)

Proof : Let ṽ ∈ S̃"p
L be given. Then

ṽ(x) =
N∑

j=2

ṽ(xj−1)ψ̃−1,j(x) +
N∑

j=1

pj−2∑

i=0

bijψ̃ij(x).

We select uṽ as in the proof of Theorem 3.1, i.e.

uṽ|Ij =
pj∑

i=0

aijLi

(

2
x−mj

hj

)

where
aij = bij i = 0, ..., pj − 2



18

and apj−1,j , apj ,j are selected as in (3.15)-(3.17), with ṽ in place of v. Then uṽ is continuous
on [−1, 1]. With the test functions ψij in (3.8), (3.9) we define also

v(x) :=
N∑

j=2

ṽ(xj−1)ψ−1,j(x) +
N∑

j=1

pj−2∑

i=0

bijψij(x)

and we set

δv := ṽ − v =
N∑

j=2

ṽ(xj−1)η−1,j(x) +
N∑

j=1

pj−2∑

i=0

bijηij(x).

Then

BT (uṽ, ṽ) =
N∑

j=1

∫

Ij
uṽL

∗
εvdx−

N−1∑

j=1

uṽ(xj) [εṽ
′(xj)]

+
N∑

j=1

∫

Ij
uṽL

∗
εδvdx.

We calculate
∫

Ij
uṽL

∗
εvdx = hj

pj−2∑

i=0

|bij |2

2i+ 1
= hjSj

and, by (3.15), (3.16),

−
N−1∑

j=1

uṽ(xj) [εṽ
′(xj)] =

N−1∑

j=1

ρ−1
j |[εṽ′(xj)]|

2 ,

hence we find

BT (uṽ, ṽ) ≥
N∑

j=1

hjSj +
N−1∑

j=1

ρ−1
j |[εṽ′(xj)]|

2 −
N∑

j=1

‖uṽ‖L2(Ij)
‖L∗

εδv‖L2(Ij)
. (4.8)

Now

‖uṽ‖2L2(Ij)
= hj

pj−2∑

i=0

|bij |2

2i+ 1
+ hj

pj∑

i=pj−1

|aij |2

2i+ 1
.

Reasoning as in the proof of Theorem 3.1, we find then

N∑

j=1

‖uṽ‖2L2(Ij)
≤ 4

N−1∑

j=1

|[εṽ′(xj)]|2

ρj
+ (p+ 3)

N∑

j=1

hjSj . (4.9)

Consider now ‖L∗
εδv‖L2(Ij)

. We have by (4.2), (4.3)

(L∗
εδv)|Ij = ṽ(xj−1)η−1,j + ṽ(xj)η−1,j+1 +

pj−2∑

i=0

bijηij.

Using (2.12), we estimate

‖L∗
εδv‖L2(Ij)

≤ ‖ṽ‖L∞

(
‖η−1,j‖L2(Ij)

+ ‖η−1,j+1‖L2(Ij)

)
+

pj−2∑

i=0

bij ‖ηij‖L2(Ij)

≤ ‖ṽ‖L∞

(
‖η−1,j‖L2(Ij)

+ ‖η−1,j+1‖L2(Ij)

)

+ (hjSj)
1/2



h−1
j

pj−2∑

i=0

(2i+ 1) ‖ηij‖2L2(Ij)




1/2
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i.e.
‖L∗

εδv‖
2
L2(Ij)

≤ 4 ‖ṽ‖2L∞ Λ1j + hjSjΛ2j j = 1, ..., N, (4.10)

where we defined
Λ1j := ‖η−1,j‖2L2(Ij)

+ ‖η−1,j+1‖2L2(Ij)

and

Λ2j := h−1
j

pj−2∑

i=0

(2i+ 1) ‖ηij‖2L2(Ij)
.

Hence we may estimate with (4.9)

N∑

j=1

‖uṽ‖L2(Ij)
‖L∗

εδv‖L2(Ij)

≤



4
N−1∑

j=1

|[εṽ′(xj)]|2

ρj
+ (p+ 3)

N∑

j=1

hjSj




1/2

4Λ1 ‖ṽ‖2L∞ + Λ2

N∑

j=1

hjSj




1/2

≤ max{4, p+ 3}1/2



N∑

j=1

hjSj +
N−1∑

j=1

|[εṽ′(xj)]|2

ρj




1/2

4Λ1 ‖ṽ‖2L∞ + Λ2

N∑

j=1

hjSj




1/2

(4.11)
With (4.10), the embedding (2.12) and the definition of the H2

T norm we get further

‖ṽ‖2H2
T

≤ 2
N∑

j=1

‖L∗
εv‖

2
L2(Ij)

+ 2 ‖L∗
εδv‖

2
L2(Ij)

+
N−1∑

j=1

|[εṽ′(xj)]|2

ρj

= 2(1 + Λ2)
N∑

j=1

hjSj + 8C1Λ1 ‖ṽ‖2H2
T

+
N−1∑

j=1

|[εṽ′(xj)]|2

ρj

and, after regrouping terms, it follows that

N∑

j=1

hjSj +
N−1∑

j=1

|[εṽ′(xj)]|2

ρj
≥ D(η) ‖ṽ‖2H2

T

(4.12)

provided Λ1,Λ2 are sufficiently small and

D(η) :=
1− 8C1Λ1

2(1 + Λ2)
.

The inequality which is converse to (4.12) also holds. To obtain it, we proceed as follows:
we estimate

‖ṽ‖2H2
T

=
N∑

j=1

‖L∗
εv + L∗

εδv‖
2
L2(Ij)

+
N−1∑

j=1

|[εṽ′(xj)]|2

ρj

≥
(
1

2
− 5Λ2

) N∑

j=1

hjSj +
N−1∑

j=1

|[εṽ′(xj)]|2

ρj
− 20C1Λ1 ‖ṽ‖2H2

T

and obtain after rearranging terms

N∑

j=1

hjSj +
N−1∑

j=1

|[εṽ′(xj)]|2

ρj
≤ C(η) ‖ṽ‖2H2

T

(4.13)
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where

C(η) :=
1 + 20C1Λ1

1/2− 5Λ2
.

From (4.13) and (4.9) we find

‖uṽ‖2H0
T

≤ γ2
M






N∑

j=1

hjSj +
N−1∑

j=1

|[εṽ′(xj)]|2

ρj




 ≤ max{5, p+ 3}C(η) ‖ṽ‖2H2
T

. (4.14)

Further, (4.8) and (4.11) imply with (4.12) and (4.13) the bound

BT (uṽ, ṽ) ≥
1

γM



 D(η)

(C(η))1/2
− γ2

M

(

4C1
D(η)

C(η)
Λ1 +D(η)Λ2

)1/2


 ‖uṽ‖H0
T

‖ṽ‖H2
T

from where the inf-sup condition (4.7) follows.

!

Remark 4.2 The test functions ψ̃ij in (4.2),(4.3) are conforming, i.e., globally in H1
0 (Ω)

and elementwise in H2(Ij). As we shall show shortly, it is possible to obtain numerical
approximations ψ̃ij by solving the problems (3.8), (3.9) with a least squares FEM on a
subgrid T̃ of T . The assumption ψ̃ij ∈ H2(Ij) for Ij ∈ T then implies that the least
squares FEM must be locally C1 conforming. Although this can be achieved, we can also
admit C0-approximations ψ̃ij in Theorem 4.1, if we penalize the flux-jumps of ψ̃ij on the
subgrid appropriately. This will complicate the following analysis, but does not pose any
essential difficulties.

The stability (4.7) togther with the fact that the perturbed test functions are H2
T -

conforming and with Propositions A.4, A.3 and the approximation property Theorem
3.3 imply the following convergence result.

Theorem 4.3 For any mesh T the hp FE-solution ũM ∈ S"p
0(T ) in (3.4) corresponding

to the approximate test space S̃"p
L defined in (4.1) - (4.3) and satisfying (4.4), exists and is

quasi-optimal, i.e., with C, γM of (4.7)

‖u− ũM‖H0
T

≤ (1 +
γM
C

) ‖u− v‖H0
T

∀v ∈ S"p
0 . (4.15)

In particular, if the coefficients a, b, and the right hand side f are analytic and satisfy
(1.3), (1.5)–(1.7) and the mesh T = Tκ,ε is chosen as in (3.24) with κ sufficiently small,
we have robust exponential convergence, i.e.,

‖u− ũM‖H0
T

≤ C exp(−θM) (4.16)

where C, θ > 0 are independent of ε, p.

Remark 4.4 The meshes Tκ,ε considered in Theorem 3.3 are essentially the “minimal”
meshes that can resolve the boundary layer behavior of the solution uε in a p-version
setting at a robust exponential rate. Clearly, the approximation results of the form (3.25)
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hold true for any mesh T that contains one small element of size O(εp) at the outflow
boundary, i.e., if Tκ,ε ⊂ T . Due to the quasi-optimality (4.15), error estimates analogous
to (4.16) hold for all meshes T with Tκ,ε ⊂ T . These “minimal” meshes Tκ,ε depend on
the polynomial degree p. In practice, it may be more convenient to fix a mesh T and then
increase p until the desired accuracy is reached. For example, piecewise polynomials on
a mesh which is graded geometrically towards the outflow boundary have approximation
properties similar to the minimal meshes Tκ,ε provided that the small element of the
geometric mesh is O(ε) (cf. [9]).

4.2 Computation of the Approximate Test Functions

To obtain approximate test functions ψ̃ij , many strategies are possible: classical ap-
proaches use approximate analytical expressions (e.g., the Hemker test functions or the
α-quadratic upwinding mentioned above) or asymptotic expansions (e.g., in [19]). These
semianalytical approaches work well for low order methods and one-dimensional problems;
for two-dimensional problems, however, and to accommodate high p together with arbi-
trary meshes, a fully numerical method for the computation of the test functions seems
to be desirable.

Here we propose and analyze a local least squares FEM to approximate the ψij stably and
completely computationally. The approach allows moreover for controlling the quantities
Λ1,Λ2 in (4.5), (4.6) a-posteriori.

The plan for the remainder of this section is as follows. In Section 4.2.1 we will define
the local least squares problems which define approximate test functions ψ̃−1,j, ψ̃ij by
minimizing appropriate quadratic functionals over finite dimensional spaces Ahq

j . In this

framework, the choice of the spaces Ahq
j determines completely the test functions ψ̃−1,j ,

ψ̃ij and thus the method (3.4). The exact test functions are also solutions of singularly
perturbed convection-diffusion equations with analytic coefficients. We will therefore
choose Ahq

j as spaces of piecewise polynomials of degree q on a two-element mesh (one
small element at the outflow boundary of the local problem and one large element) in
complete analogy to our approximation theory for the global solution uε. The details of
these approximation results are provided in Sections 4.2.2, 4.2.3.

Other choices of the spaces Ahq
j lead to different methods. For example, for p = 1 and

Ahq
j consisting of quadratic polynomials, the least squares method yields approximate test

functions ψ̃−1,j very similar to those obtained by α-quadratic upwinding. The Hemker test
functions for p = 1 and constant coefficients a, b may be obtained with our least squares
method if one includes in the spacesAhq

j exponentials which solve the homogeneous adjoint
problem.

4.2.1 Approximate Test Functions via Local Least Squares FEM

To motivate the method, we define Aj := (H2 ∩H1
0 ) (Ij), j = 1, ..., N . We define further

ϕj(x) to be the piecewise linear “hat” function with

ϕj(xj−1) = ϕj(xj+1) = 0,ϕj(xj) = 1,ϕj(x) = 0 on Ω\Ij−1 ∪ Ij.
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Then ψ−1,j − ϕj−1 ∈ Aj−1 ∪Aj and we have the variational characterization

(ψ−1,j − ϕj−1)|Ik = arg min
ψ∈Ak

‖L∗
ε (ψ − ϕj−1)‖2L2(Ik)

, k = j − 1, j, (4.17)

for j = 2, ..., N and

ψij |Ij = arg min
ψ∈Aj

∥∥∥∥∥L
∗
εψ − Li

(

2
·−mj

hj

)∥∥∥∥∥

2

L2(Ij)

i = 0, ..., pj − 2, j = 1, ..., N. (4.18)

The assumptions (1.3), (1.4) imply that the operator Lε and therefore also its adjoint L∗
ε

are injective from Aj → L2(Ij). Hence the expression

‖ψ‖∗,j := ‖L∗
εψ‖L2(Ij)

(4.19)

is a norm on Aj (homogeneity and triangle inequality being obvious) and the quadratic
functionals in (4.17), (4.18) are strictly convex and lower semicontinuous. Therefore
(4.17), (4.18) admit unique solutions ψ−1,j , ψij which coincide with those in (3.8), (3.9).

For a numerical approximation of the functions ψ−1,j, ψij , let Ahq
j ⊂ Aj be a finite

dimensional subspace. We obtain external approximate test functions ψ̃−1,j by
(
ψ̃−1,j − ϕj−1

)∣∣∣
Ik

= arg min
ψ∈Ahq

k

‖L∗
ε (ψ − ϕj−1)‖2L2(Ik)

, k = j − 1, j (4.20)

for j = 2, ..., N and internal approximate test functions ψ̃ij , i = 0, ..., pj − 2 by

ψ̃ij

∣∣∣
Ij
= arg min

ψ∈Ahq
j

∥∥∥∥∥L
∗
εψ − Li

(

2
·−mj

hj

)∥∥∥∥∥

2

L2(Ij)

j = 1, ..., N. (4.21)

These approximations are also uniquely defined. Moreover, they are optimal in the norm
‖◦‖∗,j, for we have
∥∥∥ψ−1,j − ψ̃−1,j

∥∥∥
∗,k

≤ ‖ψ−1,j − ϕj−1 − ψ‖∗,k ∀ψ ∈ Ahq
k , k = j − 1, j, j = 2, .., N(4.22)

∥∥∥ψij − ψ̃ij

∥∥∥
∗,j

≤ ‖ψij − ψ‖∗,j , ∀ψ ∈ Ahq
j , j = 1, ..., N. (4.23)

Thus, the design of the approximation spaces Ahq
j proceeds in the usual fashion: based

on the regularity of the exact test functions ψij , we show that we can select the least
squares approximation spaces Ahq

j so that exponential convergence rates in the global
‖ψ‖∗ := ‖L∗

εψ‖L2(Ω) norm can be achieved.

Remark 4.5 The calculation of the approximate test functions ψ̃−1,j, ψ̃ij can be done
efficiently if one observes that eqs. (4.20), (4.21) represent completely decoupled local
problems on the elements Ij, which can be solved in parallel. Furthermore, on each
element Ij the local least squares problems (4.20), (4.21) can be solved efficiently because
the equivalent matrix formulations lead to problems with the same stiffness matrix and
merely different right hand sides. Thus, once a convenient decomposition of the elemental
least squares matrix is found (e.g., its LU decomposition), the approximate test functions
ψ̃−1,j |Ij , ψ̃−1,j+1|Ij , ψ̃ij , i = 0, . . . , pj − 2 can be obtained by pj + 1 backsolves.
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4.2.2 Approximation Results on the Reference Element

We begin our analysis with the following approximation result, quite analogous to Theo-
rem 3.3. Introduce the ε dependent norm ‖ · ‖2,ε on H2(I) by

‖u‖2,ε := ε‖u′′‖L2(I) + ‖u′‖L2(I) + ‖u‖L2(I) (4.24)

Theorem 4.6 Let uε be the solution of (1.1), (1.2). Assume that (1.3), (1.5)–(1.7) hold
and let &p and Tκ,ε be as in Theorem 3.3. Then there is κ0 > 0 depending only on the con-
stants of (1.3), (1.5)–(1.7) such that for every 0 < κ < κ0 there are C, σ > 0 independent
of p, ε and functions vp ∈ S"p,2(Tκ,ε) such that

uε(±1) = vp(±1), ‖uε − vp‖2,ε ≤ Cε−1/2e−σp ∀p ∈ lN. (4.25)

Proof : The proof is very similar to the proof of Theorem 3.3. We will therefore only
highlight the main differences. For the asymptotic case κpε ≥ 1, the claim follows easily
as in the proof of Theorem 3.3. Let us consider the pre-asymptotic case κpε < 1. Choose
µ, M as in (3.28) and use the decomposition (1.9) for uε. We get from Theorem 1.1 and
Lemma 3.6

‖ (wM − ipwM)(l) ‖L∞(I) ≤ Ce−σp, l = 0, 1, 2.

For the remainder rM , we use Theorem 1.1 to get for 0 ≤ n ≤ 2 and the implicit assump-
tion on p that M ≥ 1:

‖r(n)M ‖L∞(I) ≤ Cε1−n(εµκpM)M ≤ Cε1−n(εµκp)n−1(εµκpM)M−n+1 ≤ C(µκp)n−1qM−n+1.

Thus, an application of Lemma 3.5 yields

‖ (rM − iprM)(l) ‖L∞(I) ≤ e−σp, l = 0, 1, 2

for appropriately chosen σ > 0. Let us now turn to the approximation of the boundary
layer function u+

ε . The technical details are very similar to the proof of Theorem 5.1 of
[15]. As in the proof of Theorem 3.3, let l1, l2 be the two linear maps from the reference
element I onto the two elements I1, I2. Consider first the approximation of the function

U(x) := (u+
ε )

′

and let x̃ := 1− κpε be the internal node of the mesh Tκ,ε. Note that, up to a factor ε−1,
the function U satisfies similar estimates as u+

ε by Theorem 1.1. Define the approximant
Up ∈ S"p,1(Tκ,ε) by

Up(x) :=





U(−1) + ε1/2U(x̃)−U(−1)

x̃+1 (x+ 1) on I1

(ip(U ◦ l2)) ◦ l−1
2 − (1−ε1/2)U(x̃)

κpε (1− x) on I2.

We claim now that for κ sufficiently small, there are C, σ > 0 such that

‖ (U − Up)
(l) ‖L2(I) ≤ Cε−1/2−le−σp, l = 0, 1, ∀p ∈ lN. (4.26)
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For the approximation on the small boundary layer element I2, we calculate analogously
to (3.30) (after absorbing the powers of p arising from the use of Lemma 3.6 and choosing
κ0 sufficiently small)

‖ (U ◦ l2 − (ip(U ◦ l2)))(l) ‖L∞(I) ≤ Cε−1e−σp, l = 0, 1.

Hence,

‖
(
U − (ip(U ◦ l2) ◦ l−1

2 )
)(l)

‖L2(I2) ≤ Cε−1(κpε)1/2−le−σp, l = 0, 1.

We calculate further with 0 < ε ≤ 1:

‖
(
(1− ε1/2)U(x̃)

κpε
(1− x)

)(l)

‖L2(I2) ≤ |U(x̃)|(κpε)1/2−l, l = 0, 1.

Combining these two last estimates and observing that by Theorem 1.1 |U(x̃)| ≤ Cε−1e−aκp/2,
we get for some suitable σ > 0

‖ (U − Up)
(l) ‖L2(I2) ≤ Cε−1/2−le−σp l = 0, 1.

Let us now consider the large element I1. We have

‖ (U − Up)
(l) ‖L2(I1) ≤ ‖U (l)‖L2(I1) + ‖U (l)

p ‖L2(I1)

By Theorem 1.1, ‖U (l)‖L2(I1) ≤ Cε−1/2−le−aκp/2, and it is easy to verify that

‖U (l)
p ‖L2(I1) ≤ Cmax (ε1/2|U(x̃)|, |U(−1)|) ≤ Cε−1/2e−aκp/2, l = 0, 1.

Hence, we have proven (4.26). To conclude the proof of Theorem 4.6, we define the
approximant vp+1 ∈ S"p+1,2(Tκ,ε) by

vp+1(x) := uε(−1) +
∫ x

−1
Up(t) dt−

1

2

{∫ 1

−1
Up(t)− U(t) dt

}
(x+ 1).

We note vp+1(±1) = uε(±1) and the observation
∣∣∣∣
∫ 1

−1
Up(t)− U(t) dt

∣∣∣∣ ≤ Cε−1/2e−σp

(vp+1 − uε)(x) =
∫ x

−1
Up(t)− U(t) dt−

1

2

{∫ 1

−1
Up(t)− U(t) dt

}
(x+ 1)

allows us to conclude the argument.

!

This result immediately applies also to FE-approximations of the adjoint problem which
will then enable us to analyze the approximation of the test functions.

Corollary 4.7 Assume (1.4), (1.5)–(1.7). For q ∈ lN, κ > 0 set

&q = {q, q}, T ∗
κ,ε = {I1, I2} I1 = [−1,−1 + κqε], I2 = [−1 + κqε, 1] if κqε < 1,

&q = {q}, T ∗
κ,ε = {[−1, 1]} if κqε ≥ 1.

(4.27)
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Let u∗
ε be the solution of the adjoint problem

L∗
εu

∗
ε = f on Ω, u∗

ε(±1) = α±. (4.28)

Then there is κ0 > 0 depending only on the constants in (1.4), (1.5)–(1.7) and α± such
that the following holds. For each 0 < κ < κ0 there are C, σ > 0 independent of q, ε and
a sequence (vq) of functions in S"q,2(T ∗

κ,ε) such that

vq(±1) = u∗
ε(±1) and ‖u∗

ε − vq‖2,ε ≤ Cε−1/2e−σq ∀q ∈ lN

Proof : The change of variables x 1→ −x changes L∗
ε into a differential operator of the

type of Lε whose coefficients satisfy by (1.4) all the necessary conditions for Theorem 4.6
to imply the result.

!

We will use Corollary 4.7 to estimate the errors

‖ψij − ψ̃ij‖∗,j = ‖L∗
ε

(
ψij − ψ̃ij

)
‖L2(Ω)

of the ψ̃ij computed by the least squares methods (4.18), (4.21). Evidently, this will imply
also bounds on Λ1, Λ2 in Theorem 4.1.

Clearly, Corollary 4.7 could be applied on Ωj after a scaling argument; however, rather
than the general right hand side f in (4.28), we must also solve problem (4.3) with f = Li,
i = 0, . . . , pj − 2. To that end, let us formulate the following

Proposition 4.8 Let T ∗
κ,ε be as in Corollary 4.7 and let u∗

ε be the solution of (4.28) where
the right hand side f is a polynomial of degree p. Then there is κ0 > 0 depending only
on the constants in (1.4), (1.5), (1.6) such that the following holds. For each 0 < κ < κ0

there are constants C, σ, τ > 0 and a sequence (vq) of functions in S"q,2(T ∗
κ,ε) such that

for all q ≥ τp

vq(±1) = uε(±1) and ‖uε − vq‖2,ε ≤ Cε−1/2e−σq
(
|α−|+ |α+|+ ‖f‖L∞(I)

)
. (4.29)

For the proof of Proposition 4.8 we need the following lemma.

Lemma 4.9 (Bernstein’s lemma) Let I = [−1, 1]. For every ρ > 1 there are Cρ,
γρ > 0 such that for all polynomials Pp of degree p

‖P (n)
p ‖L∞(I) ≤ Cρn!γ

n
ρ ρ

p‖Pp‖L∞(I) ∀n ∈ lN0.

Proof : For ρ > 1 denote Eρ the ellipse (in the complex plane) whose foci are ±1 and
whose axes have lengths ρ + ρ−1, ρ − ρ−1. By Bernstein’s Lemma (e.g., [8], III.15) the
extension of Pp to the complex plane satisfies

‖Pp‖L∞(Eρ) ≤ ρp‖Pp‖L∞(I) ∀ρ > 1.

The claim of the lemma follows by Cauchy’s integral theorem for derivatives.

!
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Proof of Proposition 4.8: By linearity, we may write the solution u∗
ε as the sum of

uε,h + uε,p where uε,h solves (4.28) with homogeneous right hand side and inhomogeneous
Dirichlet data α± and where uε,p solves (4.28) with right hand side f and homogeneous
Dirichlet data. Corollary 4.7 implies (4.29) for uε,h. We may therefore concentrate on the
approximation of uε,p. Fix ρ > 1. Lemma 4.9 implies

‖f (n)‖L∞(I) ≤
(
Cρρ

p‖f‖L∞(I)

)
γn
ρn! ∀n ∈ lN0. (4.30)

Consider the scaled function
ũε,p :=

uε,p

ρp‖f‖L∞(I)

which solve the equation

L∗
εũε,p = f̃ on I, ũε,p(±1) = 0

‖f̃ (n)‖L∞(I) ≤ Cργ
n
ρn! ∀n ∈ lN0

Hence, we may apply Corollary 4.7 to the function ũε,p and obtain the existence of func-
tions ṽq ∈ S"q,2(T ∗

κ,ε) with

ṽq(±1) = 0 ‖ũε,p − ṽq‖2,ε ≤ Cε−1/2e−σq ∀q ∈ lN

Scaling back, we obtain for the function vq := ρp‖f‖L∞(I) ∈ S"q,2(T ∗
κ,ε)

vq(±1) = 0 ‖uε,p − vq‖2,ε ≤ Cε−1/2e−σqρp‖f‖L∞(I) ∀q ∈ lN

As q = q/2 + q/2 ≥ q/2 + τp/2 we see that choosing τ sufficiently large implies the
statement of the proposition.

!

4.2.3 Analysis of the Local Least Squares FEM

In the preceding subsection, we analyzed the approximation properties of piecewise poly-
nomials on the reference element I. In order to obtain bounds for the errors in (4.22),
(4.23), let us introduce the linear transformations lk by

lk : I → Ik, x̂ 1→ lk(x̂) := mk +
hk

2
x̂, k = 1, . . . , N. (4.31)

Furthermore, for k = 1, . . . , N let us set

Âk := Ak ◦ lk
û := u ◦ lk ∀u ∈ Ak

εk :=
2

hk
ε (4.32)

L̂∗
εk

:= −εk
∂2

∂x̂2
− a(lk(x̂))

∂

∂x̂
+

hk

2
[b(lk(x̂))− a′(lk(x̂))]
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Note that L̂∗
εk
û = hk

2 (L∗
εu)◦ lk for all u ∈ Ak. Note also that the coefficients of L̂∗

εk
satisfy

(1.4) (with the same γ∗
1 , γ∗

2) and estimates similar to (1.5), (1.6). A straightforward
calculation gives (recall (4.19))

‖v‖∗,k = ‖L∗
εv‖L2(Ik)

=

√
2

hk

∥∥∥L̂∗
εk
v̂
∥∥∥
L2(I)

≤ Ch−1/2
k ‖v̂‖2,εk ∀v ∈ Ak (4.33)

where the constant C > 0 depends only on the constants of (1.5), (1.6).

In order to get bounds on the expressions (4.22), (4.23), we note that for each k = 1, . . . , N ,
the functions ψ̂−1,j := ψ−1,j ◦ lk, ψ̂i,k := ψi,k ◦ lk satisfy

L̂∗
εk
ψ̂−1,j = 0 on I, ψ̂−1,j(−1) = 0, ψ̂−1,j(1) = 1 if k = j − 1, j = 2, . . . , N,

L̂∗
εk
ψ̂−1,j = 0 on I, ψ̂−1,j(−1) = 1, ψ̂−1,j(1) = 0 if k = j, j = 2, . . . , N,

L̂∗
εk
ψ̂i,k = hk

2 Li on I, ψ̂i,k(±1) = 0, i = 0, . . . , pk − 2, k = 1, . . . , N.

Here, the functions Li are the Legendre polynomials which satisfy ‖Li‖L∞(I) = 1. With

the notation of Proposition 4.8, let us choose finite dimensional subspaces Ahq
k ⊂ Ak as

Ahq
k := S"q,2

0 (T ∗
κ,εk

) ◦ lk. (4.34)

Concerning the approximation of the functions ψ̂−1,j, ψ̂i,k, in the spaces Âhq
k = S"q,2

0 (T ∗
κ,εk

),
Proposition 4.8 gives the existence of C, σ > 0, τ > 0 such that

inf
v̂q∈Â

hq
k

∥∥∥ψ̂−1,j − ϕ̂j−1 − v̂q
∥∥∥
2,εk

≤ Cε−1/2
k e−σq ∀q ∈ lN

inf
v̂q∈Â

hq
k

∥∥∥ψ̂i,k − v̂q
∥∥∥
2,εk

≤ Cε−1/2
k hke

−σq ∀q ≥ τpk

Hence, with the choice (4.34) for the finite dimensional subspaces Ahq
k ⊂ Ak we obtain

for (4.22), (4.23) with the aid of (4.33) and εk = 2ε/hk

∥∥∥ψ−1,j − ψ̃−1,j

∥∥∥
∗,k

≤ Cε−1/2e−σq ∀q ∈ lN, k = j − 1, j, j = 2, . . . , N, (4.35)
∥∥∥ψi,k − ψ̃i,k

∥∥∥
∗,k

≤ Ch1/2
k ε−1/2e−σq ∀q ≥ τpk, k = 1, . . . , N, (4.36)

These estimates allow us to control the expressions for Λ1, Λ2 arising in Theorem 4.1. We
obtain

Theorem 4.10 Let T = {I1, . . . , IN} be any mesh on Ω and &p any degree vector. For
κ > 0, define a subgrid mesh T ∗

κ,ε := ∪N
k=1T ∗,k

κ,εk
where for each element Ik, the subdivision

T ∗,k
κ,εk

is given by

T ∗,k
κ,εk

= {lk(J1), lk(J2)} J1 = [−1,−1 + κqεk], J2 = [−1 + κqεk, 1] if κqεk < 1,
T ∗,k
κ,εk

= {Ik} if κqεk ≥ 1.

Here εk, hk etc. are as in (4.32). Let furthermore the spaces Ahq
k be given by (4.34), or,

equivalently, Ahq
k = S"q,1(T ∗

κ,ε) ∩Ak where &q = (q, . . . , q).
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Then, for κ sufficiently small, there exist C, σ, τ > 0 depending only on the constants
of (1.4), (1.5), (1.6) such that the approximate test functions ψ̃−1,j, ψ̃ij of (4.20), (4.21)
satisfy (4.2), (4.3) and Λ1, Λ2 defined in (4.5), (4.6) can be estimated as follows.

Λ1 ≤ CNε−1e−σq ∀q ∈ lN,

Λ2 ≤ Cε−1e−σq ∀q ≥ τp.

Proof : By (4.5), (4.35) we have

Λ1 ≤
N∑

j=2

j∑

k=j−1

‖ψ−1,j − ψ̃−1,j‖2∗,k ≤ CNε−1e−2σq ∀q.

For Λ2, (4.6), (4.36) imply for all q ≥ τp

Λ2 ≤ max
1≤j≤N




h
−1
j

pj−2∑

i=0

(2i+ 1)‖ψij − ψ̃ij‖2∗,j




 ≤ C max
1≤j≤N

ε−1p2je
−2σq ≤ Cε−1p2e−2σq.

As we may assume τ ≥ 1, the factor p2 can be absorbed in the exponential term at the
expense of slightly reducing 2σ which concludes the proof of Theorem 4.10.

!

This result allows us finally to deduce the stability of the hp-FEM with least squares
approximations of the test functions.

Corollary 4.11 Under the hypotheses of Theorem 4.10 there is κ0 > 0 depending only
on the constants in (1.3), (1.4), (1.5)–(1.7) such that for every 0 < κ < κ0 there is c > 0
such that for q ≥ cmax (p, | ln ε|+lnN) the FEM (3.4) corresponding to S̃"p

L (computed by
(4.20), (4.21)) is stable and hence quasi-optimal.

5 Numerical Example and Implementational Aspects

The aim of the present section is to illustrate the performance of the hp FEM analyzed
in this paper with particular attention to its robustness with respect to small viscosities
ε. We consider the model problem

−εu′′
ε + u′

ε = 1 on Ω = (−1, 1), uε(±1) = 0. (5.1)

The exact solution has a boundary layer at the outflow boundary and is given by

uε = x+ 1 +
2

1− e−2/ε

(
e−2/ε − e−(1−x)/ε

)
.

Guided by the approximation result Theorem 3.3, we choose for the trial space the spaces
S"p,1
0 (Tκ,ε) with κ = 1 (cf. (3.1)) where the meshes Tκ,ε are given by (3.24). A specific basis

of S"p,1
0 is given by the usual piecewise linear “nodal” shape functions and the integrated

Legendre polynomials (the “internal” shape functions). For this particular problem, the
basis functions ψ−1,j , ψi,j of the spaces of L-splines (cf. (3.8), (3.9)) can be determined in
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the form of antiderivatives of exponentials times Legendre polynomials of degree up to p.
Note that, since the coefficients of (5.1) are constant, the classical Hemker test functions
arise for p = 1. Hence, for p > 1, in this example our scheme could be viewed as an hp
version of the “Hemker test function” method.

Our numerical experiments were performed using MATLAB, i.e., with double precision
(16 decimal) accuracy. They had the following aims: i) to show that robust exponential
convergence is indeed achieveable by hp-FEM, ii) to demonstrate that the method remains
numerically stable as ε decreases to the order of machine precision (note that unlike e.g.
the SDFEM, our method does not introduce any artificial viscosity into the computation)
and iii) to assess the impact of inaccurate test functions and numerical quadrature on the
stability and the robustness of the scheme.

Let us first address a few implementational aspects. If the test functions are approximated
using piecewise polynomials (as proposed in Section 4), then the load vector is created
in the usual way requiring some numerical integration, in general. Further, the local
adjoint problems determining the (approximate) test functions may be solved completely
independently and in parallel.

The stiffness matrix corresponding to BT (u, v) consists of two parts: a mass matrix like
term stemming from the domain integrals and a finite-volume like term stemming from
the flux-jumps at interelement boundaries. For the mass matrix part, the test functions
ψ−1,j , ψi,j need not be known completely. Rather, only L∗

εψ−1,j , L∗
εψi,j (which are chosen

to be Legendre polynomials and hence known) are required. For the flux jumps, the only
information employed from the Dirichlet problems (3.8), (3.9) are the normal derivatives
in the endpoints, i.e., a Dirichlet-to-Neumann map is needed. In Section 4, we proposed
a least squares method to approximate the test functions, but for the generation of the
stiffness matrix, any sufficiently accurate Dirichlet-to-Neumann map may be taken.

For the present, constant coefficient model problem (5.1), exact representations of the test
functions as antiderivatives of Legendre polynomials times a boundary layer function are
available which must be integrated numerically. The next lemma shows how functions of
boundary layer type can be integrated numerically in a very efficient way using standard
Gaussian quadrature formulas. In our calculations, the numerical evaluation of integrals
over elements of boundary layer functions against polynomials were performed based on
the ideas of this “two-element” quadrature scheme with q points in each subelement.

Lemma 5.1 Let w, f be analytic on Ω = (−1, 1) and satisfy

‖f (n)‖L∞(Ω) ≤ Cf(Kf )
nn!, |w(n)(x)| ≤ Cw(Kw)

ne−(1−x)/ε max (n, ε−1)n, x ∈ Ω, ∀n ∈ lN0, ε ∈ (0,

For q ∈ lN let Tκ,ε be the “two-element” meshes introduced in (3.24) (with q taking the role
of p) and denote by Gq(Tκ,ε, wf) the composite Gaussian quadrature rule with q points in
each element applied to the function wf . Then there is κ0 > 0 such that for 0 < κ < κ0

there are C, σ > 0 (independent of ε, q) such that
∣∣∣∣
∫

Ω
w(x)f(x) dx−Gq(Tκ,ε, wf)

∣∣∣∣ ≤ Ce−σq, q = 1, 2, 3, ... (5.2)

If f is a polynomial of degree p with ‖f‖L∞(Ω) ≤ 1 then under the assumption q ≥ p + 1
estimate (5.2) holds with C, σ independent of of ε, p, q.
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Proof : Observe that for the composite Gaussian quadrature formula of order q the quadra-
ture error may be estimated by twice the size of the integration domain times a L∞ best
approximation of the integrand:

∣∣∣∣
∫

Ω
w(x)f(x) dx−Gq(Tκ,ε, wf)

∣∣∣∣ ≤ 2 |Ω| inf
π2q−1

‖wf − π2q−1‖L∞(Ω)

where the infimum is taken over all piecewise polynomials π2q−1 of degree 2q − 1 on the
mesh Tκ,ε. Let πq−1(f), πq(w) be the piecewise Gauss-Lobatto interpolants of f , w of
orders q − 1, q, respectively. Upon setting π2q−1 := πq−1(f)πq(w) and using the stability
result (3.26), we can bound

‖wf − π2q−1‖L∞(Ω) ≤ ‖f − πq−1(f)‖L∞(Ω)‖w‖L∞(Ω)+
CGL(1 + ln q)‖f‖L∞(Ω)‖w − πq(w)‖L∞(Ω).

(5.3)

The proof of Theorem 3.3 shows that for the function w, which is of boundary layer type,

‖w − πq(w)‖L∞(Ω) ≤ Ce−σq

with C, σ > 0 independent of q, ε provided that κ is sufficiently small. A similar estimate
holds for ‖f − πq−1(f)‖L∞(Ω) by Lemma 3.6, and thus the right hand side of (5.3) is
exponentially small (in q). Finally, if f is a polynomial of degree p and q ≥ p+1, then the
term involving f − πq−1(f) vanishes in (5.3), and hence the claim of the lemma follows.

!

Remark 5.2 Note that Lemma 5.1 shows that accurate numerical integration of bound-
ary layer functions is possible without constructing special, “exponentially” weighted
quadrature rules. The present approach works even without explicit knowledge of the
boundary layer function.

As we pointed out in Remark 3.4, the value of κ0 is in principle available from the proof.
For the special weight function w = e−(1−x)/ε, the analysis of [15] shows that κ0 ≥ 4/e.
Furthermore, note that the use of geometrically refined meshes outlined in Remark 4.4
eliminates the need for bounds on κ0. We chose π2q−1 as the product of (piecewise)
polyomials of degree q − 1 and q. However, other “splittings” are possible and thus the
condition q ≥ p + 1 for polynomial right hand sides f may be relaxed to a condition of
the form q ≥ τp with τ > 1/2.

In Figs. 1–4, we present the results of calculations with very large values of q corresponding
to practically exact evaluation of the stiffness matrix and load vector. In Figs. 1, 2 we show
the L2 convergence versus the polynomial degree (note: dimS"p,1

0 (T1,ε) = 2p−1 typically).
As predicted by Theorem 4.3 we have robust exponential convergence: for small values
of ε the error curves are practically on top of each other. For our two-element meshes,
Theorem 4.3 also gives exponential convergence of the point value at the one internal node
(at 1−εp). Inspection of the error at that point shows superconvergence: nodal exactness
(up to machine precision) is obtained for all values of p and ε. To demonstrate the
robustness of the method in the L∞ norm is the objective of the experiments reported in
Figs 3, 4. Here, the discrete L∞ error is defined by the maximum error in sampling points
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which are chosen as follows. Ω is subdivided into three sampling windows (−1, 1− 11pε),
(1 − 11pε, 1 − pε), (1 − pε, 1) and in each window 104 sampling points are uniformly
distributed. The graphs indicate that also in the maximum norm, the finite element
solution features indeed the robust exponential convergence predicted in Theorem 3.3.

Next, we address the effect of approximate test functions on the performance of the
method. By reducing the order of integration q we introduce into the stiffness matrix and
the load vectors errors which correspond to the effect of approximate test functions (which,
being piecewise polynomials, would be integrated exactly). Figs. 5–8 show the effect of
inexact integration. The numerical integrations of exponentials times Legendre polyno-
mials were now performed with composite Gaussian rules of order q = 1, q = p/4 + 1,
q = p/2 + 1, q = 3/4p + 1, and q = p + 1. In Figs. 5, 6, we show the error for “exactly
integrated” load vectors, but low integration order in the flux jumps of the stiffness ma-
trix for ε = 10−5, ε = 10−10. We observe that even with severe underintegration, q = 1,
practically no instability occurs, but a consistency error of size O(

√
ε) is introduced. A

similar phenomenon is observed for the quadrature errors of the right hand side, shown in
Figs. 7, 8, where now the stiffness matrix has been integrated “exactly”. Here, underinte-
gration (e.g., q = 1) leads to a saturation at an error level of roughly O(ε). Despite these
consistency errors the stability is not compromised, even by severe underintegration with
q = 1, which might explain the success of h-version schemes based on often very crude,
analytical approximations of the upwinded test functions. It appears, however, that, in
order to avoid the O(

√
ε) and O(ε) saturation errors observed in Figs. 5–8, one has indeed

to increase the quadrature order (resp. the polynomial degree q of the approximate test
functions) in accordance with Corollary 4.11, i.e., proportional to max (p, | ln ε|+ lnN).

Let us finally comment on the sparsity pattern and the solution of the resulting linear
system. If the basis of the L-splines is chosen as in (3.8), (3.9), and if the basis of the
trial space is the usual “nodal” and “internal” shape functions, then the resulting stiffness
matrix is a banded matrix with bandwidth O(p) (cf. Fig. 9 for the case of a four-element
mesh and p = 10, i.e., 39 unknowns).

In summary, our numerical experiments show that our error estimates are sharp and that
they describe accurately the performance of the Petrov-Galerkin hp-FEM: the impact of
the quadrature order on the stability and consistency follows closely the predictions made
in Corollary 4.11 and the method performs uniformly well for the viscosity parameter ε
ranging from ε = 1 to the order of machine precision, ε = 10−16. In the latter case, within
the machine precision the hyperbolic limiting problem is calculated. Thus, the method
presented here also opens new avenues to generate p and hp version FEM for hyperbolic
problems via a numerical vanishing viscosity approach.

A Appendix: Analysis of Petrov-Galerkin FEM

Here we present some abstract results that are used repeatedly in our analysis. We merely
cite those that are classical (see [1]), and derive some extensions required by us.

Throughout this appendix, X and Y denote reflexive Banach spaces equipped with norms
‖◦‖X and ‖◦‖Y , respectively, and B : X × Y → lR denotes a bilinear form which is
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continuous, i.e.
|B(u, v)| ≤ C1 ‖u‖X ‖v‖Y . (A.1)

By Y ′ we denote the dual space to Y . It is also a Banach space equipped with the norm

‖F‖Y ′ = sup
0$=v∈Y

|F (v)|
‖u‖Y

. (A.2)

Proposition A.1 Assume that B(·, ·) satisfies

inf
0$=u∈X

sup
0$=v∈Y

B(u, v)

‖u‖X ‖v‖Y
≥ γ > 0 (A.3)

and
∀0 += v ∈ Y : sup

u∈X
B(u, v) > 0. (A.4)

Then, for every F ∈ Y ′, the abstract saddle point problem:

u ∈ X : B(u, v) = F (v) ∀v ∈ Y (A.5)

admits a unique solution u satisfying the a-priori estimate

‖u‖X ≤
C1

γ
‖F‖Y ′ . (A.6)

For a proof, we refer to [1].

An equivalent form of the stability condition (A.3), (A.4) is

Proposition A.2 If B(·, ·) satisfies

inf
0$=v∈Y

sup
0$=u∈X

B(u, v)

‖u‖X ‖v‖Y
≥ γ̃ > 0 (A.7)

and
∀0 += u ∈ X : sup

v∈Y
B(u, v) > 0 (A.8)

then also (A.3) and (A.4) hold with γ = γ̃/C1.

Proof : Let G ∈ X ′ satisfy ‖G‖X′ = 1 and consider the auxiliary problem:

ṽG ∈ Y : B(w, ṽG) = G(w) ∀u ∈ X. (A.9)

Clearly, the bilinear form C(·, ·) defined via C(v, u) := B(u, v) satisfies by our assumptions
(A.7),(A.8) all requirements for Proposition A.1 with X and Y interchanged, however.
Hence ṽG exists, is unique and satisfies

‖ṽG‖Y ≤
C1

γ̃
‖G‖X′ =

C1

γ̃
. (A.10)
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We prove that B(·, ·) satisfies (A.3): given 0 += u ∈ X , select G(·) ∈ X ′ such thatG(u) = 1
and define vu := ‖u‖X ṽG. Then, by (A.9),

B(u, vu) = ‖u‖X B(u, ṽG) = ‖u‖2X ,

and, by (A.10),

‖vu‖Y ≤
C1

γ
‖u‖X .

This implies (A.3) with γ = γ̃/C1. (A.4) follows directly from (A.7).

!

Let now XM ⊂ X , YM ⊂ Y be closed subspaces. We consider the abstract FE-
discretization of (A.5)

uM ∈ XM : B(uM , v) = F (v) ∀v ∈ YM . (A.11)

The following result, due to Babuška [1], addresses the convergence of (A.11) in terms
of the approximability of u from XM and in terms of the stability implied by the test
function space YM .

Proposition A.3 Assume

inf
0$=u∈XM

sup
0$=v∈YM

B(u, v)

‖u‖X ‖v‖Y
≥ γM > 0 (A.12)

and
∀0 += v ∈ YM : sup

u∈XM

B(u, v) > 0. (A.13)

Then, for every F ∈ Y ′, (A.11) admits a unique solution uM which satisfies the error
estimate

‖u− uM‖X ≤ (1 +
C1

γM
) inf
w∈XM

‖u− w‖X . (A.14)

Frequently in this paper, one does not have the inf-sup conditions (A.12), (A.13), but
rather the adjoint set of conditions

inf
0$=v∈YM

sup
0$=u∈XM

B(u, v)

‖u‖X ‖v‖Y
≥ γ̃M > 0, (A.15)

and
∀0 += u ∈ XM : sup

v∈YM

B(u, v) > 0. (A.16)

An application of Proposition A.2 to the finite dimensional case gives

Proposition A.4 Assume (A.1), (A.15), (A.16). Then the inf-sup conditions (A.12),
(A.13) hold with

γM = γ̃M/C1.
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B Appendix: Regularity

The goal of this subsection is to prove Theorem 1.1, i.e., obtain bounds on the uε and
its derivatives which depend only on the constants Ca, Cb, Cf , γa, γb, γf , and γ1, γ2 of
Section 1.2

We introduce two more expressions λ−, λ+ which can be controlled in terms of γ1, γ2:

λ− := max

{
a−

√
a2 + 4bε

2ε
, 0

}

≤ γ2,

λ+ := min

{
a+

√
a2 + 4bε

2ε
,
a

ε

}

≥
a

2ε
.

Let us first get bounds on the solution uε by the maximum principle.

Lemma B.1 There is C > 0 depending only on the constants appearing in (1.5), (1.6),
(1.3), and Cf such that the solution uε of (1.1) satisfies

‖uε‖L∞ ≤ C, ‖u′
ε‖L∞ ≤ Cε−1.

Proof : The lemma is proved by the maximum principle (cf. [13], Chap. 1, Sec. 5, Thm.
11; note that the function w := e−λ+(1−x) satisfies the assumptions of Thm. 11). Consider
the functions

ψ± := |α−|eλ−(1+x) + |α+|e−λ+(1−x) +
x+ 1

γ1
‖f‖L∞eλ

−(1+x) ± uε.

Then ψ±(±1) ≥ 0, Lεψ± ≥ 0 and thus by the maximum principle

|uε(x)| ≤ |α−|eλ−(1+x) + |α+|e−λ+(1−x) +
x+ 1

γ1
eλ

−(1+x)‖f‖L∞.

The bound on ‖uε‖L∞ follows. Let us introduce the shorthand

A(x) :=
1

ε

∫ 1

x
a(t) dt.

For the derivative estimate, we estimate u′
ε(1) first. Multiplying the differential equation

by eA(x), then integrating from x to 1 and then multiplying again by e−A(x) gives

u′
ε(x) = e−A(x)u′

ε(1)−
1

ε

∫ 1

x
b(t)eA(t)−A(x)uε(t) dt+

1

ε

∫ 1

x
f(t)eA(t)−A(x) dt (B.1)

Integrating this equation from −1 to 1 yields

α+−α− = u′
ε(1)

∫ 1

−1
e−A(x) dx−

1

ε

∫ 1

−1
e−A(x)

∫ 1

x
b(t)eA(t)uε(t) dtdx+

1

ε

∫ 1

−1
e−A(x)

∫ 1

x
f(t)eA(t) dtdx

Some simple algebra shows that we have
∫ 1

−1
e−A(x)dx ≤

ε

a
(B.2)

∫ 1

−1
e−A(x)dx ≥

ε

‖a‖L∞

(1− e2a/ε) (B.3)

1

ε

∫ 1

−1

∫ 1

x
eA(t)−A(x) dtdx ≤

2

a
(B.4)

1

ε

∫ 1

x
eA(t)−A(x)e−λ+(1−t) dt ≤

2

ε
e−λ+(1−x) (B.5)
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Therefore,

|u′
ε(1)| ≤

[
|α+ − α−|+ (‖b‖L∞‖uε‖L∞ + ‖f‖L∞)

2

a

] ‖a‖L∞

ε
(1− e−2a/ε)−1.

Thus, inserting this estimate in (B.1) yields

|u′
ε(x)| ≤ |u′

ε(1)|+
2

ε
‖b‖L∞‖uε‖L∞ +

2

ε
‖f‖L∞

and thus the claim of the lemma.

!

Lemma B.2 Let u+
ε be the outflow boundary layer defined in (1.9). Then there is C > 0

depending only on the constants of (1.3), ((1.5))–((1.7)) such that

|u+
ε (x)| ≤ e−a(1−x)/(2ε), |u+

ε
′
(x)| ≤ Cε−1e−a(1−x)/(2ε).

Proof : In fact, a stronger statement holds true:

|u+
ε (x)| ≤ e−λ+(1−x), |u+

ε
′
(x)| ≤ Cε−1e−λ+(1−x).

The pointwise estimate follows immediately from the comparison functions used in the
proof of Lemma B.1. The derivative estimate follows similarly to the one in Lemma B.1.
We obtain the same bound on u′

ε(1) and then insert this bound in (B.1) making use of
(B.5). The observation λ+ ≥ a/(2ε) concludes the proof of the lemma.

!

Lemma B.3 Let u+
ε be the outflow boundary layer defined in (1.9). Then there are

constants C1, C2 > 0 depending only on the constants of (1.3), ((1.5)),((1.6)) such that

C1ε
−1 ≤ u+

ε (1) ≤ C2ε
−1.

Proof : Lemma B.2 gives the upper bound. For the lower bound, we analyze the proof of
Lemma B.2 more carefully. Let the function A be defined as in the proof of Lemma B.2.
The equation following (B.1) reads

1 = u+
ε
′
(1)

∫ 1

−1
e−A(x) dx−

1

ε

∫ 1

−1
e−A(x)

∫ 1

x
b(t)eA(t)u+

ε (t) dtdx (B.6)

By the maximum principle and Lemma B.2 we have

0 ≤ u+
ε (x) ≤ e−λ+(1−x), x ∈ Ω (B.7)

Thus, if b ≥ b ≥ 0 on Ω, then the claim of the Lemma follows with (B.3). Let therefore
b < 0. We obtain again with u+

ε ≥ 0

u+
ε
′
(1)

∫ 1

−1
e−A(x) dx ≥ 1−

1

ε

∫ 1

−1
e−A(x)

∫ 1

x
|b|eA(t)u+

ε (t) dtdx (B.8)
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Using a ≤ a(x), −A′(x) = a(x)/ε, and (B.7) we obtain

1

ε

∫ 1

−1
e−A(x)

∫ 1

x
|b|eA(t)u+

ε (t) dtdx ≤
∫ 1

−1

a(x)

εa
e−A(x)

∫ 1

x
|b|eA(t)u+

ε (t) dtdx

≤
1

a

[
e−A(x)

∫ 1

x
|b|eA(t)u+

ε (t) dt
]1

−1
+

1

a

∫ 1

−1
|b|u+

ε (t) dt

≤
1

a

∫ 1

−1
|b|e−λ+(1−t) dt ≤

|b|
aλ+

≤
2|b|ε
a2

Inserting this estimate in (B.8) and noting that |b| = −b leads to

u+
ε
′
(1)

∫ 1

−1
e−A(x) dx ≥ 1−

2|b|ε
a2

=
(
a2 + 2bε

)
/a2 ≥ γ2

1a
2

and thus the claim of the lemma by estimate (B.3).

!

Proof of (1.12), (1.13): Let us first prove (1.12). Choose K > max (1, γf , γa, γb) such
that [

Cf

K2
+

Ca

K

1

1− γa/K
+

Cb

K2

1

1− γb/K

]

≤ 1.

By Lemma B.1, we may now choose the constant C ≥ 1 such that (1.12) holds true
for n = 0, 1. Let us now proceed by induction on n. We assume that the induction
hypothesis (1.12) holds for 0 ≤ ν ≤ n+1 and show that it holds for n+2. Differentiating
the differential equation (1.1) n times (note that we know already that uε is analytic) we
get

−εu(n+2)
ε = f (n) − (au′

ε)
(n) − (buε)

(n) = f (n) −
n∑

ν=0

(
n

ν

) (
a(ν)u(n+1−ν)

ε + b(ν)u(n−ν)
ε

)
.

Using the induction hypothesis, we get

ε‖u(n+2)
ε ‖L∞(Ω) ≤ ‖f (n)‖L∞(Ω) + C

n∑

ν=0

(
n

ν

)[
Caγ

ν
aν! max (n+ 1− ν, ε−1)n+1−ν

+Cbγ
ν
b ν!CKn−ν max (n− ν, d−1)n−ν

]
.

Exploiting the estimates
(
n

ν

)

ν! max (n+ 1− ν, ε−1)n+1−ν ≤ nν max (n + 1, ε−1)n+1−ν ≤ max (n+ 1, ε−1)n+1

(
n

ν

)

ν! max (n− ν, ε−1)n−ν ≤ nν max (n, ε−1)n−ν ≤ max (n+ 1, ε−1)n+1

‖f (n)‖L∞(Ω) ≤ Cfγ
n
f n! ≤ Cf max (n+ 1, ε−1)n+1

we obtain

ε‖u(n+2)
ε ‖L∞(Ω) ≤ ‖f (n)‖L∞(Ω) + CKn+2max (n+ 1, ε−1)n+1

n∑

ν=0

Ca

K

(
γa
K

)ν

+
Cb

K2

(
γb
K

)ν

≤ CKn+2max (n + 1, ε−1)n+1

[
Cf

K2
+

Ca

K

1

1− γa/K
+

Cb

K2

1

1− γb/K

]

.
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By the choice of K the expression in the brackets is bounded by 1 which concludes the
induction argument after dividing both sides by ε.

The proof of (1.13) proceeds in the same fashion; the only difference is that Lemma B.2
instead of Lemma B.1 is used to start the induction argument.

!

Now we turn to the proof of (1.14)—(1.16). Recall the definition of the terms uj of the
asymptotic part wM in the decomposition (1.9). In order to control these terms, we need
the following lemma.

Lemma B.4 Let G be an open, complex neighborhood of I = [−1, 1]. Assume that the
functions Λ, a, u0 : G → Cl are holomorphic and bounded on G. Assume additionally
that |a| ≥ a > 0 on G. Then there are constants C, K1, K2 > 0 depending only on a,
‖a′‖L∞(G), ‖Λ‖L∞(G), ‖Λ′‖L∞(G), and G such that the functions uj defined recursively as
in (1.8) satisfy

‖u(n)
j ‖L∞(I) ≤ CKj

1K
n
2 j!n!‖u0‖L∞(G) ∀j, n ∈ lN0.

Proof : Again, we will prove a stronger statement. Without loss of generality we may
assume that G is star shaped with respect to z = −1. For δ > 0 (sufficiently small)
denote Gδ := {z ∈ G | dist(z, ∂G) > δ}. Then we claim that there are C, K > 0 such
that

‖uj‖L∞(Gδ) ≤ CKjδ−jj!‖u0‖L∞(G) ∀j ∈ lN0.

The proof of the lemma follows from this estimate by Cauchy’s integral theorem for
derivatives.

It remains therefore to establish the claim. We proceed by induction on j. It is true for
j = 0 and for any C ≥ 1. We write

uj+1(z) = e−Λ(z)
∫ z

−1
eΛ(t)

1

a(t)
u′′
j (t) dt

= e−Λ(z)

[

eΛ(t)
1

a(t)
u′
j(t)

]z

−1

− e−Λ(z)
∫ z

−1
eΛ(t)

Λ′(t)a(t) + a′(t)

a(t)2
u′
j(t) dt.

Hence there is C1 > 0 such that

‖uj+1‖L∞(Gδ) ≤ C1‖u′
j‖L∞(Gδ).

By Cauchy’s integral theorem, we have for 0 < κ < 1 using the induction hypothesis:

‖uj+1‖L∞(Gδ) ≤ C1
2πκδ

(κδ)2
‖uj‖L∞(G(1−κ)δ)

≤ C1Cj!Kj(1− κ)−jδ−j 1

κδ
‖u0‖L∞(G)

≤ C(j + 1)!Kj+1δ−(j+1)‖u0‖L∞(G)
C1

K(j + 1)(1− κ)jκ
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Choosing κ = 1/(j + 1), we observe that there is c1 > 0 such that c1 ≤ (j + 1)κ(1 − κ)j

for all j ≥ 1. Hence, choosing K > 0 such that C1/(Kc1) ≤ 1 finishes the induction
argument.

!

This lemma puts us in position to conclude the proof of Theorem 1.1.

Proof of (1.14)—(1.16): Let us begin with (1.14). We see immediately that the as-
sumptions of Lemma B.4 are satisfied: The size of the complex neighborhood G and
the constants C, K1, K2 can be controlled by the constants of (1.3), (1.5)—(1.7). Also
‖u0‖L∞(G) can be controlled in terms of these constants. Hence, the terms uj satisfy

‖u(n)
j ‖L∞(Ω) ≤ Cj!n!Kj

1K
n
2 ∀j ∈ lN0, n ∈ lN0.

Thus

‖w(n)
M ‖L∞(Ω) ≤ CKn

2 n!
M∑

j=0

εjKj
1j! ≤ CKn

2 n!
M∑

j=0

(εK1M)j .

This last sum can be bounded by a constant under the condition εKM ≤ 1 if we choose
K > K1.

An immediate consequence of (1.14) is (1.16): CM = α+ − wM(1) and wM(1) can is
controlled by (1.14) under the assumption εMK ≤ 1. Finally, the remainder rM satisfies
(1.11). An application of Lemma B.1 (note that we only need to control the L∞ norm of
the right hand side for Lemma B.1 to hold) together with (1.14) gives the claim of (1.16)
for n = 0, 1 and the differential equation satisfied by rM gives the claim for n = 2.

!
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Figure 1: L2 performance of “two-element mesh”
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Figure 2: L2 performance of “two-element mesh”
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Figure 3: Performance of “two-element mesh” for discrete L∞ norm
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Figure 4: Performance of “two-element mesh” for discrete L∞ norm
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Figure 5: Effect of numerical integration of stiffness matrix; ε = 10−5
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Figure 6: Effect of numerical integration of stiffness matrix; ε = 10−10
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Figure 7: Effect of numerical integration of right hand side; ε = 10−5
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Figure 8: Effect of numerical integration of right hand side; ε = 10−10
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Figure 9: Sparsity structure of the stiffness matrix for four element mesh and p = 10
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