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Abstract

A singularly perturbed reaction-diffusion equation in two dimensions is considered. We

assume analyticity of the input data, i.e., the boundary of the domain is an analytic curve,

the boundary data are analytic, and the right hand side is analytic. We give asymptotic

expansions of the solution and new error bounds that are uniform in the perturbation pa-

rameter as well as in the expansion order. Additionally, we provide growth estimates for

higher derivatives of the solution where the dependence on the perturbation parameter ap-

pears explicitly. These error bounds and growth estimates are used in the first part of this

work to construct hp versions of the finite element method which feature robust exponential

convergence, i.e., the rate of convergence is exponential and independent of the perturbation

parameter ε.

Keywords: boundary layer, singularly perturbed problem, asymptotic expansions, error bounds



1 Introduction

Numerous partial differential equation models contain large or small parameters. We mention only
the Navier–Stokes equations at small viscosity, the plate- and shell equations at small thickness,
nearly incompressible solids and so on. The presence of small parameters often implies that the
problem is singularly perturbed and much attention has been devoted in the past decades to the
asymptotic analysis of the solution; we mention here only [1], [2]. Typically, the solutions admit
decompositions into a smooth part, so-called boundary layers, and, in nonsmooth domains, corner
layers. While the asymptotic structure of the solution is known for many problems (see, e.g., [3],
[4], [5], [6]), the asymptotic expansions are often too complex to allow for the quantitative solution
of specific problems, and one has to resort to numerical solutions of the boundary value problem
(BVP) of interest. Here the singular perturbation character of the problem and the boundary
layer components of the solution cause stability (locking) and approximability problems. The key
to the convergence of a stable numerical method for these BVPs is the regularity of the solution,
particularly, bounds on higher derivatives.
To analyze the parameter dependence of solution derivatives of arbitrary order for a class of
elliptic, singularly perturbed BVPs is the purpose of the present paper. The main results are new
growth estimates for higher order derivatives that are explicit in the small parameter ε and new,
sharp error bounds of the asymptotic expansions of the solutions. These bounds are used in the
first part of this work to analyze an hp Finite Element Method (hp-FEM) with robust exponential
convergence for this problem class [7]. The techniques we employ, namely, Morrey’s regularity
theory and asymptotic expansions, are applicable to general elliptic systems and results analogous
to the ones obtained here likely hold true for many other, singularly perturbed elliptic problems;
this will be explored in future work.

1.1 The Model Problem

We consider the following model problem

Lεuε ≡ −ε2∆uε + uε = f on Ω ⊂ R2,
uε = g on ∂Ω

(1.1)

where ∂Ω is a closed, non-selfintersecting, analytic curve, f is analytic on Ω, g is analytic on ∂Ω,
and ε ∈ (0, 1] is a small parameter.
As usual, we denote by L2(Ω) the square integrable functions on Ω and by H1(Ω) those functions
of L2(Ω) whose (distributional) derivative is also in L2(Ω). The trace operator maps H1(Ω) onto
the space H1/2(∂Ω) by restricting the elements of H1(Ω) to the boundary ∂Ω. H1

0 (Ω) denotes the
kernel of the trace operator, that is, it is given by those functions in H1(Ω) whose trace on ∂Ω is
zero.
The weak formulation of (1.1) is to find uε ∈ H1(Ω) such that uε|∂Ω = g and

Bε(uε, v) := ε2
∫

Ω

∇uε ·∇v dxdy +

∫

Ω

uεv dxdy = F (v) :=

∫

Ω

fv dxdy ∀v ∈ H1
0 (Ω). (1.2)

Associated with this problem is the notion of an “energy”

‖u‖2ε,Ω := Bε(u, u) = ε2‖∇u‖2L2(Ω) + ‖u‖2L2(Ω)
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and an energy norm, being the square root of the energy. We have the a-priori estimate

‖uε‖ε,Ω ≤ ‖f‖L2(Ω) + C‖g‖H1/2(∂Ω) (1.3)

for some C > 0 independent of ε.
The purpose of this paper to analyze the growth of the derivatives of the exact solution uε of (1.1).
As the input data is analytic, standard elliptic regularity theory implies that the exact solution
uε is analytic on Ω, i.e., it satisfies estimates of the form

‖Dαuε‖L∞(Ω) ≤ |α|!CεK
|α|
ε ∀α ∈ N

2
0.

However, the constants Cε and Kε depend on ε and our aim here is to control explicitly the
dependence on ε of the derivatives of uε. Using the techniques of Morrey [8], we show in Section 3
(Theorem 3.1) the following estimate:

‖Dαuε‖L2(Ω) ≤ CK |α|max (|α|, ε−1)|α| ∀α ∈ N
2
0

with C, K > 0 independent of ε. Note that for |α| ≥ ε−1, this yields an estimate independent of ε;
roughly speaking, this means that derivatives of order higher than ε−1 “don’t see” the boundary
layers introduced by the singular perturbation. This estimate is also sufficient to prove that
polynomials of degree p can approximate the solution uε at a robust exponential rate provided
that the polynomial degree p is at least O(ε−1).
For a description of the behavior of the derivatives Dαuε of order |α| < ε−1, a more careful
analysis is necessary. It is well-known that the solutions of (1.1) exhibit boundary layers, that is,
in a neighborhood of the boundary ∂Ω, the behavior of the solution normal to the boundary differs
substantially from the behavior in the tangential direction. The description of the boundary layers
is done in terms of asymptotic expansions. The main purpose of our analysis in Section 2.3 is to
provide new error bounds for the remainder depending explicitly on the perturbation parameter
ε and the expansion order (Theorem 2.7).

1.2 Notation

We introduce boundary fitted coordinates to define later on the asymptotic expansions of the exact
solution. Let (X(θ), Y (θ)), θ ∈ [0, L) be an analytic, L-periodic parametrization by arclength of
the boundary ∂Ω such that the normal vector (−Y ′(θ), X ′(θ)) always points into the domain Ω.
Introduce the notation κ(θ) for the curvature of the boundary curve and denote by TL the one
dimensional torus of length L, i.e., R/[0,L) endowed with the usual topology. The functions X , Y ,
and hence also κ are analytic on TL by the analyticity of ∂Ω. For the remainder of this paper, let
ρ0 > 0 be fixed such that

0 < ρ0 <
1

‖κ‖L∞([0,L))
. (1.4)

Then the mapping

ψ : [0, ρ0]× TL → Ω
(ρ, θ) ,→ (X(θ)− ρY ′(θ), Y (θ) + ρX ′(θ))

(1.5)

2



is real analytic on [0, ρ0]× TL. The function ψ maps the rectangle (0, ρ0)× [0, L) onto a tubular
neighborhood Ω0 of ∂Ω. Furthermore by the choice of ρ0, the inverse ψ−1 : Ω0 → [0, ρ0] × TL

exists and is also real analytic on the closed set Ω0.
For technical reasons we will be able to define the boundary layer expansion, that is, the inner
expansion, only in a neighborhood of the boundary ∂Ω. Therefore, we introduce a cut-off function
χ supported by a neighborhood of ∂Ω. For ease of notation, let us define χ in the neighborhood
of ∂Ω in boundary fitted coordinates (ρ, θ). Fix

0 < ρ1 < ρ0, (1.6)

and let χ be a smooth cut-off function, defined on [0,∞)× TL, satisfying

χ =

{
1 for 0 ≤ ρ ≤ ρ1
0 for ρ ≥ (ρ1 + ρ0)/2.

(1.7)

The boundary layer functions uBL
M to be defined and analyzed in Section 2 decay exponentially

away from the boundary. In order to describe this exponential decay, we introduce exponentially
weighted spaces.

Definition 1.1 Let α ∈ R. Define the spaces H0
α, H

1
α as the completion of the smooth function

on [0,∞) which have bounded support under the norms ‖ · ‖0,α and ‖ · ‖1,α. These norms are given
by

‖f‖0,α :=

{∫ ∞

0

e2αx|f(x)|2 dx
}1/2

,

‖f‖1,α :=

{∫ ∞

0

e2αx
(
|f(x)|2 + |f ′(x)|2

)
dx

}1/2

.

Similarly, we define for functions f : [0,∞)× TL the norms ‖ · ‖0,α,∞ and ‖ · ‖1,α,∞ via

‖f‖0,α,∞ :=

{
sup
y∈TL

∫ ∞

0

e2αx|f(x, y)|2 dx
}1/2

,

‖f‖1,α,∞ :=

{
sup
y∈TL

∫ ∞

0

e2αx
(
|f(x, y)|2 + |∂x f(x, y)|2

)
dx

}1/2

.

For functions f of two variables, we introduce the short hand notation

|∇pf |2 :=
∑

|α|=p

|α|!
α!

|Dαf |2 =
2∑

β1,...,βp=1

|Dβ1···βpf |2

to control all derivatives of order p simultaneously.
Finally, as the right hand side f of (1.1) is assumed to be analytic on Ω there is a complex
neighborhood Ω̃ ⊂ C× C of Ω and a holomorphic extension of f (for convenience again denoted
by f) to Ω̃ which satisfies

‖∇pf‖L∞(Ω̃) ≤ Cfp!γ
p
f ∀p ∈ N0 (1.8)
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for some Cf , γf > 0. As f is holomorphic on Ω̃, there is a constant γ∆f ≥ γf such that

‖∆(i)f‖L∞(Ω) ≤ Cf (2i)!γ
2i
∆f ∀i ∈ N0 (1.9)

where ∆(i) denotes the iterated Laplace operator, i.e., ∆(0) = Id, ∆(1) = ∆, ∆(2) = ∆∆, etc.

2 Analysis of the Asymptotic Expansion

In this section we present classical asymptotic expansions for the solution of (1.1). Our main result
is a new error bound for the remainder, Theorem 2.7.
The asymptotic expansions (defined more precisely in the next subsection) allow us to decompose
the solution uε as

uε = wM + χuBL
M + rM

where M ∈ N0 indicates the expansion order, wM is the truncated outer expansion, uBL
M is the

truncated inner expansion, χ is the cut-off function defined in (1.7), and rM is a remainder. That
the boundary layer functions uBL

M decay indeed exponentially away from the boundary ∂Ω is proved
in Section 2.2. The error bounds for the asymptotic expansion, i.e., bounds on the remainder rM ,
can be found in Section 2.3.

2.1 Inner and Outer Expansion

For every M ∈ N0 the outer expansion of order 2M is given by

wM :=
M∑

i=0

ε2i∆(i)f. (2.1)

The function uε − wM then satisfies

Lε(uε − wM) = f − LεwM = ε2M+2∆(M+1)f. (2.2)

So, asymptotically as ε tends to zero, the functions wM satisfy the differential equation in Ω.
However, the functions wM do not satisfy the given boundary conditions g. We therefore introduce
a correction uBL of wM , which will lead to the inner expansion. The correction uBL is defined as
the solution of

LεuBL = 0 in Ω,

uBL = g −
M∑

i=0

ε2i
[
∆(i)f

]
∂Ω

on ∂Ω.
(2.3)

The inner expansion is now an asymptotic expansion for this correction function uBL. In order
to define this expansion, we need to rewrite the differential operator Lε in the boundary fitted
coordinates (ρ, θ). If we introduce the curvature κ(θ) of ∂Ω and the function

σ(ρ, θ) =
1

1− κ(θ)ρ

4



we have (see, for example, [3])

∆u(ρ, θ) = ∂2
ρ u− κ(θ)σ(ρ, θ)∂ρ u+ σ2(ρ, θ)∂2

θ u+ ρκ′(θ)σ3(ρ, θ)∂θ u.

Expanding the function σ in a converging geometric series gives

σ(ρ, θ) =
∞∑

i=0

[κ(θ)ρ]i =
∞∑

i=0

εi [κ(θ)ρ̂]i

where we introduced the stretched variable notation ρ̂ = ρ/ε. Note that we chose ρ0 < ‖κ‖L∞([0,L))

in (1.4) so that the power series expansion converges uniformly in (ρ, θ) ∈ [0, ρ0]× [0, L].
Recall that Ω0 is the tubular neighborhood ∂Ω which is the image of the rectangle (0, ρ0)× [0, L)
under the map ψ. In this tubular neighborhood Ω0 the differential equation (2.3) takes the form

−ε2
{

∂2
ρ u

BL +
∞∑

i=0

ρi
(
ai1∂ρ u

BL + ai2∂
2
θ u

BL + ai3∂θ u
BL

)
}

+ uBL = 0 in Ω0 (2.4)

where we introduced the abbreviations

ai1 = −[κ(θ)]i+1, ai2 = (i+ 1)[κ(θ)]i, ai3 =
i(i+ 1)

2
[κ(θ)]i−1κ′(θ). (2.5)

For technical convenience let us also formulate (2.4) in terms of the stretched variable ρ̂:

−∂2
ρ̂ u

BL −
∞∑

i=0

(ερ̂)i
(
εai1∂ρ̂ u

BL + ε2ai2∂
2
θ u

BL + ε2ai3∂θ u
BL

)
+ uBL = 0. (2.6)

Now, in order to define the inner expansion, we make the formal ansatz uBL =
∑∞

i=0 ε
iÛi(ρ̂, θ)

where the functions Ûi are to be determined. Inserting this ansatz in (2.4) and equating like
powers of ε we obtain a recurrence relation for the functions Ûi:

−∂2
ρ̂ Ûi + Ûi = F̂i, i = 0, 1, . . . ,

F̂i = F̂ 1
i + F̂ 2

i + F̂ 3
i ,

F̂ 1
i =

i−1∑

j=0

ρ̂jaj1∂ρ̂ Ûi−1−j ,

F̂ 2
i =

i−2∑

j=0

ρ̂jaj2∂
2
θ Ûi−2−j ,

F̂ 3
i =

i−2∑

j=0

ρ̂jaj3∂θ Ûi−2−j

where we used the tacit convention that empty sums take the value zero. As we expect the
boundary layer function uBL to decay away from the boundary ∂Ω and as we want to satisfy the

5



boundary conditions, we supplement these ODEs for the Ûi with the boundary conditions

Ûi → 0 as ρ̂ → ∞,

[Ûi]∂Ω = Gi :=






g − [f ]∂Ω if i = 0

−[∆(i/2)f ]∂Ω if 0 < i ≤ 2M is even

0 otherwise.

The inner expansion of order 2M + 1 is defined as the function

uBL
M (ρ, θ) :=

2M+1∑

i=0

εiÛi(ρ̂, θ) =
2M+1∑

i=0

εiÛi(ρ/ε, θ), (2.7)

and it satisfies the boundary conditions

[uBL
M ]∂Ω = g −

M∑

i=0

ε2i[∆(i)f ]∂Ω.

Remark 2.1: We defined uBL
M as the inner expansion of order 2M +1 so that the first neglected

term of the formal asymptotic expansion
∑∞

i=0 ε
iÛi is of order ε2M+2. This is precisely the same

power of ε as the first neglected term of the outer expansion
∑∞

i=0 ε
2i∆(i)f truncated after the ε2M

term.

2.2 Properties of the Boundary Layer functions

By Lemma B.4 we see that the functions ail, l = 1, 2, 3, i ∈ N0 of (2.5) satisfy

‖Dpail‖L∞([0,L)) ≤ CAA
pÃi ∀p, i ∈ N0, l = 1, 2, 3 (2.8)

for some appropriate CA, A, and Ã. In fact, Lemma B.4 allows us to choose Ã > ‖κ‖L∞([0,L))

arbitrarily close to ‖κ‖L∞([0,L)), so that we may assume that

ρ0Ã =: q < 1. (2.9)

Similarly, we see that independently of M there are CG, G, and G̃ such that

‖DpGi‖L∞([0,L)) ≤ CG(i+ p)i+pG̃pGi. (2.10)

We are now in position to formulate the following two propositions which clarify the properties of
the functions Ûi. The proofs are deferred to Appendix A.

Proposition 2.2 For each α ∈ [0, 1) the functions Ûi defined above satisfy

‖∂m
θ Ûi‖1,α,∞ ≤ CU

Km
1 Ki

2

(1− α)i+1
(i+m)i+m ∀i,m ∈ N0 (2.11)
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for CU , K1, K2 chosen such that

CU := 6CG + 1, (2.12)

K1 := 2max(G̃, A), (2.13)

K2 ≥ 2max(2Ã, G+ 1) such that (K−1
2 +K−2

2 K2
1 +K−2

2 K1)12CA ≤
1

2
. (2.14)

Proposition 2.3 Let α ∈ [0, 1). Under the same hypotheses as Proposition 2.2, the functions Ûi

satisfy

‖∂n
ρ̂ ∂

m
θ Ûi‖0,α,∞ ≤ CU

Km
1 Ki

2K
n
3

(1− α)i+1
{i+m+max (n− 2, 0)}i+m ∀i,m, n ∈ N0 (2.15)

where CU , K1, K2 are as defined in Proposition 2.2 and K3 > e satisfies

CA
K−1

2 K−1
3 +K2

1K
−2
2 K−2

3 +K1K
−2
2 K−2

3

(1− A/K1)(1− 2Ã/K2)(1− e/K3)
+K−2

3 ≤ 1. (2.16)

Proposition 2.3 yields the following corollary.

Corollary 2.4 Let K1, K2, K3 and CU be as in Proposition 2.3. The functions Ûi can be extended
to functions holomorphic on

C× {z | |Im z| < K−1
1 e−2}.

On setting K4 := K3e2, K5 := K1e2, the functions Ûi satisfy for all ρ̂ ≥ 0, i ∈ N0, z ∈ C, ζ ∈ C

with |ζ | < K−1
5 the estimate

∣∣∣Ûi(ρ̂+ z, θ + ζ)
∣∣∣ ≤ C(α)e−αρ̂eK4|z|

(
eK2

1− α

)i

ii (1−K5|ζ |)−1

where the constant C(α) > 0 depends only on α ∈ (0, 1), CU , and K3.

Proof: Proposition 2.3 allows us to control the growth of the derivatives of the functions Ûi, and
we are therefore able to get bounds on the power series expansion of Ûi. By Lemma B.3, we have
for ρ̂ ≥ 0 the estimate

|∂n
ρ̂ ∂

m
θ Ûi(ρ̂, θ)| ≤

1√
2α

e−αρ̂‖∂n+1
ρ̂ ∂m

θ Ûi‖0,α,∞ ≤
1√
2α

e−αρ̂CU
Km

1 Ki
2K

n+1
3

(1− α)i+1
(i+m+ n)i+m .

Therefore, for ρ̂ ≥ 0 and z ∈ C, ζ ∈ C with |ζ | < K−1
5 we have

∞∑

n,m=0

∣∣∣∂n
ρ̂ ∂

m
θ Ûi(ρ̂, θ)

∣∣∣

n!m!
|z|n|ζ |m ≤

1√
2α(1− α)

CUK3

(
K2

(1− α)

)i ∞∑

n,m=0

Km
1 Kn

3 (i+m+ n)i+m

n!m!
|z|n|ζ |m.

7



From the estimate (a+ b+ c)a+b ≤ aabbea+b+2c, valid for non-negative a, b, and c, we obtain

(i+m+ n)i+m ≤ iimmei+m+2n.

With the aid of Stirling’s formula, m! ≥ Cmme−m, we arrive at

∞∑

n,m=0

∣∣∣∂n
ρ̂ ∂

m
θ Ûi(ρ̂, θ)

∣∣∣

n!m!
|z|n|ζ |m ≤ C(α)e−αρ̂

(
eK2

(1− α)

)i

ii
∞∑

n,m=0

Km
1 Kn

3

mmem+2n

n!mme−m
|z|n|ζ |m

≤ C(α)e−αρ̂

(
eK2

(1− α)

)i

ii
∞∑

n,m=0

(e2K1)
m(e2K3)

n 1

n!
|z|n|ζ |m

= C(α)e−αρ̂

(
eK2

(1− α)

)i

iiee
2K3|z|

(
1−K1e

2|ζ |
)−1

.

This estimate shows that the functions Ûi are indeed entire in the first variable and holomorphic
in the second variable provided that |ζ | < K−1

1 e−2. !

Lemma 2.5 Let K2, K4, and K5 be given by Corollary 2.4. For every α ∈ (0, 1) there is Cα > 0
depending only on α, the function f , the boundary data g, and the function κ (i.e., the geometry
of the domain Ω) such that

∣∣∂p
ρ ∂

m
θ uBL

M (ρ, θ)
∣∣ ≤ CαSMm!(2K5)

meK4pε−pe−αρ/ε p,m ∈ N0, ρ ≥ 0

sup
θ∈[0,L)

‖∂p
ρ ∂

m
θ uBL

M (·, θ)‖L2(ρ,∞) ≤ CαSMm!(2K5)
meK4pε1/2−pe−αρ/ε p,m ∈ N0, ρ ≥ 0

where SM is given by

SM =
2M+1∑

i=0

(
εeK2(2M + 1)

1− α

)i

.

Remark 2.6: Under the assumption εeK2(2M + 1)/(1 − α) ≤ q0 < 1, we get the simplified
bound

SM ≤ C(q0)

where C(q0) is independent of M and ε. As we shall see shortly, under a similar assumption (2Mε
sufficiently small), the remainder rM is small in ε. In the complementary case, i.e., 2εM >> 1,
the asymptotic expansion loses its meaning; this is the reason why we prove estimates for high
order derivatives of the solution uε of (1.1) separately in the next section without reference to
asymptotic expansions.

Proof of Lemma 2.5: By Cauchy’s integral theorem for derivatives we have for R > 0

∂p
ρ ∂

m
θ Ûi(ρ/ε, θ) = −ε−pp!m!

4π2

∫

|z|=R

∫

|ζ|=1/(2K5)

Ûi(ρ̂+ z, θ + ζ)

(−z)p+1(−ζ)m+1
dzdζ

8



On using the parametrization z = R cos t+ iR sin t, t ∈ [0, 2π), Corollary 2.4 implies

∣∣∣∂p
ρ ∂

m
θ Ûi(ρ̂, θ)

∣∣∣ ≤ Cαε
−pm!p!R−p(2K5)

me−αρ̂eK4R

(
eK2

1− α

)i

ii

≤ Cαε
−pm!(2K5)

me−αρ̂

(
eK2

1− α

)i

iieK4p

(
eK2

1− α

)i

ii.

where we chose R = p+ 1 and used Stirling formula p! ≤ Cppe−p
√
2π(p+ 1) in the last estimate.

Therefore, we can conclude

|∂p
ρ ∂

m
θ uBL

M (ρ, θ)| ≤
2M+1∑

i=0

ε−pεi|∂p
ρ̂ ∂

m
θ Ûi(ρ̂, θ)| ≤ C(α)ε−pe−αρ̂m!(2K5)

meK4p
2M+1∑

i=0

(
εeK2i

1− α

)i

≤ C(α)ε−pe−αρ̂m!(2K5)
meK4p

2M+1∑

i=0

(
εeK2(2M + 1)

1− α

)i

which proves the first estimate. The second estimate follows immediately from the first one. !

2.3 Controlling the Remainder

Let wM and uBL
M be the truncated outer and inner expansions defined in (2.1), (2.7), and let χ be

the cut-off function defined in (1.7). Then then remainder rM is defined by

uε = wM + χuBL
M + rM .

(We should note that the boundary layer function uBL
M and the cut-off function are defined in

boundary fitted coordinates whereas wM and uε are defined in the usual x, y coordinates so
that, strictly speaking, the term χuBL

M has to be understood as (χuBL
M ) ◦ ψ−1 on the tubular

neighborhood Ω0 where ψ is the boundary fitted coordinate transformation defined in (1.5) and
χuBL

M is understood to vanish outside Ω0). The following theorem gives a bound in energy norm
for the remainder rM which depends explicitly on the perturbation parameter ε and the expansion
order M .

Theorem 2.7 For every M ∈ N0 the remainder rM satisfies rM = 0 on ∂Ω, and there are
constants C, K > 0 depending only on the right hand side f , the boundary data g, the function κ
(i.e., the geometry of the domain), and the cut-off function χ such that

‖rM‖ε,Ω ≤ C (εK(2M + 2))2M+2 .

Proof: For any M ∈ N0 we the remainder rM is defined as rM = uε − wM − χuBL
M where wM

is defined by (2.1), uBL
M is defined by (2.7) and χ is the cut-off function of (1.7). Hence, by

construction of uBL
M , rM = 0 on ∂Ω. Furthermore, the remainder rM solves the following elliptic

equation:

LεrM = Lε

(
u− wM − χuBL

M

)
= ε2M+2∆(M+1)f − Lεχu

BL
M

= ε2M+2∆(M+1)f + ε2∆χuBL
M + 2ε∇χ ·∇uBL

M − χLεu
BL
M .
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Let us now estimate the L2 norm of the right hand side. By the assumptions on f , cf. (1.9), we
have

‖ε2M+2∆(M+1)f‖L∞(Ω) ≤ Cf (εγ∆f(2M + 2))2M+2 .

Let us fix α ∈ (0, 1) for the remainder of this proof. As χ ≡ 1 for 0 < ρ < ρ1 and χ ≡ 0 for
ρ > (ρ1 + ρ0)/2, we obtain with the aid of Lemma 2.5

ε2‖∆χuBL
M ‖L2(Ω) ≤ Cαε

5/2SMe−αρ1/ε,

ε‖∇χ ·∇uBL
M ‖L2(Ω) ≤ Cαε

1/2SMe−αρ1/ε

with SM defined in Lemma 2.5. Finally, by Lemma A.6, we have

‖χLεu
BL
M ‖L2(Ω) ≤ Cε1/2 (Kε(2M + 2))2M+2

for some K > 0 independent of ε and M . Using the energy estimate ε2‖∇rM‖2L2(Ω) + ‖rM‖2L2(Ω) ≤
‖LεrM‖2L2(Ω) (cf. (1.3)), we obtain the following estimate for rM :

‖rM‖ε,Ω ≤ C
{
ε2M+2‖∆(M+1)f‖L∞(Ω) + ε1/2SMe−αρ1/ε + ε1/2 (Kε(2M + 2))2M+2

}
(2.17)

where C > 0 is independent of ε and M . As α ∈ (0, 1) is fixed, we can bound

SM ≤ (2M + 2)max
(
1, (K ′ε(2M + 1))2M+1

)

for some appropriately large K ′ independent of M and ε. Using the bounds

ε−(2M+2)e−αρ1/ε ≤
(
2M + 2

αρ1

)2M+2

e−(2M+2) =: (K ′′(2M + 2))2M+2 ,

e−αρ1/ε ≤ ε(αρ1e)
−1

we infer

SMe−αρ1/ε ≤ (2M + 2)max
(
(K ′′(2M + 2)ε)2M+2, ε(αρ1e)

−1(K ′ε(2M + 1))2M+1
)

which allows us to complete the proof of Theorem 2.7. !

Remark 2.8: The proof of Theorem 2.7 shows that a slightly stronger statement holds. We
have actually proved the existence of constants K, C independent of ε and M such that

‖rM‖ε,Ω ≤ C
{
ε2M+2‖∆(M+1)f‖L∞(Ω) + ε1/2 (Kε(2M + 2))2M+2

}
.

Hence, if the right hand side f satisfies ∆(M+1)f = 0, e.g., if f is a polynomial of degree 2M + 1,
then the ε-dependence of the estimate is actually improved by a factor ε1/2.

Remark 2.9: In the proof of Theorem 2.7, with the exception of ∆(M+1)f , all the terms could
be bounded in exponentially weighted spaces. This means that, if ∆(M+1)f = 0 then we have
estimates of the form

‖eβd(x)/εLεrM‖L2(Ω) ≤ C(Ω, β)ε1/2 (Kε(2M + 2))2M+2

10



where d(x) = dist(x, ∂Ω) and β > 0 appropriately. From this, one can infer estimates on rM in
exponentially weighted energy norms as the bilinear form Bε in (1.2) can be seen to satisfy an inf-
sup condition on pairs of exponentially weighted spaces (cf. Proposition A.1 for a one dimensional
analog).

Remark 2.10: The proof of Theorem 2.7 shows that we have

‖LεrM‖L∞(Ω) ≤ C (Kε(2M + 2))2M+2 .

As rM = 0 on ∂Ω, the classical maximum principle gives us the pointwise bound

‖rM‖L∞(Ω) ≤ C (Kε(2M + 2))2M+2 .

As the boundary ∂Ω is smooth, we can actually use the shift theorem for −∆ in order to control
higher derivatives of rM .

Corollary 2.11 Assume the same hypotheses as in Theorem 2.7. Then for each k ∈ N0 there are
constants Ck, K > 0 depending only on k, f , g, χ, and κ (i.e., the geometry of Ω) such that

‖rM‖Hk(Ω) ≤ Ckε
−k (εK(2M + 2))2M+2 , k ∈ N0.

Proof: The proof is an application of the classical shift theorem and an induction argument on
k. We note that the corollary holds true for k = 0 and k = 1 by Theorem 2.7. Furthermore, rM
solves

−∆rM = ε−2LεrM − ε−2rM in Ω,
rM = 0 on ∂Ω.

(2.18)

If we proceed as in the proof of Theorem 2.7 but use Lemma A.7 instead of Lemma A.6, we can
estimate

‖Lεu
BL
M ‖Hk−2(Ω) ≤ Ckε

2−k (εK(2M + 2))2M+2 , k ≥ 2.

Hence the shift theorem allows us to conclude

‖rM‖Hk(Ω) ≤ Ck

(
ε−k (εK(2M + 2))2M+2 + ε−2‖rM‖Hk−2(Ω)

)

for k ≥ 2. The obvious induction argument concludes the proof. !

3 Growth Estimates for the Derivatives

Theorem 3.1 Let uε be the solution of (1.1). Then there are C and K > 0 depending only on f ,
g, and the geometry of Ω (in particular, C, K are independent of ε) such that

‖∇puε‖L2(Ω) ≤ CKpmax (p, ε−1)p (1 + ‖uε‖ε,Ω) ∀p ∈ N0. (3.1)
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Remark 3.2: The proof of Theorem 3.1 actually shows that a similar statement holds for the
Helmholtz equation: If uε solves

ε2∆uε + uε = f on Ω ⊂ R2,
uε = g on ∂Ω

(3.2)

then Theorem 3.1 still holds true.

Proof of Theorem 3.1: Let BR ⊂ Ω be a ball of radius R and denote BR/2 the ball of radius
R/2 with the same center. Proposition 3.3 below yields

‖∇puε‖L2(BR/2) ≤ CKp max (p, ε−1)p (1 + ‖uε‖ε,R) ∀p ∈ N0

where C, K > 0 are independent of ε and p. Let us now consider estimates at the boundary.
First, we see that we may consider the case of homogeneous Dirichlet data: As the boundary data
g is analytic, it can be extended analytically into Ω, e.g., by taking as the extended function G
defined by

−∆G = 0 on Ω,

G = g on ∂Ω.

As ∂Ω and g are assumed to be analytic, standard elliptic theory gives that G is analytic on Ω.
Note that G is independent of ε. The auxiliary function ũ = u−G solves

−ε2∆ũ+ ũ = f̃ := f + ε2∆G−G = f −G on Ω,

ũ = 0 on ∂Ω

and by the triangle inequality we can bound

‖∇pu‖L2(BR∩Ω) ≤ ‖∇pũ‖L2(BR∩Ω) + ‖∇pG‖L2(BR∩Ω) ∀p ∈ N0

for balls BR. It suffices therefore to get the desired bounds for ũ.
In order to apply Proposition 3.12, we introduce a mapping to flatten the boundary locally: For
R > 0 and a point x0 ∈ ∂Ω, we introduce the conformal map ζ which maps Ω∩B2R(x0) conformally
onto

G2R = {(x, y) | x2 + y2 < 4R2, y > 0}.

The transformed functions û = ũ ◦ ζ−1 , f̂ = f̃ ◦ ζ−1 then solve

−ε2∆û+ |(ζ−1)′|2û = f̂ |(ζ−1)′|2 on G2R,

û(x, 0) = 0, −2R < x < 2R.

Furthermore, by the analyticity of ∂Ω, the function |(ζ−1)′|2 is (real) analytic on GR and hence
Proposition 3.12 is applicable (note that f̃ and hence f̂ |(ζ−1)′|2 are independent of ε), and we get
the desired estimate for û, i.e.,

‖∇pû‖L2(GR/2) ≤ CKpmax (p, ε−1)p (1 + ‖û‖ε,GR) ∀p ∈ N0.
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Applying Lemma 3.13 allows us to infer a similar estimate for ũ:

‖∇pũ‖L2(BR′∩Ω) ≤ CK ′pmax (p, ε−1)p (1 + ‖uε‖ε,B2R∩Ω) ∀p ∈ N0

where BR′ is a ball or radius R′ > 0 with center x0 such that BR′ ∩Ω ⊂ ζ−1(GR/2). The constants
C, K ′ > 0 depend again on R, f , g, and the point x0 but are independent of ε.
A compactness argument allows us to conclude the proof of the theorem. !

The remainder of this section is devoted to the proof of Propositions 3.3 and 3.12 as they are at
the heart of Theorem 3.1. As all the estimates of Propositions 3.3 and 3.12 are intrinsically local,
we introduce the short hand

‖v‖R := ‖v‖L2(BR) for balls BR of radius R,

‖v‖2ε,R := ε2‖∇v‖2R + ‖v‖2R,
‖v‖GR := ‖v‖L2(GR) for semi discs GR of radius R,

‖v‖2ε,GR
:= ε2‖∇v‖2GR

+ ‖v‖2GR
.

By standard theory ([8], Chap. 5.7), we know that the solution uε of (1.1) is analytic on Ω and
our aim is merely to assert that the derivatives of uε grow indeed in the fashion indicated in (3.1).
In fact, we will follow the proof of [8].

3.1 Interior Estimates

In this subsection we consider the following problem

−ε2∆u+ b(x, y)u = f on a ball BR of radius R (3.3)

where b, f are analytic and satisfy the estimates

‖∇pf‖L∞(BR) ≤ Cfγ
pp! ∀p ∈ N0, (3.4)

‖∇pb‖L∞(BR) ≤ CbB
pp! ∀p ∈ N0 (3.5)

for some constants Cf , Cb, γ, and B ≥ 0.

Proposition 3.3 Assume that u satisfies (3.3) and that f and b satisfy (3.4), (3.5). Then for
K ≥ 1 satisfying (3.8) which is independent of ε we have the estimate

NR,p(u) ≤ Kp+2max (p, ε−1)p+2

[p]!
(‖u‖ε,R + 1) ∀p ≥ −2 (3.6)

where NR,p is defined in (3.7) below.

Remark 3.4: If f = 0, then the estimate (3.6) can be strengthened to yield

NR,p(u) ≤ Kp+2max (p, ε−1)p+2

[p]!
‖u‖ε,R.
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In order to prove Proposition 3.3, we need to introduce some notation.

MR,p(v) :=
1

p!
sup

R/2≤r<R
(R − r)2+p‖∇pv‖r, p ∈ N0,

NR,p(v) :=
1

[p]!
sup

R/2≤r<R
(R− r)2+p‖∇p+2v‖r, p ∈ N0 ∪ {−2,−1}, (3.7)

[p]! = max (1, p)!.

From standard elliptic theory, we have the following a-priori estimate

Lemma 3.5 Let f ∈ L2(BR), u ∈ H1(BR) ∩H2(Br) for all r < R. Let u satisfy ∆u = f on BR.
Then there is a generic C > 0 (i.e., independent of R, r, δ, and f) such that

∫

Br

|∇2u|2 dxdy ≤ C

∫

Br+δ

(
|f |2 + δ−2|∇u|2 + δ−4|u|2

)
dxdy

if 0 < r < r+ δ < R and 0 < δ ≤ r. Similarly, if f and u are only defined on a semi-disc GR and
if u = 0 on the straight part, then

∫

Gr

|∇2u|2 dxdy ≤ C

∫

Gr+δ

(
|f |2 + δ−2|∇u|2 + δ−4|u|2

)
dxdy.

Proof: The proof can be found in [8], Lemma 5.7.1. !

Lemma 3.6 Let u solve ∆u = f on BR. Then there is C1 > 0 independent of u, R, and f such
that

NR,p(u) ≤ C1 [MR,p(f) +NR,p−1(u) +NR,p−2(u)] ∀p ∈ N0.

Proof: The proof is based on Lemma 3.5 and can be found in [8], Lemma 5.7.3. !

Lemma 3.7 Let u, v ∈ Cp. Then

|∇p(uv)| ≤
p∑

q=0

(
p

q

)
|∇qu| |∇p−qu|.

Proof: See [8], Lemma 5.7.4. !

Lemma 3.8 Let b, u be analytic and assume that b satisfies (3.5). Then

MR,p(bu) ≤ Cb

p∑

q=0

(
B
R

2

)p−q (R

2

)2 [q − 2]!

q!
NR,q−2(u).
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Proof: By Lemma 3.7 we have

MR,p(bu) ≤
1

p!
sup

R/2≤r<R
(R− r)p+2‖∇p(bu)‖r

≤
1

p!
sup

R/2≤r<R
(R− r)p+2

p∑

q=0

(
p

q

)
‖|∇qu| |∇p−qb|‖r

≤ Cb

p∑

q=0

(
p

q

)
(p− q)!

p!
Bp−q sup

R/2≤r<R
(R− r)p+2‖∇qu‖r

≤ Cb

p∑

q=0

Bp−q

(
R

2

)p−q+2 1

q!
sup

R/2≤r<R
(R− r)(q−2)+2‖∇(q−2)+2u‖r

≤ Cb

p∑

q=0

(
BR

2

)p−q (R

2

)2 [q − 2]!

q!
NR,q−2(u).

!

Proof of Proposition 3.3: Let C1 be the generic constant of Lemma 3.6 and choose 2K >
max (2, R, γR,BR) such that

C1Cf

√
π

(
R

2

)3

K−2

(
γR

2K

)p

+ C1

(
CbR/(2K)

1−BR/(2K)
+K−1 +K−2

)
≤ 1 (3.8)

for all p ∈ N0. We will proceed by induction on p. AsK ≥ max (1, R/2), the claim holds for p = −2
and p = −1. Let us therefore assume that (3.6) holds for all −2 ≤ p′ < p. As −∆u = ε−2(f − bu),
we get for p ∈ N0 using Lemma 3.6 and Lemma 3.8

NR,p(u) ≤ C1

{
ε−2MR,p(f − bu) +NR,p−1(u) +NR,p−2(u)

}

≤ C1

{
ε−2MR,p(f) + ε−2Cb

p∑

q=0

(
BR

2

)p−q (R

2

)2 [q − 2]!

q!
NR,q−2(u) +

+NR,p−1(u) +NR,p−2(u)
}
.

From the induction hypothesis (3.6) we obtain

NR,p(u) ≤ C1ε
−2MR,p(f) + C1(‖u‖ε,R + 1)

{
Cb

p∑

q=0

(
BR

2

)p−q (R

2

)2

ε−2Kqmax (q − 2, ε−1)q

q!
+

+Kp+1max (p− 1, ε−1)p+1

[p− 1]!
+Kpmax (p− 2, ε−1)p

[p− 2]!

}
.

As we have the estimates

ε−2 1

p!

p!

q!
max (q − 2, ε−1)q ≤

1

p!
max (p, ε−1)p+2,

1

p!

p!

[p− 1]!
max (p− 1, ε−1)p+1 ≤

1

p!
max (p, ε−1)p+2,

1

p!

p!

[p− 2]!
max (p− 2, ε−1)p ≤

1

p!
max (p, ε−1)p+2,
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we obtain

NR,p(u) ≤ C1ε
−2MR,p(f) +

max (p, ε−1)p+2

p!
Kp+2(‖u‖ε,R + 1)×

×C1

{
Cb

p∑

q=0

(
BR

2

)p−q (R

2

)2

Kq−p−2 +K−1 +K−2
}

≤ C1ε
−2MR,p(f) +

max (p, ε−1)p+2

p!
Kp+2(‖u‖ε,R + 1)×

×C1

{
Cb

Cb (R/(2K))2

1− BR/(2K)
+K−1 +K−2

}
.

Finally, as we have

MR,p(f) ≤ Cfγ
p
√
π

(
R

2

)3+p

,

we get

NR,p(u) ≤ Kp+2max (p, ε−1)p+2

p!
(‖u‖ε,R + 1)×

×

[

C1Cf

√
π

(
R

2

)3

K−2

(
γR

2K

)p

+ C1

{
Cb

Cb (R/(2K))2

1− BR/(2K)
+K−1 +K−2

}]

.

The fact that the bracketed expression is bounded by one by the choice of K in(3.8) concludes
the induction argument. !

3.2 Estimates on Straight Parts of the Boundary

The strategy to get estimates near the boundary is to control first the derivatives in the tangential
direction and then in a second step control the normal derivatives. We consider the problem

−ε2∆u+ bu = f on GR,
u = 0 on ΓR

(3.9)

where GR is a semi-disc of radius R and ΓR is the straight part of ∂GR. Without loss of generality,
we may assume that

GR = {(x, y) | x2 + y2 < R, y > 0}.

We assume that the functions f , b are analytic on GR and satisfy the estimates

‖∇pf‖L∞(GR) ≤ Cfγ
pp! ∀p ∈ N0, (3.10)

‖∇pb‖L∞(GR) ≤ CbB
pp! ∀p ∈ N0. (3.11)

16



Additionally, we introduce the notation

M ′
R,p(v) =

1

p!
sup

R/2≤r<R
(R− r)p+2‖∂p

x v‖Gr ,

N ′
R,p(v) =






1

p!
sup

R/2≤r<R
(R − r)p+2‖∇2∂p

x v‖Gr if p ≥ 0

sup
R/2≤r<R

(R− r)p+2‖∇2+pv‖Gr if p = −2,−1,

N ′
R,p,q(v) =

1

[p+ q]!
sup

R/2≤r<R
(R− r)p+q+2‖∂q+2

y ∂p
x v‖Gr , p ≥ 0, q ≥ −2, (3.12)

M̃R,p(v) =
1

p!
sup

R/2≤r<R
(R− r)p+2‖∇pv‖Gr .

Note that we have N ′
R,p,0 ≤ N ′

R,p. We have

Lemma 3.9 Let u ∈ H1(GR) solve ∆u = f on GR and assume that u = 0 on the straight part of
GR. Then there is a generic constant C2 > 0 such that

N ′
R,p(u) ≤ C2

{
M ′

R,p(f) +N ′
R,p−1(u) +N ′

R,p−2(u)
}
.

Proof: The proof follows from Lemma 3.5 and can be found in [8], Lemma 5.7.3′. !

Lemma 3.10 Let u, v ∈ Cp+q. Then

|∂p
y ∂

q
x (uv)| ≤

p∑

m=0

q∑

n=0

(
p

m

)(
q

n

)
|∂m

y ∂n
x v| |∂p−m

y ∂q−n
x u|.

Proof: Can be found in [8], Lemma 5.7.4′. !

Proposition 3.11 Let u ∈ H1(GR) solve (3.9) on GR and assume that f and b satisfy (3.10),
(3.11). Then there is K6 > 0 independent of ε such that

N ′
R,p(u) ≤ Kp+2

6

max (p, ε−1)p+2

[p]!
(1 + ‖u‖ε,GR).

Proof: The proof is almost verbatim the same as the proof of Proposition 3.3. Instead of using
Lemma 3.6 we make use of Lemma 3.9. In particular, the constant K6 will be chosen such that
K6 > max (1, γR/2, BR/2, γR/2). !

Proposition 3.12 Under the same hypotheses as in Proposition 3.11 there is K7 > 0 given by
(3.13) independent of ε such that

N ′
R,p,q(u) ≤ Kp+2

6 Kq+2
7

max (p+ q, ε−1)p+q+2

[p]!
(1 + ‖u‖ε,GR) p ≥ 0, q ≥ −2

where K6 ≥ 1 is the constant of Proposition 3.11 and N ′
R,p,q is defined in (3.12).
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Proof: Choose 2K7 > max (2, BR, γR,R) such that for all p ≥ 0, q ≥ 0

[

Cf

√
π/2

(
R

2

)3 ( γR

2K6

)p ( γR

2K7

)q

K−2
6 K−2

7 +K2
6K

−2
7 +

Cb(R/(2K7))2

(1−BR/(2K6))(1− BR/(2K7))

]

≤ 1.

(3.13)
We will proceed by induction on q. By Proposition 3.11 and our earlier observation that N ′

R,p,0 ≤
N ′

R,p, the claim is true for q = 0 and all p ≥ 0, and it is easy to see that the claim is also true for
q = −2, q = −1: We have for q = −2 that the claim holds for p = 0, p = 1. For p ≥ 2, we have

N ′
R,p,−2(u) =

1

(p− 2)!
sup

R/2≤r<R
(R− r)p‖∂p

x u‖Gr ≤
1

(p− 2)!
sup

R/2≤r<R
(R− r)(p−2)+2‖∇2∂p−2

x u‖Gr

≤
(
R

2

)2

N ′
R,p−2(u)

which concludes the case q = −2. Similarly, for q = −1, we observe that the claim is true for
p = 0, and obtain for p ≥ 1

N ′
R,p,−1(u) =

1

(p− 1)!
sup

R/2≤r<R
(R− r)p+1‖∂y ∂p

x u‖Gr ≤
1

(p− 1)!
sup

R/2≤r<R
(R− r)p+1‖∇2∂p−1

x u‖Gr

≤
(
R

2

)2

N ′
R,p−1(u).

Let us now proceed with the proof of the proposition. Let us assume that the induction hypothesis
is proven for −2 ≤ q′ < q. We have

−∂2
y u = ∂2

x u+ ε−2 (f − bu) ,

|∂p
x ∂

q+2
y u| ≤ |∂p+2

x ∂q
y u|+ ε−2|∂p

x ∂
q
y f |+ ε−2|∂p

x ∂
q
y (bu)|.

By Lemma 3.10, we obtain

|∂p
x ∂

q
y (bu)| ≤

q∑

m=0

p∑

n=0

(
p

n

)(
q

m

)
|∂p−n

x ∂q−m
y b| |∂n

x ∂
m
y u|

≤ Cb

q∑

m=0

p∑

n=0

(
p

n

)(
q

m

)
Bp+q−m−n(p+ q −m− n)!|∂n

x ∂
m
y u|.

Hence, we obtain for N ′
R,p,q(u)

N ′
R,p,q(u) =

1

(p+ q)!
sup

R/2≤r<R
(R− r)p+q+2‖∂p

x ∂
q+2
y u‖Gr

≤ N ′
R,p+2,q−2(u) + ε−2M̃R,p+q(f) +

+ Cbε
−2

q∑

m=0

p∑

n=0

(
p

n

)(
q

m

)
Bp+q−m−n

(
R

2

)p+q−m−n+2 (p+ q −m− n)![m− 2 + n]!

(p+ q)!
N ′

R,n,m−2(u).
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By the induction hypothesis

[m− 2 + n]!NR,n,m−2(u) ≤ Kn+2
6 Km

7 max (m− 2 + n, ε−1)m+n(1 + ‖u‖ε,GR),

and applying Lemma B.8 twice, we get

N ′
R,p,q(u) ≤ Kp+4

6 Kq
7

max (p+ q, ε−1)p+q+2

(p+ q)!
(1 + ‖u‖ε,GR) + ε−2M̃R,p+q(f)+

+Cb(1 + ‖u‖ε,GR)ε
−2

q∑

m=0

p∑

n=0

Bp+q−m−n

(
R

2

)p+q−m−n+2

Kn+2
6 Km

7

max (m− 2 + n, ε−1)m+n

(p+ q)!

≤ Kp+4
6 Kq

7

max (p+ q, ε−1)p+q+2

(p+ q)!
(1 + ‖u‖ε,GR) + ε−2M̃R,p+q(f) +

+Cb(1 + ‖u‖ε,GR)K
p+2
6 Kq

7

(
R

2

)2 q∑

m=0

p∑

n=0

(
BR

2

)p+q−m−n

Kn−p
6 Km−q

7

max (p+ q, ε−1)p+q+2

(p+ q)!

≤ ε−2M̃R,p+q(f) +Kp+2
6 Kq+2

7

max (p+ q, ε−1)p+q+2

(p+ q)!
(1 + ‖u‖ε,GR)×

×
[
K2

6K
−2
7 +

Cb(R/(2K7))2

(1− BR/(2K6))(1− BR/(2K7))

]
.

Finally, as

M̃R,p+q(f) ≤ Cf

√
π/2γp+q

(
R

2

)p+q+3

,

we conclude

N ′
R,p,q(u) ≤ Kp+2

6 Kq+2
7

max (p+ q, ε−1)p+q+2

(p+ q)!
(1 + ‖u‖ε,GR)×

×

[

Cf

√
π/2

(
R

2

)3 ( γR

2K6

)p ( γR

2K7

)q

K−2
6 K−2

7 +K2
6K

−2
7 +

Cb(R/(2K7))2

(1− BR/(2K6))(1− BR/(2K7))

]

.

As the bracketed expression is bounded by one by the choice of K7 in (3.13), the induction
argument is completed. !

Lemma 3.13 Let G, G1 ⊂ R2 be bounded open sets. Assume that g = (g1, g2) : G1 → R2 is
analytic and injective on G1, det g′ 2= 0 on G1, and satisfies g(G1) ⊂ G. Let f : G → C be
analytic on G and assume that it satisfies for some ε, Cf , γ > 0

‖∇pf‖L2(G) ≤ Cfγ
pmax (p, ε−1)p ∀p ∈ N0.

Then there are C, K > 0 depending only on Cf , γ, and the map g such that

‖∇p (f ◦ g) ‖L2(G1) ≤ CKpmax (p, ε−1)p ∀p ∈ N0.
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Proof: The growth conditions on the derivatives of f imply that f can be extended to a holo-
morophic function (also denoted f) on G̃ ⊂ C×C with G ⊂ G̃ and G̃ independent of ε > 0. First,
we claim that there are δ0, γ′, and C > 0 depending only on γ and Cf such that

‖f(·+ z1(·), ·+ z2(·))‖L2(G) ≤ Ceγ
′δ/ε (3.14)

for all continous functions z1, z2 : G → C with ‖zi‖L∞(G) ≤ δ ≤ δ0, i = 1, 2. As f is holomorphic
on G̃, there is δ0 > 0 such that for all (x, y) ∈ G the power series expansion of f about (x, y)
converges on a ball of radius 2δ0. For functions z1, z2 with ‖zi‖L∞(G) ≤ δ ≤ δ0 we obtain:

|f(x+ z1(x, y), y + z2(x, y))| =

∣∣∣∣∣∣

∑

α∈N2
0

1

α!
Dαf(x, y)(z1, z2)

α

∣∣∣∣∣∣
≤

∑

α∈N2
0

1

α!
|Dαf(x, y)| δ|α|.

Therefore we get

‖f(·+ z1(·), ·+ z2(·))‖L2(G) ≤
∑

α∈N2
0

1

α!
‖Dαf‖L2(G)δ

|α|

≤
∞∑

p=0

∑

|α|=p

(
(p!)1/2(α!)−1/2‖Dαf‖L2(G)

) (
(α!)−1/2p!−1/2δp

)

≤
∞∑

p=0

‖∇pf‖L2(G)

(∑

|α|=p

1

α!p!
δ2p

)1/2
=

∞∑

p=0

‖∇pf‖L2(G)
1

p!
2p/2δp

≤ Cf

∑

0≤p≤ε−1

1

p!

(√
2γε−1δ

)p
+ Cf

∑

p>ε−1

pp

p!
γp2p/2δp

≤ Cfe
√
2γδ/ε + C

∑

p>ε−1

(
e
√
2γδ

)p
≤ Cfe

√
2γδ/ε +

1

1−
√
2γδ0

≤ Ce
√
2γδ/ε

where we used Stirling’s formula in the form p! ≥ Cppe−p and made the tacit assumption that δ0
is so small that e

√
2γδ0 < 1 so that the second sum is finite. This proves (3.14).

As g is analytic on G1 there is a holomorphic extension (also denoted g) to G̃1 ⊂ C × C. Thus,
there are η, δ′0 > 0 such that for all (x, y) ∈ G1

|gi(x+ z1, y + z2)− gi(x, y)| ≤ ηδ, i = 1, 2, z1, z2 ∈ C with |z1|, |z2| ≤ δ ≤ δ′0. (3.15)

For any 0 < δ ≤ min (δ′0, δ0/η) we obtain by Cauchy’s integral theorem for derivatives for every
(x, y) ∈ G1 and every α = (α1,α2) ∈ N2

0

Dα (f ◦ g) (x, y) = −
α!

4π2

∫

|z1|=δ

∫

|z2|=δ

(f ◦ g)(x+ z1, y + z2)

(−z1)α1+1(−z2)α2+1
dz1dz2

|Dα (f ◦ g) (x, y)|2 ≤
α!2

4π2δ2|α|+2

∫

|z1|=δ

∫

|z2|=δ

∣∣f
(
g1(x+ z1, y + z2), g2(x+ z1, y + z2)

)∣∣2 |dz1| |dz2|.

By (3.15), we can write

g1(x+ z1, y + z2) = g1(x, y) + ζ1, g2(x+ z1, y + z2) = g2(x, y) + ζ2
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where ζ1, ζ2 are smooth functions of x, y, z1, z2, and |ζi| ≤ ηδ, i = 1, 2. Integrating over G1, we
obtain after the smooth change of variables g(x, y) = (x′, y′) (note that 0 < c1 ≤ |det g′| ≤ c2 < ∞)
and denoting ζ ′1, ζ

′
2 the functions corresponding to ζ1, ζ2 after the change of variables

|Dα(f ◦ g)(x, y)|2L2(G1)
≤ c2

(α!)2

4π2δ2|α|+2

∫

|z1|=δ

∫

|z2|=δ

∫

G

|f(x′ + ζ ′1, y
′ + ζ ′2)|

2 dx′dy′|dz1| |dz2|.

As |ζ ′1|, |ζ ′2| ≤ ηδ uniformly in (x′, y′) ∈ G, |z1|, |z2| ≤ δ, estimate (3.14) yields

‖Dα(f ◦ g)‖L2(G1) ≤ C
α!

δ|α|
eγ

′ηδ/ε ∀0 < δ ≤ min (δ′0, δ0/η).

In order to extract from this estimate the claim of the lemma, we distinguish the cases |α|ε large
and |α|ε small. If |α|ε/(ηγ′) < min (δ′0, δ0/η), choose δ := |α|ε/(ηγ′) to get

‖Dα(f ◦ g)‖L2(G1) ≤ C(eηγ′)|α|ε−|α|.

If |α|ε/(ηγ′) ≥ min (δ′0, δ0/η), choose δ := min (δ′0, δ0/η) and observe that ε−1 ≤ |α|/(ηγ′δ) to
arrive at

‖Dα(f ◦ g)‖L2(G1) ≤ Cα! δ−|α|e|α|

which completes the proof. !

A Derivative Estimates for the Inner Expansion

A.1 Preliminaries

In this Appendix we want to analyze the growth of the derivatives of the functions generated
by the inner expansion. In order to do so, we need to consider first the following simple one
dimensional boundary value problem.

−u′′ + u = f on (0,∞),
u(0) = g ∈ R,

u → 0 as x → ∞.
(A.1)

Proposition A.1 Let 0 ≤ α < 1 and f ∈ H0
α. Then there is a (unique) solution u of (A.1) which

satisfies

‖u‖1,α ≤
3

1− α
[‖f‖0,α + |g|] . (A.2)

Proof: Let us first observe that the function ge−x solves the homogeneous equation and satisfies
the Dirichlet boundary condition at x = 0. As

‖ge−x‖1,α ≤ |g|
1√

1− α
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we may therefore restrict out attention to solving (A.1) with homogeneous Dirichlet data, i.e.,
g = 0. In order to do so, we introduce the Hilbert spaces

Vα = {u ∈ H1
α | u(0) = 0}, V−α = {u ∈ H1

−α | u(0) = 0},

and define on Vα × V−α the bilinear form

B(u, v) =

∫ ∞

0

(u′v′ + uv) dx.

By Schwarz’s inequality, this bilinear form is well-defined, and in fact we have

|B(u, v)| ≤ ‖u‖1,α‖v‖1,−α ∀u ∈ Vα, v ∈ V−α.

We claim now that B satisfies the inf-sup condition. Given u ∈ Vα choose v(x) = e2αxu(x). We
have v′(x) = e2αx(2αu+ u′) and therefore

‖v‖21,−α =

∫ ∞

0

e−2αx
(
v′2 + v2

)
dx =

∫ ∞

0

e2αx
(
(2αu+ u′)2 + u2

)
dx

≤
∫ ∞

0

e2αx
(
(8α2 + 1)u′2 + (4α2 + 3/2)u2

)
dx ≤ 9‖u‖21,α.

On the other hand,

B(u, v) =

∫ ∞

0

e2αx
(
(2αu+ u′)u′ + u2

)
dx = ‖u‖21,α +

∫ ∞

0

e2αx2αu′u dx

≥ ‖u‖21,α − α

∫ ∞

0

e2αx
[
u′2 + u2

]
dx

= (1− α)‖u‖21,α ≥
1− α

3
‖u‖1,α‖v‖1,−α.

Furthermore, it is easily seen that for any 0 2= v ∈ V−α we have supu∈Vα
B(u, v) 2= 0. Therefore,

the problem

find u ∈ Vα such that B(u, v) =

∫ ∞

0

f(x)v(x) dx ∀v ∈ V−α

has a unique solution u which satisfies

‖u‖1,α ≤
3

1− α
‖f‖0,α

as desired. !

A.2 Controlling the θ derivatives of the inner expansion: proof of

Proposition 2.2

Proof of Proposition 2.2: Let us first see that Proposition 2.2 is true for i = 0 and i = 1. As
F̂0 = 0, we have Û0 = G0(θ)e−ρ̂. We have F̂1 = Û0 and therefore, Û1 = 1

2 ρ̂G0(θ)e−ρ̂ + G1(θ)e−ρ̂.
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Û0 and Û1 are analytic in both ρ̂ and θ. We will now proceed by induction on i for all m ∈ N0

simultaneously. The formulas for Û0, Û1 show that (2.11) is true for i = 0 and i = 1. Let
us therefore consider the case i ≥ 2 and assume that (2.11) holds true for all m ∈ N0 and all
j ≤ i− 1.
As all the Ûi are analytic in θ, we may differentiate the differential equation with respect to θ.
For each m ∈ N0 we therefore get that ∂m

θ Ûi satisfies

−∂2
ρ̂ ∂

m
θ Ûi + ∂m

θ Ûi = ∂m
θ F̂i on (0,∞),

∂m
θ Ûi(0, θ) = ∂m

θ Gi(θ),

∂m
θ Ûi(ρ̂, θ) → 0 as ρ̂ → ∞.

(A.3)

Proposition A.1 gives the a-priori estimate

‖∂m
θ Ûi‖1,α,∞ ≤

3

1− α

[
‖∂m

θ F̂i‖0,α,∞ + ‖DmGi‖L∞([0,L))

]

≤
3

1− α

[
3∑

l=1

‖∂m
θ F̂ l

i ‖0,α,∞ + ‖DmGi‖L∞([0,L))

]

. (A.4)

Let us estimate each of the four terms on the right hand side separately. Let us first deal with
∂m
θ F̂ 1

i . We have

∂m
θ F̂ 1

i =
i−1∑

j=0

m∑

µ=0

(
m

µ

)
Dµaj1 ρ̂

j∂m−µ
θ ∂ρ̂ Ûi−1−j .

By Lemma B.1, we have for each fixed θ and j

‖ρ̂j ∂m−µ
θ ∂ρ̂ Ûi−1−j‖0,α ≤ δ−jjje−j‖∂m−µ

θ Ûi−1−j‖1,α+δ

≤ δ−jjje−jCUK
m−µ
1 Ki−1−j

2 (m− µ+ i− 1− j)m−µ+i−1−j(1− α− δ)−(i−1−j+1)

where used the induction hypothesis. Lemma B.2 suggests now the choice δ = (1 − α)j/i. We
obtain

‖ρ̂j ∂m−µ
θ ∂ρ̂ Ûi−1−j‖0,α,∞ ≤ CU

Km−µ
1 Ki−1−j

2 e−j(m− µ+ i− 1− j)m−µ+i−1−j

(1− α)i(i− j)i−j
ii

≤ CU
Km−µ

1 Ki−1−j
2 e−j(m− µ+ i− 1− j + 1)m−µ+i−1−j

(1− α)i(i− j)i−j
ii

where the second estimate was justified by the fact that m − µ + i − 1 − j ≥ 0. This estimate
together with the assumptions (2.8) implies

‖∂m
θ F 1

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i
K−1

2 ×

×
i−1∑

j=0

m∑

µ=0

(
m

µ

)
µ!AµÃjK−µ

1 K−j
2 e−j(m− µ+ i− 1− j + 1)m−µ+i−1−j ii

(i− j)i−j
.
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Lemma B.6 with the particular choice b = 1, a = i− 1− j is applicable, and we obtain

‖∂m
θ F̂ 1

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i
K−1

2 ×

×
i−1∑

j=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 e−j(m+ i− 1− j + 1)m+i−j−1 ii

(i− j)i−j
.

Now, Lemma B.7 is applicable with p = 0 (implying ν = 0), a = m − 1, and b = 1, i.e., a ≥ −1,
and a+ b = m ≥ 0 and the expression simplifies considerably:

‖∂m
θ F̂ 1

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i
K−1

2

i−1∑

j=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 e−j(m+ i)m+i−1e(1+ln 2)j

≤ CUCA
Km

1 Ki
2

(1− α)i
(i+m)i+m−1K−1

2

1

1−A/K1

1

1− 2Ã/K2

if A/K1, 2Ã/K2 < 1. Let us now turn to ∂m
θ F̂ 2

i . The estimates are completely analogous to those
for ∂m

θ F̂ 1
i . We have

∂m
θ F̂ 2

i =
i−2∑

j=0

m∑

µ=0

(
m

µ

)
Dµaj2 ρ̂

j∂m−µ+2
θ Ûi−2−j .

As before Lemma B.1 with δ = (1− α)j/(i− 1) and the induction hypothesis lead to

‖ρ̂j∂m−µ+2
θ Ûi−2−j‖0,α,∞ ≤ CU

Km−µ+2
1 Ki−2−j

2 e−j(m− µ+ i− j)m−µ+i−j(i− 1)i−1

(1− α)i−1(i− 1− j)i−1−j
.

Therefore, we obtain for ∂m
θ F̂ 2

i

‖∂m
θ F̂ 2

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i−1
K2

1K
−2
2 ×

×
i−2∑

j=0

m∑

µ=0

(
m

µ

)
µ!AµÃjK−µ

1 K−j
2 e−j(m− µ+ i− j)m−µ+i−j (i− 1)i−1

(i− 1− j)i−1−j
.

As i− j ≥ 2, Lemma B.6 is applicable with a = i− j, b = 0, and we get

‖∂m
θ F̂ 2

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i−1
K2

1K
−2
2 ×

×
i−2∑

j=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 e−j(m+ 1 + i− 1− j)m+1+i−1−j (i− 1)i−1

(i− 1− j)i−1−j
.

Now choosing p = 0, a = m+ 1, b = 0, and replacing i by i− 1 in Lemma B.7, we get

‖∂m
θ F̂ 2

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i−1
K2

1K
−2
2

i−2∑

j=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 e−j(m+ i)m+ie(1+ln 2)j

≤ CUCA
Km

1 Ki
2(m+ i)m+i

(1− α)i−1
K2

1K
−2
2

1

1− A/K1

1

1− 2Ã/K2

.
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Let us now deal with ∂m
θ F̂ 3

i . We have

∂m
θ F̂ 3

i =
i−2∑

j=0

m∑

µ=0

(
m

µ

)
Dµaj3 ρ̂

j∂m−µ+1
θ Ûi−2−j

As before Lemma B.1 with δ = (1− α)j/(i− 1) and the induction hypothesis lead to

‖ρ̂j∂m−µ+1
θ Ûi−2−j‖0,α,∞ ≤ CU

Km−µ+1
1 Ki−2−j

2 e−j(m− µ+ i− 1− j)m−µ+i−1−j(i− 1)i−1

(1− α)i−1(i− 1− j)i−1−j
.

Therefore, we obtain for ∂m
θ F̂ 3

i

‖∂m
θ F̂ 2

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i−1
K1K

−2
2 ×

×
i−2∑

j=0

m∑

µ=0

(
m

µ

)
µ!AµÃjK−µ

1 K−j
2 e−j(m− µ+ i− 1− j)m−µ+i−1−j (i− 1)i−1

(i− 1− j)i−1−j
.

As i− 1− j ≥ 1, Lemma B.6 is applicable with a = i− 1− j, b = 0, and we get

‖∂m
θ F̂ 3

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i−1
K1K

−2
2 ×

×
i−2∑

j=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 e−j(m+ i− 1− j)m+i−1−j (i− 1)i−1

(i− 1− j)i−1−j
.

Now choosing p = 0, a = m, b = 0, and replacing i by i− 1 in Lemma B.7, we get

‖∂m
θ F̂ 2

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2

(1− α)i−1
K1K

−2
2

i−2∑

j=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 e−j(m+ i− 1)m+i−1e(1+ln 2)j

≤ CUCA
Km

1 Ki
2(m+ i)m+i−1

(1− α)i−1
K1K

−2
2

1

1−A/K1

1

1− 2Ã/K2

.

Finally, we have by assumption

‖DmGi‖L∞([0,L)) ≤ CGG
iG̃m(i+m)i+m.

The a-priori estimate (A.4) therefore gives

‖∂m
θ Ûi‖1,α,∞ ≤ CU

Km
1 Ki

2(i+m)i+m

(1− α)i+1
×

×

[
{
K−1

2 +K−2
2 K2

1 +K−2
2 K1

} 3CA

(1−A/K1)(1− 2Ã/K2)
+

3CG

CU

(
G

K2

)i
(

G̃

K1

)m]

.

The definitions (2.12), (2.13), and (2.14) of CU , K1, and K2 imply now that the bracketed expres-
sion is bounded by 1 which concludes the induction argument. !
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A.3 Controlling all derivatives of the inner expansion: proof of Propo-

sition 2.3

Proof of Proposition 2.3: We will proceed by induction on n for all i and m simultaneously.
As K3 ≥ 1, Proposition 2.2 implies that (2.15) holds for n = 0 and n = 1. Let us therefore see
that (2.15) is true for n ≥ 2 under the assumption that the claim of the proposition is true for
ν ≤ n− 1. For notational convenience we introduce the new parameter

p = n− 2 ≥ 0.

Differentiating (A.3) p times, we get

−∂n
ρ̂ ∂

m
θ Ûi = ∂p

ρ̂ ∂
m
θ F̂i − ∂p

ρ̂ ∂
m
θ Ûi. (A.5)

Now, we proceed just as in the proof of Proposition 2.2. Let us first consider

∂p
ρ̂ ∂

m
θ F̂ 1

i =
i−1∑

j=0

m∑

µ=0

min (p,j)∑

ν=0

(
m

µ

)(
p

ν

)
Dµaj1

(
j

ν

)
ν!ρ̂j−ν∂m−µ

θ ∂p−ν+1
ρ̂ Ûi−1−j .

Without loss of generality we may assume that i ≥ 1, for otherwise F̂i ≡ 0. By Lemma B.1 we
have, together with the induction hypothesis (and the estimate max (p − ν + 1 − 2, 0) ≤ p + 1),
for 0 ≤ ν ≤ min (j, p) and each fixed θ

‖ρ̂j−ν∂m−µ
θ ∂p−ν+1

ρ̂ Ûi−1−j‖0,α ≤ δ−(j−ν)(j − ν)j−νe−(j−ν)‖∂m−µ
θ ∂p−ν+1

ρ̂ Ûi−1−j‖0,α+δ ≤

≤ CU
Km−µ

1 Ki−1−j
2 Kp−ν+1

3 e−(j−ν)(j − ν)j−ν(m− µ+ i− 1− j + p+ 1)m−µ+i−1−j

δj−ν(1− α− δ)i−1−j+1
.

Lemma B.2 suggests the choice δ = (1− α)(j − ν)/(i− ν) which leads to

‖ρ̂j−ν∂m−µ
θ ∂p−ν+1

ρ̂ Ûi−1−j‖0,α,∞ ≤

≤ CU
Km−µ

1 Ki−1−j
2 Kp−ν+1

3 e−(j−ν)(m− µ+ i− 1− j + p+ 1)m−µ+i−1−j(i− ν)i−ν

(1− α)i−ν(i− j)i−j
.

Together with the assumptions (2.8), we arrive at

‖∂p
ρ̂ ∂

m
θ F̂ 1

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2K

p+1
3

(1− α)i
K−1

2

i−1∑

j=0

min (j,p)∑

ν=0

m∑

µ=0

(
m

µ

)
µ!

(
p

ν

)(
j

ν

)
ν!×

×AµÃjK−µ
1 K−j

2 K−ν
3 e−(j−ν) (m− µ+ i− 1− j + p+ 1)m−µ+i−1−j(i− ν)i−ν

(1− α)−ν(i− j)i−j
.

As before, we apply first Lemma B.6 with a = i− 1 − j ≥ 0, b = p+ 1 ≥ 1 and then Lemma B.7
with a = m− 1 ≥ −1, b = 1 to obtain

‖∂p
ρ̂ ∂

m
θ F̂ 1

i ‖0,α,∞ ≤ CUCA
Km

1 Ki
2K

p+1
3

(1− α)i
K−1

2 ×

×
i−1∑

j=0

min (j,p)∑

ν=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 K−ν
3 e−(j−ν)(1− α)ν(m+ i+ p)m+i−1e(1+ln 2)j .
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We conclude

‖∂p
ρ̂ ∂

m
θ F̂ 1

i ‖0,α,∞ ≤

≤ CU
Km

1 Ki
2K

p+2
3

(1− α)i
(i+m+ p)m+i−1 CAK

−1
2 K−1

3

(1− A/K1)(1− 2Ã/K2)(1− e(1− α)/K3)
.

The terms F̂ 2
i and F̂ 3

i are treated similarly. Without loss of generality, we may assume that i ≥ 2
for otherwise F̂ 2

i = F̂ 3
i ≡ 0. We have,

∂p
ρ̂ ∂

m
θ F̂ 2

i =
i−2∑

j=0

m∑

µ=0

min (p,j)∑

ν=0

(
m

µ

)(
p

ν

)
Dµaj2

(
j

ν

)
ν!ρ̂j−ν∂m−µ+2

θ ∂p−ν
ρ̂ Ûi−2−j .

As before Lemma B.1 with δ = (1 − α)(j − ν)/(i − 1 − ν), the induction hypothesis, and the
estimate max (p− ν − 2, 0) ≤ p, we get

‖ρ̂j−ν∂m−µ+2
θ ∂p−ν

ρ̂ Ûi−2−j‖0,α,∞ ≤

≤ CU
Km−µ+2

1 Ki−2−j
2 Kp−ν

3 e−(j−ν)(m− µ+ i− j + p)m−µ+i−j(i− 1− ν)i−1−ν

(1− α)i−1−ν(i− 1− j)i−1−j
.

Inserting this and the estimates (2.8) in the definition of F̂ 2
i , we obtain for ∂p

ρ̂ ∂
m
θ F̂ 2

i ,

‖∂p
ρ̂ ∂

m
θ F̂ 2

i ‖0,α,∞ ≤ CU
Km

1 Ki
2K

p
3

(1− α)i−1
CAK

2
1K

−2
2

i−2∑

j=0

min (j,p)∑

ν=0

m∑

µ=0

(
m

µ

)
µ!

(
p

ν

)(
j

ν

)
ν!×

×AµÃjK−µ
1 K−j

2 K−ν
3 e−(j−ν) (m− µ+ 1 + i− 1− j + p)m−µ+1+i−1−j(i− 1− ν)i−1−ν

(i− 1− j)i−1−j
.

Applying Lemma B.6 with a = i − 1 − j + 1 ≥ 2 and b = p ≥ 0 and then Lemma B.7 with
a = m+ 1, b = 0, and i replaced with i− 1 leads to

‖∂m
θ ∂p

ρ̂ F̂
2
i ‖0,α,∞ ≤ CUCA

Km
1 Ki

2K
p
3

(1− α)i−1
K2

1K
−2
2 ×

×
i−2∑

j=0

min (j,p)∑

ν=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 K−ν
3 e−(j−ν)(1− α)ν(m+ i+ p)m+ie(1+ln 2)j .

We conclude

‖∂p
ρ̂ ∂

m
θ F̂ 2

i ‖0,α,∞ ≤

≤ CU
Km

1 Ki
2K

p+2
3

(1− α)i−1
(i+m+ p)m+i CAK2

1K
−2
2 K−2

3

(1− A/K1)(1− 2Ã/K2)(1− e(1− α)/K3)
.

Let us see that the term F̂ 3
i is also under control. Without loss of generality, we may assume that

i ≥ 2 for otherwise F̂ 3
i ≡ 0. We have,

∂p
ρ̂ ∂

m
θ F̂ 3

i =
i−2∑

j=0

m∑

µ=0

min (p,j)∑

ν=0

(
m

µ

)(
p

ν

)
Dµaj3

(
j

ν

)
ν!ρ̂j−ν∂m−µ+1

θ ∂p−ν
ρ̂ Ûi−2−j .
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As before Lemma B.1 with δ = (1 − α)(j − ν)/(i − 1 − ν), the induction hypothesis, and the
estimate max (p− ν − 2, 0) ≤ p

‖ρ̂j−ν∂m−µ+1
θ ∂p−ν

ρ̂ Ûi−2−j‖0,α,∞ ≤

≤ CU
Km−µ+1

1 Ki−2−j
2 Kp−ν

3 e−(j−ν)(m− µ+ i− 1− j + p)m−µ+i−1−j(i− 1− ν)i−1−ν

(1− α)i−1−ν(i− 1− j)i−1−j
.

Therefore, inserting this and the estimates (2.8) in the definition of F̂ 3
i , we obtain for ∂p

ρ̂ ∂
m
θ F̂ 3

i ,

‖∂p
ρ̂ ∂

m
θ F̂ 3

i ‖0,α,∞ ≤ CU
Km

1 Ki
2K

p
3

(1− α)i−1
CAK1K

−2
2

i−2∑

j=0

min (j,p)∑

ν=0

m∑

µ=0

(
m

µ

)
µ!

(
p

ν

)(
j

ν

)
ν!×

×AµÃjK−µ
1 K−j

2 K−ν
3 e−(j−ν) (m− µ+ i− 1− j + p)m−µ+i−1−j(i− 1− ν)i−1−ν

(1− α)−ν(i− 1− j)i−1−j
.

Applying Lemma B.6 with a = i− 1− j ≥ 1 and b = p ≥ 0 and then Lemma B.7 with a = m ≥ 0,
b = 0, and i replaced with i− 1 leads to

‖∂m
θ ∂p

ρ̂ F̂
3
i ‖0,α,∞ ≤ CUCA

Km
1 Ki

2K
p
3

(1− α)i−1
K1K

−2
2 ×

×
i−2∑

j=0

min (j,p)∑

ν=0

m∑

µ=0

AµÃjK−µ
1 K−j

2 K−ν
3 e−(j−ν)(1− α)ν(m+ i− 1 + p)m+i−1e(1+ln 2)j .

We conclude

‖∂p
ρ̂ ∂

m
θ F̂ 3

i ‖0,α,∞ ≤

≤ CU
Km

1 Ki
2K

p+2
3

(1− α)i−1
(i− 1 +m+ p)m+i−1 CAK1K

−2
2 K−2

3

(1−A/K1)(1− 2Ã/K2)(1− e(1− α)/K3)
.

Finally, by the induction hypothesis,

‖∂p
ρ̂ ∂

m
θ Ûi‖0,α,∞ ≤ CU

Km
1 Ki

2K
p
3

(1− α)i+1
(i+m+max (p− 2, 0))i+m

≤ CU
Km

1 Ki
2K

p+2
3

(1− α)i+1
(i+m+ p)i+mK−2

3 ,

and we get therefore for ‖∂n
ρ̂ ∂

m
θ Ûi‖0,α,∞

‖∂n
ρ̂ ∂

m
θ Ûi‖0,α,∞ ≤ ‖∂p

ρ̂ ∂
m
θ F̂i‖0,α,∞ + ‖∂p

ρ̂ ∂
m
θ Ûi‖0,α,∞

≤ CU
Km

1 Ki
2K

p+2
3

(1− α)i+1
(i+m+ p)i+m ×

×
[
CA

K−1
2 K−1

3 +K2
1K

−2
2 K−2

3 +K1K
−2
2 K−2

3

(1− A/K1)(1− 2Ã/K2)(1− e/K3)
+K−2

3

]
.

By the choice of K3 in (2.16) we have that the bracketed expression is bounded by one which
completes the induction argument. !
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A.4 Controlling LεuBL
M

Lemma A.2 With CU , K1, K2, and K3 as in Proposition 2.3 there are constants C(α) and K > 0
depending only on the constants of Proposition 2.3 such that

|ρ̂j∂p
ρ̂ ∂

m
θ Ûi(ρ̂, θ)| ≤ C(α)p!m!Km

(
j

αe

)j ( eK2

1− α

)i

ii ∀ρ̂ ≥ 0, θ ∈ [0, L),

‖ρ̂j∂p
ρ̂ ∂

m
θ Ûi‖0,α,∞ ≤ CU

Km
1 Ki

2K
p
3

(1− α)i+1+j
ei+1jj [i+m+max (p− 2, 0)]i+m .

Proof: The first estimate follows from Corollary 2.4 (and Cauchy’s integral theorem for the
derivatives) and the fact that |xje−αx| ≤ (j/α)je−j for all x, j ≥ 0. For the second estimate, we
use Lemma B.1 to get

‖ρ̂j∂p
ρ̂ ∂

m
θ Ûi‖0,α,∞ ≤ δ−jjje−j‖∂p

ρ̂ ∂
m
θ Ûi‖0,α+δ,∞.

Choosing δ = (1 − α)j/(i+ 1 + j) as suggested by Lemma B.2 the desired estimate follows from
Proposition 2.3 and the bound (i+ j + 1)i+j+1 ≤ (i+ 1)i+1jjei+j+1. !

From the proof of Proposition 2.2 we can extract the following lemma.

Lemma A.3 With CU , K1, K2, and K3 as in Proposition 2.3 we have

∀i, p,m ∈ N0 ‖∂p
ρ̂ ∂

m
θ F̂i‖0,α,∞ ≤

3∑

j=1

‖∂p
ρ̂ ∂

m
θ F̂ j

i ‖0,α,∞ ≤ CU
Km

1 Ki
2K

p+2
3

(1− α)i+1
(i+m+ p)i+m.

Proof: Follows directly from the proof of Proposition 2.3. !

Lemma A.4 For every M ∈ N0 the function uBL
M =

∑2M+1
i=0 εiÛi satisfies for 0 < ρ ≤ ρ0:

Lεu
BL
M =

2M+1∑

i=0

εi
[
−∂2

ρ̂ Ûi + Ûi − F̂i

]
− ε2M+2F̂2M+2 − ε2M+3F̂ 2

2M+3 − ε2M+3F̂ 3
2M+3

−ε2M+3
2M+1∑

j=0

[
∞∑

i=0

εiρ̂j+i+1aj+i+1
1 ∂ρ̂ + εi+1ρ̂j+i+1aj+i+1

2 ∂2
θ + εi+1ρ̂j+i+1aj+i+1

3 ∂θ

]

Û2M+1−j .

Remark A.5: The functions Ûi are constructed in such a way that −∂2
ρ̂ Ûi + Ûi − F̂i = 0 for all

i ∈ N0.

Proof: The sum in the representation (2.6) of the differential operator Lε has three parts. Let us
consider each part separately. For 0 < ρ ≤ ρ0, (i.e., for 0 < ρ̂ ≤ ρ0/ε) each part is an absolutely
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converging series, which may be reordered. We have

2M+1∑

i=0

∞∑

j=0

ρ̂jaj1ε
i+1+j∂ρ̂ Ûi =

∞∑

j=0

j+1+2M+1∑

i=j+1

ρ̂jaj1ε
i∂ρ̂ Ûi−1−j

=
2M+2∑

i=1

εi
i−1∑

j=0

ρ̂jaj1∂ρ̂ Ûi−1−j +
∞∑

i=2M+3

εi
i−1∑

j=i−2M−2

ρ̂jaj1∂ρ̂ Ûi−1−j

=
2M+2∑

i=0

εiF̂ 1
i +

∞∑

i=2M+3

εi
2M+1∑

j=0

ρ̂j−2M−2+iaj−2M−2+i
1 ∂ρ̂ Û2M+1−j

=
2M+2∑

i=0

εiF̂ 1
i + ε2M+3

2M+1∑

j=0

∞∑

i=0

εiρ̂j+i+1aj+i+1
1 ∂ρ̂ Û2M+1−j .

Similarly, we obtain for the second part:

2M+1∑

i=0

∞∑

j=0

ρ̂jaj2ε
i+2+j∂2

θ Ûi =
∞∑

j=0

j+2M+3∑

i=j+2

ρ̂jaj2ε
i∂2

θ Ûi−2−j

=
2M+3∑

i=2

εi
i−2∑

j=0

ρ̂jaj2∂
2
θ Ûi−2−j +

∞∑

i=2M+4

εi
i−2∑

j=i−2M−3

ρ̂jaj2∂
2
θ Ûi−2−j

=
2M+3∑

i=0

εiF̂ 2
i +

∞∑

i=2M+4

εi
2M+1∑

j=0

ρ̂i−2M−3+jai−2M−3+j
2 ∂2

θ Û2M+1−j

=
2M+3∑

i=0

εiF̂ 2
i + ε2M+4

2M+1∑

j=0

∞∑

i=0

εiρ̂i+j+1ai+j+1
2 ∂2

θ Û2M+1−j .

And completely analogously, for the third part

2M∑

i=0

∞∑

j=0

ρ̂jaj3ε
i+2+j∂θ Ûi =

2M+3∑

i=0

εiF̂ 3
i + ε2M+4

2M+1∑

j=0

∞∑

i=0

εiρ̂i+j+1ai+j+1
3 ∂θ Û2M+1−j .

Inserting these three sums in the representation (2.6) yields the desired result. !

Lemma A.6 Let ρ0 be such that ρ0Ã =: q < 1 where Ã is given by (2.8). Then there are K, C,
and C(α) > 0 depending depending only on q and the constants of Proposition 2.2 (C(α) depends
additionally on α ∈ [0, 1)), such that

sup
θ∈[0,L)

{∫ ρ0

ρ=0

e2αρ/ε
∣∣Lεu

BL
M (ρ, θ)

∣∣2 dρ

}1/2

≤ C(α)ε1/2
(
Kε(2M + 2)

1− α

)2M+2

,

|Lεu
BL
M (ρ, θ)| ≤ C (Kε(2M + 2))2M+2 , 0 ≤ ρ ≤ ρ0.
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Proof: From Lemma A.4 we get

∣∣Lεu
BL
M (ρ̂, θ)

∣∣ ≤ ε2M+2
∣∣∣F̂2M+2(ρ̂, θ)

∣∣∣ + ε2M+3
∣∣∣F̂ 2

2M+3(ρ̂, θ)
∣∣∣ + ε2M+3

∣∣∣F̂ 3
2M+3(ρ̂, θ)

∣∣∣

+ε2M+3

∣∣∣∣∣

2M+1∑

j=0

[
∞∑

i=0

εiρ̂j+i+1aj+i+1
1 ∂ρ̂ + εi+1ρ̂j+i+1aj+i+1

2 ∂2
θ + εi+1ρ̂j+i+1aj+i+1

3 ∂θ

]

Û2M+1−j

∣∣∣∣∣ .

Let us first estimate F̂2M+2. The change of variables ρ = ρ̂ε and Lemma A.3 yields

{∫ ρ0

ρ=0

e2αρ/ε
∣∣∣ε2M+2F̂2M+2(ρ̂, θ)

∣∣∣
2
dρ

}1/2

≤ ε1/2ε2M+2‖F̂2M+2‖0,α,∞

≤ C(α)ε1/2
(
K2ε(2M + 2)

1− α

)2M+2

.

From Lemma A.3 and Lemma B.3, we obtain for α = 1/2

ε2M+2|F̂2M+2(ρ̂, θ)| ≤ Cε2M+2‖∂ρ̂ F̂2M+2‖0,1/2,∞ ≤ Cε2M+2 (2K2)
2M+2 (2M + 3)2M+2

≤ Ce (2K2ε(2M + 2))2M+2 .

Completely analogously, we obtain the appropriate estimates for F̂ 2
2M+3 and F̂ 3

2M+3 if we observe
that we have have by assumption ε ≤ 1 and that we can bound

(2M + 3)2M+3 ≤ (2M + 3)e(2M + 2)2M+2 ≤ e22M+2(2M + 2)2M+2.

Let us now turn to estimating the double sum in the expression forLεuBL
M . We will only consider the

terms involving ai+j+1
1 , the others being handled completely analogously. From the assumptions

(2.8) on the functions ai+j+1
1 , the assumption ρ0Ã = q < 1, and the fact that we have 0 ≤ ρ ≤ ρ0,

we obtain
εiρ̂i+j+1|ai+j+1

1 | ≤ CA(ερ̂Ã)
i(ρ̂Ã)j+1 ≤ CAq

i(ρ̂Ã)j+1.

This leads to
∣∣∣∣∣

2M+1∑

j=0

∞∑

i=0

εiρ̂i+j+1ai+j+1
1 ∂ρ̂ Û2M+1−j

∣∣∣∣∣ ≤
CA

1− q

2M+1∑

j=0

Ãj+1ρ̂j+1
∣∣∣∂ρ̂ Û2M+1−j

∣∣∣ . (A.6)

By means of the pointwise estimate in Lemma A.2 (choose α = 1/2), we finally get the estimates

∣∣∣∣∣

2M+1∑

j=0

∞∑

i=0

εiρ̂i+j+1ai+j+1
1 ∂ρ̂ Û2M+1−j

∣∣∣∣∣

≤
C

1− q
(2eK2)

2M+1
2M+1∑

j=0

(
Ã/(K2e

2)
)j

(j + 1)j+1(2M + 1− j)2M+1−j

≤ C(q)K2M+1(2M + 2)2M+2.
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for appropriately chosen K > 0. This estimate completes the argument for the pointwise estimate
of Lemma A.6. In order to conclude the other estimate, we invoke Lemma A.2 again to get

∫ ρ0

ρ=0

e2αρ/ε

∣∣∣∣∣

2M+1∑

j=0

∞∑

i=0

εiρ̂i+j+1ai+j+1
1 ∂ρ̂ Û2M+1−j

∣∣∣∣∣

2

dρ

≤
C2

A

(1− q)2
ε
2M+1∑

j=0

Ã2(j+1)
2M+1∑

j=0

‖ρ̂j+1∂ρ̂ Û2M+1−j‖20,α,∞

≤ εC(α, q)

(
K

1− α

)2(2M+2) 2M+1∑

j=0

(j + 1)2(j+1)(2M + 1− j)2(2M+1−j)

≤ εC(α, q)

(
K

1− α

)2(2M+2)

(2M + 2)2(2M+2)

where K > 0 is again appropriately chosen. !

In a similar fashion higher derivatives of LεuBL
M may be estimated. Let us record one possible

result of this form.

Lemma A.7 Let ρ0 < ‖κ‖L∞([0,L)). Then there are C, K8, K9, and K10 depending only on f , g,
ρ0, and κ, (i.e., the geometry of Ω) such that
∣∣∂p

ρ ∂
m
θ Lεu

BL
M (ρ, θ)

∣∣ ≤ Cp!m!Kp
8K

m
9 ε−p (K10ε(2M + 2))2M+2 0 ≤ ρ ≤ ρ0, θ ∈ [0, L), p,m ∈ N0

Proof: We use the same representation formula for LεuBL
M as in the proof of Lemma A.6 and

estimate each term separately. We have by Lemma A.3 and Lemma B.3 with α = 1/2

ε2M+2
∣∣∣∂p

ρ ∂
m
θ F̂2M+2(ρ̂, θ)

∣∣∣ ≤ Cε2M+2ε−p‖∂p+1
ρ̂ ∂m

θ F̂2M+2‖0,1/2,∞

≤ Cε2M+2ε−pKm
1 (2K2)

2M+2Kp+3
3 (2M + 2 +m+ p+ 1)2M+2+m

≤ Cε2M+2ε−p(e2K1)
m(2eK2)

2M+2(e2K3)
pm! (2M + 2))2M+2

where we used the estimate (2M + 2 +m + p + 1)2M+2+m ≤ (2M + 2)2M+2mme2M+2+m+2(p+1) ≤
C(2M + 2)2M+2m!eme2M+2+2m+2(p+1). Hence, the term involving F̂2M+2 can be estimated as de-
sired. The terms involving F̂ 2

2M+3 and F̂ 3
2M+3 can be controlled similarly.

Let us now turn our attention to the double sum. Just as in the proof of Lemma A.6, we will only
consider the first term of the double sum as the the other two are treated similarly. Introduce the
short-hand

S :=
2M+1∑

j=0

∞∑

i=0

εiρ̂i+j+1ai+j+1
1 ∂ρ̂ Û2M+1−j .

We want to apply Cauchy’s integral theorem for derivatives. In order to do so, let us choose ρ′0 > 0
such that ρ0 < ρ′0 < ‖κ‖L∞([0,L)), and set δ := (ρ′0 − ρ0)/2. We observe that by the analyticity of
the function κ we have the existence of δ′ > 0 and C ′

A, A > 0 such that

ρ′0A =: q′ < 1
∣∣ail(θ + ζ)

∣∣ ≤ C ′
AA

i
i ∈ N0, θ ∈ [0, L), ζ ∈ C, |ζ | ≤ δ′.
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We obtain by Cauchy’s integral theorem and Corollary 2.4

∣∣∂p
ρ ∂

m
θ S

∣∣ = ε−p 1

4π2
p!m!

∣∣∣∣

∫

|z|=δ

∫

|ζ|=δ′

S(ρ̂+ z, θ + ζ)

(−z)p+1(−ζ)m+1
dzdζ

∣∣∣∣

≤ Cε−pp!m!δ−pδ′−m
2M+1∑

j=0

∞∑

i=0

εi (ρ̂+ δ)i+j+1A
i+j+1

e−αρ̂

(
eK2

1− α

)2M+1−j

(2M + 1− j)2M+1−j

where C > 0 depends on C ′
A and δ′. As we have by the assumptions ρ0+ δ ≤ ρ′0 and ρ′0A = q′ < 1,

we have

∣∣∂p
ρ ∂

m
θ S

∣∣ ≤ Cε−pp!m!δ−pδ′−m 1

1− q′

2M+1∑

j=0

(ρ̂+ δ)j+1A
j+1

e−αρ̂

(
eK2

1− α

)2M+1−j

(2M +1− j)2M+1−j

Finally, as we have the estimate

(ρ̂+ δ)j+1e−αρ̂ ≤
(
j + 1

α

)j+1

eαδ−(j+1)

we can conclude by fixing α ∈ (0, 1) and reasoning as in the proof of Lemma A.6 that
∣∣∂p

ρ ∂
m
θ S

∣∣ ≤ Cε−pp!m!δ−pδ′−m(2M + 2)2M+2K2M+2

for appropriately chosen K > 0. K is independent of ε and M . !

B Some Technical Lemmas

Lemma B.1 Let j ≥ 0. Assume that α ≥ 0, δ > 0 and f ∈ H0
α+δ. Then

‖xjf(x)‖0,α ≤ δ−j

(
j

e

)j

‖f‖0,α+δ.

We allow δ = 0 for the case j = 0.

Proof: We write

‖xjf(x)‖20,α =

∫ ∞

0

e2αxx2jf 2(x) dx =

∫ ∞

0

e2(α+δ)xf 2(x)e−2δxx2j dx.

As the function x ,→ x2je−2δx attains its maximum at x = j/δ, we get the desired estimate. !

Lemma B.2 Let α ∈ (0, 1) and 0 ≤ j < β. Then the function δ ,→ δj(1 − α − δ)β−j defined on
[0, 1− α] attains its maximum at

δ = (1− α)
j

β
,

and the maximal value is
(1− α)βjjβ−β(β − j)β−j.
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Proof: It is convenient to consider the logarithm of the function, i.e., δ ,→ j ln δ + (β − j) ln(1−
α− δ). Computing the zero of the derivative of this function completes the argument. !

Lemma B.3 Let α > 0, x ≥ 0, and h ∈ H1
α. Then

‖h‖L∞(x,∞) ≤
1√
2α

e−αx‖h′‖0,α,
{∫ ∞

x

|h′(t)|2 + |h(t)|2 dt
}1/2

≤ e−αx‖h‖1,α.

Proof: For the first estimate, we use the fact that for α > 0 the function h decays at infinity
which produces the representation

h(x) = −
∫ ∞

x

h′(t) dt, x ∈ [0,∞),

|h(x)| ≤
∣∣∣∣

∫ ∞

x

eαth′(t)e−αt dt

∣∣∣∣ ≤
1√
2α

e−αx‖h′‖0,α.

This proves the first estimate. The second one is proved similarly. !

Lemma B.4 Let I := [a, b] ⊂ R be a closed bounded interval, f , g be analytic on I. Then there
are C, K1, K2 > 0 such that

‖Dpfn g‖L∞(I) ≤ Cp!Kn
1K

p
2 ∀n, p ∈ N0.

Moreover, the constant K1 > ‖f‖L∞(I) may be chosen arbitrarily close to ‖f‖L∞(I).

Proof: The claim of the lemma follows by Cauchy’s integral formula. As f and g are analytic on
the closed interval I, there is a smooth Jordan curve L ⊂ C such that I is contained in the interior
Int(L) of the curve L, dist(I, L) ≥ d > 0, and the functions f , g are analytic on Int(L) ∪ L. For
any z ∈ I, Cauchy’s integral theorem now yields

|Dpfn(z)g(z)| =

∣∣∣∣
p!

2πi

∫

L

fn(t)g(t)

(z − t)p+1
dt

∣∣∣∣

≤
p!

2π
length(L)‖f‖nL∞(Int(L))‖g‖L∞(Int(L))d

−(p+1).

Setting K1 = ‖f‖L∞(Int(L)), K2 = d−1, and C = length(L)‖g‖L∞(Int(L))/(2πd) completes the argu-
ment. !

Lemma B.5 Denote ψ the logarithmic derivative of the Γ functions, i.e., ψ(x) = d
dx lnΓ(x). Then

(i) ψ(x) ≤ ln x ∀x > 0.

(ii) ψ is monotonically increasing on (0,∞).
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(iii) x ,→ ψ(1 + x) + xψ′(1 + x) is monotonically increasing on (0,∞).

(iv) ψ(x) = 1
2ψ(

1
2x) +

1
2ψ(

1
2x+ 1

2) + ln 2 ∀x > 0.

(v) −λψ(1 + λx) + ψ(1 + x)− (1− λ)ψ(1 + (1− λ)x) ≤ ln 2 ∀λ ∈ [0, 1]x ≥ 0.

Proof: (i) follows immediately from 8.361.3 of [9]. (ii) follows immediately from the series rep-
resentation of ψ′ below. (iv) can be found as ex. 2.1 in 2.2.1 of [10]. For (iii), we use the series
representations of ψ and ψ′ (8.362.1, 8.363.8, 8.365.1 of [9]):

ψ(x) = −γ −
1

x
+ x

∞∑

k=1

1

k(x+ k)
,

ψ′(x) =
∞∑

k=0

1

(x+ k)2
,

ψ(1 + x) = ψ(x) +
1

x

where γ denotes Euler’s constant. Therefore

ψ(1 + x) + xψ′(1 + x) = −γ +
∞∑

k=1

x

k(k + x)
+

x

(k + x)2
.

Termwise differentiation (which is justified by the uniform convergence of the termwise differenti-
ated series) yields

(ψ(1 + x) + xψ′(1 + x))′ =
∞∑

k=1

2k

(k + x)3
> 0 for x ≥ 0

which proves (iii). Finally, for (v), we note that for fixed x ≥ 0 the function h(λ) = −λψ(1 +
λx) + ψ(1 + x) − (1 − λ)ψ(1 + (1 − λ)x) is symmetric with respect to λ = 1/2. Moreover, on
(0, 1/2) the function h is monotonically increasing:

h′(λ) = − [ψ(1 + λx) + λxψ′(1 + λx)] + [ψ(1 + (1− λ)x) + (1− λ)xψ′(1 + (1− λ)x)] ≥ 0

the last estimate following from (iii) and the fact that for λ ∈ (0, 1/2) we have λx ≤ (1 − λ)x.
Therefore, h is maximal for λ = 1/2. We conclude

−λψ(1 + λx) + ψ(1 + x)− (1− λ)ψ(1 + (1− λ)x)

≤ −
1

2
ψ(1 + x/2) + ψ(1 + x)−

1

2
ψ(1 + x/2)

≤ −
1

2
ψ(1 + x/2) +

1

2
ψ(1/2 + x/2) +

1

2
ψ(1 + x/2) + ln 2−

1

2
ψ(1 + x/2)

≤ ln 2 +
1

2
(ψ(1/2 + x/2)− ψ(1 + x/2)) ≤ ln 2

by (ii) and (iv). !
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Lemma B.6 Let m ≥ 0 and a, b ≥ 0 such that a+ b ≥ 1. Then the function

µ ,→
Γ(m+ 1)

Γ(m− µ+ 1)
(a+ b+m− µ)(a+m−µ)

is monotonically decreasing on [0, m] and therefore attains its maximum at µ = 0.

Proof: Consider the logarithm of the function in question, i.e.,

f(µ) := ln Γ(m+ 1)− lnΓ(m− µ+ 1) + (a +m− µ) ln (a+ b+m− µ),

f ′(µ) = ψ(m− µ+ 1)− ln (a+ b+m− µ)−
a+m− µ

a+ b+m− µ

≤ ln (m− µ+ 1)− ln (a+ b+m− µ)−
a+m− µ

a+ b+m− µ
≤ 0

where we used Lemma B.5, (i) and the assumption a+ b ≥ 1. !

Lemma B.7 Let p ∈ N0, i ∈ N, a ≥ −1, and b such that a + b+ p ≥ 0. Then the function

f : (ν, j) ,→ e−(1+ln 2)j

(
p

ν

)(
j

ν

)
ν!
(i− j + a+ b+ p)i−j+a

(i− j)i−j
(i− ν)i−ν

defined on
0 ≤ j ≤ i− 1, 0 ≤ ν ≤ min (j, p)

attains its maximum at ν = j = 0.

Proof: For λ ∈ [0, 1] let us consider the function

j ,→ ln f(λj, j)

defined for j ∈ [0,min (i − 1, p/λ)] where we assume that all the factorials in the definition of f
are expressed in terms of the Γ function and we set p/λ = ∞ for λ = 0. We claim now that this
function is monotonically decreasing in j for each λ which proves the claim of the lemma. For
each fixed λ we have

ln f(λj, j) = −(1 + ln 2)j + ln p!−
− lnΓ(p− λj + 1)− lnΓ(λj + 1) + lnΓ(j + 1)− lnΓ((1− λ)j + 1) +

+(i− j + a) ln(i− j + a+ b+ p) + (i− λj) ln(i− λj)− (i− j) ln(i− j).

Taking the derivative with respect to j yields

d

dj
ln f(λj, j) = −(1 + ln 2) + λψ(p− λj + 1)−

λψ(λj + 1) + ψ(1 + j)− (1− λ)ψ((1− λ)j + 1)−

− ln(i− j + a + b+ p)−
i− j + a

i− j + a+ b+ p
− λ ln(i− λj)− λ+ ln(i− j) + 1.
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By Lemma B.5, (i) and (v), and the assumptions a+ b+ p ≥ 0, a ≥ −1, we have

d

dj
ln f(λj, j) ≤ −(1 + ln 2) + λ ln(p− λj + 1) + ln 2

− ln(i− j + a+ b+ p)−
i− j + a

i− j + a + b+ p
− λ ln(i− λj)− λ+ ln(i− j) + 1

≤ λ ln(p− λj + 1)− λ ln(i− λj)−

− ln(i− j + a+ b+ p) + ln(i− j)−
i− j + a

i− j + a+ b+ p
≤ λ ln(p− λj + 1)− λ ln(i− λj).

In order to obtain an estimate independent of λ, let us maximize the function

g : λ ,→ λ ln(p− λj + 1)− λ ln(i− λj).

We obtain for g′

g′(λ) = ln(p− λj + 1)− ln(i− λj) + λj

(
1

i− λj
−

1

p− λj + 1

)

We see that g′ ≥ 0 for i ≤ p+ 1 and g′ ≤ 0 for i ≥ p+ 1 and hence

g ≤

{
g(1) = ln(p− j + 1)− ln(i− j) ≤ 0 if i ≤ p+ 1

g(0) = 0 if i ≥ p+ 1.

Therefore, d
dj ln f(λj, j) ≤ 0 for all λ ∈ [0, 1] which completes the proof. !

Lemma B.8 Let p, n ∈ N0. Then the function

m ,→
(
p

m

)
(p+ n−m)!

defined for integer m ∈ [0, p] takes its maximum at m = 0.

Proof: (
p

m

)
(p+ n−m)! =

p!

m!

n∏

ν=1

(p−m+ ν)

is clearly decreasing as m increases which proves the claim. !
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