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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Abstract

A singularly perturbed reaction-diffusion equation in two dimensions is considered. We
assume analyticity of the input data, i.e., the boundary of the domain is an analytic curve
and the right hand side is analytic. We show that the hp version of the finite element method
leads to robust exponential convergence provided that one layer of needle elements of width
O(pε) is inserted near the domain boundary, that is, the rate of convergence is O

(

exp(−bp)
)

and independent of the perturbation parameter ε. We also show that the Spectral Element
Method based on the use of a Gauss-Lobatto quadrature rule of order O(p) for the evaluation
of the stiffness matrix and the load vector retains the exponential rate of convergence.

Keywords: boundary layer, singularly perturbed problem, asymptotic expansions, error bounds



1 Introduction

Many boundary value problems (BVPs) arising in mechanics depend on a small or large parameter
and are singularly perturbed. Frequently, this causes difficulties in the convergence of discretiza-
tions of such BVPs and requires especially designed schemes for their effective numerical solution
(see, e.g., [1, 2, 3] and references therein). These difficulties are, roughly speaking, due to stability
problems (especially in convection dominated fluid flow problems) and due to boundary layers
which downgrade the approximability of the solution.
The Finite Element Method (FEM) is today the most widely used discretization technique for
the numerical solution of BVPs. In recent years, in particular the p- and hp-FEM have emerged
(see [4] and the references there), which achieve exponential convergence for elliptic problems with
piecewise analytic solutions.
The aim of the present paper is to prove robust exponential convergence of the hp-FEM for a
class of two dimensional singularly perturbed problems, i.e., the convergence is exponential and
independent of the singular perturbation parameter ε.

1.1 Model Problem and Main Results

Consider
Lεuε ≡ −ε2∆uε + uε = f on Ω ⊂ R2,

uε = g on ∂Ω
(1.1)

where ∂Ω is a closed, non-selfintersecting, analytic curve, f is analytic on Ω, g is analytic on ∂Ω,
and ε ∈ (0, 1] is a small parameter.
As usual, we denote by L2(Ω) the square integrable functions on Ω and by H1(Ω) those functions
of L2(Ω) whose (distributional) derivative is also in L2(Ω). The trace operator maps H1(Ω) onto
the space H1/2(∂Ω) by restricting the elements of H1(Ω) to the boundary ∂Ω. H1

0 (Ω) denotes the
kernel of the trace operator, that is, those functions in H1(Ω) whose trace on ∂Ω is zero.
Assume g = 0. The weak formulation of (1.1) is: find uε ∈ H1

0(Ω) such that

Bε(uε, v) := ε2
∫

Ω

∇uε ·∇v dxdy +

∫

Ω

uεv dxdy = F (v) :=

∫

Ω

fv dxdy ∀v ∈ H1
0 (Ω). (1.2)

Associated with this problem is the notion of an “energy”

‖u‖2ε,Ω := Bε(u, u) = ε2‖∇u‖2L2(Ω) + ‖u‖2L2(Ω) (1.3)

and an energy norm, being the square root of the energy. We have the a-priori estimate

‖uε‖ε,Ω ≤ ‖f‖L2(Ω) (1.4)

independently of ε.
In the FEM a finite dimensional subspace VN ⊂ H1

0 (Ω) of dimension N = dimVN is chosen, and
the finite element solution uN ∈ VN is then given by

Bε(uN , v) = F (v) ∀v ∈ VN . (1.5)
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By Céa’s Lemma, the FE solution uN is the best approximant of uε in the energy norm, i.e.,

‖uε − uN‖ε,Ω = inf
v∈VN

‖uε − v‖ε,Ω. (1.6)

The question is therefore to choose the spaces VN judiciously.

In [5] the one dimensional analog of (1.1) was analyzed, and it was shown that inserting one
element of width O(εp) at the boundary points is sufficient for the p version of the FEM to resolve
the boundary layer functions at a robust exponential rate. Hence, we may expect that in the two
dimensional situation one layer of needle elements of width O(εp) should be introduced to obtain
again robust exponential convergence. This was studied by Xenophontos in [6], who showed that
robust convergence of arbitrary algebraic order can be obtained if a boundary fitted tensor product
mesh is used that contains one layer of needle elements of width O(pε). The purpose of the present
paper is to extend those results in several ways. Firstly, we prove in Section 3 that the introduction
of one layer of needle elements of width O(pε) indeed leads to robust exponential convergence as
conjectured and observed numerically in [6]. Secondly, we relax the restriction to boundary fitted
tensor product meshes as we consider quite general quadrilateral as well as triangular meshes.
In fact, contrary to the boundary fitted tensor product meshes, where all elements satisfy the
maximum angle condition, the needle elements considered in this paper may violate the maximum
angle condition (in a controlled way) as the perturbation parameter ε tends to zero.
In Section 4 we analyze a spectral element method, which is in effect a Galerkin FEM with a
quadrature rule. We show that, under more restrictive assumptions on the mesh than for the
Galerkin FEM, the spectral element method based on a Gauss-Lobatto quadrature rule of order
O(p) retains the robust exponential convergence of the Galerkin FEM.
The main tool in our proof of robust exponential approximability is, just like in the analysis of
most schemes featuring robust algebraic convergence, the classical asymptotic expansion available
for (1.1). However, whereas the analysis of schemes that converge at robust algebraic rates rests
on asymptotic expansions of a fixed order, the expansion order in our analysis is variable. Thus,
estimates of the remainder of the asymptotic expansion which are explicit in both the expansion
order and the perturbation parameter ε are crucial to our analysis. Using the analyticity of the
input data, such explicit estimates are proved in [7] (see also [8] for the simpler analysis of the one
dimensional analog of (1.1)). We summarize the results of [7] in Section 2. Although we analyze
here only the model problem (1.1), our spectral element mesh design principles can be applied
whenever the length scale ε of the boundary layer and the spectral order p are known; this is often
the case even without full asymptotics being available.

1.2 Notation

To define the asymptotic expansion of the exact solution, we introduce boundary fitted coordinates:
Let (X(θ), Y (θ)), θ ∈ [0, L) be an analytic, L-periodic parametrization by arclength of the bound-
ary ∂Ω such that the normal vector (−Y ′(θ), X ′(θ)) always points into the domain Ω. Introduce
the notation κ(θ) for the curvature of the boundary curve and denote by TL the one dimensional
torus of length L, i.e., R/[0,L) endowed with the usual topology. The functions X , Y , and hence
also κ are analytic on TL by the analyticity of ∂Ω. For the remainder of this paper, let ρ0 > 0 be
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fixed such that

0 < ρ0 <
1

‖κ‖L∞([0,L))
. (1.7)

Then the mapping

ψ : [0, ρ0]× TL → Ω
(ρ, θ) +→ (X(θ)− ρY ′(θ), Y (θ) + ρX ′(θ))

(1.8)

is real analytic on [0, ρ0]× TL. The function ψ maps the rectangle (0, ρ0)× [0, L) onto a tubular
neighborhood Ω0 of ∂Ω. Furthermore by the choice of ρ0, the inverse ψ−1 : Ω0 → [0, ρ0]×TL exists
and is also real analytic on the closed set Ω0. For σ > 0 we introduce the stretching map sσ via

sσ : (0,∞)× [0, L) → R+ × [0, L)
(ρ, θ) +→ (σρ, θ).

(1.9)

The boundary layer expansion, i.e., the inner expansion, will be defined only in a neighborhood
of the boundary ∂Ω. Therefore, we introduce a cut-off function χ supported by a neighborhood
of ∂Ω. To this end, let

0 < ρ1 < ρ0 (1.10)

be given and let χ be a smooth cut-off function, defined on Ω satisfying

χ(x, y) =

{
1 for 0 ≤ dist((x, y), ∂Ω) ≤ ρ1
0 for dist((x, y), ∂Ω) ≥ (ρ1 + ρ0)/2.

(1.11)

Finally, as f is assumed to be analytic on Ω there is complex neighborhood Ω̃ ⊂ C× C of Ω and
a holomorphic extension of f (also denoted f) to Ω̃. Therefore, we may assume that there are
constants Cf , γf > 0 such that

‖Dαf‖L∞(Ω̃) ≤ Cfγ
|α|
f |α|! ∀α ∈ N

2
0. (1.12)

From this estimate, we can conclude with the aid of Cauchy’s integral theorem for derivatives (after
passing to a compact subset of Ω̃ which we denote again by Ω̃) the existence of C∆f , γ∆f > 0 such
that

‖∆(i)f‖L∞(Ω̃) ≤ C∆f(2i)!γ
2i
∆f ∀i ∈ N0 (1.13)

where ∆(i) denotes the iterated Laplace operator, i.e., ∆(0) = Id, ∆(1) = ∆, ∆(2) = ∆∆, etc.

2 Regularity of the Solution

The aim of this section is to clarify the regularity properties of the solution uε of (1.1). More
precisely, we are interested in the dependence of the higher derivatives of uε on the perturbation
parameter ε. We will distinguish two cases:

(i) the asymptotic case where the order of the derivative is > ε−1;

(ii) the pre-asymptotic case where the order of the derivatives is ≤ ε−1.

All results of this section are proved in the second part of this work, [7].
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2.1 The Asymptotic Case

The growth of the derivatives of the solution uε can be estimated using the techniques of [9].

Theorem 2.1 Let uε be the solution (1.1) with f , g, and ∂Ω analytic. Then there are constants
C, K > 0 depending only on f , g, and Ω such that

‖Dαuε‖L2(Ω) ≤ CK |α|max (|α|, ε−1)|α| ∀α ∈ N
2
0.

We note that Theorem 2.1 yields estimates for the derivatives of uε which are independent of ε
provided that |α| ≥ cε−1 for some c > 0. Roughly speaking, this means that derivatives of order
O(ε−1) “don’t see” the boundary layers. Another observation is that, as the asymptotic behavior
of the derivatives of uε can be controlled independently of ε, there is Ω̃ ⊃ Ω such that uε is analytic
on Ω̃ independently of ε. Furthermore, it is not too hard to see that Theorem 2.1 yields robust
exponential rates of convergence for the p version of the finite element method, provided that the
polynomial degree p is at least O(ε−1).

2.2 The Pre-asymptotic Case

The solution uε of (1.1) has boundary layer character when the parameter ε is small. This means
that in a neighborhood of the boundary the behavior of uε in tangential direction differs substan-
tially from its behavior in the normal direction. This “anisotropic” boundary layer behavior is not
reflected in the results of Theorem 2.1 but can be described by means of the classical asymptotic
expansions: For each M ∈ N0, the solution uε can be decomposed as

uε = wM + χuBL
M + rM (2.1)

where wM is the outer expansion, uBL
M is the inner expansion, χ is the cut-off function defined in

(1.11), and rM is the remainder.
For a given expansion order M , we define the outer expansion by

wM :=
M∑

i=0

ε2i∆(i)f = f + ε2∆f + ε4∆∆f + · · · (2.2)

where ∆(i) denotes the iterated Laplacian. As

Lε(uε − wM) = ε2M+2∆(M+1)f on Ω

we see that asymptotically, as ε tends to zero, the functions wM satisfy the differential equation on
Ω. However, the functions wM do not satisfy the boundary conditions. Let us therefore introduce
a correction function uBL defined by

LεuBL = 0 on Ω,
uBL = g − wM on ∂Ω.

(2.3)
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The inner expansion is now an asymptotic expansion for this correction function uBL. In order
to define this expansion, we need to rewrite the differential operator Lε in the boundary fitted
coordinates (ρ, θ). If we introduce the curvature κ(θ) of ∂Ω and the function

σ(ρ, θ) =
1

1− κ(θ)ρ

we have (see, for example, [10])

∆u(ρ, θ) = ∂2
ρ u− κ(θ)σ(ρ, θ)∂ρ u+ σ2(ρ, θ)∂2

θ u+ ρκ′(θ)σ3(ρ, θ)∂θ u.

Expanding the function σ in a converging geometric series gives

σ(ρ, θ) =
∞∑

i=0

[κ(θ)ρ]i =
∞∑

i=0

εi [κ(θ)ρ̂]i

where we introduced the stretched variable notation ρ̂ = ρ/ε. Note that we chose ρ0 < ‖κ‖L∞([0,L))

in (1.7) so that the power series expansion converges uniformly in (ρ, θ) ∈ [0, ρ0]× [0, L].
Recall that Ω0 is the tubular neighborhood of ∂Ω which is the image of the rectangle (0, ρ0)× [0, L)
under the map ψ. In this tubular neighborhood Ω0 the differential equation (2.3) takes the form

−ε2
{

∂2
ρ u

BL +
∞∑

i=0

ρi
(
ai1∂ρ u

BL + ai2∂
2
θ u

BL + ai3∂θ u
BL

)
}

+ uBL = 0 in Ω0 (2.4)

where we introduced the abbreviations

ai1 = −[κ(θ)]i+1, ai2 = (i+ 1)[κ(θ)]i, ai3 =
i(i+ 1)

2
[κ(θ)]i−1κ′(θ). (2.5)

For technical convenience let us also formulate (2.4) in terms of the stretched variable ρ̂:

−∂2
ρ̂ u

BL −
∞∑

i=0

(ερ̂)i
(
εai1∂ρ̂ u

BL + ε2ai2∂
2
θ u

BL + ε2ai3∂θ u
BL

)
+ uBL = 0. (2.6)

Now, in order to define the inner expansion, we make the formal ansatz uBL =
∑∞

i=0 ε
iÛi(ρ̂, θ)

where the functions Ûi are to be determined. Inserting this ansatz in (2.4) and equating like
powers of ε we obtain a recurrence relation for the functions Ûi:

−∂2
ρ̂ Ûi + Ûi = F̂i, i = 0, 1, . . . ,

F̂i = F̂ 1
i + F̂ 2

i + F̂ 3
i ,

F̂ 1
i =

i−1∑

j=0

ρ̂jaj1∂ρ̂ Ûi−1−j , F̂ 2
i =

i−2∑

j=0

ρ̂jaj2∂
2
θ Ûi−2−j , F̂ 3

i =
i−2∑

j=0

ρ̂jaj3∂θ Ûi−2−j

5



where we used the tacit convention that empty sums take the value zero. As we expect the
boundary layer function uBL to decay away from the boundary ∂Ω and as we want to satisfy the
boundary conditions, we supplement these ODEs for the Ûi with the boundary conditions

Ûi → 0 as ρ̂ → ∞,

[Ûi]∂Ω = Gi :=






g − [f ]∂Ω if i = 0

−[∆(i/2)f ]∂Ω if 0 < i ≤ 2M is even

0 otherwise.

We have

Theorem 2.2 Let f , g, ∂Ω be analytic. Then there are constants K1, K2, and K3 depending only
f , g, and ∂Ω such that the functions Ûi are holomorphic on

C× {z | |Im z| < K1}.

Additionally, for all α ∈ [0, 1), there are constants Cα depending only α, f , g, and Ω such that for
all i ∈ N0

∣∣∣Ûi(ρ̂+ z, θ + ζ)
∣∣∣ ≤ Cαe

−αρ̂eK2|z|
(

K3

1− α

)i

ii
1

K1 − |ζ |
(z, ζ) ∈ C× {z | |Im z| < K1}.

The inner expansion of order 2M + 1 is defined as the function

uBL
M (ρ, θ) :=

2M+1∑

i=0

εiÛi(ρ̂, θ) =
2M+1∑

i=0

εiÛi(ρ/ε, θ), (2.7)

and it satisfies the boundary conditions

[uBL
M ]∂Ω = g −

M∑

i=0

ε2i[∆(i)f ]∂Ω.

Remark 2.3: We defined uBL
M as the inner expansion of order 2M +1 so that the first neglected

term of the formal asymptotic expansion
∑∞

i=0 ε
iÛi is of order ε2M+2. This is precisely the same

power of ε as the first neglected term of the outer expansion
∑∞

i=0 ε
2i∆(i)f truncated after the ε2M

term.

As the boundary fitted coordinates (ρ, θ) are only meaningful in a neighborhood of ∂Ω we restrict
the approximation uBL

M of uBL to a tubular neighborhood of ∂Ω by the cut-off function χ defined
in (1.11). Finally, we define rM such that the following identity holds

uε = wM + χuBL
M + rM . (2.8)

Strictly speaking, the functions wM and χ are defined in cartesian coordinates (x, y) whereas the
function uBL

M is defined in boundary fitted coordinates (ρ, θ) so that we should interpret uBL
M as

uBL
M ◦ ψ−1 in the tubular neighborhood Ω0 where the boundary fitted coordinates can be defined

and we should understand χuBL
M to vanish outside of Ω0.

The following theorems clarify the derivative growth of the functions uBL
M and rM . Contrary to

classical asymptotic expansions, the dependence on the perturbation parameter ε as well as the
expansion order M is made explicit.

6



Theorem 2.4 Let f , g, and ∂Ω be analytic, α ∈ [0, 1) be fixed. Then the functions uBL
M of (2.7)

are analytic and there are constants K1, K2, K3, C > 0 depending only on f , g, Ω, and α such
that

sup
θ∈[0,L)

∣∣∂p
ρ ∂

m
θ uBL

M (ρ, θ)
∣∣ ≤ Cm!Km

2 Kp
1ε

−pe−αρ/ε ρ ≥ 0, p,m ∈ N0,

sup
θ∈[0,L)

‖∂p
ρ ∂

m
θ uBL

M (·, θ)‖L2(ρ,∞) ≤ Cm!Km
2 Kp

1ε
1/2−pe−αρ/ε ρ ≥ 0, p,m ∈ N0

provided that ε and the expansion order M satisfy

0 < ε(2M + 2) ≤ K3. (2.9)

Theorem 2.4 shows that indeed the function uBL
M and all its derivatives decay exponentially away

from the boundary ∂Ω. Let us now see under which conditions this asymptotic expansion has
meaning, i.e., when the remainder rM is indeed small. This is the object of the following theorem.

Theorem 2.5 Let f , g, and ∂Ω be analytic. Then the remainder rM of (2.8) vanishes on ∂Ω and
for each k ∈ N0 there are Ck, K > 0 depending only on k, f , g, ∂Ω and χ such that

‖rM‖Hk(Ω) ≤ Ckε
−k (εK(2M + 2))2M+2 , k = 0, 1, 2, . . .

Note that Theorem 2.5 guarantees that the remainder rM is indeed small provided that the ex-
pansion order M and the parameter ε satisfy a condition of the form ε(2M + 1) small. This is
precisely condition (2.9) which was necessary to control uBL

M . Theorem 2.5 suggests that in the
complementary case, ε(2M + 2) not small, the asymptotic expansions lose their meaning.

3 hp Finite Element Approximation

In this section we will prove the robust exponential convergence of the Galerkin FEM. To that
end, we introduce in Section 3.1 the notion of admissible boundary layer meshes which consist of
quadrilaterals and have one layer of needle elements of widthO(εp) at the boundary. In Section 3.2
we compile some results on the approximation properties of the Gauss-Lobatto interpolation op-
erator on the unit square. In Section 3.3 we show that for admissible boundary layer meshes the
difference between the exact solution uε and its piecewise Gauss-Lobatto interpolant is exponen-
tially small (in the polynomial degree p) uniformly in ε. These approximation results are extended
to meshes consisting of quadrilateral as well as triangular elements in Section 3.4.2. The admissi-
ble boundary layer meshes are essentially the “minimal” meshes that lead to robust exponential
convergence. However, they do depend on ε as well as the spectral order p. In Section 3.4.3,
therefore, we analyze fixed meshes which are refined geometrically towards the boundary ∂Ω.
With the proper number of layers, such fixed meshes have approximation properties similar to the
“minimal”, admissible boundary layer meshes.
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3.1 Admissible Boundary Layer Meshes

Let us define regular meshes consisting of quadrilaterals Ωi subject to the following standard
restrictions. Denoting S := [0, 1] × [0, 1] the usual reference square, we associate with each
quadrilateral Ωi a differentiable, bijective element mapping

Mi : S → Ωi.

Furthermore, we assume as usual that

(M1) The elements Ωi partition of the domain Ω, i.e., Ω = ∪iΩi and detM ′
i > 0 on S for all i.

(M2) For i 1= j, Ωi ∩ Ωj is either empty, or a vertex or an entire edge (vertices and edges are of
course the images of the vertices and edges of the reference element under the maps Mi).

(M3) Common edges of neighboring elements Ωi, Ωj have the same parametrization “from both
sides”: Let γij = Ωi ∩ Ωj be the common edge with endpoints (vertices) P1, P2. Then for
any point P ∈ γij, we have dist(M−1

i (P ),M−1
i (Pl)) = dist(M−1

j (P ),M−1
j (Pl)), l = 1, 2.

Given such a mesh, we can define spaces Sp, Sp
0 of piecewise mapped polynomials in the usual

way:

Sp := {u ∈ H1(Ω) | u|Ωi = ϕp ◦M
−1
i for some ϕp ∈ Qp(S)}, (3.10)

Sp
0 := Sp ∩H1

0 (Ω) (3.11)

where we used the notation Qp(S) to denote the set of all polynomials of degree p (in each variable)
on the reference square S.
We indicated in the introduction that we would like to work with meshes which have needle
elements of width O(pε) near the boundary where p is the polynomial degree. Since we want to
achieve exponential rates of convergence it is necessary that the maps Mi be analytic and that
the growth of the derivatives can be controlled in some way uniformly in i. This is the object
of the next definition. It formalizes the assumptions on a mesh with needle elements of width
(essentially) λpε and whose remaining elements are of size O(1).

Definition 3.1 (Admissible mesh family) A three-parameter family of meshes
(
Ωi(λ, p, ε)

)
,

0 < λ ≤ 1, p ∈ N, 0 < ε ≤ 1, satisfying the conditions (M1)—(M3) is called an admissible
boundary layer mesh with critical width c0 if there are constants λL, λU , C1, C2, γ > 0 independent
of the three parameters λ, p, and ε such that the following conditions hold.
If λpε > c0 then all elements are regular elements, i.e., the corresponding element maps Mi satisfy

‖ (M ′
i)

−1 ‖L∞(S) ≤ C1 (3.12)

‖DαMi‖L∞(S) ≤ C2γ
|α||α|! ∀α ∈ N

2
0. (3.13)

If λpε ≤ c0, then we distinguish two kinds of elements:
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1. Ωi abuts on the boundary: Ωi ∩ ∂Ω 1= ∅ . Then Ωi is a needle element, that is, it satisfies

λUc0 < ρ0 (3.14)

dist(x, ∂Ω) ≤ λUλpε, ∀x ∈ Ωi (3.15)

‖ (M ′
i)

−1 ‖L∞(S) ≤
C1

λpε
(3.16)

‖Dα
(
s−1
λpε ◦ ψ

−1 ◦Mi

)
‖L∞(S) ≤ C2γ

|α||α|! ∀α ∈ N
2
0 (3.17)

where the stretching operator s is defined in (1.9).

2. Ωi ∩ ∂Ω = ∅. Then Ωi dist(Ωi, ∂Ω) ≥ λLλpε, and Ωi is a regular element, i.e., the map Mi

satisfies (3.12), (3.13).

The notion of a regular element is the standard notion of “p version elements”. Let us comment
on the conditions imposed on needle elements, (3.14)–(3.17). (3.14), (3.15) stipulate that needle
elements are completely contained in the tubular neighborhood Ω0 of ∂Ω where the boundary
fitted map ψ is invertible (cf. Section 1.2). This is merely a technical assumption to guarantee
that (3.17) makes sense. Condition (3.17) is the crucial assumption, and it reflects the anisotropy
of the needle elements. The map s−1

λpε ◦ ψ−1 produces a stretching in the direction normal to
the boundary ∂Ω by the factor (λpε)−1. Therefore, the needle elements are mapped under this
stretching to sets of size O(1) whose element maps (i.e., the maps s−1

λpε◦ψ
−1◦Mi) can be controlled

independently of λ, p, ε, and i, which is (3.17).
A different approach to the definition of needle elements is to introduce “reference needle” elements,
e.g., Ri := (0,λpε)× (0, 1) and then to control the maps from Ri onto Ωi:

Definition 3.2 (Regular admissible mesh family) An admissible boundary layer mesh fam-
ily with critical width c0 is called regular if the needle elements satisfy the following additional
condition: In the case λpε ≤ c0 there are C ′

1, C
′, γ′ independent of λ, p, and ε such that the maps

M̃i : Ri := (0,λpε)× (0, 1) → Ωi

(ξ, η) +→ Mi(ξ/(λpε), η)

satisfy

C ′
1
−1 ≤ detM̃ ′

i ≤ C ′
1

‖DαM̃i‖L∞(Ri) ≤ C ′γ′|α||α|! ∀α ∈ N
2
0.

The additional conditions imposed on a regular admissible mesh guarantee that the maximal
angles of the needle elements do not degenerate. In effect, regular admissible meshes satisfy the
maximal angle condition known to be crucial for H1 approximability (cf. [11]). However, as the
energy norm is an ε-weighted H1 norm, the maximal angle condition may be relaxed, and this
is reflected in our notion of admissible mesh families (Definition 3.1). In admissible meshes, the
maximal angle of the needle elements has merely to be greater than π− cλεp for some fixed c > 0,
i.e., the maximal angle of the needle elements is allowed to degenerate to π as ε tends to zero (cf.
Fig. 3.1).
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O(1)

O(1)

O(p !)

Figure 3.1: Example of admissible mesh

Remark 3.3: Note that for fixed ε, the needle elements become “fatter” as p increases. Asymp-
totically, i.e., if p is at least O(ε−1), admissible meshes do not contain any needle elements and
are just classical p version meshes. This ties in with our discussion of Theorem 2.1 where we saw
that the p version of the FEM (on a coarse mesh) yields exponential convergence if p is at least
O(ε−1).

Remark 3.4: Let us see that the conditions for admissible meshes imply the existence of
constants C, γ > 0 such that

‖DαMi‖L∞(S) ≤ Cγ|α||α|! ∀α ∈ N
2
0 ∀i.

Clearly, we have to check this condition only for the needle elements. Let Ωi be a needle element
with λpε ≤ c0. Upon setting r = 1/c0 we have

Mi = (ψ ◦ sλpε ◦ sr) ◦
(
s−1
r ◦ s−1

λpε ◦ ψ
−1 ◦Mi

)
.

Note that s−1
r ◦ s−1

λpε ◦ ψ
−1 ◦Mi(S) ⊂ (0,λUc0)× TL. The analyticity of ψ together with λpε ≤ c0

and λUc0 < ρ0 implies readily that

‖Dα (ψ ◦ sλpε ◦ sr) ‖L∞((0,λU c0)×TL) ≤ Cγ|α||α|! ∀α ∈ N
2
0 (3.18)

for some C, γ > 0 independent of λ, p, and ε. Assumption (3.17) together with Lemma 3.9 implies
that

‖Dα
(
s−1
r ◦

(
s−1
λpε ◦ ψ

−1 ◦Mi

))
‖L∞(S) ≤ C ′γ′|α||α|! ∀α ∈ N

2
0 (3.19)

for some C ′, γ′ > 0 independent of λ, p, and ε. Applying Lemma 3.9 again with the estimates
(3.18), (3.19) implies the claim.
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3.1.1 First family of admissible meshes

In this example we want to construct a family of admissible boundary layer meshes by defining the
needle elements as “rectangles in boundary fitted coordinates”. These are essentially the boundary
fitted tensor product meshes considered in [6]. To that end, let c0 < ρ0 be given and fix a partition
0 = θ1 < θ2 < · · · < θn+1 = L (note that we can identify θn+1 with θ1 on TL).
For λpε < c0 choose the needle elements Ω1, . . . ,Ωn as the images of the rectangles

(0,λpε)× (θi, θi+1), i = 1, . . . , n

under the map ψ. Hence the needle elements Ωi with corresponding maps Mi are given by

Ωi := ψ ((0,λpε)× (θi, θi+1)) , Mi(ξ, η) := ψ
(
λpεξ, θi + η(θi+1 − θi)

)
, i = 1, . . . , n.

The elements Ω1, . . . ,Ωn form a partition of ψ ((0,λpε)× TL), and it is clear that they satisfy
(3.14)–(3.17) with all constants depending only on ψ and the fixed partition θ1, . . . , θn+1. Let us
note that

s−1
λpε ◦ ψ

−1 ◦Mi(ξ, η) = (ξ, θi + η(θi+1 − θi)), i = 1, . . . , n. (3.20)

It is simple to add to these needle elements elements Ωn+1, . . .ΩN of size O(1) such that the
total collection of elements Ω1, . . . ,ΩN satisfies (M1)–(M3) and the elements Ωn+1, . . . ,ΩN satisfy
(3.12), (3.13) with constants independent of λ, p, and ε. Note that by construction

dist(x, ∂Ω) ≥ λpε ∀x ∈ Ωi, i = n + 1, . . . , N.

Hence the meshes constructed in this way are admissible meshes in the sense of Definition 3.1
for the case λpε ≤ c0. For the case λpε > c0 we simply take the mesh constructed for the case
λpε = c0 and this concludes the construction.
In order to see that the family of meshes obtained in this way is a family of regular admissible
meshes in the sense of Definition 3.2, we consider for λpε ≤ c0 and i = 1, . . . , n

M̃i : Ri = (0,λpε)× (0, 1) → Ωi

(ξ, η) +→ Mi(ξ/(λpε), η),

which satisfies by (3.20)

s−1
λpε ◦ ψ

−1 ◦Mi = ψ−1 ◦ M̃i.

Hence the conditions of Definition 3.2 are seen to be satisfied owing to the analyticity of ψ.

3.1.2 Second family of admissible meshes

In this section, an admissible boundary layer mesh is constructed in a slightly different way. Again,
the meshes designed here form a regular admissible family of meshes.
We start out with the asymptotic mesh, i.e., a fixed, coarse mesh of quadrilaterals (Ωi)Ni=1 subject
to (M1)–(M3) whose corresponding maps Mi satisfy

‖(M ′
i)

−1‖L∞(S) ≤ C1, ‖DαMi‖L∞(S) ≤ C2γ
|α||α|! ∀α ∈ N

2
0, i = 1, . . . , N (3.21)
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for some constants C1, C2, and γ independent of i. Without loss of generality let us assume that
the quadrilaterals Ω1, . . . ,Ωn, n ≤ N , are the elements abutting on the boundary, i.e., Ωi∩∂Ω 1= ∅
for i = 1, . . . , n and Ωi ∩ ∂Ω = ∅ for i > n. For ease of exposition let us further assume that all
the elements Ωi, i = 1, . . . , n abutting on the boundary are completely contained in the tubular
neighborhood in which the boundary fitted coordinates can be defined, i.e.,

dist(x, ∂Ω) < ρ0, ∀x ∈ Ωi, i = 1, . . . , n.

Let us assume additionally that the maps Mi for these elements abutting on the boundary are
such that the line ξ = 0 is mapped onto a subset of ∂Ω (and all the other parts of the boundary
of the reference square S are mapped into Ω). This implies that for i = 1, . . . , n, the maps Mi

satisfy (
ψ−1 ◦Mi

)
(ξ, η) = (ξRi(ξ, η),Θi(ξ, η)) (3.22)

with Ri, Θi analytic on the closed reference square S. Furthermore, there is a constant C3 > 0,
independent of i such that

0 < C3 ≤ Ri(ξ, η) ≤ C−1
3 , ∀(ξ, η) ∈ S. (3.23)

For λ > 0 and p ∈ N, we distinguish two cases.

1. λpε ≥ 1/2. In this case we are in the asymptotic regime, and we use the coarse mesh defined
above.

2. λpε < 1/2. In this regime, we need to define needle elements. This is done by splitting the
elements Ωi, i = 1, . . . , n into two elements Ωneedle

i and Ωreg
i . Split the reference square S

into two elements

Sneedle := (0,λpε)× (0, 1) and Sreg := (λpε, 1)× (0, 1)

and set

Ωneedle
i := Mi(Sneedle), Ωreg := Mi(Sreg),

Mneedle
i (ξ, η) := Mi(λpεξ, η), M reg

i (ξ, η) := Mi(λpε+ (1− λpε)ξ, η).

It is easy to see that the mesh Ωneedle
1 , . . . ,Ωneedle

n ,Ωreg
1 , . . . ,Ωreg

i ,Ωn+1, . . . ,ΩN satisfies the
conditions (M1)–(M3). Furthermore, (3.22) and (3.23) imply that the needle elements satisfy
(3.15) with λU = C−1

3 . The first estimate of (3.21) gives (3.16) for the needle elements. (3.22)
together with the analyticity of Ri, Θi yields (3.17). In order to conclude that the mesh
constructed in this way is an admissible mesh, we have to see that the maps M reg

i satisfy
(3.12), (3.13), and stay away from ∂Ω. (3.23) implies again that

dist(x, ∂Ω) ≥ C3λpε, ∀x ∈ Ωreg
i

and the assumption λpε ≤ 1/2 gives that the maps M reg
i satisfy the desired conditions on

the derivatives (3.13). (3.12) follows from the fact that λpε ≤ 1/2 and that the maps Mi

satisfy (3.12) already.
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In order to see that the mesh constructed in this subsection is actually a regular admissible
mesh, we note that the map M̃needle

i here takes the form

M̃needle
i : Ri := (0,λpε)× (0, 1) → Ωneedle

i

(ξ, η) +→ Mneedle
i (ξ/(λpε), η) = Mi (ξ, η)

and so the conditions for a regular admissible mesh are satisfied.

3.2 Polynomial Approximation Results

Lemma 3.5 Let I := [0, 1] and u ∈ C∞(I) satisfying

‖Dpu‖L2(I) ≤ C1p!γ
p (3.24)

for some C1, γ > 0. Then there is a sequence of polynomials (Pp)∞p=0 of degree p such that

‖u− Pp‖L∞(I) + ‖ (u− Pp)
′ ‖L∞(I) ≤ C2C1e

−σp

where the constants C2, σ > 0 depend only on γ.

Proof: From Sobolev’s imbedding theorem, we have that ‖Dpu‖L∞(I) ≤ C1C ′
1p!γ

′p for some C ′
1,

γ′ depending only γ. Therefore, u is analytic on the closed set I and can be extended analytically
to a complex neighborhood of I. The result follows from standard theory: For example, the
polynomial Pp may be obtained by interpolating u in the Tschebyscheff points (see Chap. 4 of [12]
for the details). !

For p ≥ 1 define on the space C(I) the operator ip by interpolation in the p + 1 Gauss–Lobatto
points. By [13] we have the stability estimate

‖ipu‖L∞(I) ≤ CG(1 + ln p)‖u‖L∞(I). (3.25)

For the interpolation error in the Gauss–Lobatto points, we have

Lemma 3.6 Let u satisfy the assumptions of Lemma 3.5. Then there are C, σ > 0 depending
only on γ of Lemma 3.5 and CG such that with C1 in (3.24)

‖u− ipu‖L∞(I) + ‖ (u− ipu)
′ ‖L∞(I) ≤ CC1e

−σp.

Proof: Let Pp be the approximant of Lemma 3.5. As the interpolation operator ip reproduces
polynomials of degree p, we have

‖u− ipu‖L∞(I) ≤ ‖u− Pp − ip(u− Pp)‖L∞(I) ≤ [1 + CG(1 + ln p)] ‖u− Pp‖L∞(I)

‖(u− ipu)
′‖L∞(I) ≤ ‖(u− Pp)

′‖L∞(I) + ‖ [ip(u− Pp)]
′ ‖L∞(I)

≤ ‖(u− Pp)
′‖L∞(I) + 2p2‖ip(u− Pp)‖L∞(I)

where the estimate involving the factor 2p2 was obtained using Markov’s inequality. Using the
stability result (3.25) and appealing to Lemma 3.5 concludes the proof. !

On the unit square S = I × I, we introduce the interpolation operator jp as the tensor product of
the two one dimensional Gauss–Lobatto interpolation operators ixp , i

y
p: jp = ixp ◦ i

y
p = iyp ◦ i

x
p . From

the one dimensional stability estimate and Markov’s inequality in two dimensions, we obtain the
following lemma.
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Lemma 3.7 Let u ∈ C(S). Then

‖jpu‖L∞(S) ≤ C2
G(1 + ln p)2‖u‖L∞(S),

‖∂x jpu‖L∞(S), ‖∂y jpu‖L∞(S) ≤ 2C2
Gp

2(1 + ln p)2‖u‖L∞(S).

Lemma 3.8 Let u ∈ C∞(S) satisfy ‖Dαu‖L2(S) ≤ C1|α|!γ|α| for all multi-indices α ∈ N2
0. Then

there are constants C2, σ > 0 depending only on γ such that

‖u− jpu‖L∞(S) + ‖∇(u− jpu)‖L∞(S) ≤ C2C1e
−σp

Proof: Again by Sobolev’s imbedding theorem we may assume without loss of generality that the
growth condition on the derivatives has the form

‖Dαu‖L∞(S) ≤ C1C
′
1|α|!γ

′|α|

with constants C ′
1, γ

′ depending only on γ. Hence u is analytic on the closed set S. We write

u− jpu = u− ixpu+ ixp
(
u− iypu

)

‖u− jpu‖L∞(S) ≤ sup
y∈I

sup
x∈I

|u− ixpu|+ CG(1 + ln p) sup
x∈I

sup
y∈I

|u− iypu|

Consider now the first term. For each fixed y, we obtain from Lemma 3.6

sup
x∈I

|u− ixpu| ≤ CC1e
−σp

where C and σ > 0 depend only on C ′
1, γ

′ and are independent of y. The second term can be
estimated similarly.
For the derivative, consider ∂x (u − jpu), the y derivative being handled analogously. As ∂x and
iyp commute, we have

‖∂x (u− jpu)‖L∞(S) ≤ ‖∂x u− iyp∂x u‖L∞(S) + ‖iyp
[
∂x (u− ixp)

]
‖L∞(S)

≤ ‖∂x u− iyp∂x u‖L∞(S) + CG(1 + ln p)‖∂x (u− ixp)‖L∞(S)

For the first term, we note that the function ∂x u satisfies a similar growth estimate for the
derivatives as the original function u and therefore the reasoning of the first part of the proof
applies. The second term can be estimated again by Lemma 3.6. !

The regularity results of Section 2 allow us to control the derivatives of the solution uε of (1.1) on
the physical elements. However, as we formulated the approximation results above on the reference
square S, we need to see that inserting the map from the reference square to the physical element
does not affect the growth of higher derivatives adversely. This is shown in the next lemma.

Lemma 3.9 Let f and g be real analytic functions defined on Ω and S ⊂ R2, respectively. Assume
that range g ⊂⊂ Ω and that

sup
x∈Ω

|Dαf | ≤ Cf |α|!γ
|α|
f , sup

x∈S
|Dαg| ≤ Cg|α|!γ

|α|
g ∀α ∈ N

2
0.

Then there is C, γ > 0 depending only on Cg, γf , γg such that the function f ◦ g satisfies

sup
x∈S

|Dα (f ◦ g) | ≤ CCf |α|!γ
|α| ∀α ∈ N

2
0.
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Proof: The proof follows immediately from Cauchy’s integral representation of higher derivatives
for analytic functions in several variables. !

Lemma 3.10 Let Ω ⊂ R2 be a bounded, open set, S = [0, 1]2 the reference square. Assume that
g : S → g(S) ⊂⊂ Ω is analytic, injective, 0 < c1 ≤ det g′ ≤ c2 < ∞ on S, and satisfies

‖Dαg‖L∞(S) ≤ Cgγ
|α|
g |α|! ∀α ∈ N

2
0.

Let f : Ω → C be analytic on Ω and satisfy

‖Dαf‖L2(Ω) ≤ Cfγ
|α|
f max (|α|, ε−1)|α| ∀α ∈ N

2
0

for some Cf , γf > 0, ε ∈ (0, 1]. Then there are C, γ > 0 depending only on Cg, γg, γf , c1, c2 such
that

‖Dα (f ◦ g) ‖L2(S) ≤ CfCγ|α|max (|α|, ε−1)|α| ∀α ∈ N
2
0, (3.26)

‖Dα (f ◦ g) ‖L2(S) ≤ CfCγ|α||α|!e1/ε ∀α ∈ N
2
0. (3.27)

Proof: The proof of (3.26) can be found in Lemma 3.13 of [7]. (3.27) follows readily from (3.26)
if we observe that

max (|α|, ε−1)|α| ≤ max (|α||α|, |α|!ε−|α|/|α|!) ≤ max (|α||α|, |α|!e1/ε) ≤ C|α|!e|α|e1/ε ∀α ∈ N
2
0

by Stirling’s formula and then replace γ of (3.26) with γe. !

Piecewise interpolation in the mapped Gauss–Lobatto points yields a global H1 conforming inter-
polant with global approximation properties as good as the local approximations permit:

Proposition 3.11 Let (Ωi(λ, p, ε)) be a family of admissible meshes in the sense of Definition 3.1
and let Mi be the corresponding element maps. Let u ∈ C(Ω) and assume that

|u ◦Mi − jp (u ◦Mi) |L∞(S) ≤ δ1

|∇(u ◦Mi − jp (u ◦Mi))|L∞(S) ≤ δ2

{
ε−1 if Ωi is a regular element

1 if Ωi is a needle element.

(3.28)

Then the function πp defined on each element Ωi by local interpolation in the mapped Gauss-Lobatto
points

πp|Ωi = jp (u ◦Mi) ◦M
−1
i

is an element of Sp ⊂ H1(Ω) and

‖u− πp‖L∞(Ω) ≤ δ1

‖∇(u− πp)‖L∞(Ω) ≤ C1
1

ε
max (1, 1/(λp)) δ2

with C1 of Definition 3.1. If additionally u = 0 on ∂Ω, then πp ∈ Sp
0 .
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Proof: To prove the claim that πp ∈ Sp, it is enough to see that πp is continuous across interele-
ment edges. Let γij = Ωi ∩ Ωj be the common edge of two neighboring elements Ωi, Ωj . Denote
γi = M−1

i (γij), γj = M−1
j (γij) the sides of the reference square corresponding to the common

edge. By construction, the pull-backs of the traces, ti := (πp ◦ Mi)|γi and tj := (πp ◦Mj)|γj , are
polynomials of degree p on γi, γj respectively. Furthermore, as there are p + 1 Gauss-Lobatto
interpolation points on the sides γi, γj, the polynomials ti, tj are determined by the location of the
p + 1 Gauss-Lobatto points on the sides γi, γj and by their values there. As the Gauss-Lobatto
points are distributed symmetrically with respect to the mid-point of the sides γi, γj, the p + 1
sampling points for the polynomials ti, tj are the same. It suffices to show that ti = tj in these
p+ 1 sampling points. But this follows readily from the fact that the function ti, tj equal u ◦Mi,
u ◦Mj in the sampling points and from assumption (M3) of Section 3.1, which implies that these
p+ 1 sampling points are mapped onto the same points in Ω under the maps Mi and Mj .
Similarly, we see that, if u = 0 on ∂Ω, then the interpolant πp vanishes on ∂Ω, i.e., πp ∈ Sp

0 .
It is enough to show now that u − πp satisfies the desired estimates on each element Ωi. This
follows readily from the assumptions on the element maps Mi. In fact, we even have

‖∇(u− πpu)‖L∞(Ωi) ≤ ‖∇ ((u ◦Mi)− jp(u ◦Mi)) ‖L∞(S)‖
(
M−1

i

)′
‖L∞(Ωi)

≤

{
C1δ2/ε if Ωi is a regular element

C1/(λpε)δ2 if Ωi is a needle element.

!

3.3 Main Result

Theorem 3.12 Let f , g, and ∂Ω be analytic and let uε be the solution of (1.1). Let (Ωi(λ, p, ε))
be a family of admissible boundary layer meshes in the sense of Definition 3.1. Let the function πp

be defined on each element Ωi by local interpolation of uε in the (mapped) Gauss–Lobatto points,
i.e.,

πp|Ωi = jp (uε ◦Mi) ◦M
−1
i .

Then πp ∈ Sp and there are constants C, λ0, λ1, and b > 0 depending only on f , g, ∂Ω, and the
constants of Definition 3.1 such that for 0 < λ ≤ λ0 and λp ≥ λ1

‖uε − πp‖L∞(Ω) + ε‖∇(uε − πp)‖L∞(Ω) ≤ C(1 + ln p)2p2e−bλp.

Furthermore, if g = 0, then πp ∈ Sp
0 .

Before we proceed with the proof of this theorem, let us make a few comments and extract from
it the exponential rate of convergence of the Galerkin FEM (1.5) based on piecewise polynomials
on admissible meshes.
Remark 3.13: Under the assumption 0 < λ ≤ λ0, λp ≥ λ1, the constants C and b in the state-
ment of Theorem 3.12 are independent of λ, p, and ε. In practical applications of Theorem 3.12,
one has to make specific choices of the parameter λ. In Theorem 3.14 below, we choose λ = λ0,
but other choices are possible. For example, as Theorem 3.12 does not give a useful indication of
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the size of the constants λ0, λ1, one choice for λ could be to take it as a function of p: λ = λ(p);
e.g., the specific choice λ(p) := 1/ ln p for p ≥ 2 guarantees that the conditions λ ≤ λ0 and λp ≥ λ1

are met provided that p is sufficiently large. Therefore, we may conclude from Theorem 3.12 that
there are constants C, b > 0 depending only on f , ∂Ω, g, and the constants of Definition 3.1 such
that

‖uε − πp‖L∞(Ω) + ε‖∇ (uε − πp) ‖L∞(Ω) ≤ Ce−bp/ ln p ∀p ≥ 2.

Theorem 3.12 implies the robust exponential convergence of the hp Galerkin FEM (1.5):

Theorem 3.14 Assume the hypotheses of Theorem 3.12 and assume additionally that g = 0 in
(1.1) (see Section 3.4.1 ahead for g 1= 0). Furthermore, let the number of elements in (Ωi(λ, p, ε))
be bounded independently of λ, p, ε by N0 ∈ N0. Then there are C, b, λ0 > 0 independent of ε and
p such that the choice VN := Sp

0 based on the meshes (Ωi(λ0, p, ε)) in the FEM (1.5) yields for the
finite element solution uN

‖uε − uN‖ε,Ω ≤ Ce−b
√
N

where N = dimVN = dimSp
0 ∼ p2.

Proof: In view of (1.6), Theorem 3.12 guarantees the existence of C, b, λ0, and λ1 such that

‖uε − uN‖ε,Ω ≤ ‖uε − uN‖L2(Ω) + ε‖∇(uε − uN)‖L2(Ω) ≤ C(1 + ln p)2p2e−bλp

provided that 0 < λ ≤ λ0, λp ≥ λ1. Fixing λ = λ0 we see that the finite element solution uN

satisfies
‖uε − uN‖ε,Ω ≤ Ce−b′p

for some C, b′ > 0. As the number of elements in the family of meshes is bounded independently
of λ, p, and ε, we have dimSp

0 ∼ p2 with constants depending only on N0; this concludes the proof.
!

Proof of Theorem 3.12: The basis of the proof is an application of Proposition 3.11. It suffices
therefore to see that δ1, δ2 of the assumptions of Proposition 3.11 are exponentially small (in p),
that is, we have to show that

‖(uε ◦Mi)− jp(uε ◦Mi)‖L∞(S) ≤ C(1 + ln p)2p2e−bλp ∀i

‖∇ ((uε ◦Mi)− jp(uε ◦Mi)) ‖L∞(S) ≤ C(1 + ln p)2p2e−bλp

{
ε−1 if Ωi is a regular element

1 if Ωi is a needle element
(3.29)

where the constants C, b > 0 are independent of λ, p, ε, and i.
The proof consists in considering the asymptotic case (i.e., pε large) and the pre-asymptotic case
(pε small) separately.
The asymptotic case λpε ≥ c0. By Theorem 2.1 there are constants C, K independent of ε
such that

‖Dαuε‖L2(Ω) ≤ CK |α| max (|α|, ε−1)|α| ∀α ∈ N
2
0.

For each element map Mi, we can apply Lemma 3.10

‖Dα (uε ◦Mi) ‖L2(S) ≤ Cγ|α||α|!e1/ε ∀α ∈ N
2
0

17



where the constants C, γ > 0 are independent of ε and i. According to Lemma 3.6, the Gauss-
Lobatto interpolant jp(uε ◦Mi) satisfies

‖(uε ◦Mi)− jp(uε ◦Mi)‖L∞(S) + ‖∇ ((uε ◦Mi)− jp(uε ◦Mi)) ‖L∞(S) ≤ Ce−σp+1/ε

where C, σ are independent of ε and i. Using the assumption λpε ≥ c0 we arrive at

‖(uε ◦Mi)− jp(uε ◦Mi)‖L∞(S) + ‖∇ ((uε ◦Mi)− jp(uε ◦Mi)) ‖L∞(S) ≤ Ce−σp+λp/c0

which produces the desired local estimates (3.29) if we choose λ0 so small that σ − λ0/c0 > 0.
The pre-asymptotic case λpε < c0. In the pre-asymptotic case, we have to exploit more
carefully the boundary layer structure of the solution uε which we analyzed in Section 2.2. We
decompose uε as

uε = wM + χuBL
M + rM

where the expansion order M ∈ N0 is now chosen in dependence on λp: We choose M such that

2M + 2 = µλp (3.30)

where the parameter µ > 0 is fixed and satisfies

µγ∆fc0 < 1, µc0 < K3, µc0K =: q < 1 (3.31)

where γ∆f was defined in (1.13), c0 is the critical width of the family of meshes considered here, the
constant K3 is the constant K3 of Theorem 2.4, and K is the constant K of Theorem 2.5. Let us
remark at this point that, strictly speaking, we should take M as the integer part of (µλp− 2)/2.
However, for the sake of simplicity of notation, we will ignore this point for the remainder of
the proof. In order for M to be non-negative (and for technical reasons below, we need that
2M + 2 ≥ 3), we impose on λ and p the condition

λp ≥ λ1 :=
3

µ
. (3.32)

Let us now see that with this choice of the expansion order M , each of the three terms in the
decomposition of uε can be approximated by its Gauss-Lobatto interpolant with the desired ex-
ponential accuracy. Let us first consider wM . By the definition of wM we have

wM =
M∑

i=0

ε2i∆(i)f.

By Cauchy’s integral theorem for derivatives we obtain with the aid of estimate (1.13), the obser-
vation 2M = µλp− 2 ≤ µλp, and the assumption µλpε ≤ µc0 < 1

‖DαwM‖L∞(Ω) ≤ Cd|α||α|!
M∑

i=0

ε2i‖∆(i)f‖L∞(Ω̃) ≤ Cd|α||α|!
M∑

i=0

ε2iγ2i
∆f(2i)!

≤ Cd|α||α|!
M∑

i=0

(εγ∆f2M)2i ≤ Cd|α||α|!
M∑

i=0

(γ∆fµλpε)
2i

≤ Cd|α||α|!
M∑

i=0

(γ∆fµc0)
2i ≤ Cd|α||α|!

18



where the constants C, d depend only on f and µc0 < 1. Hence, we may apply Lemma 3.9 (cf.
also Remark 3.3) for the estimation of wM ◦Mi, and using Lemma 3.6 we obtain

‖(wM ◦Mi)− jp (wM ◦Mi) ‖L∞(S) + ‖∇ ((wM ◦Mi)− jp (wM ◦Mi)) ‖L∞(S) ≤ Ce−σp

where the constants C, σ are independent of ε and i.
Let us now turn to the approximation of χuBL

M by its Gauss-Lobatto interpolant. We will consider
the two cases of needle elements and regular elements separately. Let us first consider the case
of the needle elements. By the assumptions on the meshes (cf. Definition 3.1) we have that
λUc0 < ρ0. Let us assume without loss of generality that the cut-off function χ of (1.11) is chosen
such that ρ1 = λUc0, i.e., χ ≡ 1 for 0 < ρ ≤ λUc0. Therefore, for needle elements Ωi we have
χuBL

M ≡ uBL
M and

χuBL
M ◦ ψ−1 ◦Mi =

(
uBL
M ◦ sλpε

)
◦
(
s−1
λpε ◦ ψ

−1 ◦Mi

)

where sλpε is the stretching map introduced in (1.9) and ψ the boundary fitted coordinate trans-
formation of (1.8). Let us estimate now the growth of the derivatives of uBL

M ◦ sλpε. We have by
Theorem 2.4 (note that our choice of µ and M guarantees that ε(2M + 2) < K3)

∣∣∂n
ρ ∂

m
θ

(
uBL
M ◦ sλpε

)
(ρ, θ)

∣∣ ≤ Cm!Km
2 Kn

1 (λp)
n ∀n,m ∈ N0.

As (λp)n ≤ n!eλp we obtain

‖Dα
(
uBL
M ◦ sλpε

)
‖L∞((0,∞)×[0,L)) ≤ C|α|! max (K2, K1)

|α|eλp ∀α ∈ N
2
0

and by Lemma 3.9 with f = uBL
M ◦ ψ−1 ◦ sλpε and g = s−1

λpε ◦ ψ
−1 ◦Mi

‖Dα
(
uBL
M ◦ ψ−1 ◦Mi

)
‖L∞(S) ≤ CeλpK |α||α|! ∀α ∈ N

2
0

where C, K are independent of λ, p, and ε. Applying Lemma 3.6 yields the existence of C, σ > 0
independent of λ, p, and ε such that (for the remainder of the proof we write uBL

M ◦ Mi instead
of uBL

M ◦ ψ−1 ◦Mi, thus thinking of uBL
M as being given in carteasian coordinates (x, y); a similar

abuse of notation applies to χuBL
M below)

‖(uBL
M ◦Mi)− jp(u

BL
M ◦Mi)‖L∞(S) + ‖∇

(
(uBL

M ◦Mi)− jp(u
BL
M ◦Mi)

)
‖L∞(S) ≤ Ceλpe−σp.

These are the desired estimates for uBL
M on the needle elements if λ < σ. Let us now consider the

regular elements Ω. By assumption, in the case dist(x, ∂Ω) ≥ λLλpε for all x ∈ Ωi, Theorem 2.4
implies immediately

‖χuBL
M ◦Mi‖L∞(S) ≤ Cαe

−αλLλp,

‖∇
(
χuBL

M ◦Mi

)
‖L∞(S) ≤ Cαε

−1e−αλLλp.

Appealing to Lemma 3.7 gives (after choosing α = 1/2)

‖(χuBL
M ◦Mi)− jp(χu

BL
M ◦Mi)‖L∞(S) ≤ C(1 + ln p)2e−λLλp/2,

‖∇
(
(χuBL

M ◦Mi)− jp(χu
BL
M ◦Mi)

)
‖L∞(S) ≤ C(1 + ln p)2p2ε−1e−λLλp/2
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which produces the desired estimates (3.29).
Finally, let us consider the remainder rM . By Theorem 2.5 and Sobolev’s imbedding theorem we
have

‖rM‖L∞(Ω) ≤ C‖rM‖H2(Ω) ≤ Cε−2 (εK(2M + 2))2M+2 ,

‖∇rM‖L∞(Ω) ≤ C‖rM‖H3(Ω) ≤ Cε−3 (εK(2M + 2))2M+2

for some C, K independent of ε and M . As ‖M ′
i‖L∞(S) ≤ C with C independent of λ, p, ε, and i,

we get

‖rM ◦Mi‖L∞(S) ≤ Cε−2 (εK(2M + 2))2M+2 ∀i,

‖∇ (rM ◦Mi) ‖L∞(S) ≤ Cε−3 (εK(2M + 2))2M+2 ∀i.

An application of Lemma 3.7 gives

‖(rM ◦Mi)− jp(rM ◦Mi)‖L∞(S) ≤ Cε−2(1 + ln p)2 (εK(2M + 2))2M+2 ∀i,

‖∇ ((rM ◦Mi)− jp(rM ◦Mi)) ‖L∞(S) ≤ Cε−3(1 + ln p)2p2 (εK(2M + 2))2M+2 ∀i.

We observe that we can write

ε−β (εK(2M + 2))2M+2 = (K(2M + 2))β (εK(2M + 2))2M+2−β β = 2, 3.

Using now the basic assumption on µ that εK(2M + 2) = Kµλpε ≤ Kµc0 =: q < 1 and the
assumption 2M + 2 ≥ 3 (cf. (3.32)) we can bound

‖(rM ◦Mi)− jp(rM ◦Mi)‖L∞(S) ≤ C(1 + ln p)2(µλp)2qµλp−2 ∀i,

‖∇ ((rM ◦Mi)− jp(rM ◦Mi)) ‖L∞(S) ≤ C(1 + ln p)2p2(µλp)3qµλp−3 ∀i,

and hence we see that the interpolation of the remainder rM in the Gauss-Lobatto points also
satisfies (3.29). !

3.4 Extensions of the Main Result

3.4.1 Inhomogeneous Dirichlet Conditions

We considered in Theorem 3.14 the case of homogeneous Dirichlet data. For the FE formulation
of (1.1) with g 1= 0 we proceed as usual: Let ũ ∈ Sp be such that ũ|∂Ω = πp on ∂Ω where πp is
the Gauss-Lobatto interpolant of Theorem 3.12. This is easily accomplished as each quadrilateral
element Ωi abutting on ∂Ω has p + 1 Gauss-Lobatto interpolation points located on ∂Ωi ∩ ∂Ω.
Then the finite element formation is

find uFE ∈ Sp
0 such that Bε(uFE, v) = F (v)−Bε(ũ, v) ∀v ∈ Sp

0 .

The standard arguments then yield

‖uε − (ũ+ uFE)‖ε,Ω ≤ inf
v∈Sp

0

‖uε − (ũ+ v)‖ε,Ω ≤ ‖uε − πp‖ε,Ω

and hence robust exponential convergence for the case of inhomogeneous analytic boundary con-
ditions.

20



3.4.2 Triangular Elements

We proved the approximation result Theorem 3.12 for meshes consisting of quadrilateral elements.
Let us outline in this section how similar results can be obtained for meshes consisting of quadri-
lateral as well as triangular elements.
Denote T the reference triangle consisting of half the reference square S. Again, the maps Mi

denote the bijective, analytic maps from the reference elementsKi (i.e., either the reference square
S or the reference triangle T ) to the physical elements Ωi. We assume that the maps Mi satisfy
(M1), (M2) of Section 3.1. As the edges of the reference triangle T have not all length 1, condition
(M3) has to be replaced with

(M3′) (M3) of Section 3.1 holds with the condition dist(M−1
i (P ),M−1

i (Pl)) = dist(M−1
j (P ),M−1

j (Pl))
replaced with dist(M−1

i (P ),M−1
i (Pl))/Li = dist(M−1

j (P ),M−1
j (Pl))/Lj where Li, Lj denote

the lengths of the edges of the reference elements corresponding to γij.

(M4) For triangular elements, the maps Mi : T → Ωi can be extended analytically to S.

For such meshes, we may define spaces of piecewise mapped polynomials by

T p := {u ∈ H1(Ω) | u|Ωi = ϕp ◦M
−1
i for some Πp(Ki)}

T p
0 := T p ∩H1

0 (Ω)

where we write Πp(Ki) to denote Qp(S) if Ωi is a quadrilateral and Πp(Ki) = Pp(T ), the spaces
of all polynomials of total degree p, if Ωi is a triangle.
In complete analogy to Definition 3.1, we may introduce the notion of admissible triangulations.

Definition 3.15 A three-parameter family of meshes (Ωi(λ, p, ε)), 0 < λ ≤ 1, p ∈ N, ε ∈ (0, 1]
consisting of quadrilaterals and triangles and which satisfy (M1), (M2), (M3′), (M4) is called an
admissible family of triangulations with critical width c0, if there are λL, λU , C1, C2, γ > 0 with
λUc0 < ρ0 such that the following holds.
If λpε > c0 then all elements are regular elements and the corresponding maps Mi satisfy

‖ (M ′
i)

−1 ‖L∞(Ki) ≤ C1, ‖DαMi‖L∞(S) ≤ C2γ
|α||α|! ∀α ∈ N

2
0. (3.33)

If λpε ≤ c0, then only the following two cases may occur.

1. Ωi is a needle element, i.e., dist(Mi(x), ∂Ω) ≤ λUλpε for all x ∈ S and

‖ (M ′
i)

−1 ‖L∞(Ki) ≤
C1

λpε
, ‖Dα

(
s−1
λpε ◦ ψ

−1 ◦Mi

)
‖L∞(S) ≤ C2γ

|α||α|! ∀α ∈ N
2
0 (3.34)

where the stretching operator s is defined in (1.9).

2. Ωi is a regular element, i.e., it satisfies (3.33) and additionally dist(Mi(x), ∂Ω) ≥ λLλpε for
all x ∈ S.

21



Theorem 3.16 Let f , g, ∂Ω be analytic and uε be the solution of (1.1). Let (Ωi(λ, p, ε)) be family
of admissible triangulations in the sense of Definition 3.15. Then there are constants C, b, λ0,
λ1 > 0 depending only on the data f , g, ∂Ω and the constants of Definition 3.15 such that for
0 < λ ≤ λ0 and λp ≥ λ1

inf
v∈T p

‖uε − v‖L∞(Ω) + ε‖∇(uε − v)‖L∞(Ω) ≤ C(1 + ln p)2p6e−bλp. (3.35)

If g = 0, then the infimum in (3.35) may be taken over T p
0 .

Proof: The proof is very similar to the classical p version proof. It consists of finding first a
discontinuous piecewise (mapped) polynomial approximation and then correct the interelement
jumps with the aid of an appropriate lifting. Such a lifting may take the following shape: Let fp
be a polynomial of degree p defined on an edge γ of the reference square (triangle) K, and assume
that fp vanishes in the endpoints of γ. Then there is a lifted polynomial Fp ∈ Πp(K) which equals
fp on γ, vanishes on all the other edges of K, and satisfies

‖Fp‖L∞(K) ≤ Cp2‖fp‖L∞(γ), ‖∇Fp‖L∞(K) ≤ Cp4‖fp‖L∞(γ)

for some generic C > 0.
Let us now outline the proof. Without loss of generality we may assume that p is even. By
assumption (M4) we may assume that the element maps Mi are always defined on S. Checking
the proof of Theorem 3.12, we see that the assumptions of Definition 3.15 guarantee that (3.29)
holds. Set the local (discontinuous) approximations vi = jp(uε◦Mi) ∈ Qp(S) if Ωi is a quadrilateral
and choose vi = (jp/2(uε ◦Mi))|T ∈ Pp(T ) if Ωi is a triangle. Note that the vertices of the reference
elements Ki are sampling points of the Gauss-Lobatto interpolation operators jp, jp/2. The above
lifting allows us to conclude the proof of Theorem 3.16 just as in the standard p version proof. !

3.4.3 Meshes graded geometrically towards the boundary

Theorem 3.14 shows that the hp-FEM based on admissible meshes yields robust exponential
convergence. However, the meshes depend on ε as well as p. In practice, it may be more convenient
to fix a mesh and then increase the polynomial degree p until the desired accuracy is reached. Let
us demonstrate in a simple setting how Theorem 3.12 can be applied in such a situations. The
basic idea is to use a mesh that is refined geometrically (anisotropically) towards the boundary in
such a way that the smallest element has width O(ε). This produces a fixed mesh that essentially
“contains” all the admissible meshes (Ωi(λ0, p, ε)) for some λ0 sufficiently small as stipulated in
Theorem 3.12. Therefore approximation results similar to Theorem 3.12 hold true for that mesh
as well. We will construct such a geometrically graded mesh as a variation of the construction of
Section 3.1.2.
Let Ωi, i = 1, . . . , N be the fixed coarse mesh of Section 3.1.2. Let us now create a mesh that
is graded geometrically towards the boundary by subdividing the element Ωi, i = 1, . . . , n. Fix
a grading factor 0 < σ < 1 and a number L ∈ N of layers. Subdivide the square S into L + 1
rectangles as follows:

S0 := (0, σL)× (0, 1), Sl := (σL−l+1, σL−l)× (0, 1), l = 1, . . . , L
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and then set for i = 1, . . . , n

Ω0
i := Mi(S0), M0

i (ξ, η) := Mi(σLξ, η)
Ωl

i := Mi(Sl), M l
i (ξ, η) := Mi(σL−l+1 + ξσL−l, η), l = 1, . . . , L

It is easy to see that the element Ωl
i, i = 1, . . . , n, l = 0, . . . , L, together with the elements Ωi,

i = n+ 1, . . . , N satisfy the conditions (M1)–(M3).
Furthermore, let us assume that the number of layers L is chosen such that the smallest element
has width O(ε), i.e., let L ∈ N be such that

σL = cLε. (3.36)

Let us now denote Sp
geom the ansatz space of the type (3.11) based on this geometric mesh and

denote Sp
I (λ, ε) the piecewise polynomial space of type (3.11) based on the mesh family described

in Section 3.1.2. We observe that

Sp
geom ⊃ Sp

I (λ, ε) if there is l ∈ {1, . . . , L} such that λpε = σl.

By Theorem 3.12 there are C, b, λ0, and λ1 depending only on the input data f , g, ∂Ω, and
on the mesh family of Section 3.1.2 such that for 0 < λ ≤ λ0 and λp ≥ λ1 > 0 the piecewise
Gauss-Lobatto interpolant πp of the solution uε satisfies

‖uε − πp‖L∞(Ω) + ε‖∇(uε − πp)‖L∞(Ω) ≤ C(1 + ln p)2p2e−bλp. (3.37)

To obtain estimates on the approximation properties of the spaces Sp
geom it suffices to show that

for given p and ε, a judicious choice of 0 < λ ≤ λ0 yields Sp
I (λ, ε) ⊂ Sp

geom.
If the polynomial degree p satisfies λ0pε ≥ 1/2 then we may choose λ = λ0, i.e., the spaces
Sp
I (λ0, ε): By construction, for λ0pε ≥ 1/2 the space Sp

I (λ0, ε) consists just of all continuous
piecewise (mapped) polynomials on the mesh Ω1, . . . ,ΩN and thus Sp

I (λ0, ε) ⊂ Sp
geom for all L ∈ N.

Let us therefore concentrate on the case λ0pε < 1/2. Let us assume additionally that the polyno-
mial degree p is such that

σλ0p ≥ max (λ1, cL) (3.38)

Under these assumptions on p and ε, it is easy to see that there are λ ∈ [σλ0,λ0] and l ∈ {1, . . . , L}
such that

λpε = σl.

Hence, we may conclude with the same constants as in (3.37) and the assumption (3.38) on the
polynomial degree p:

inf
v∈Sp

geom

‖uε − v‖L∞(Ω) + ε‖uε − v‖L∞(Ω) ≤ C(1 + ln p)2p2e−bσλ0p (3.39)

Thus, we obtain robust exponential rates of convergence of the FEM with fixed, geometrically
graded meshes by merely increasing p on a fixed mesh. However, the number of elements of this
mesh depends on ε as the number of layers in the geometric mesh refinement is linked to the
perturbation parameter ε. Nevertheless, by (3.36) L ∼ | ln ε|, and thus this dependence is quite
weak.
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4 Spectral Element Method

In a practical implementation of (1.5) we have to evaluate the bilinear form Bε(u, v) and the right
hand side F (v) for functions u, v ∈ Sp

0 when creating the stiffness matrix and the load vector. As
the elements of Sp

0 are mapped polynomials with analytic mapping functions Mi, the integrands
arising on the reference element are no longer polynomial. Therefore the integrals cannot (in
general) be computed exactly, and we have to resort to some numerical quadrature scheme for
the calculation of the stiffness matrix and the load vector as in the spectral element method [14].
The aim of this section is to demonstrate that the spectral element method, i.e., the use of a
Gauss-Lobatto quadrature rule with O(p) points (in each direction) preserves the exponential rate
of convergence of the hp-FEM (Theorem 3.14).
We introduced two types of meshes in Section 3.1, admissible mesh families and regular admissible
mesh families. For the approximation result Theorem 3.12 we merely needed an admissible mesh
family. In these meshes, the maximal angle in needle elements is allowed to degenerate to π as ε
tends to zero. For our analysis of the effect of the numerical quadrature, we exclude this case and
consider a subclass of these meshes, namely, regular admissible meshes. Note that the examples
of Sections 3.1.1, 3.1.2 are both regular admissible mesh families.

4.1 Preliminaries

On the reference square S = (0, 1)2, we denote by GLp+q the Gauss-Lobatto quadrature rule with
p+ q + 1 points in each direction, i.e.,

∫

S

g dξdη ≈ GLp+q(g) :=
p+q∑

n=0

p+q∑

m=0

wnwmg(ξn, ξm).

Here the points ξn are given by ξ0 = 0, ξp+q = 1 and for 1 ≤ n ≤ p + q − 1 the points ξn are
the roots of the derivative of the Legrendre polynomial of order p+ q associated with the interval
I = (0, 1). The weights wn are all positive and chosen such that the Gauss-Lobatto quadrature
rule is exact for polynomials of degree 2(p+ q)− 1. For technical reasons, we will assume in all of
Section 4 that q ≥ 1 and this implies that

‖g‖2L2(S) = GLp+q(g2) for all polynomials g of degree p. (4.1)

We will use Gauss-Lobatto quadrature rules for rectangles R = (0, a) × (0, b) and denote it by
GLp+q

R . Clearly, again polynomials of degree 2(p+ q)− 1 are integrated exactly on R.

Lemma 4.1 There is a generic constant C > 0 such that for any rectangle R and any p ≥ 1

area(R)‖gp‖
2
L∞(R) ≤ Cp4‖gp‖

2
L2(R) for all polynomials gp of degree p.

Proof: The case of R being the unit square is standard. The case of a general rectangle follows
by a change of variables argument. !
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Lemma 4.2 Let R be a rectangle and GLp+q
R the Gauss-Lobatto rule of order p + q with q ≥ 1.

Denote by jp+q the Gauss-Lobatto interpolation operator on R as in Section 3.2. Then for all
polynomials wp of degree p and all functions g ∈ C(R)

∣∣∣∣

∫

R

gwp dxdy −GLp+q
R (gwp)

∣∣∣∣ ≤ ‖g − jp+qg‖L2(R)‖wp‖L2(R).

Proof: As the function (jp+qg)wp is a polynomial of degree 2(p + q) − 1 the Gauss-Lobatto
quadrature rule is exact for (jp+qg)wp by the assumption q ≥ 1. Hence,

∣∣∣∣

∫

R

gwp dxdy −GLp+q
R (gwp)

∣∣∣∣ =

∣∣∣∣

∫

R

(g − jp+qg)wp dxdy −GLp+q
R ((jp+qg − g)wp)

∣∣∣∣

≤ ‖g − jp+qg‖L2(R)‖wp‖L2(R)

where we made use of the observation that jp+qg − g = 0 at the sampling points of the Gauss-
Lobatto quadrature rule. !

Lemma 4.3 There is a generic constant C > 0 such that the following holds true. Let R be any
rectangle and denote by jq the Gauss-Lobatto interpolation operator on R. Then for p, q ≥ 1 and
any polynomials vp, wp of degree p and any function g ∈ C(R)

∣∣∣∣

∫

R

vpgwp dxdy −GLp+q
R (vpgwp)

∣∣∣∣ ≤ C(1 + ln p)2p2‖g − jqg‖L∞(R)‖vp‖L2(R)‖wp‖L2(R).

Proof: Applying Lemma 4.2, we obtain
∣∣∣∣

∫

R

vpgwp dxdy −GLp+q
R (vpgwp)

∣∣∣∣ ≤ ‖vpg − jp+q(vpg)‖L2(R)‖wp‖L2(R)

≤
√
area(R)‖vpg − jp+q(vpg)‖L∞(R)‖wp‖L2(R)

=
√
area(R)‖(vpg − vpjqg)− jp+q (vpg − vpjqg) ‖L∞(R)‖wp‖L2(R).

By Lemma 3.7 (Lemma 3.7 is formulated for the reference square S but the invariance of the
L∞ norm under transformations gives readily that the first estimate of Lemma 3.7 holds for any
rectangle R) we can estimate

‖(vpg − vpjqg)− jp+q (vpg − vpjqg) ‖L∞(R) ≤ (1 + C2
G)(1 + ln p)2‖vpg − vpjpg‖L∞(R).

Lemma 4.1 gives
√

area(R)‖vp‖L∞(R) ≤ Cp2‖vp‖L2(R) which allows us to conclude the proof. !
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4.2 The spectral element method

For u, v ∈ Sp
0 we can write

Bε(u, v) =
∑

i

ε2
∫

Ωi

∇u ·∇v dxdy +

∫

Ωi

uv dxdy

=
∑

i

ε2
∫

S

∇(ξ,η)ûi · Âi(ξ, η)∇(ξ,η)v̂i dξdη +

∫

S

ûiv̂i detM
′
i dξdη

F (v) =
∑

i

∫

Ωi

fv dxdy =
∑

i

∫

S

f̂iv̂i detM
′
i dξdη

(4.2)

where

ûi = u ◦Mi, v̂i = v ◦Mi, f̂i = f ◦Mi, (4.3)

Âi = (M ′
i)

−T · (M ′
i)

−1 detM ′
i . (4.4)

Note that the functions ûi, v̂i are polynomials of degree p as u, v ∈ Sp
0 . Replacing all the integrals

in the definition of Bε and F by the Gauss-Lobatto quadrature rule of order p+ q, we can define

BGL
ε (u, v) :=

∑

i

ε2GLp+q
(
∇(ξ,η)ûi · Âi∇(ξ,η)v̂i

)
+GLp+q (ûiv̂i detM

′
i)

FGL(v) :=
∑

i

GLp+q
(
f̂iv̂i detM

′
i

)

for all u, v ∈ Sp
0 . The spectral element method reads:

find uGL ∈ Sp
0 such that BGL

ε (uGL, v) = FGL(v) ∀v ∈ Sp
0 . (4.5)

Theorem 4.4 Let f be analytic on Ω, g = 0, and uε be the exact solution of (1.1). Let (Ωi(λ, p, ε))
be a family of regular admissible meshes in the sense of Definition 3.2. Then there are C, σ > 0
independent of λ, p, ε, q such that the finite element solution uGL of (4.5) satisfies

‖uε − uGL‖ε,Ω ≤ C

(
inf
v∈Sp

0

‖uε − v‖ε,Ω + (1 + ln p)2p2e−σq

)
.

As the proof of Theorem 4.4 is based on several lemmas, it is deferred to the end of this section.
Theorem 4.4 shows that the use of Gauss-Lobatto quadrature rules of sufficiently high order
does not destroy the exponential rate of convergence of the finite element method (1.5): By
Theorem 3.14, the infimum can be bounded by Ce−b′p and hence choosing q = νp with ν > 0 allows
us to conclude that the error of the finite element approximation with Gauss-Lobatto quadrature
is exponentially small. The parameter q is a measure of “overintegration”; this overintegration is
necessary as the integrals arising in the definition of Bε are essentially weighted L2 inner products
of polynomials of degree p and the overintegration guarantees that the weight function is accounted
for properly.
Remark 4.5: The proof of Theorem 4.4 shows that Theorem 4.4 holds true for other quadrature
rules as well, such as Gaussian integration. The proof also shows that one could use a Gauss-
Lobatto rule of order p (instead of p+ q) for the integration of the load vectors F .
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Remark 4.6: Let us stress that the conditions on the mesh are more restrictive than in Theo-
rem 3.14 as we need a regular admissible mesh family rather than merely an admissible one (or
an admissible triangulation). However, the two examples of boundary layer meshes considered in
Section 3.1 are regular admissible meshes.

The proof of Theorem 4.4 will be done in the framework of a lemma of Strang ([15], [16]):

Lemma 4.7 (Lemma of Strang) Assume that the bilinear form BGL
ε is coercive on Sp

0 , i.e., it
satisfies

βp+q‖u‖
2
ε,Ω ≤ BGL

ε (u, u) ∀u ∈ Sp
0

for some βp+q > 0. Then problem (4.5) has a unique solution uGL satisfying

‖uε − uGL‖ε,Ω ≤ (1 + β−1
p+q)

{
inf
v∈Sp

0

(

‖uε − v‖ε,Ω + sup
w∈Sp

0

|Bε(v, w)− BGL
ε (v, w)|

‖w‖ε,Ω

)

+ sup
w∈Sp

0

|F (w)− FGL(w)|

‖w‖ε,Ω

}
.

The proof of Theorem 4.4 follows immediately from Lemma 4.7 if we can show that the two
consistency terms satisfy bounds of the form e−bq and if we can show that the coercivity constants
βp+q can be bounded from below uniformly in the integration order p + q and uniformly in the
perturbation parameter ε.
For the rest of this section, we will make use of the fact that the meshes considered here are
regular admissible. This implies that we can define “reference needle elements”, and we define
these reference elements Ri with corresponding element maps M̃i : Ri → Ωi by

Ri :=

{
S if Ωi is a regular element

(0,λpε)× (0, 1) if Ωi is a needle element,

M̃i(ξ, η) :=

{
Mi(ξ, η) if Ωi is a regular element

Mi(ξ/(λpε), η) if Ωi is a needle element.

If we introduce the notation

ũi = u ◦ M̃i, ṽi = v ◦ M̃i, f̃i = f ◦ M̃i, (4.6)

Ãi =
(
M̃ ′

i

)−T
·
(
M̃ ′

i

)−1
det M̃ ′

i (4.7)

we can write Bε and F as in (4.2) with Ai, f̂i, Mi and S replaced with Ãi, f̃i, M̃i, and Ri

respectively. The Gauss-Lobatto integrations read then

BGL
ε (u, v) =

∑

i

ε2GLp+q
Ri

(
∇(ξ,η)ũi · Ãi∇(ξ,η)ṽi

)
+GLp+q

Ri

(
ũiṽi det M̃

′
i

)
,

FGL(v) =
∑

i

GLp+q
Ri

(
f̃iṽi det M̃

′
i

)
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where we write GLp+q
Ri

to denote the Gauss-Lobatto quadrature rule with p+ q + 1 points in each
direction on the square Ri. Let us note that the functions ũi, ṽi are polynomials if u, v ∈ Sp

0 and
that the Gauss-Lobatto formulas GLp+q

Ri
integrate exactly polynomials of degree 2(p + q) − 1 on

Ri.
In order to apply Lemma 4.7, we need to study the effect of the functions Ãi and det M̃ ′

i on the
numerical quadrature. We have

Lemma 4.8 Let (Ωi(λ, p, ε)) be a regular admissible family of meshes in the sense of Defini-
tion 3.2. Then there exist C1, C2, and γ > 0 independent of λ, p, ε, and i such that the symmetric
matrices Ãi and the Jacobians det M̃ ′

i satisfy

C−1
1 ≤ Ãi ≤ C1 on Ri ∀i, (4.8)

C−1
1 ≤ det M̃ ′

i ≤ C1 on Ri ∀i, (4.9)

‖DαÃi‖L∞(Ri) ≤ C2γ
|α||α|! ∀α ∈ N

2
0, ∀i, (4.10)

‖DαdetM̃ ′
i‖L∞(Ri) ≤ C2γ

|α||α|! ∀α ∈ N
2
0, ∀i. (4.11)

The proof of this technical lemma is postponed until the end of this section.

Lemma 4.9 Let (Ωi(λ, p, ε)) be a regular admissible family of meshes. Then the bilinear form
BGL

ε satisfies with the constant C1 of Lemma 4.8

C−2
1 ‖u‖2ε,Ω ≤ BGL

ε (u, u) ∀u ∈ Sp
0

for all p, q ≥ 1.

Proof: For u ∈ Sp
0 we note that the function ũi is a polynomial of degree p in each variable.

Furthermore, by the assumption that q ≥ 1, we have that the Gauss-Lobatto rule on Ri inte-
grates polynomials of degree 2p (in each variable) exactly. Hence we can estimate with the aid of
Lemma 4.8

BGL
ε (u, u) =

∑

i

ε2GLRi(∇(ξ,η)ũi · Ãi∇(ξ,η)ũi) +GLRi(ũ
2
idet M̃

′
i)

≥ C−1
1

(
∑

i

ε2GLRi(|∇(ξ,η)ũi|
2) +GLRi(|ũi|

2)

)

= C−1
1

(
∑

i

ε2
∫

Ri

∣∣∇(ξ,η)ũi

∣∣2 dξdη +

∫

Ri

|ũi|
2 dξdη

)

≥ C−2
1

(
∑

i

ε2
∫

Ri

∇(ξ,η)ũi · Ãi∇(ξ,η)ũi dξdη +

∫

Ri

|ũi|
2det M̃ ′

i dξdη

)

= C−2
1 ‖u‖2ε,Ω.

!
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Lemma 4.10 Let C1 be as in Lemma 4.8. There exists a generic constant C > 0 depending only
on the constants of Lemma 4.2, 4.3 such that for p, q ≥ 1 the following holds true.

∣∣∣∣

∫

Ri

wpf̃idet M̃
′
i dξdη −GLp+q

Ri

(
wpf̃idet M̃

′
i

)∣∣∣∣ ≤ c(f, i)‖wp‖L2(Ri) (4.12)

∣∣∣∣

∫

Ri

vpwpdet M̃
′
idξdη −GLp+q

Ri

(
vpwpdet M̃

′
i

)∣∣∣∣ ≤ Cc(i)(1 + ln p)2p2‖vp‖L2(Ri)‖wp‖L2(Ri)(4.13)

∣∣∣∣

∫

Ri

∇vp · Ãi∇wpdξdη −GLp+q
Ri

(
∇vp · Ãi∇wp

)∣∣∣∣ ≤ CC1c(Ãi, i)(1 + ln p)2p2 × (4.14)

× ‖vp‖Ãi,Ri
‖wp‖Ãi,Ri

where

c(f, i) := ‖f̃idet M̃
′
i − jp+q

(
f̃idet M̃

′
i

)
‖L2(Ri)

c(Ãi, i) := max
m,n=1,2

{‖(Ãi)m,n − jq(Ãi)m,n‖L∞(Ri)}

c(i) := ‖f̃idet M̃
′
i − jq

(
f̃idetM̃

′
i

)
‖L∞(Ri)

‖v‖Ãi,Ri
:=

(∫

Ri

∇v · Ãi∇v dξdη

)1/2

∀v ∈ H1(Ri)

and where we used the standard notation (Ãi)m,n to denote the (m,n) entry of the matrix Ãi.

Proof: (4.12) follows directly from Lemma 4.2. The proof of (4.13) is analogous to that of (4.14),
and we will therefore omit it. In order to prove (4.14), we write (ξ, η) = (ξ1, ξ2) and decompose

∫

Ri

∇vp · Ãi∇wpdξdη −GLp+q
Ri

(
∇vp · Ãi∇wp

)
=

2∑

m,n=1

∫

Ri

∂ξn vp(Ãi)m,n∂ξm wpdξdη −GLp+q
Ri

(
∂ξn vp(Ãi)m,n∂ξm wp

)
.

Each of the terms in this double sum may be estimated by Lemma 4.3, and we get using the
definition of c(Ãi, i)
∣∣∣∣

∫

Ri

∇vp · Ãi∇wpdξdη −GLp+q
Ri

(
∇vp · Ãi∇wpdξdη

)∣∣∣∣ ≤ C(1+ln p)2p2c(Ãi, i)‖∇vp‖L2(Ri)‖∇wp‖L2(Ri).

Finally, Lemma 4.8 allows us to estimate

‖∇vp‖L2(Ri) ≤ C1/2
1 ‖vp‖Ãi,Ri

, ‖∇wp‖L2(Ri) ≤ C1/2
1 ‖wp‖Ãi,Ri

which concludes the proof. !

We are now in position to prove Theorem 4.4.
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Proof of Theorem 4.4: The proof of Theorem 4.4 follows from Lemma 4.7, if we can bound the
coercivity constant βp+q from below and if we can control the consistency terms. Lemma 4.8 gives
immediately that βp+q ≥ C−1

1 for all p, q ≥ 1. Let us therefore turn to the consistency terms.
Lemma 4.10 implies that

∣∣F (w)− FGL(w)
∣∣ ≤ Cmax

i
c(f, i)‖w‖L2(Ω) ∀w ∈ Sp

0 ,
∣∣Bε(v, w)− BGL

ε (v, w)
∣∣ ≤ CC1(1 + ln p)2p2max

i
{c(Ãi, i), c(i)}‖v‖ε,Ω‖w‖ε,Ω ∀v, w ∈ Sp

0 .

We are therefore left with estimating c(f, i), c(i), and c(Ãi, i). Let us just show how we will obtain
the desired estimates for the c(Ãi, i). By Lemma 4.8, we can control the derivatives of the entries
of Ãi uniformly in i. The functions

Ai(ξ, η) =

{
Ãi(ξ, η) if Ωi is a regular element

Ãi(ξλpε, η) if Ωi is a needle element

are defined on the reference square S and satisfy growth estimates of the form required by
Lemma 3.6 with constants independent of λ, p, ε, and i (note that for the case of needle ele-
ments, Definition 3.1 stipulates that λpε ≤ c0). Hence we obtain from Lemma 3.6 (using the
scaling invariance of L∞ norm)

‖(Ãi)m,n − jq(Ãi)m,n‖L∞(Ri) ≤ Ce−σq

where the constants C, σ > 0 are independent of λ, p, ε, and i. This completes the proof. !

Proof of Lemma 4.8: By the definition of regular admissible meshes, there are constants c1, c2,
c3, and γ independent of λ, p, ε such that

c1 ≤ det M̃ ′
i ≤ c2 on Ri ∀i, (4.15)

‖DαM̃i‖L∞(Ri) ≤ c3γ
|α||α|! ∀α ∈ N

2
0 ∀i. (4.16)

(4.16) implies that there is δ > 0 (depending only on γ) such that the functions M̃i are holomorphic
on

Bδ := {(x+ z1, y + z2) | (x, y) ∈ Ri, z1, z2 ∈ C with |z1|, |z2| < δ}

and that there is C > 0 depending also only on γ and c3 such that

‖M̃i‖L∞(Bδ) ≤ C ∀i. (4.17)

With the aid of Cauchy’s integral formula for derivatives, we deduce from (4.17) that there are C,
γ > 0 such that

‖DαM̃i‖L∞(Bδ/2) ≤ Cγ|α||α|! ∀α ∈ N
2
0

where Bδ/2 defined analogously to Bδ. This implies readily (4.11) and that the functions detM̃ ′
i

are uniformly Lipschitz continuous on Bδ/4. (4.15) together with this uniform Lipschitz continuity
gives the existence of δ′ > 0 (independent of λ, p, and ε) such that

c1/2 ≤ |detM̃ ′
i(x, y)| ≤ 2c2 ∀i ∀(x, y) ∈ Bδ′ . (4.18)
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Estimates (4.17) and (4.18) together with Cramer’s rule allow us to control the entries of M̃−1
i on

Bδ′ . Cauchy’s integral theorem for derivatives gives the existence of C, γ > 0 such that

‖DαM̃−1
i ‖L∞(Ri) ≤ Cγ|α||α|! ∀α ∈ N

2
0 (4.19)

and from this we can infer easily (4.10). It remains to see (4.8). For that, we have to get estimates

for the eigenvalues 0 < λ1 ≤ λ2 of the symmetric positive definite matrices Ãi = M̃−T
i ·M̃−1

i det M̃ ′
i .

Clearly, by (4.19), (4.18) we get uniform upper bounds for the eigenvalues, i.e., there is C ′
1 > 0

independent of i, (x, y) such that λ2 ≤ C ′
1. For the lower estimates, we infer from (4.15)

c−1
2 ≤ det (M̃ ′

i)
−1 = det (M̃ ′

i)
−T ≤ c−1

1 on Ri

and then conclude together with (4.15) that c−2
2 c1 ≤ det Ãi = λ1λ2. As λ2 ≤ C ′

1, this implies the
desired uniform lower estimate for λ1. !

5 Numerical Example

As we mentioned in the Introduction, robust exponential convergence was already observed and
conjectured in [6] for boundary fitted tensor product meshes. The present paper has rigorously
established this conjecture. We refer to [17] for a variety of examples where the introduction of
only one layer of boundary fitted elements of width O(pε) is highly successful. Our results indicate
moreover that strict boundary fitting is not necessary for robust exponential convergence. In fact,
as mentioned in Section 3.1 the elements may violate in a controlled way minimal and maximal
angle conditions. The purpose of our numerical examples is therefore to illustrate this insensitivity
of the exponential convergence rate with respect to mesh distortion. To this end, consider the
following quasi one dimensional model problem.

−ε2∆uε + uε = 1 on S := (0, 1)2,
uε = 0 on ΓD := {(x, y) ∈ ∂S | y = 0},

∂nuε = 0 on ΓN := ∂S \ ΓD

(5.1)

The solution of this problem, which has no singularities and a boundary layer only at ΓD, is given
by

uε(x, y) = 1−
cosh((1− y)/ε)

cosh(1/ε)
. (5.2)

For our numerical calculations we chose ε = 10−3 and used the commercial code STRESS CHECK,
a p version code with highest polynomial degree pmax = 8. Our first numerical example is designed
to illustrate the robustness with respect to mesh distortion. On a fixed quadrilateral mesh as
depicted in Fig. 5.1 the tensor product spaces Qp with p ranging from 1 to pmax are used. The
relative error in energy (cf. (1.3)) versus square root of the number of degrees of freedom is
reported in Fig. 5.4. In the case b = 0.5, the mesh is not a boundary fitted tensor product mesh
but all quadrilaterals satisfy a maximum and minimum angle condition (even as ε tends to zero).
For the case b = 0.25 the maximum angle is π − O(ε) and the minimum angle is O(ε), i.e., the
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mesh is highly distorted. Nevertheless, the error curves in Fig. 5.4 are practically on top of each
other showing the robustness with respect to mesh distortion of the approximation properties of
admissible meshes. The situation is completely analogous for triangular meshes. Fig. 5.5 shows
the performance of the p version on the triangular mesh of Fig. 5.2. Again, the convergence is not
visibly affected by the use of highly distorted meshes in the boundary layer.
The needle elements should have width O(pε), i.e., the mesh should depend on ε as well as on
p. However, for practical purposes, it is more convenient to fix a mesh and to increase p. The
question arises then what the appropriate width of the needle elements is. If only one layer of
needle elements is used, we advocate the use of needle elements of width O(pmaxε) (however, cf.
also the discussion in Section 3.4.3). In Fig. 5.6, we show the relative error in energy versus the
number of degrees of freedom for the mesh of Fig. 5.3. Again, the robustness with respect to mesh
distortion is clearly visible as the choice of the parameter b has practically no effect. However, we
note that the error curves in Fig. 5.6 level off at about O(10−7) corresponding to p = 6. Actually,
already for p = 5, some deterioration of the rate of convergence is visible. This is due to the
fact that the width of the needle elements is fixed at 4ε instead of 8ε = pmaxε. In fact, the
large elements are too close to ΓD and dominate the global error reduction. The adverse effect
of choosing the needle elements too small is more clearly visible in the following one dimensional
analog of (5.1) which was studied in detail in [5]:

−ε2u′′
ε + uε = 1 on (0, 1), uε(0) = 0, u′

ε(1) = 0. (5.3)

The solution uε(y) is given by the right hand side of (5.2). We consider the p version FEM based
on a two element mesh determined by the points 0 = y0 < y1 = aε < y2 = 1. The performance for
ε = 10−3 and various choices of the parameter a is reported in Fig. 5.7. For fixed a, we note the
initial exponential convergence which deteriorates if p becomes large. In fact, the exponential rate
of convergence is visible until p ≈ a. For p > a, the large element (which is aε away from y = 0)
dominates the overall possible error reduction. This can be seen as follows. As the boundary
layer function in this particular case is essentially e−y/ε, the function to be approximated on the
large element is e−ae−(y−aε)/ε. For small ε polynomial approximation of e−(y−aε)/ε on the element
(aε, 1) is quite poor (cf. [5] for sharp bounds for the case of interest p << ε−1) and the factor
e−a is comparatively large if a is small (relative to p). However, if a is large (a ≥ p, say), then
the boundary layer function e−y/ε on the large element is exponentially small (in p), and thus the
contribution of the large element to the total error as well. We conclude therefore that for fixed a,
the error on the large element is negligible for p < a, and the global error reduction is controlled
by the error on the small element. In the regime p > a, the error on the large element dominates
the global error. The choice of a variable mesh, i.e., taking a = p balances the two errors; we see in
Fig. 5.7 that this choice allows us to obtain exponential convergence. Note that in our definition
of admissible meshes, width pε of the needle elements corresponds to taking a = p in this one
dimensional model problem.
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Figure 5.3: mesh (not drawn to scale)
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Figure 5.4: p version on mesh of Fig. 5.1; ε = 10−3

35



b=0.5  

b=0.25 

b=0.125

2 4 6 8 10 12 14 16 18
10

!9

10
!8

10
!7

10
!6

10
!5

10
!4

10
!3

10
!2

hp FEM; triangles; eps=10^(!3)

SQRT(DOF)

R
e

l.
 E

rr
o

r 
in

 E
n

e
rg

y
 

Figure 5.5: p version on mesh of Fig. 5.2; ε = 10−3
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Figure 5.6: p version on mesh of Fig. 5.3; ε = 10−3
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Figure 5.7: p version for 1D example and various values of a; ε = 10−3
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