Extension of two inequalities of Payne

R. Sperb

Research Report No. 97-01
January 1997
Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Extension of two inequalities of Payne

R. Sperb

Seminar für Angewandte Mathematik Eidgenössische Technische Hochschule CH-8092 Zürich
Switzerland

Research Report No. 97-01 January 1997

Abstract

In this note isoperimetric bounds are derived for the maximum of the solution to the Poisson problem for a plane domain. This extends previous bounds of Payne valid for the torsion problem.

Keywords: isoperimetric inequalities, Poisson problem

1 Introduction

The boundary value problem

$$
\left\{\begin{align*}
\Delta \psi+1=0 & \text { in } \Omega \subset \mathbb{R}^{2} \tag{1.1}\\
\psi=0 & \text { on } \partial \Omega
\end{align*}\right.
$$

is usually called the torsion problem because of its mechanical interpretation. Another interpretation relates (1.1) to a laminar flow in a pipe of cross-section Ω. Then, ψ is proportional to the flow velocity. A third important possibility is a stationary heat flow problem with ψ measuring the temperature.

An important quantity in all these contexts is

$$
S=\int_{\Omega}|\nabla \psi|^{2} d x=\int_{\Omega} \psi d x \quad(d x=\text { area element })
$$

In the mechanical interpretation of (1.1) S is called the torsional rigidity. A second quantity of interest is

$$
\psi_{m}=\max _{\Omega} \psi(x) .
$$

Many bounds for ψ_{m} and S are known, see e.g. [1, 2, 4]. In particular Pólya and Szegö proved that

$$
\begin{equation*}
\psi_{m} \leq \frac{A}{4 \pi} \tag{1.2}
\end{equation*}
$$

with A denoting the area of Ω and furthermore that

$$
\begin{equation*}
S \leq \frac{A^{2}}{8 \pi} \tag{1.3}
\end{equation*}
$$

Later on Payne [3] proved the sharper inequality

$$
\begin{equation*}
\psi_{m} \leq\left(\frac{S}{2 \pi}\right)^{1 / 2} \tag{1.4}
\end{equation*}
$$

and also gave the lower bound

$$
\begin{equation*}
4 \pi \cdot \psi_{m} \geq A-\left(A^{2}-8 \pi S\right)^{1 / 2} \tag{1.5}
\end{equation*}
$$

In all these inequalities the equality sign holds if Ω is a disk.
In this note the primary concern is to give an extension of Payne's inequalities (1.4), (1.5) to the Poisson problem in the plane, i.e. the boundary value problem

$$
\left\{\begin{align*}
\Delta u+p(x)=0 & \text { in } \Omega \tag{1.6}\\
u=0 & \text { on } \partial \Omega
\end{align*}\right.
$$

where $p(x)$ is a smooth, strictly positive function satisfying

$$
\begin{equation*}
-\frac{\Delta(\log p)}{2 p} \leq K \tag{1.7}
\end{equation*}
$$

for some constant K. If $K>0$ is an additional requirement is that

$$
\begin{equation*}
K \int_{\Omega} p d x<4 \pi . \tag{1.8}
\end{equation*}
$$

Remark:

Problem (1.6) is equivalent to problem (1.1) for a domain on a surface of Gaussian curvature $K=-\frac{1}{2 p} \Delta(\log p)$ (see $[1,4]$ fo more details).

2 Extension of Payne's inequalities

The analogue of inequalities (1.4) and (1.5) can be stated as

Theorem:

Suppose $p(x)$ satisfies (1.7) and (1.8) in the simply connected plane domain Ω and set

$$
A=\int_{\Omega} p d x, \quad S=\int_{\Omega}|\nabla u|^{2} d x=\int_{\Omega} u p d x .
$$

Then one has for $u_{m}=\max _{\Omega} u$ the inequalities

$$
\begin{equation*}
u_{m}-\frac{1}{K}\left(1-e^{-K u_{m}}\right) \leq \frac{K \cdot S}{4 \pi} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{m}+\left(\frac{A}{4 \pi}-\frac{1}{K}\right)\left(e^{K u_{m}}-1\right) \geq \frac{K \cdot S}{4 \pi} . \tag{2.2}
\end{equation*}
$$

Equality holds in (2.2), (2.3) if Ω is a disk and p is of the form

$$
\begin{aligned}
p & =\frac{c}{\left(1+\frac{c K}{4} r^{2}\right)^{2}} \\
c & =\text { positive number } \\
r & =\text { distance from the center of the disk. }
\end{aligned}
$$

Remark:

For $K \rightarrow 0$ inequalities (2.1) and (2.2) reduce to the inequalities (1.4) and (1.5) of Payne as a Taylor expansion with respect to K shows.

Proof of the Theorem:

Let Γ_{t} be the level-line where $u=t$ and Ω_{t} the domain enclosed by Γ_{t}. We set for $v \in\left(0, u_{m}\right)$

$$
\begin{equation*}
S(v)=\int_{v}^{u_{m}}\left(\oint_{\Gamma_{t}}|\nabla u| d s\right) d t \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
-\frac{d S}{d v}=\oint_{\Gamma_{v}}|\nabla u| d s=\int_{\Omega_{v}} p d x=: a(v) \tag{2.4}
\end{equation*}
$$

where we have used Green's identity and defined the quantity $a(v)$ such that

$$
a(0)=\int_{\Omega} p d x \equiv A \text { and } a\left(u_{m}\right)=0 .
$$

Next we make use of the fact that (see [1], p. 53)

$$
\begin{equation*}
-\frac{d a}{d v}=\oint_{\Gamma_{v}} p \frac{d s}{|\nabla u|} \quad \text { a.e. in }\left(0, u_{m}\right) . \tag{2.5}
\end{equation*}
$$

By Schwarz's inequality one has

$$
\begin{equation*}
\oint_{\Gamma_{v}}|\nabla u| d s \cdot \oint_{\Gamma_{v}} p \frac{d s}{|\nabla u|} \geq\left(\oint_{\Gamma_{v}} \sqrt{p} d s\right)^{2} \tag{2.6}
\end{equation*}
$$

At this point we can use Bol's inequality (see [1], p. 36) which states that if $p(x)$ satisfies (1.7) and (1.8) then

$$
\begin{equation*}
\left(\oint_{\Gamma_{v}} \sqrt{p} d s\right)^{2} \geq a(v)(4 \pi-K a(v)) \tag{2.7}
\end{equation*}
$$

Combining now (2.4), (2.6) and (2.7) we are led to the inequality

$$
\begin{equation*}
\frac{d^{2} S}{d v^{2}}-K \cdot \frac{d S}{d v} \geq 4 \pi \tag{2.8}
\end{equation*}
$$

or in equivalent form as

$$
\begin{equation*}
\frac{d}{d v}\left(e^{-K v} \cdot \frac{d S}{d v}\right) \geq 4 \pi e^{-K v} \tag{2.9}
\end{equation*}
$$

Integration of (2.9) from a value $v=v_{0}$ to $v=u_{m}$ gives after some rearrangement

$$
\begin{equation*}
-\left.\frac{d S}{d v}\right|_{v_{0}} \geq \frac{4 \pi}{K}\left(1-e^{-K\left(u_{m}-v_{0}\right)}\right), \tag{2.10}
\end{equation*}
$$

since $-\left.\frac{d S}{d v}\right|_{u_{m}}=a\left(u_{m}\right)=0$.

For $v_{0}=0$ (2.10) reads

$$
\begin{equation*}
A \geq \frac{4 \pi}{K}\left(1-e^{-K u_{m}}\right) \tag{2.11}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
u_{m} \leq \frac{1}{K} \log \left(\frac{4 \pi}{4 \pi-K A}\right) \tag{2.12}
\end{equation*}
$$

as noted by Bandle (see [1]).
If we now integrate (2.10) one more time from $v_{0}=0$ to $v_{0}=u_{m}$ we are led to

$$
\begin{equation*}
S(0)=\int_{0}^{u_{m}}\left(\oint_{\Gamma_{t}}|\nabla u| d s\right) d t=\int_{\Omega}|\nabla u|^{2} d x=S \geq \frac{4 \pi}{K}\left[u_{m}-\frac{1}{K}\left(1-e^{-K u_{m}}\right)\right] \tag{2.13}
\end{equation*}
$$

which is inequality (2.1).
(For the second equality sign in (2.13), see e.g. [4], p. 190). Inequality (2.2) is obtained in a completely analogous manner: the first integration of (2.9) is now from $v=0$ to $v=v_{0}$ and the second is from $v_{0}=0$ to $v=u_{m}$ as before.

3 Remarks

(a) It was shown by Bandle (see [1]) that

$$
S \leq \frac{4 \pi}{K^{2}} \log \frac{4 \pi}{4 \pi-K A}-\frac{A}{K}
$$

If we write (2.13) as

$$
S+\frac{4 \pi}{K^{2}}\left(1-e^{-K u_{m}}\right) \geq \frac{4 \pi}{K} u_{m}
$$

and use (2.11) and (2.12), we see that the upper bound for u_{m} given in (2.1) is sharper than the bound (2.12), but it requires the knowledge of S or a close upper bound for S.
(b) There are other types of bounds that can be obtained from the differential inequality (2.8). For example if we write it in terms of $a(v)$ as

$$
-\frac{d a}{d v} \geq 4 \pi-K a(v)
$$

and then change the independent variable and writing u in the place of v it becomes

$$
\begin{equation*}
-\frac{d u}{d a} \leq \frac{1}{4 \pi-K a} \tag{3.2}
\end{equation*}
$$

This inequality can be integrated in many ways. As an example we perform a double integration as follows:

$$
\begin{equation*}
\int_{0}^{A}\left[\int_{s}^{A}\left(-\frac{d u}{d a}\right) d a\right]^{n} d s=\int_{\Omega} u^{n} p d x \leq \int_{0}^{A}\left[\int_{s}^{A} \frac{d a}{4 \pi-K a}\right]^{n} d s \tag{3.3}
\end{equation*}
$$

Setting $f=\frac{1}{K} \log \left(\frac{4 \pi}{4 \pi-K A}\right)=$ upper bound for u_{m} one has e.g.

$$
\begin{equation*}
\int_{\Omega} u^{2} p d x \leq \frac{2}{K}\left(2 \pi f^{2}+\frac{A}{K}-\frac{4 \pi}{K} f\right) . \tag{3.4}
\end{equation*}
$$

If instead of the double integral $\int_{0}^{A} \int_{s}^{A}()$ we select $\int_{0}^{A} \int_{0}^{s}()$ then we obtain

$$
\begin{equation*}
S \geq A \cdot u_{m}+\frac{1}{K}(4 \pi-K A) \cdot f-\frac{A}{K} . \tag{3.5}
\end{equation*}
$$

(c) A number of other types of bounds for problems (1.1) and (1.6) can be found in [1], [2] and [4].

References

[1] C. Bandle. Isoperimetric inequalities and applications. Pitman, 1980.
[2] L.E. Payne. Isoperimetric inequalities and their applications. SIAM Rev. 9, 1967, 453-488.
[3] Some isoperimetric inequalities in the torsion problem for multiply connected regions. Studies in Math. Anal. and Related Topics: essays in honor of G. Pólya, Stanford Univ. Press, 1962, 270-280.
[4] R.P. Sperb. Maximum Principles and their applications. Academic Press, 1981.

Research Reports

No. Authors Title

97-01	R. Sperb	Extension of two inequalities of Payne
96-22	R. Bodenmann, A.-T. Morel	Stability analysis for the method of transport
96-21	K. Gerdes	Solution of the $3 D$-Helmholtz equation in exterior domains of arbitrary shape using HPfinite infinite elements
96-20	C. Schwab, M. Suri, C. Xenophontos	The $h p$ finite element method for problems in mechanics with boundary layers
96-19	C. Lage	The Application of Object Oriented Methods to Boundary Elements
96-18	R. Sperb	An alternative to Ewald sums. Part I: Identities for sums
96-17	M.D. Buhmann, Ch.A. Micchelli, A. Ron	Asymptotically Optimal Approximation and Numerical Solutions of Differential Equations
96-16	M.D. Buhmann, R. Fletcher	M.J.D. Powell's work in univariate and multivariate approximation theory and his contribution to optimization
96-15	W. Gautschi, J. Waldvogel	Contour Plots of Analytic Functions
96-14	R. Resch, F. Stenger, J. Waldvogel	Functional Equations Related to the Iteration of Functions
96-13	H. Forrer	Second Order Accurate Boundary Treatment for Cartesian Grid Methods
96-12	K. Gerdes, C. Schwab	Hierarchic models of Helmholtz problems on thin domains
96-11	K. Gerdes	The conjugated vs. the unconjugated infinite element method for the Helmholtz equation in exterior domains
96-10	J. Waldvogel	Symplectic Integrators for Hill's Lunar Problem
96-09	A.-T. Morel, M. Fey, J. Maurer	Multidimensional High Order Method of Transport for the Shallow Water Equations
96-08	A.-T. Morel	Multidimensional Scheme for the Shallow Water Equations
96-07	M. Feistauer, C. Schwab	On coupled problems for viscous flow in exterior domains
96-06	J.M. Melenk	A note on robust exponential convergence of finite element methods for problems with boundary layers
96-05	R. Bodenmann, H.J. Schroll	Higher order discretisation of initial-boundary value problems for mixed systems

