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Abstract

In this paper, we provide analytical stability estimates for the method of

transport. We first prove stability of the second-order method of transport

applied to the linear advection equation with constant coefficient in one di-

mension by using the von Neumann method and with the positive operator

technique. In a second step, we extend the proof to the linear advection equa-

tion with variable coefficient. Finally, we investigate and compare the existing
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1. Introduction

Many numerical methods for computing multidimensional flow were
developed during the last decades. Usually, such methods were con-
structed by applying one-dimensional schemes along all coordinate
axes. Recently, truly multidimensional schemes for solving hyperbolic
problems were constructed, examples of such schemes are van Leer’s
multidimensional differences scheme [16], Colella’s CTU scheme [4],
LeVeque’s scheme [11], Roe’s upwinding scheme [5], or Fey’s method
of transport [6], [7]. Once a new method is developed, the code has
to be validated. This can be done either numerically or analytically.
Numerical validation means to carry out computational experiments
and comparing the results with those of physical experiments or with
numerical results of other codes that are already well established. For
the method of transport, this is made in [7], [12], and [13].
Analytical validation consists of stability or convergence proofs. A
common technique to prove non-linear convergence is to first linearise
the scheme and to prove stability for this linearisation [1], [2]. For that
reason, stability analysis can be seen as a first step towards a conver-
gence proof. Since linearised schemes have variable coefficients, it is
necessary to derive stability estimates for linear, variable coefficients
problems.
In this paper, we provide analytical stability estimates for the method
of transport. A first stability analysis was provided by Fey and Schroll
[8] for the first-order scheme applied to non-linear scalar equations.
To make the proofs readable, we first prove stability of the second-
order method of transport applied to the linear advection equation in
one space dimension with constant coefficient. This is done by means
of the von Neumann method. The von Neumann method essentially
consists of proving that the symbol of the scheme is absolutely bounded
by one. For treating variable coefficients problems, the von Neumann
method has to be generalised. One technique to do this is given by
the positive operator technique described by Zhu et al. in [17] which
is applied in Sections 2.2 and 2.3. Analogies between this method and
the von Neumann analysis are worked out.
In the two-dimensional case, we start with proving stability for the first-
order method of transport with constant coefficients. Unfortunately,
Zhu’s technique for analysing stability of variable coefficients problems
cannot be generalised to two dimensions. For the second-order scheme
in two dimensions, the symbol becomes quite untractable and bound-
edness can no longer be proved analytically. However, comprehensive
computational experiments show that the symbol does not exceed one.

1
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∆ t a

xi−1/2 xi+1/2 xi+3/2

FΩiΩi+1

Ωi+1Ωi

Figure 1. Flux FΩiΩi+1
for a > 0.

In Section 4, the von Neumann analysis is carried out for the first-order
method of transport in three dimensions.

2. One-dimensional second-order scheme

The one-dimensional advection equation with constant coefficient is
given by

ut + a ux = 0

The method of transport is described by

un+1
i = un

i −
1

|Ωi|

∑

j∈{i−1,i+1}

(FΩiΩj − FΩjΩi),

Cell Ωi is the interval [xi−1/2, xi+1/2], |Ωi| its length and Ωi−1, Ωi+1 its
neighbouring cells. For a > 0, the flow FΩiΩi+1

from cell Ωi into Ωi+1,
cf. Figure 1, is described by

FΩiΩi+1
=

∫ xi+1/2+∆ t a

xi+1/2

u(x−∆ t a) dx =

∫ xi+1/2

xi+1/2−∆ t a

u(x) dx,

and for a ≤ 0, FΩiΩi+1
is identical to zero.
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To get second-order accuracy for the fluxes, the transported quantity
u has to be reconstructed linearly and the fluxes become

FΩiΩi+1
=

{

∆ t (a ui +
∆ x

2
(1− σ) a (Du)i) if a > 0

0 otherwise

where σ =
a∆ t

∆ x
and (Du) is some difference operator approximating

the derivative ux.

2.1. Von Neumann method. The von Neumann method offers a
simple way of assessing the stability properties of linear schemes with
constant coefficients when the boundary conditions are assumed to be
periodic. The method is based on the Fourier decomposition of the
numerical scheme, from which a stability estimate follows. More infor-
mation about the method can be found in [9].
If a is assumed to be positive and if the operator (Du)i = (D0 u)i =
ui+1 − ui−1

2∆ x
denotes the second-order centred differences, the scheme

reads

(1) un+1
i = un

i − σ [ (un
i − un

i−1) +
1

4
(1− σ) (un

i+1 − un
i − un

i−1 + un
i−2) ] .

By replacing un
i by the exponential and writing the symbol Λ of the

scheme as the quotient of un+1
i divided by un

i

Λ = 1− σ[(1− e−iγ) +
1

4
(1− σ)(eiγ − 1− e−iγ + e−i2γ)]

and the square of its absolute value
(2)

Λ · Λ = 1 +
1

8
(2 σ4 − 4 σ3 + 14 σ2 − 12 σ) +

1

8
cos(γ) (−σ4 + 2 σ3 − 17 σ2 + 16 σ)

+
1

8
cos(2 γ) (−2σ4 + 4 σ3 + 2 σ2 − 4 σ) +

1

8
cos(3 γ) (σ4 − 2 σ3 + σ2)

= 1 +
1

2
σ (σ − 1) (−σ2 + σ + 3)

+ (cos2(γ)− 2 cos(γ) + 1) (σ4 − 2 σ3 + 2 σ2 − σ)

+
1

2
(cos3(γ)− 3 cos2(γ) + 3 cos(γ)− 1) (σ4 − 2 σ3 + σ2)

= 1 +
1

2
σ (σ − 1) (−σ2 + σ + 3) + (cos(γ)− 1)2 σ (σ − 1) (σ2 − σ + 1)

+
1

2
(cos(γ)− 1)3 σ2 (σ − 1)2.
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If the CFL number σ is restricted to the interval [0, 1], it follows that
that |Λ| ≤ 1 for all γ and hence the one-dimensional scheme is stable.
It is interesting to notice that the scheme is also stable for a CFL num-
ber of 2, if the derivatives are approximated by first-order backward
differences and is stable for a CFL number of 1, if the derivatives are
approximated by first-order forward differences. However, the second-
order scheme for which the derivatives are approximated by second-
order forward differences is no longer stable. The explanation is given
by looking at the stencil of the scheme, in fact too much information
is taken from the downwind side of the characteristic. Similar investi-
gations were done by Childs and Morton for the one-dimensional ECG
schemes in [3].

2.2. Positive operator technique for constant coefficients. Next
we are interested to analyse stability of the advection equation with
variable coefficients. In [14] it was proved that under certain con-
straints for linear, non-constant coefficient problems a local von Neu-
mann analysis provides a necessary condition for stability. The analysis
was carried out by freezing the coefficients at their value at a certain
point and then applying the von Neumann method. This provides a
local stability estimate. In order to get a sufficient condition for stabil-
ity, additional restrictions on the amplitude of the symbol have to be
made. Kreiss (1964) has found that a scheme is stable, if the amplifica-
tion matrix is hermitian, uniformly bounded, and Lipschitz continuous
in x, and if the scheme is dissipative of order 2 r and accurate of order
(2 r− 1), for some integer r. However, since the scheme treated here is
second order accurate, the method of Kreiss cannot be applied.
The goal of this section is to prove stability by applying the positive
operator technique, described by Zhu et al. in [17]. We have to show
that the stability inequality

||un+1||∆x
2 ≤ (1 +∆ x) ||un||∆x

2 ,

where || · ||∆x
2 is the energy norm given by

||u||∆x
2 =

√

∆ x
∑

i

u2
i .

To introduce the technique, we consider the method of transport for
the advection equation with constant coefficient. To this end we use a
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matrix formulation of the scheme. The discrete norm of (1) is given by
(3)

(||un+1||∆x
2 )2 = ∆ x

∑

i

(

un
i − σ (un

i − un
i−1)−

σ

4
(1− σ) (un

i+1 − un
i − un

i−1 + un
i−2)

)2

= (||un||∆x
2 )2 +∆ x

∑

i

ūT
I A ūI ,

where ūI = (ui+1, ui, ui−1, ui−2)T and the amplification matrix A is
defined as

A =
1

16









A11 A12 A13 A14

A12 A22 A23 A24

A13 A23 A33 A34

A14 A24 A34 A44









,

with

A11 = A14 = A44 = σ4 − 2 σ3 + σ2

A12 = A24 = −σ4 − 2 σ3 + 7 σ2 − 4 σ
A13 = A34 = −σ4 + 6 σ3 − 5 σ2

A22 = σ4 + 6 σ3 + σ2 − 24 σ
A23 = σ4 − 2 σ3 − 19 σ2 + 20 σ
A33 = σ4 − 10 σ3 + 25 σ2.

The trace and the sum of the entries of the first, second, and third
subdiagonals are given by

D0 =
1

8
(2 σ4 − 4 σ3 + 14 σ2 − 12 σ)

D1 =
1

8
(−σ4 + 2 σ3 − 17σ2 + 16 σ)

D2 =
1

8
(−2σ4 + 4 σ3 + 2 σ2 − 4 σ)

D3 =
1

8
(σ4 − 2 σ3 + σ2).

We recognise here the coefficients of 1, cos (γ), cos (2 γ), and cos (3 γ) in
the von Neumann stability analysis (2). By analogy with trigonometric
equalities used before, we can decompose the matrix A into the sum
of three matrices B, C, and D with

B =
1

2









B11 B12 B13 0
B12 B22 B23 B24

B13 B23 B33 B34

0 B24 B34 B44









.
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B11 = 2 σ4 − 4 σ3 + 2 σ2

B12 = −4 σ4 + 4 σ3 + 4 σ2 − 4 σ
B13 = −B24 = 2 σ4 − 2 σ2

B22 = 6 σ4 − 4 σ3 + 2 σ2 − 20 σ
B23 = −12 σ2 + 12 σ
B33 = −6 σ4 + 4 σ3 + 2 σ2 + 16 σ
B34 = 4 σ4 − 4 σ3 + 8 σ2 − 8 σ
B44 = −2 σ4 + 4 σ3 − 6 σ2 + 4 σ.

Obviously B is a pseudo-null matrix, which means that the trace and
the sum of the entries of each subdiagonal are zero. The matrices C
and D are given by

C = −
1

16
σ2 (1−σ)2









1
−3
3

−1









(

1 −3 3 −1
)

= −
1

16
σ2 (1−σ)2









1 −3 3 −1
−3 9 −9 3
3 −9 9 −3

−1 3 −3 1









and

D =
1

4
σ(σ−1)(σ2−σ+1)









0
1

−2
1









(

0 1 −2 1
)

=
1

4
σ(σ−1)(σ2−σ+1)









0 0 0 0
0 1 −2 1
0 −2 4 −2
0 1 −2 1









.

The vector
(

1 −3 3 −1
)T

defining C consists of the coefficients of

(cos (γ)− 1)3 = cos (γ)3 − 3 cos (γ)2 + 3 cos (γ)− 1

and the vector
(

0 1 −2 1
)T

defining D of the coefficients of

(cos (γ)− 1)2 = cos (γ)2 − 2 cos (γ) + 1.

For CFL numbers σ ∈ [0, 1], C and D are both negative semi-definite
matrices. Hence, (3) becomes

(4)

(||un+1||∆x
2 )2=(||un||∆x

2 )2 +∆ x
∑

i

ūT
I [B+C+D] ūI

≤(||un||∆x
2 )2 +∆ x

∑

i

ūT
I B ūI .
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We can rewrite the last term as

∆ x
∑

i

ūT
I B ūI = ∆ x

∑

i

(B11 u
2
i+1 +B22 u

2
i +B33 u

2
i−1 +B44 u

2
i−2 + 2B12 ui+1 ui

+ 2B23 ui ui−1 + 2B34 ui−1 ui−2 + 2B13 ui+1 ui + 2B24 ui ui−2)

= ∆ x
∑

i

(B11 +B22 +B33 +B44) u
2
i

+ 2∆ x
∑

i

(B12 +B23 +B34) ui ui−1 + 2∆ x
∑

i

(B13 +B24) ui ui−2

Since B is pseudo-null, ∆x
∑

i

ūT
I B ūI = 0 and (4) is given by

(||un+1||∆x
2 )2 ≤ (||un||∆x

2 )2.

We have found the same results as with the von Neumann method,
i.e. the scheme is stable in one dimension for CFL numbers between 0
and 1. The advantage of this method is that it can easily be extended
to linear equations with variable coefficients.

2.3. Positive operator technique for variable coefficients. The
linear advection equation with variable coefficients in conservative form
is given by

ut + (a(x) u)x = 0.

For future investigations, we assume a(x) to be differentiable. Note
that a(x) is therefore Lipschitz continuous and its Lipschitz constant
is given by La. The second-order fluxes are given by

FΩiΩi+1
=







∆ t(aiui +
∆ x

2
(1− λai)Reci if velΩiΩi+1

> 0

0 otherwise

where
Reci = (ai (Du)i + ui (Da)i)),

velΩiΩi+1
= ai +

∆ x

2
(1− λ ai) (Da)i,

and λ =
∆ t

∆ x
. The method of transport is described by

(5)

un+1
i = un

i − λ [(ani u
n
i − ai−1 u

n
i−1)

+
∆ x

2
(1− λ ani )( a

n
i (Du)ni + un

i (Da)ni )

−
∆ x

2
(1− λ ani−1) (a

n
i−1 (Du)ni−1 + un

i−1 (D a)ni−1)].
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or by rearranging the terms
(6)

un+1
i = un

i − λ [ani u
n
i +

∆ x

2
(1− λ ani ) a

n
i (Du)ni ]

+λ [ani−1 u
n
i−1 +

∆ x

2
(1− λ ani−1) a

n
i−1(Du)ni−1]

−λ
∆ x

2
(1− λ ani ) u

n
i (Da)ni + λ

∆ x

2
(1− λ ani−1)u

n
i−1(Da)ni−1].

We define

Ri = λ [ani u
n
i +

∆ x

2
(1− λ ani ) a

n
i (Du)ni ]

and

Qi = λ
∆ x

2
(1− λ ani ) u

n
i (D a)ni ,

so that we can rewrite (5) as

(7) un+1
i = un

i −Ri +Ri−1 −Qi +Qi−1.

(8)

(||un+1||∆x
2 )2=∆ x

∑

i

(un
i , u

n
i )

+∆ x
∑

i

[−2(un
i , Ri)+2(un

i , Ri−1)−2(Ri, Ri−1)+(Ri, Ri)+(Ri−1, Ri−1)]

+∆ x
∑

i

[−2 (un
i , Qi) + 2 (un

i , Qi−1) + 2 (Ri, Qi)− 2 (Ri, Qi−1)

−2 (Ri−1, Qi) + 2 (Ri−1, Qi−1) + (Qi, Qi) + (Qi−1, Qi−1)]

=(||un||∆x
2 )2 + T1 + T2.

The term Ri−1 can be separated into a part similar to the constant
coefficients case and an additional part arising from the variation of
the coefficients. To this end, we replace ai−1 by ai + ∆ x aξ, where
aξ = ax(ξ), with ξ ∈ [xi−1, xi].

Ri−1 = λ [ani−1 u
n
i−1 +

∆ x

2
(1− λ ani−1) a

n
i−1 (Du)ni−1]

= λ [(ani −∆ x aξ) un
i−1 +

∆ x

2
(1− λ (ani −∆ x aξ))(a

n
i −∆ x aξ) (Du)ni−1]

= λ [ani u
n
i−1 +

∆ x

2
(1− λ ani ) a

n
i (Du)ni−1]

− λ[∆ x aξ u
n
i−1 −

∆ x2

2
aξ(2 λ ai − λ∆ x aξ − 1)(Du)ni−1]

= Rc
i−1 +Rv

i−1.
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In the previous section, we have investigated the norm of T1 for the
part Rc

i−1 with D = D0, so that we can rewrite T1 as

T1 = ∆ x
∑

i

ūT
I [B+C+D] ūI+∆ x

∑

i

[2 (un
i , R

v
i−1)−2 (Ri, R

v
i−1)+(Rv

i−1, R
v
i−1)],

where B, C, and D are defined as before, but depend now on the x-
variable, B = Bi, C = Ci, and D = Di, with σ = σi. C and D are
negative semi-definite if the CFL numbers are between 0 and 1 and B
is a pseudo-null matrix. The second term can be written with the help
of some matrix E, defined by

E =
∆ x

4









E11 E12 E13 E14

E12 E22 E23 E24

E13 E23 E33 E34

E14 E24 E34 E44









,

where

Eij = aξ fj(aξ, ai,∆ x,λ).

T1 can be approximated by

T1 ≤ ∆ x
∑

i

ūT
I B ūI +∆ x

∑

i

ūT
I E ūI .

The matrix B has the same form as before, but now the components
are functions of σi. Therefore the first term becomes

∆ x
∑

i

ūT
I B ūI = ∆ x

∑

i

((Bi)11 u
2
i+1 + (Bi)22 u

2
i + (Bi)33 u

2
i−1 + (Bi)44 u

2
i−2

+2 (Bi)12 ui+1 ui + 2 (Bi)23 ui ui−1 + 2 (Bi)34 ui−1 ui−2

+2 (Bi)13 ui+1 ui−1 + 2 (Bi)24 ui ui−2)

= ∆ x
∑

i

((Bi−1)11 + (Bi)22 + (Bi+1)33 + (Bi+2)44) u
2
i

+2
∑

i

((Bi−1)12 + (Bi)23 + (Bi+1)34) ui ui−1

+2
∑

i

((Bi−1)13 + (Bi)24) ui ui−2
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By using the Lipschitz continuity of a(x) and the pseudo-null property
of B, we can approximate the following term as
∑

i

|(Bi−1)11+(Bi)22+(Bi+1)33+(Bi+2)44|

=
∑

i

|(Bi−1)11 − (Bi+2)11 + (Bi)22 − (Bi+2)22 + (Bi+1)33 − (Bi+2)33|

≤
∑

i

|(Bi−1)11 − (Bi+2)11|+
∑

i

|(Bi)22 − (Bi+2)22|+
∑

i

|(Bi+1)33 − (Bi+2)33|

< L0∆ x

and similarly for
∑

i

|(Bi−1)12 + (Bi)23 + (Bi+1)34| < L1 ∆ x

and
∑

i

|(Bi−1)13 − (Bi)24| < L2∆ x.

So that ∆x
∑

i

ūT
I B ūI becomes

∆ x
∑

i

ūT
I B ūI < L0 ∆ x(||un||∆x

2 )2+2L1∆ x
∑

i

(ui, ui−1)+2L2∆ x
∑

i

(ui, ui−2),

and finally by using the Cauchy-Schwarz inequality, we get

∆ x
∑

i

ūT
I B ūI < (L0 +2L1 +2L2)∆ x(||un||∆x

2 )2 = C∆ x (||un||∆x
2 )2.

For the second term ∆x
∑

i

ūT
I E ūI, we use similar ideas and get

∆ x
∑

i

ūT
I E ūI ≤ ∆ x(||E11||∆x

∞ + 2 ||E12||∆x
∞ + 2 ||E13||∆x

∞ + 2 ||E14||∆x
∞

+||E22||∆x
∞ + 2 ||E23||∆x

∞ + 2 ||E24||∆x
∞

+||E33||∆x
∞ + 2 ||E34||∆x

∞ + ||E44||∆x
∞ )(||un||∆x

2 )2,

where ||Ejk||∆x
∞ = max

i
{|Ejk(aξ, ai,∆ x,λ)|}. It follows that

T1 ≤ ∆ x(||un||∆x
2 )2.

Now we can write the norm of un+1 as
(||un+1||∆x

2 )2 = (1 +∆ x) (||un||∆x
2 )2

+∆ x
∑

i

[−2 (un
i , Qi) + 2 (un

i , Qi−1) + 2 (Ri, Qi)

−2 (Ri, Qi−1)− 2 (Ri−1, Qi) + 2 (Ri−1, Qi−1)

−2 (Qi, Qi−1) + (Qi, Qi) + (Qi−1, Qi−1)].
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We have to investigate the other terms. First

−2∆ x
∑

i

(un
i , Qi) = −λ∆ x2

∑

i(u
n
i , (1− λ ani ) u

n
i (Da)i)

≤ −λLa(1 + λ ||a||∆x
∞ )∆ x (||u||∆x

2 )2

≤ C∆ x (||u||∆x
2 )2,

where ||a||∆x
∞ = max

i
|ani | and La is the Lipschitz constant of a(x) such

that (Da) < La holds. Similarly,

2∆ x
∑

i

(ui, Qi−1) < C∆ x (||u||∆x
2 )2.

For the terms in T2, we get

2∆ x
∑

i

(Ri, Qi) = λ2∆ x2
∑

i

(ani u
n
i −

∆ x

2
(1− λ ani ) a

n
i (D0 u)i(1− λ ani ) u

n
i (D0 a)i)

≤ λ2∆ x||a||∆x
∞ (1 + λ ||a||∆x

∞ )La ||u||∆x
∞

+λ2 ∆ x

2
(1 + λ ||a||∆x

∞ )2 ||a||∆x
∞ La ∆ x

∑

i

(∆ x (D0u)i, u
n
i )

≤ C∆ x (||u||∆x
2 )2,

and similarly for −2∆ x
∑

i

(Ri, Qi−1), −2∆ x
∑

i

(Ri−1, Qi), and

2∆ x
∑

i

(Ri−1, Qi−1). Finally,

∆ x
∑

i

(Qi, Qi) = λ2∆ x3

4

∑

i

((1− λ ani ) u
n
i (D0 a)i, (1− λ ani ) u

n
i (D0 a)i)

≤
∆ x2

4
λ2 L2

a(1 + λ ||a||∆x
∞ )2 (||u||∆x

2 )2

≤ C∆ x2 (||u||∆x
2 )2,

Estimates for the terms −2∆ x
∑

i

(Qi, Qi−1) and ∆ x
∑

i

(Qi−1, Qi−1)

are derived in the same way. Using the above estimates in (8), we get

(||un+1||∆x
2 )2 ≤ (1 +∆ x)(||un||∆x

2 )2.

for CFL numbers between 0 and 1, this means that the scheme is stable.
This proof can be adapted to other finite-difference operators, such as
first-order backward differences or first-order forward differences. Here
we have presented the proof for the centred differences, which is the
most complicated of the three schemes, since it has the largest stencil.
Moreover centred differences are always used in the limiting technique
by flux selection developed in [13].



12

3. Two-dimensional first-order scheme

We consider now the scalar advection equation with constant coeffi-
cients in two dimensions

ut + a ux + b uy = 0

and assume periodic boundary conditions on a closed interval.
The method of transport of first order gives the following numerical
scheme

un+1
i j =un

i j−σ(1−ν)(un
i j −un

i−1 j)−ν(1−σ)(un
i j −un

i j−1)−νσ(un
i j −un

i−1 j−1),

for a and b positive. σ and ν are the CFL numbers, defined as

σ = a
∆ t

∆ x
and ν = b

∆ t

∆ y
.

Van Leer presented this scheme in [16] and he has shown that this can
be written in the form of a dimension splitting scheme

un+1
i j = (1− σD+x) (1− νD+y)u

n
i j .

The symbol of this scheme is given by

Λ = 1− σ(1− ν) (1− e−iγ)− ν(1− σ) (1− e−iδ)− νσ(1− e−i(γ+δ))

and we have to analyse

Λ · Λ = 1 + 4 ν σ − 2 σ − 2 ν + 2 ν2 − 4 ν2 σ + 4 ν2 σ2 − 4 ν σ2 + 2 σ2

+ ( 4 ν2 σ + 4 ν σ2 − 4 ν σ + 2 σ − 2 σ2 − 4 ν2 σ2 ) cos(γ)

+ ( 4 ν2 σ − 2 ν2 + 4 ν σ2 − 4 ν2 σ2 + 2 ν − 4 ν σ ) cos(δ)

+ ( 4 ν2 σ2 − 4 ν2 σ + 4 ν σ − 4 ν σ2 ) cos(γ) cos(δ)

= 1 + 2 (σ − σ2)(cos(γ)− 1) + 2 (ν − ν2)(cos(δ)− 1)

+ 4 σν(1− σ)(1− ν)(1 − cos(γ))(1− cos(δ))

= [1 + 2 (σ − σ2) (cos(γ)− 1)] [1 + 2 (ν − ν2) (cos(δ)− 1)].

It is obvious that |Λ| ≤ 1 for 0 ≤ σ ≤ 1 and 0 ≤ ν ≤ 1. So that for
all σ and ν between 0 and 1, the scheme is stable in two dimensions.
The same result can be found in the paper of Fey and Schroll [8]. They
also proved stability of the first-order method of transport for the two-
dimensional Burgers’ equation.
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4. Two-dimensional second-order scheme

The method of transport of second order to solve the two-dimensional
advection equation is of the following form

un+1
i j = un

i j − σ(1− ν) [(un
i j − un

i−1 j)−
1

2
(−(1 − σ) (Dx u

n
i j −Dx u

n
i−1 j)

+ν(Dy u
n
i j −Dy u

n
i−1 j))]

− ν (1− σ) [(un
i j − un

i j−1)−
1

2
(σ(Dx u

n
i j −Dx u

n
i j−1)

−(1− ν)(Dy u
n
i j −Dy u

n
i j−1))]

− νσ [(un
i j − un

i−1 j−1)−
1

2
((1− σ) (Dx u

n
i j −Dx u

n
i−1 j−1)

+(1− ν)(Dy u
n
i j −Dy u

n
i−1 j−1))].

If the operators Dx and Dy are approximated by centred differences,
this scheme is identical to the second-order van Leer scheme [16] and
the second-order corner transported upwind scheme (CTU) by Colella
[4]. If the operators Dx and Dy are approximated by the first-order
forward differences, the scheme is identical to LeVeque’s T 2,2 scheme
[11].
Van Leer, Colella, and LeVeque investigated stability of their scheme
and all found that the condition

max(|σ|, |λ|) ≤ 1

guarantees stability. LeVeque gives some numerical results of his
scheme.
The symbol of the scheme for backward differences is given by

Λ = 1 +
1

2

(

−3 σ − 3 ν + σ2 + 8 σ ν + ν2 − 3 ν σ2 − 3 σ ν2

+ (−7 ν σ + 4 σ − 2 σ2 + σ ν2 + 4 ν σ2) e−iγ

+ (−7 σ ν + 4 ν − 2 ν2 + 4 σ ν2 + ν σ2) e−iδ

+ (−ν σ2 + ν σ − σ + σ2) e−2 i γ + (σ ν − ν σ2) e−i ( 2 γ+δ )

+ (−ν + σ ν + ν2 − σ ν2) e−2 i δ + (σ ν − σ ν2) e−i ( γ+2 δ )

+ 2 σ ν e−i ( γ+δ )
)

.

Once again we are interested in |Λ| which is now given by a huge al-
gebraic term that can no longer be analysed analytically. However,
computational tests supply evidence for this term to be less or equal
to 1 for all γ and δ if 0 ≤ σ, ν ≤ 1. Unfortunately, the positive opera-
tor technique, which we used to prove stability of the one-dimensional
advection equation with variable coefficients can not be extended to
two-dimensions.
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5. Three-dimensional first-order scheme

We consider the scalar advection equation with constant coefficients in
three dimensions

(9) ut + a ux + b uy + c uz = 0

with periodic boundary conditions on a closed interval.
The method of transport of first order is given by the following numer-
ical scheme

un+1
i j k =un

i j k − σ (1− ν) (1− µ) (un
i j k − un

i−1 j k)− ν (1− σ) (1− µ) (un
i j k − un

i j−1 k)

− µ (1− σ) (1− ν) (un
i j k − un

i j k−1)− σ ν (1− µ) (un
i j k − un

i−1 j−1 k)

− σ µ (1− ν) (un
i j k − un

i−1 j k−1)− ν µ (1− σ) (un
i j k − un

i j−1k−1)

− σ ν µ (un
i j k − un

i−1 j−1 k−1),

for a, b, and c positive. σ, ν, and µ are the CFL numbers, defined as

σ = a
∆ t

∆ x
, ν = b

∆ t

∆ y
, and µ = c

∆ t

∆ z
.

The symbol of this scheme reads

Λ = 1 − σ (1− ν) (1− µ) (1− e−iγ)− ν (1− σ) (1− µ) (1− e−iδ)

− µ (1− σ) (1− ν) (1− e−iβ)− σ ν (1− µ) (1− e(−iγ−iδ))

− σ µ (1− ν) (1− e(−iγ−iβ))− ν µ (1− σ) (1− e(−iδ−iβ))

− ν σ µ (1− e−i(γ+δ+β)).

And we have to analyse Λ · Λ

Λ · Λ = [1 + 2 (σ − σ2) (cos(γ)− 1)][1 + 2 (ν − ν2) (cos(δ)− 1)]

[1 + 2 (µ− µ2) (cos(β)− 1)].

It holds again that |Λ| ≤ 1, for 0 ≤ σ ≤ 1, 0 ≤ ν ≤ 1, and 0 ≤ µ ≤ 1.
So that for all σ, ν and µ between 0 and 1, the scheme is stable in three
dimensions.
The extension to second order can be realised in the same way as in
two dimensions. The method of transport, where the derivatives are
approximated with centred differences, is then identical to van Leer’s
scheme [16] and to the CTU scheme, cf. Saltzman [15]. If the deriva-
tives are approximated by forward differences, it is identical to the T 2,2,2

scheme, cf. Langseth and LeVeque [10]. Notice, that these comparisons
are valid only for the advection equation with constant coefficients.
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6. Convergence

From the stability of a scheme, we are able to derive convergence, if
the scheme satisfies the conditions of Lax’s equivalence theorem [14].

Lax’s Equivalence Theorem: Given a properly posed initial-value
problem and a finite-difference approximation to it that satisfies the
consistency condition, stability is the necessary and sufficient condition
for convergence.

For the advection equation with constant coefficients in one, two, and
three dimensions, the second order method of transport therefore con-
verges in the energy norm, defined in Section 2.2.
For the advection equation with variable coefficients in one dimension,
the method of transport converges in the energy norm, if the coefficients
are Lipschitz continuous.

7. Conclusion

In this paper, we have investigated stability for the method of trans-
port applied to the advection equation. In the one-dimensional case,
we proved stability estimates for both constant coefficient and vari-
able coefficient problems. In the two- and three-dimensional cases, it
was still possible to prove stability for constant coefficients problems.
However sufficient stability condition for smooth variable coefficients
problems are not yet found.

Acknowledgments

This project at SAM is partly funded by the ERCOFTAC fellowship
program. The authors thank Prof. R. Jeltsch for his fruitful and con-
structive remarks.

References

[1] R. Bodenmann and H. J. Schroll. High order discretisation of initial–boundary
value problems for mixed systems. Seminar für Angewandte Mathematik, ETH
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