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1 Introduction

Boundary layer phenomena are well-known in the study of fluid flow problems. Perhaps
less known, but equally ubiquitous, is their existence in thermal, plate and shell analysis,
where they also play a very significant role. In this paper, we will discuss the properties of
boundary layers occurring in problems of plate and shell modeling, and in heat transfer,
and address the question of their effective numerical resolution by the hp finite element
method.

To motivate our discussion, we begin with a computational experiment from [8]. Con-
sider a thin rectangular plate of size 3L × L, and thickness d = L/100 (See Figure 1).
AB, BC lie on lines of symmetry, AD lies on a line of antisymmetry, and CD is free. The
material coefficients shown are those of an aluminum alloy and the shear correction factor
is taken as κ̃ = 5/6. A sinusoidal distributed load q = − sin(πy/2L) is applied to the
plate.

E = 10.1× 106

ν = 0.365

y

y

3L/23L/2

a) Mesh 1

D

D

C

C

L

L

x

x

B

B

A

A

2d

3L

b) Mesh 2

Figure 1: Finite element meshes on rectangular plate

1



We analyze the plate using the p version1. The analysis is carried out on a Reissner-
Mindlin (RM) formulation using two different meshes shown in Figure 1. Using product
spaces, the polynomial degree p is increased from p = 1 to p = 8. For the latter, 400
degrees of freedom are employed in each mesh. Figure 2 shows the computed shear force
distribution Qy(x, 0) along the antisymmetric edge from x = 2.968L to 3.0L, obtained
with each of the two meshes for p = 8. It is seen that there is a large discrepancy in the
results obtained : the value of Qy(3, 0) predicted by Mesh 1 is over 5 times smaller than
that predicted by Mesh 2. The true solution Qy(x, 0) behaves essentially like Figure 2 b),
i.e. it exhibits a boundary layer effect. The reason for the discrepancy is that uniform
grids like Mesh 1 are not very effective in capturing such effects; what is needed are
specially designed meshes like Mesh 2.

40

30

b) Mesh 2

20

−10

2.968

2.968

2.976

2.976

2.984

2.984

2.992

2.992

3.000

3.000

X/L

X/L

Qy

Qy

0

0

2

4

10

10

6

8

a) Mesh 1

Figure 2: Shear force distribution along line of antisymmetry

1All computations in this paper (except the one-dimensional ones in Section 2) were performed using
STRESS CHECK (ESRD, St. Louis, MO).
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The above experiment shows that the solution of plate (and shell) models in solid
mechanics and viscous flow in fluid mechanics generally contain boundary layers. These
are rapidly varying components which decay exponentially with respect to distance from
the edge. More precisely, these are functions of the form

(1) ξ(x, y) = τ(x, y)e−αρ/d

where τ(x, y) is some smooth function, ρ is the distance from the boundary of the plate,
d is e.g. the plate thickness, and α is a positive constant (e.g. for the RM plate model,
α = (12κ̃)1/2 where κ̃ is the shear correction factor). The exponential term in (1) causes
engineering data computed at the boundary to have a high rate of change. As a result,
many important design-relevant quantities such as reactions, moments and shear forces
may assume their maximum on the edge or within a distance of a few times the thickness
of the edge. Finite element solutions must estimate these maxima accurately and reliably,
and must therefore be able to “capture” these boundary layers.

With the traditional h version, the usual procedure to resolve the layers is to refine
the mesh sufficiently in a strip inside the boundary, so that the mesh width in this region
satisfies a relation like h < Cd. A more efficient procedure is to perform the refinement in
a non-uniform way, as is done e.g. in [5], [9], [20]. The highest convergence rate possible
with these approaches is O(hp) (in the energy norm), where p is the polynomial degree.

If p (or hp) capability is also available, then faster (up to exponential) rates of conver-
gence can be realized. Our goal in this paper is to describe the proper design of meshes
and selection of polynomial degrees to attain these high convergence rates in the presence
of boundary layers.

In Section 2, we explain the basic idea, from [18], in the simplified one-dimensional
context. In Section 3, these ideas are used to approximate two-dimensional problems over
smooth domains where the solution is smooth except for boundary layers. We consider
a model heat transfer problem and a RM plate problem, describing the boundary layers
present and showing how near-exponential rates can be attained in practice.

In Section 4, we consider the case when the presence of corners in the domain gives
rise to corner singularities in the solution. The exact coupling between these singularities
and the boundary layer functions is described for the heat transfer problem over a square.
Using results from [21], we show how the FE-mesh should be designed to treat both
types of components and obtain near-exponential convergence using the hp FEM. We
also describe the meshes that should be used for the heat transfer and RM problems
when the domain is a general polygon. Extensions to shell modeling are briefly addressed
in Section 5.

Let us describe some notation. For an open, bounded, simply connected set Ω ⊂ lRn,
n = 1, 2, H# (Ω) will denote the (Sobolev) space of functions with ( generalized derivatives,
with norm ‖·‖#,Ω and seminorm |·|#,Ω. Let {TN} be a sequence of partitions of Ω into
elements, parametrized by N . The elements Ki, i = 1, 2, ...,MN are intervals for n = 1
and assumed to be a combination of (curvilinear) triangles and quadrilaterals for n = 2.
Let Î = (−1, 1) , T̂ = {(x, y) : 0 < x < 1, 0 < y < 1− x} , Q̂ = (−1, 1)2 represent the
standard interval, triangle and quadrilateral respectively. Then we assume that each Ki

is the image of one of these under a smooth mapping Fi.
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For p = 1, 2, ... and K̂ = Î , T̂ or Q̂ let Pp(K̂) denote the set of polynomials of total

degree ≤ p on K̂, and let Qp(K̂) denote the set of polynomials of degree ≤ p in each

variable (for n = 1, Pp(Î) = Qp(Î)). For an element Ki = Fi(K̂), we define Rp (Ki) =

{v̂ ◦ F−1
i : v̂ ∈ Rp(K̂)} where Rp(K̂) = Pp(K̂) if K̂ is an interval or triangle and

Rp(K̂) = Qp(K̂) if K̂ is a quadrilateral. Let −→p N = (pN1 , ..., p
N
MN

) denote a degree vector.
Then we define

(2) VN = V (Ω,−→p N , TN) =
{
v ∈ C0 (Ω) , v|Ωi

∈ Rpi (Ki) for Ki ⊂ TN

}
,

(3) V 0
N = VN ∩H1

0 (Ω) .

If pi = p, i = 1, ...,MN , then we simply write pN instead of −→p N .

2 Basic mesh-degree design principles

The underlying strategy in designing mesh-degree combinations for resolving boundary
layers is most easily described in the one-dimensional case. Consider the one-dimensional
problem

(4) −d2u′′
d(x) + ud(x) = f(x), x ∈ I = (−1, 1) ,

(5) ud(±1) = α±.

The above problem is singularly perturbed in the following sense. If d is bounded away
from zero, it is a second-order differential equation, but if d = 0, (4) reduces to

(6) u0(x) = f(x)

which is of order 0. Unless the boundary data (5) are compatible (α± = f(±1)), the
solution will contain boundary layer terms of the form

(7) u−
d (x) = e−

(x+1)
d , u+

d (x) = e−
(1−x)

d .

In fact, the solution may be decomposed as follows [18].

Theorem 1. Let M ∈ lN+ be such that f ∈ H4M+2 (I). Then

(8) ud(x) = uM
d (x) + AM

d u−
d (x) + BM

d u+
d (x)

where with C = C(M,α±, f) a constant independent of d, we have

∥∥uM
d

∥∥
H!(I)

+
∣∣AM

d

∣∣+
∣∣BM

d

∣∣ ≤ C, ( = 0, 1, ..., 2M + 2.
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Theorem 1 shows that the finite element space VN we use should be able to approximate
well the boundary layer terms (7) and the smooth part uM

d (x). The strategy is to define
two minimal finite element spaces V BL

N and V Sm
N for each of these solution components,

then choose VN ⊃ (V BL
N ∪ V Sm

N ) (with appropriate boundary conditions being imposed).
For V Sm

N , since we only have to be able to approximate uM
d (x) which is a smooth

function, the simplest space would be Pp(I). This is because if uM
d is entire analytic, the

best asymptotic (i.e. as the polynomial degree p → ∞) is to use only a single element.
This yields super-exponential convergence in the energy norm for (4), i.e. the norm

(9) ‖v‖E,d,S :=
(
d2 |v|21,S + ‖v‖20,S

)1/2

where S ≡ I ≡ (−1, 1).

The space V BL
N , on the other hand, must be designed to resolve the boundary layer (7)

robustly, i.e. uniformly in d. This problem was considered in [18]. We have the following
options:

(a) Patch-wise uniform h version refinement
Suppose polynomials of degree p ≥ 1 are used throughout. Let the mesh in the
interior be quasiuniform with mesh-width h and near the boundary with mesh-
width h0 (see Figure 3(a)). To maintain a robust O(h) convergence in the energy
norm, one finds easily that the mesh-width h0 has to be used in a O(pd | ln d |)
neighborhood of the boundary and that h0 must be chosen to be dh| log h|. This
yields robust O(N−1 lnN) convergence (see [22], Lemma 2.53). Similar estimates
can be obtained for the L2(I), the H1(I) and the L∞(I)-norm. This patch-wise
uniform mesh design is sometimes also referred to as Shishkin mesh.

       d 

     h 

       d 

  -1   1 

h 
0 

  -1   1 

(a) 

(b) 

(c) 

(d) 

  -1 

  -1 

  1 

  1 

degree p degree p 

   p    p    1 

! pd ! pd 2 pd ( ) 1 " ! 

Figure 3: Choice of V BL
N . a) Uniform end-point refinement. b) Exponential refinement.

c) p version on fixed uniform mesh. d) hp version (p version on variable mesh)

5



(b) Special refinement strategies for the h version.
A better selection of V BL

N is based on judicious mesh refinement to suit the functions
(7). Non-uniform meshes (e.g. [5], [9], [20]) can be used to yield robust O(hp)
convergence. In Figure 3 b), we have shown an example of an exponentially graded
mesh for p = 1, which was shown to be asymptotically optimal for functions (7) as
h → 0, in [21], [18]. This mesh is symmetric about x = 0, and the mesh {xi}Ni=0

over (−1, 0) is given by

(10) xi =
1

2
d(2p+ 1) ln

(
1− i

C

N

)
, i = 0, 1, ..., N,

with C = 1− exp(−2/d(2p+ 1)).

We emphasize that these mesh families are asymptotically optimal, i.e. they yield
the optimal convergence rate and also minimize the constant in the error estimate.
Notice in (10) that as p → ∞, the mesh grading in (10) becomes uniform, unlike the
Shishkin type meshes described in (a) above. In our experiments, the mesh grading
(10) gave better results than other meshes, such as the ones derived in [20] in terms
of the number of unknowns, see [21] for details.

(c) p version refinement over a fixed (uniform) mesh.
It was shown in [18] that using p refinement over a single element will, for any fixed
d, give the best (superexponential) rate of convergence asymptotically as p → ∞.
Unfortunately, this rate is only visible when p is very large (p > Cd−1). For a
practical choice of p (p ≤ 8 in some commercial programs), the best rate that can
be guaranteed, independent of d, is generally only O(p−1), which is very low. Hence
this method is not recommended, unless a properly chosen mesh is used (see below).

(d) The hp version (p version on d-dependent mesh).
We have shown in [18] that proper combination of mesh refinement and increasing
polynomial degree of the elements, i.e. the so-called hp-version FEM, can achieve
exponential convergence for the boundary layers (1), uniformly in d. The main
result in [18] states that with the hp-FEM, for every boundary layer present,just one
O(pd)-boundary layer element needs to be introduced at the respective boundary. In
fact, for the model problem above, it is sufficient to use only 3 elements - an element
of size κpd at each end, 0 < κ < 4/e, where degree p is used, and an element of
size 2(1 − κpd) in the middle. In this latter element, the degree can be as low as
1, if only boundary layer functions are present in the solution, but the polynomial
degree should be p if smooth components are also present. (When κpd > 1 then the
three elements collapse into one.) With this choice of space V BL

N , it is possible to
prove that the functions (7) are approximated exponentially in the energy norm as
p increases, i.e.

(11) inf
v∈V BL

N

∥∥u±
d − v

∥∥
E,d

≤ Cd1/2αp,

where α < 1 and C can be chosen independently of p and d.

6



We see therefore from (a) - (d) above that for the problem (4) - (5), the best strategy
is to choose V Sm

N to be Pp (I) and to base V BL
N on the 3 element mesh in (d). If, in

V BL
N , we take the degree to be p in the central element, then V Sm

N ⊂ V BL
N , and we can

take VN = V BL
N (with appropriate modification for boundary conditions). We have the

following theorem.

Theorem 2. [18] For 0 < κ < 4/e, 0 < d ≤ 1, let {Tp} be a sequence of meshes defined
on I = [−1, 1], with

{Tp} = {−1,−1 + κpd, 1− κpd, 1} if κpd < 1

{Tp} = {−1, 1} if κpd ≥ 1.

Let −→p = {p, p, p} and define Vp = V (I,−→p , Tp). Let ud,p be the finite element approxima-
tion to (4) - (5) (with the test space being Vp ∩H1

0 (I)), and assume f ∈ Pn(I). Then for
p ≥ n,

(12) ‖ud − ud,p‖E,d ≤ Cd1/2αp

where α < 1 and C are constants independent of p and d.

Remark 3. The conditions f ∈ Pn(I), p ≥ n are technical assumptions that ensure
the exponential convergence of the smooth part uM

d . These technical assumptions can be
removed, see [12], provided f is analytic in [−1, 1]. If f is not smooth enough, the rate
(12) will be O(p−k), where k is determined by the smoothness of uM

d .

Remark 4. Note that we are not using the full power of the hp version, since we don’t
increase the number of elements but only change the size of the elements as p increases.
For practical purposes, our (2-D) computational experiments in Section 3 indicate that it
is possible to avoid the inconvenience of changing the mesh with every p by using the fixed
mesh Tpmax for all p, 1 ≤ p ≤ pmax used in a given hp-FE implementation.

Let us show the results of some computations performed for problem (4) - (5), with
f = 1, α± = 0. The exact solution is given by

ud(x) = 1−
e−

(x+1)
d

e
1
d + e−

1
d

−
e−

(1−x)
d

e
1
d + e−

1
d

,

which is clearly of the form (8). In Figure 4, we test different values of κ for the hp
method, and find κ = 1 is the best. In Figures 5 - 7 we show the different methods above
for various values of d (method (d) uses κ = 1). Clearly, the hp version gives the best,
most robust results.

3 Problems over smooth domains

The principles from Section 2 are immediately applicable to the mesh-degree design for
higher-dimensional problems with boundary layers, provided the solution has no other
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Figure 8: Boundary fitted coordinates in Ω0.

singular components (such as corner singularities). This is in general the case when the
domain Ω is smooth (or when appropriate symmetric/antisymmetric boundary conditions
are applied, as in the example in Section 1). The boundary layers now show up as functions
like (1) (in 3-D, τ may be a function of x, y and z).

Let us define boundary-fitted coordinates (Figure 8). Given a smooth domain Ω ⊂ lR2,
let

Ω0 = {z − ρ−→n z : z ∈ ∂Ω, 0 < ρ < ρ0 ≤ minimum radius of curvature of ∂Ω}

where −→n z denotes the outward unit normal at z ∈ ∂Ω. The boundary-fitted coordinates
(ρ, θ) are defined by the correspondence

(ρ, θ) → z − ρ−→n z = (X(θ)− ρY ′(θ), Y (θ) + ρX ′(θ)) ,

where z = z (θ) = (X (θ) , Y (θ)) denotes the parametric representation of ∂Ω in terms of
the arclength θ.

For many problems of interest, it turns out that when the functions ξ in (1) are expressed
in terms of (ρ, θ), they have the form

(13) ξ (ρ, θ) =
q∑

i=0

τi (θ) ρ
ie−αρ/d,

where τi (θ) are smooth. We consider two such problems in this section - the heat transfer
problem and the Reissner-Mindlin plate problem. (Other problems, like the Naghdi shell
model are commented on in Section 5.)

If we now look at the components of (13), we see that the boundary layer effect is
still only a one-dimensional one, in the direction of ρ (the functions τi (θ) being smooth).
Hence we may define boundary-fitted elements (as shown in Figure 9) on Ω0. We do
this by dividing ∂Ω into subintervals (θi, θi+1), 1 ≤ i ≤ m − 1, θ ∈ ∂Ω and drawing the
inward normal at θi, 1 ≤ i ≤ m, of length ρ0. Then the points (ρ0, θi) are connected by

10
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(ρ0, θi)
B C
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Ω0
D

Figure 9: Boundary-fitted elements in Ω0.

the curve ρ = ρ0. Each curvilinear quadrilateral S = ABEF is then further subdivided
into two elements S1 and S2 by the curve ρ = κpd, according to the prescription in the
previous section. Looking at ABEF in the (ρ, θ) coordinates then gives two rectangular
elements Ŝ1 = A′B′C ′D′ and Ŝ2 = D′C ′E ′F ′ as shown in Figure 9. The local polynomial
space on Si, i = 1, 2 is then defined (using the notation v(x, y) = v̂(ρ, θ) for (x, y) =
(x(ρ, θ), y(ρ, θ))) by

Qp (Si) =
{
v(x, y) : v̂(ρ, θ) ∈ Qp

(
Ŝi

)}
.

Note that the basis functions we use are polynomials in (ρ, θ) instead of in (x, y).
Consider the local approximation of (13) over the space

Vp (S) =
{
v ∈ C0 (S) : v|Si

∈ Qp (Si)
}
.

The function τi being smooth, is approximated exponentially by a piecewise polynomial
τ pi (θ) of degree p. The function exp (−αρ/d) is approximated at an exponential rate by a
piecewise polynomial v (ρ), of degree p− q, as in (11). Then, for q fixed, p large enough,
we obtain, by a simple tensor product argument (see [21]), that

(14)

∥∥∥∥∥ξ(ρ, θ)−
q∑

i=0

τ pi (θ) ρ
iv(ρ)

∥∥∥∥∥
E,d,S

≤ Cd1/2αp

so that the local approximation in the energy norm is the same as that in the one-
dimensional case.

Remark 5. So far, we considered only boundary-fitted meshes. We expect that analogous
results are also valid for more general, properly refined triangulations at the boundary as
used in various codes.

3.1 The heat transfer problem

We consider the problem

(15) −d2∆ud + ud = f(x, y) in Ω

11



(16) ud = 0 on ∂Ω,

where d ∈ (0, 1]. This is the two-dimensional analog of (4) - (5) and can be used to model,
for example, heat conduction in a thin domain (see e.g. [25], [24]) where d is a thickness
parameter.

Once again, this problem is singularly perturbed since (15) reduces to the analog of
(6) for d = 0. Except for special f , the solution will contain boundary layer terms. The
following decomposition was established in [21] (see also [7], where other decompositions
may be found). The function χ is a C∞ ([0,∞)) cut-off function satisfying

χ(r) =

{
1 for 0 ≤ r ≤ ρ0/3
0 for r ≥ 2ρ0/3

and
∣∣χ(m)(r)

∣∣ ≤ C(ρ0, m), m = 0, 1, ... .

Theorem 6. [21] Let ud be the solution of (15)-(16), and assume
f ∈ H4M+2 (Ω) for some M ∈ lN. Then

(17) ud = uM
d + χuM

d,BL + rMd

where

(18) uM
d (x, y) =

M∑

i=0

d2i∆(i)f(x, y),

(19) uM
d,BL =

M∑

i=0

di
i∑

k=0

τki(θ)
ρk

dk
e−ρ/d =

M∑

i=0

τi(θ)ρ
ie−ρ/d

and

(20)
∥∥rMd

∥∥
k,Ω

≤ CdM+3/2−k, 0 ≤ k ≤ M + 3/2

with C a constant independent of d and τik(θ) smooth and independent of d.

Remark 7. If f ∈ Pn (Ω), then we can take M arbitrarily high in (17) - (20). For any
M , however, the summations in (18) - (19) will now only be from i = 0 to n. Hence, for
any M , uM

d,BL reduces to ξ(ρ, θ) given by (13) (α = 1), where n is fixed. In contrast, when
we have a general f , then reducing the size of the remainder in (20) by taking M large
can only be done at the expense of adding more terms to (19). The situation is analogous
to that discussed in Remark 3.

We now define a sequence of meshes {TN} ≡ {Tp} on Ω, such that Ω0 is divided into
two layers of elements as shown in Figure 9, and the mesh in Ω\Ω0 is compatible with
the mesh on Ω0. Then defining V 0

N ≡ V 0
p = V (Ω,−→p , Tp) ∩ H1

0 (Ω) as in (2) - (3), we see
that the boundary-fitted elements in Ω0 will approximate uM

d,BL exponentially as p → ∞.
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Moreover, since uM
d and rMd are smooth, they will be approximated very well by Vp as

p → ∞. When f ∈ Pn(Ω) as in Remark 7, and p ≥ n, we will have at least arbitrarily
high algebraic convergence.

More precisely, let ud,p ∈ V 0
p be the finite element solution of

(21) Bd(ud,p, v) =

∫

Ω

∇ud,p ·∇vdx =

∫

Ω

fvdx ∀ v ∈ V 0
p .

The following theorem is established in [21].

Theorem 8. Let ud, ud,p be the solutions to (15) - (16) and (21) respectively. Let f ∈
Pn(Ω). Then for any s > 0, there exists a constant C(s) independent of p, d such that

(22) ‖ud − ud,p‖E,d,Ω ≤ C(s)p−s,

for p ≥ n.

Remark 9. The rate (22) is practically exponential, as will be seen from the experiments
below. For the case of general f , (22) will again hold, but possibly only for a finite range
of s.

Let us now present some numerical results. We consider (15) - (16) over the unit disk
with f ≡ 1. The exact solution in polar coordinates is

(23) ud(r, θ) = ud(r) = 1−
I0(r/d)

I0(1/d)

where I0(z) is the modified Bessel function of order zero. We have plotted ud(r) for
0 ≤ r ≤ 1 in Figure 10 to illustrate the boundary layer nature.

We compare two finite element schemes, each with 8 elements, but on the two different
meshes shown in Figure 11. The first is a uniform mesh, while in the second, there is
an O(pd) layer of elements along the boundary. Letting p increase on the second mesh
corresponds to using the specially designed spaces Vp on which Theorem 8 is based, while
on the first mesh, we just get the usual p version.

We performed experiments for various values of d using the code STRESS CHECK.
For ease of computation, we took the thickness of the outer layer in the second mesh to
be pmaxd (rather than pd), for all p = 1, 2, ..., 8 = pmax. In Figure 12 we plot the relative
error in the energy norm versus the number of degrees of freedom, N . It is seen that the
first scheme deteriorates for small d, while the second is robust, and demonstrates the
expected exponential rate.

We also consider the relative error in the values of dud

dr at the point (r, θ) = (1, 0)
on the boundary of Ω. It is observed from Figure 13 that now the deterioration of the
first scheme is even more pronounced (as can be expected from the fact that for dud

dr , the
boundary layer in (23) gets multiplied by a factor d−1). Hence, it is even more essential
to correctly design the mesh when the fluxes are of interest.
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Figure 12: Energy norm comparison for the two schemes: d = 0.01, d = 0.001.
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3.2 The Reissner-Mindlin plate problem

Let us now consider the bending of a homogeneous isotropic plate of thickness d, occupy-
ing the region R = Ω×(d/2, d/2) (where ∂Ω is again smooth), under a normal load density
per unit area given by gd3. The equations of equilibrium for

−→
φ d, the rotation, and wd the

transverse displacement, are

(24) −
D

2

{
(1− ν)∆

−→
φ d + (1 + ν)∇∇ ·

−→
φ d

}
− κ̃µd−2

(
∇wd −

−→
φ d

)
= 0

(25) −κ̃µd−2∇ ·
(
∇wd −

−→
φ d

)
= g.

Here, ν is the Poisson ratio, E the Young’s modulus, D = E/(12(1−ν2)), µ = E/(12(1+
ν)), and κ̃ is the shear correction factor.

The elliptic system (24)-(25) is once again singularly perturbed, as can be seen by
multiplying (24)-(25) by d2. For d > 0, this system contains derivatives of order 2 in−→
φ d and 2 in wd. However, for d = 0, we only get derivatives of order 1 in

−→
φ d and 2

in wd. Hence, there will be a boundary layer in
−→
φ d (but there is not one in wd). The

strongest layers occur when either free or soft simple support boundary conditions are
imposed - here, we restrict our attention to the latter. The following theorem, analogous
to Theorems 1, 6 gives the decomposition for the solution.

Theorem 10. [1] Let ud = (
−→
φ d, wd) be the solution of (24) - (25) and assume g ∈

H3M−4(Ω) for some M ∈ lN. Then

(26) ud = u0 + duM
d + dχuM

d,BL + rMd

where

(27) u0 = (gradw0, w0)

solves the limiting Kirchhoff problem,

uM
d =

(−→
φ M

d , wM
d

)
=

M∑

i=1

di−1
(−→
φ i, wi

)

with ‖φi‖k , ‖wi‖k+1 ≤ C uniformly in d for 0 ≤ k ≤ M,

uM
d,BL =

(−→
φM

d,BL, 0
)
=

(
M∑

i=1

di
−→
Π i(ρ/d, θ)e

−
√
12κ̃ρ/d, 0

)

where
−→
Π i(r, θ) are polynomials of degree i in r with smooth L-periodic (in θ) coefficients,

and the remainder rMd = (
−→
φ M

d , wM
d ) satisfies

∥∥∥
−→
φM

d

∥∥∥
k

≤ CdM+3/2−k, 0 ≤ k ≤ M
∥∥wM

d

∥∥
k

≤ CdM+1, 0 ≤ k ≤ M.
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See [1] for more precise estimates.

Theorem 10 shows that we have a boundary layer term only in
−→
φ d, with a coefficient

which is of size O(d), rather than O(1) as in the heat problem. Since this layer is weaker,
we expect there to be some improvement in its numerical approximation (this is seen in
the results below). For other boundary conditions, such as hard clamped conditions, the
layer is even weaker, since the coefficient is O(d2) now.

The numerical approximation of (26) is now complicated by another factor, however
- that of locking. As d → 0 in (26), we see that ud → u0 satisfying (27). It turns out
that we are now forced to find a finite element solution (

−→
φ d,N , wd,N) which also takes

the form (gradw0,N , w0,N) in the limit as d → 0. Often, the finite element spaces may
not contain enough elements satisfying this limiting constraint, with the result that the
approximations deteriorate as d → 0. This is called locking, and the spaces (and method)
must be carefully tailored to avoid it. See e.g. [19], [15], [17], [4].

Due to the possible presence of locking, it is cumbersome to state exact conditions
under which an analog of Theorem 8 will hold for plates (see [19]). We therefore only
note here that a similar strategy of constructing a boundary layer mesh in Ω0 will be
sufficient to resolve the boundary layer from an approximation theory point of view. In
fact, as our experiments below indicate, this boundary layer refinement is necessary if
pointwise convergence of the stresses is of interest. (Evidence to this effect was already
provided in the introduction for a plate with periodic boundary conditions.) Also, use of
high p effectively controls locking, as shown in [15], [17].

We consider here a circular plate with the two meshes shown in Figure 11. For the
case of soft simple support, an exact solution in the case g = cos(θ) was given in [2] in
polar coordinates : ud = (φr,φθ, w) where

φr =
(
4r3/(45D) + 3ar2 + b− cλ−1d2 + r−1λ−1fd2I1(κ̃r/d)

)
cos θ

φθ =
(
−r3/(45D)− ar2 − b+ cλ−1d2 − dκ̃λ−1fI

′

1(κ̃r/d)
)
sin θ,

w =
(
r4/(45D)− λ−1d2r2/3 + a(r3 − 8Dλ−1rd2) + br − cλ−1rd2

)
cos θ.

Here, λ = Eκ̃/ (2(1 + ν)), I1 (z) is the modified Bessel function of order 1, and the
constants a, b, c, f are given explicitly in [2].

In Figure 14, we show the energy norm error for the two schemes, for d = 0.1 and
d = 0.01. Even though some deterioration is seen for d = 0.01, the difference is not as
significant as was observed in Figure 12 for the heat transfer problem. This is due to the
extra ‘d’ factor in front of the boundary layer term in (26) compared to (17). However,
as is seen from Figure 15, if we look at the shear stress along the line 0.99 ≤ r ≤ 1, near
the boundary, then the fact that this involves a derivative causes the difference between
the two schemes to become more pronounced.
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Figure 14: Energy norm comparison for the two schemes: d = 0.1, d = 0.01.
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Figure 15: Comparison of relative error in point-wise shear stress for d = 0.1, d = 0.01.
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4 Problems over non-smooth domains

It is well-known that for elliptic problems over non-smooth domains, singular components
are introduced in the solution in neighborhoods of the corners. These singularities behave
like f(r) ∼ rα (log r)β where r is the distance from the corner. For singularly perturbed
problems, the behavior of the singularities and their interaction with boundary layers is a
complicated affair. In general, the solution for finite d will now contain boundary layers,
corner singularities of the form f(r/d), and, moreover, possible corner singularities of the
limit problem (d = 0) of the form rα (log r)β. Relatively few mathematical decompositions
similar to the ones in Theorems 1, 6, 10, are available at this point for such problems,
with the case of the heat transfer problem being, perhaps, the most well understood ([10],
[11]).

In this section, we consider a model heat transfer problem over a square for which an
explicit decomposition is known. We show how the mesh design of the previous section
should be modified in this case, to capture the corner singularities as well. We present
theoretical and computational results from [21] proving uniform spectral convergence.
Guided by this example, we show how problems over more general polygons should be
treated.

4.1 The heat transfer problem over a square

We consider the problem (15) - (16) posed over the unit square Ω = (0, 1)2. The solution
can be decomposed using the results in [10], [6]. The case f ≡ 1 is the simplest, and is
the one we consider here, but similar theorems will hold for f ∈ Pn (Ω) as well.

Let us define the corner singularity functions Z̃ (ξ, η) to be the solutions of

(28) −
(
Z̃ξξ + Z̃ηη

)
+ Z̃ = 0 in Q1 = (0,∞)× (0,∞)

(29) Z̃ (0, η) = e−η, Z̃ (ξ, 0) = e−ξ, ξ, η ∈ lR+

(30) Z̃ (ξ, η) → 0 as |ξ|+ |η| →∞ .

These functions are used in Theorem 11 below.

Theorem 11. [10] Let ud be the solution of (15) - (16) with f ≡ 1 and Ω = (0, 1)2. Then

(31) ud = uSm + ud,BL + ud,Co + rd

where uSm = 1, the boundary layer function ud,BL is given by

(32) ud,BL = e
−x
d + e

−y
d + e

−(1−x)
d + e

−(1−y)
d ,

the corner layer function ud,Co has the structure

(33) ud,Co = Z(x, y) + Z(x, 1− y) + Z(1− x, y) + Z(1− x, 1− y)
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with Z(x, y) = Z̃(x/d, y/d), Z̃(ξ, η) defined as in (28) - (30), and the remainder rd satisfies

(34) ‖rd‖m,Ω ≤ Cme
−a/d

with Cm, a > 0 independent of d.

We see the following from (28) - (34).

1. The smooth part for f = 1 is just 1. For general f , we will get a finite series of M
terms, which will have a corresponding effect on the smooth remainder rd.

2. The boundary layers are exactly the 1-D ones for this special case, and are found
along each of the four boundaries. For the case of general f , one obtains a sum of
M terms along each edge.

3. The functions Z̃(ξ, η) contain the usual corner singularities r̃1+m log r̃, m = 0, 1, ...

where r̃ = (ξ2 + η2)
1/2

. The corresponding singularities Z(x, y) behave like r1+m log r,
with r = ((xd)

2+(yd )
2)1/2, and decay exponentially to 0 outside a square of side O(d)

at each corner. Hence, as d → 0, the corner singularities become more and more
“concentrated” at the corners, retaining essentially the same energy. (The behavior
for plate and shell problems is different, see Section 5 below.)

For the approximation, we use the spaces VN = V (Ω,−→p N , TN) where the polynomial
degree −→p N = p is chosen uniformly over elements in the mesh TN ≡ Tp. We design
Tp as follows. First, a layer of elements of width κpd is used to approximate the term
ud,BL given by (32). This is shown in Figure 16 for a quarter of the square (Scheme 1).
Now to approximate rα type singularities, one normally uses geometric mesh refinement
as shown in Scheme 2. This suggests combining Scheme 1 and Scheme 2, to obtain
Scheme 3. However, in our case, the singularities are “concentrated” in an O(d) square,
so that the geometric refinement must be carried out in this square. Hence, we arrive at
Scheme 4. As our numerical experiments below indicate, Scheme 3 is not sufficient for
proper convergence in the pointwise stresses near the point of singularity. Scheme 4 is the
correct choice.

Let us define the mesh TN ≡ Tp for Scheme 4 more precisely. Let I1 = (0, κpd),
I2 = (κpd, 1−κpd), I3 = (1−κpd, 1). Then first the tensor product mesh {Ωij = Ii× Ij},
1 ≤ i, j ≤ 3 is defined (Fig 17a). Next, each of the four corner squares is divided into
two regions - e.g. Ω11 = R1 ∪ R2, where R1 = (0, κd) × (0, κd) and R2 = Ω11\R1 (Fig
17b). A geometric mesh with ratio σ, 0 < σ < 1 and with n = p layers, is constructed
on R1, following the guidelines of Babuska and Guo [3] (Fig 17c). The region R2 is a

transitional region connecting R1 to the rest of the mesh on Ω (Fig 17d). Theorem 12
below, proved in [21], requires R2 to contain at least ν(p) + 1 geometric layers, where
ν(p) + 1 < ln p/ |ln σ|. However, in experiments, we found that a single transitional layer
in this region was sufficient.

With the above definition of Tp (and hence of V 0
N = V 0

p ) we obtain the following
theorem.
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\tex{Scheme 1:  BL-mesh} \tex{Scheme 2:  Corner mesh}

\tex{Scheme 3:  BL-corner mesh} \tex{Scheme 4:  BL-refined corner mesh}

n = 3

n = 3n = 3

S

SS

S

SS

SS

κpd

κpdκpd

Figure 16: Meshes on a square. Scheme 1: Boundary layer mesh. Scheme 2: Geometric
refinement for d = 1 with n = 3 layers. Scheme 3: Union of Scheme 1 and Scheme 2.
Scheme 4: Union of Scheme 1 and d-dependent geometric refinement with n = 3 layers.
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Figure 17: Construction of the mesh on a square. a): Boundary layer mesh. b): The
regions R1 and R2. c): Geometric refinement of R1 with σ = 1/2 and n = 3 layers.
d): Transitional region R2 with σ = 1/2 and ν(p) = 2.
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Theorem 12. [21] Let ud be the solution of (15) - (16) with f = 1 and ud,p be the
corresponding finite element solution with V 0

p as defined above. Then for any s > 0 and
any δ > 0, there exists a constant C(s, δ) independent of d and p such that

‖ud − ud,p‖E,d,Ω ≤ C(s, δ)d1/2−δp−s.

We now present some numerical results for our model problem (15) over the unit
square with f = 1. We consider the effect of using each of the four schemes described in
Figure 16. (As in Section 3, we take the boundary layer mesh to be of thickness pmaxd
rather than pd). In Figure 18, we plot the relative error in the energy norm for d = 0.01,
0.001. (Since the exact solution is not known, we use a finite element solution with several
thousand degrees of freedom for comparison). The graphs indicate that Scheme 2, which
does not have any boundary layer refinement, fails to give sufficient accuracy. All three
schemes (1, 3, 4) with boundary layer refinement exhibit an exponential decrease of the
error, with Scheme 1 being the most efficient. This shows the necessity of boundary layer
refinement.

Theorem 12 shows that as d → 0, the energy norm error for the problem with f = 1
decreases roughly as O(d1/2). This is observed for Scheme 4 from Figure 19.

Although Scheme 1 works best for the energy norm, the situation is different when
pointwise derivatives of the solution are of interest. In Figure 20, we plot the relative
error in the derivatives at the point (x0, y0) = (1− d, 1− d) for d = 0.01, 0.001. Since this
point is near the origin, an O(d) geometric refinement is needed to resolve the

(
r
d

)
log

(
r
d

)

singularity here. It is observed that this is where the necessity of Scheme 4 comes in, which
performs significantly better than any of the other schemes (Scheme 2 is not plotted at
all, since it is even worse than Scheme 1).
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Figure 18: Energy norm convergence, d = 0.01, d = 0.001.
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Figure 19: Energy norm convergence for Scheme 4, d = 0.01, 0.001, 0.0001.

4.2 Singularly perturbed problems over polygonal domains

The guidelines of Section 4.1 can easily be extended to more general domains. For the
heat transfer problem over a polygonal domain, it is easy to see what the mesh should
look like near the boundary and in the vicinity of the vertices (Figure 21). This is based
once again on a decomposition of the solution into various singular and boundary layer
components, that may be found in [11].

Coming to the RM plate problem (24), (25) over a polygon, we notice an important
difference from the heat transfer problem (15): For the limiting case d = 0, the problem
now reduces to the biharmonic, which will have its own rα type singularities (α possibly
complex), in an O(1) region at each vertex. Both of these corner singularities can be
approximated at a robust exponential rate, provided the geometric mesh refinement is
now initiated in an O(1) rather than O(d) neighborhood of the corner. In addition,
boundary layers would also have to be resolved. For instance, in the case of a square,
the recommendation would now be to superimpose Scheme 2 on Scheme 4. Once again,
locking effects also have to be considered - however, as shown in [15], [4], the use of high
p, as recommended here, is an effective way of controlling this phenomenon.
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Figure 20: Pointwise derivative convergence, d = 0.01, d = 0.001.

O

d αpd
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Figure 21: hp-mesh in the vicinity of a vertex of a general polygon diffusion problem
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5 Mesh design for hp FE approximation of shells

Shells are thin, three-dimensional solids with small thickness t and midsurface S ⊂ lR3.
We assume that S is parametrized by a chart ϕ, i.e.

(35) S = ϕ(Ω), Ω ⊂ lR2 polygon .

The deformation of S is normally described by a shell model. Two broad classes of
shell models are those of Koiter type and those admitting shear deformation, to which we
refer as Naghdi models. The analysis of the structure of the shell boundary layers and
corner singularities is to some extent open; however, the length scales at which boundary
layers may occur have been investigated for some time (see the book of Rutten [23] and
the references there).
We present the main results about shell boundary layers:

1. The shell models of Koiter type (i.e. involving 4th-order derivations of the normal
displacement) exhibit in general several boundary layers of the form (1). One always
has a layer with d =

√
t and α = 1+ i due to the bending-membrane coupling (also

referred to as “simple edge effect”). In addition, depending on the geometry of the
midsurface S, further layers may arise (see Figure 22)

(a) S is elliptic.
In the K shell model, only the

√
t layer appears.

(b) S is parabolic.
Depending on the alignment of ∂Ω with the principal curvature lines, an ad-
ditional layer of length scale d = 4

√
t can appear (e.g. in Figure 23, along the

axes of the cylinder).

(c) S is hyperbolic.
There are now two families of characteristic lines, along which the curvatures
are constant. In the limit t → 0, the system describing the membrane defor-
mation is hyperbolic ([13]) and point loads and corner singularities propagate
along these characteristics (see Figure 24). At small, positive thickness, there
will be layers of scale d =

√
t as above at ∂Ω, and additionally layers of scale

d = O
(

3
√
t
)
normal to characteristics passing through points where the bend-

ings and/or the boundary ∂Ω is not smooth.

b) parabolica) elliptic c) hyperbolic

Figure 22: Midsurfaces S of shells
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√
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Figure 23: Boundary layers in parabolic shells

S

O( 3
√
t)

Figure 24: Interior layers coupled with singularity in hyperbolic shells generated by reen-
trant corner S
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2. In models allowing for shear deformation (such as the Naghdi type models), the
above layers will appear and, regardless of the geometry of S, there will be an
additional layer of length scale d = O(t), as in the Reissner-Mindlin plate.

As we observed already for heat conduction and plate bending problems, failure to
resolve the O(t) layer in the Naghdi shell models may not be apparent in the energy
norm, but will show up when pointwise stresses and moments are of interest. In contrast
to that, the layers of the longer scales d =

√
t, 3
√
t, 4
√
t often carry a substantial percentage

of the total deformation energy and must be resolved in order to get meaningful approxi-
mations. Therefore we obtain, based on our available results in the 1-D and 2-D setting,
the following recommendations for mesh design of shells:

1. For the K-models one should use one boundary layer element of thickness κpd
with d =

√
t. In addition, if the shells are very thin, (t/diam(S) < 10−3), further

boundary layer elements of width κpd with d = 4
√
t should be added if S is not

elliptic. For very thin shells of hyperbolic type, there will be internal layers with
d = O( 3

√
t) along characteristic lines through corners or points of nonsmoothness of

the data.

2. In models of Naghdi type (i.e. admitting shear deformation), one further layer of
width κpd with d = t should be added in addition to the O(

√
t), O( 3

√
t), O( 4

√
t)

layers mentioned in 1.

We remark finally that in the presence of corners (i.e. ∂Ω nonsmooth), proper geo-
metric mesh refinement towards corners has to be done. This has to be anisotropic as
well, if the layers meeting at a corner have different length scales (see Figure 25). Here
the corner singularity also “propagates” along lines of constant curvature (shown dashed
in Figures 24 and 25). Questions of how best to design the mesh to resolve the boundary
layers in the presence of such singularities, and in the presence of locking have only been
partially answered (see e.g. [26]).

P

O( 4
√
t)

O(
√
t)

Figure 25: Parabolic shell with reentrant corner P
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