Eidgendossische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ziirich Swiss Federal Institute of Technology Zurich

The Application of Object Oriented Methods
to Boundary Elements

C. Lage

Research Report No. 96-19
October 1996

Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich

Switzerland



The Application of Object Oriented Methods to Boundary Elements!

C. Lage ?
Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule

CH-8092 Ziirich

Switzerland

Research Report No. 96-19 October 1996

Abstract
In this paper we present the design of a class library to support the development

of software for boundary elements. We discuss the extensibility and reusability of
the library and give an example of its application.

Keywords: object oriented design, boundary element methods

lsubmitted to Elsevier Science
Zsupported by the German Research Foundation, Ha 1324/6-5



1 Introduction

Finite element methods (FEM) and boundary element methods (BEM) are the
most important discretization techniques when dealing with partial differen-
tial equations or integral equations, respectively. Numerous software packages
implementing these methods exist each more or less tailored to suit specific
problems or requirements. But all of them are based on the same concepts,
e.g. the test and trial spaces, bilinear forms or the finite element itself, which is
called a panel in the boundary element context. Each of these generic concepts
is certainly implemented in a slightly different way considering the various soft-
ware packages but always with the same functionality. To improve the software
development, i.e. mainly to reduce the development time and to increase the
reliability, the generic concepts should be provided by a library or framework
to ensure their reusability.

In this paper we present the design and application of such a framework for
boundary elements using object-oriented methods. But the same approach is
valid for finite element methods. We chose an object-oriented approach for
several reasons. Most importantly, it supports an extensible design of the li-
brary necessary to increase its applicability. For example, the developer of
specific software could introduce new problem-oriented quadrature rules that
again can be used by higher level operations of the library, like matrix gen-
eration, without having access to the sources of the library. Moreover, even
advanced methods for the compression of the fully populated system matrix
of boundary element methods, could be added sharing the overall architecture
of the library. For the case of the panel clustering method, which imposes
high demands on the administration of panels, this is shown in Section 4.
But the same statement remains valid for further methods like wavelet algo-
rithms. A consequence of this kind of extensibility is that applications based
on the library could easily incorporate new techniques, which were not avail-
able when implementing the library. For example, switching from standard
boundary element applications with dense matrices to applications using the
panel clustering formulation does not need much effort.

This flexibility is not provided by traditional programming techniques like
structured programming and cannot be realized using their associated pro-
gramming languages, e.g. Pascal, C or FORTRAN. For the implementation
of our library we use the language C++[7]. It is widely available, efficient and
fits the numerical needs.

In object-oriented methods the modelling of a software system is based on
real world concepts. They are used to decompose the system into small coop-
erating units, called objects. These objects are described by classes that are
related in a hierarchy. This kind of ranking is used to express common parts
of objects. With an abstract base class for example we are able to specify the
outside view or interface of an object. Subclasses of the base class, so-called
concrete classes, are used to realize the behaviour assigned by the interface.



This construction is applied several times in our classification, for example, in
the specification of basis functions discussed in Section 3.2. For a comprehen-
sive discussion of object-oriented methods it is worthwhile to study the book
of Grady Booch [1].

In the case of boundary element methods the ‘real world’ concepts corre-
spond to the concepts of the mathematical formulation, i.e. the formulation
of Petrov-Galerkin schemes or projection methods. Moreover the formulation
enables us to skip the analysis part in the software development cycle such
that we can proceed with the object-oriented design directly.

The paper is organized as follows. In the next Section we give a short review of
the notation of boundary element methods. Subsequently we sketch the design
of the class library (Section 3) and discuss the embedding of the panel clus-
tering method (Section 4). Finally in Section 5 the application of the library
is illustrated with a simple example.

2 Preliminaries

Let Q C R? be a bounded domain with a piecewise analytic boundary manifold
[ := 00 and let V be a Hilbert space, e.g. L*(T') or C(T"). We consider the
boundary integral equation on I'

Au— (1)

for the unknown density u € V' with

(Au) (&) = [ kla.y) uly) dy. @

The integral equation is usually derived by a reformulation of a boundary value
problem in €2 via the integral equation method. For the numerical solution of
(1) we focus on the weak formulation:

For given right-hand side f € V' find uw € V' such that
(v, Au) = (v, f) Yo eV’ (3)

Here V' denotes the dual space of V' and (:,-) the dual form on V' x V.
Replacing V' and V' by finite dimensional subspaces V,, := span{#; };«,, and
V! := span{¢; }i<n, n € N, yields the Petrov-Galerkin method to obtain an
approximate solution u, € V,,. Finally, inserting the basis functions leads to
the desired system of linear equations:

Anuy, = fo (4)



with An = (<¢Z? A¢j>)i,j<n and fn = (<¢Z7 f>)1<n

Example 1 Choosing Dirac delta functions o¢, concentrated at suitable points
& €T as test functions ¢; characterizes the collocation method, thus the coef-
ficients of the system matrixz A, are determined by evaluating

(05 Avs) = [ k(& y)¥s(y) dy. (5)

Identifying V' and V', one obtains the Galerkin method. In this case the dual
form is identical to the scalar product in 'V :

(s, Avs) = [ @i(a) [ k(. y) () dy do. (6)

3 The Class Library
3.1 Geometry

For the representation of the geometry, i.e. the boundary I', we propose two
stages of description. The first, the physical model, denotes a partition of the
boundary I' in elementary parts I';, 0 < j < J, so-called patches:

r-yr (7)

j<J

which are, for example, specified by charts x; and can carry problem-oriented
attributes. In the second stage, the numerical model, an approximation of
the boundary by means of geometric objects, such as (curved) triangles or
(curved) quadrilaterals, which can be handled efficiently by numerical algo-
rithms, e.g. the quadrature rules, is constructed. The instantiation of these
geometric objects, called panels, uses the information supplied by the physical
model as indicated in the class diagram! in Figure 1, where the physical and
the numerical model are denoted by the classes Boundary and Panelization,
respectively. With the instantiation of several approximations according to
different levels we are able to construct a hierarchy of approximations neces-
sary to realize multilevel methods or wavelet methods.

Besides the flexible generation of approximations, the representation of the
geometrical information in two stages serves to specify an interface to the nu-
merical treatment of the problem. To say, changes in the preprocessing of the

1'We use the notation of Booch as described in [1]
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Fig. 1. Geometry architecture

geometry are handled by specializations of the class Boundary, whereas the
class Panelization and all other numerical components are not affected.

3.2 Subspaces

The Petrov-Galerkin discretization is defined by the choice of the subspaces
V and V’. In the design they are characterized by a collection of objects
representing basis functions which we have to address now.

Basis functions are expressed indirectly via their non-vanishing parts on each
panel, known as shape functions. For every panel the linear combination of
all corresponding shape functions forms a panel function. For the abstraction
of panel functions a hierarchy of abstract base class and concrete classes, i.e.
an interface with distinct implementations, as mentioned in the Introduction,
is used. The abstract base class PanelFunction captures the structure and
behaviour that are common for different types of panel functions by means of
pure virtual functions:

class PanelFunction {

public:
virtual const Panel& support() const = 0;
virtual unsigned dimension() const = 0;
virtual int index(unsigned i) const = 0;

};
As illustrated by the class definition above, these are

— the information about the underlying panel,
— the number of shape functions associated with the panel,
— the index of the basis functions corresponding to the shape functions.
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An example for the implementation of a panel function is the class definition
of the concrete class LinTri3D, an abstraction used to model piecewise linear
functions on triangles:

class LinTri3D : public PanelFunction {
const Triangle3D* supp_;

int idx_[3];
public:
const Panel& support() const { return *supp-; }
unsigned dimension() const { return 3; }
int index(unsigned i) const { return idx_[i]; }

%

The instantiation of panel functions is provided by the class Space, again an
abstract base class. Implementations of Space realize various subspaces used
in the Petrov-Galerkin discretization, e.g. piecewise linear functions or Dirac
delta functions (Figure 2). Global constrains, for example, conforming indices
to model continuous functions, can be handled during the instantiation pro-
cess.

Arbitrary functions of the subspaces are indentified with the vector of coef-
ficients according to the chosen basis. In the library, this vector is wrapped
in the class Function, that, in addition, supplies elementary operations like
addition, scaling or inner product.



3.8  Operators

In the design, the essential characteristic of integral operators is the mapping
of functions, or, in our terms, the mapping of objects of the class Function.
We objectify this mapping in an abstract base class as follows:

class Operator {
public:
virtual void operator()(const Function& f, Function& g) = 02
b

In the case of standard boundary element methods, i.e. when no compres-
sion of the system matrix is applied, the usage of a two-dimensional array to
implement the operator is obvious. This is covered by the class MatrizOp:

class MatrixOp : public Operator {
realx matrix_;

public:
MatrixOp(const Space& test, const Space& trial, const DualFormé& df);
void operator()(const Function& f, Function& g);

b

The constructor of the class is responsible to evaluate the system matrix A,
depending on the test space, the trial space and the dual form specified in the
parameter list. With the class DualForm an abstraction of the type of integral
operator by means of suitable quadrature rules is given. This topic is discussed
more accurately in [3]. The pure virtual function defined in the abstract base
class is now overloaded with a standard matrix-vector product.

With this design we render Operator objects as active objects. The advantage
of this design decision is, that we can easily change the algorithms computing
the mapping of an operator using derived classes (Figure 3). This is for exam-
ple necessary for reasons of efficiency as in the case of the mass matrix. The
sparsity of this matrix makes the use of an array obsolete. More adequate, for
instance, are hash tables, thus an implementation of the matrix-vector product
consistent with this kind of data structure is required (class SparseMatOp). A
similar reason for the flexibility of the evaluation of matrix-vector products is
given by the application of compression techniques as discussed in the next
section.

In contrast to the previous examples, where new classes are derived to com-

2If we supply an analysis of expression trees to avoid the generation of temporary
objects by delayed evaluation, this member function could be declared to support
a more natural notation, namely g = A(f) instead of A(f, g) as proposed here.
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Fig. 3. Operator architecture

pensate structural variations, the following extends the application of the ab-
straction. Solving the discrete system can be read as applying the inverse of
the considered operator. Hence, a solver is a kind of operator, thus we derive
it from the base class Operator and overload the mapping with the solution
process (classes CGOp and GMResOp). In particular, these classes can be ini-
tialized with every object that is an Operator, i.e. that is derived from base
class Operator, because they only rely on the mapping of the operator to be
inverted.

4 Embedding of the Panel Clustering Method

Due to the nature of integral operators stemming from the reformulation of
boundary value problems, the boundary element method leads to full system
matrices. Strictly speaking, this property is caused by the strong coupling of
- and y-dependent terms if kernel functions of convolution type occur. To
suppress the coupling by means of factorization, the panel clustering method
developed by Hackbusch and Nowak (cf. [2,6,4]) replaces the kernel with an
expansion.® This yields an approximation of the system matrix which can be
written in terms of sparse (rectangular) matrices:

Ay~ APS = Aner g AR (8)

Hence, time and storage requirements for the discretization of boundary inte-
gral equations are substantially reduced.

To preserve the sparseness the product of the rectangular matrices A and U,
cannot be evaluated in advance. Therefore, each matrix-vector product AX“u,,

3 Similar ideas, known as fast multipole methods, are used in the case of Nystrém
discretizations [5].
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Fig. 4. Panel clustering architecture

must be replaced with the operation

A, + A,ffr (Unuy,) . (9)

For a detailed discussion of the panel clustering method we refer to [4].

The panel clustering algorithm is another candidate for an implementation of
the abstract base class Operator, i.e. we derive a further class PnlClstOp in-
heriting the behaviour of Operator (Figure 4). This ensures the employment of
panel clustering in all applications that rely only on that interface, e.g. solvers
as explained in Section 3.3.

As in the case of the MatrizOp the setup of the three matrices representing the
panel clustering approximation is organized by the constructor of PnlClstOp.
The necessary information about the considered integral operator are pro-
vided by the classes DualForm, Ezpansion and FFC. Furthermore, the panel
clustering imposes access to set of panels, so-called clusters, that are related
in a hierarchy. The access is prepared and handled by objects of the class
ClusteredSpc.

5 An Example

As an example for the application of the class library we consider the following
boundary value problem:

Let Q2 C R® be the unit cube. For given f € L*(Q) find u® € H(Q) such
that

Au®=0 inQ (10)



int main() {

Boundary  bnd(”cube”);
Panelization pnl(bnd, 2);

LinearSpc  trlspc(pnl);

DiracSpc tstspe(pnl);

LaplaceDlp dIp(2, 2, 0.25);

Mass mass;

MatrixOp K(tstspe, trlspe, dlp);
SparseMatOp  M(tstspe, trlspe, mass);
LiCoOp A(-0.5, M, 1.0, K);
GMResOp  invA(A, 1e-8, 100);
Function f(tstspc);

Function u(trlspc);

f = 7 (sin(pixx*1.1) * cos(pixy*1.3) * cosh(sqrt(2.9)xpixz))”;

invA(f, u);
}
Lst. 1. Implementation of the problem using the class library.
u? = f on I' := 00 (11)

We seek the solution u"’ of the Dirichlet problem in form of a double-layer
potential with unknown density u on I':

uV = —— [ 22T T y(y) dy, x € (. 12
i) y—ap W 12

This approach leads to the boundary integral equation

Au=(-{I+K)=f onT, (13)
where
) =~ [t . (14

The discretization of equation (13) by Petrov-Galerkin methods is specified
when trial and test spaces are chosen (Section 2). Listing 1 shows the im-
plementation of the collocation method using the class library. Due to the
close relation of the mathematical concepts the explanation of the listing is
straightforward. After the generation of the physical and numerical informa-
tions of the geometry represented by the objects bnd and pnl, respectively, the
trial and test space are chosen (trispc, tstspc). Here, we apply piecewise linear



Table 1
Collocation method, piecewise linear functions.

# of panels | # of vertices | CPU-time [s] | real time [s] e
192 98 0.6 0.4 | 4.19e-01
768 386 4.8 2.9 | 1.12e-01
3072 1538 61.5 37.2 | 2.85e-02
12288 6146 966.0 583.8 | 7.20e-03

functions and Dirac delta functions concentrated in the vertices according to
collocation methods. In the next two lines the dual form implied by the double-
layer potential (cf. (5)) as well as the dual form associated with the identity
are declared and defined. In addition, parameters concerning the quadrature
rules, e.g. the number of Gaussian nodes, are given. In the example the in-
tegral operator is described by a linear combination of the identity and the
double-layer potential. Again, this representation is carried over into the im-
plementation by defining an object of the class LiCoOp. This class is another
implementation of the base class Operator and is responsible for evaluating the
linear combination of two Operators, in our example the linear combination
of the mass matrix M, i.e. the discrete identity, and the discrete double-layer
potential K. Finally, the discrete integral operator A together with further
parameters, e.g. a stopping criterion, is used to initialize the solver denoted in
the listing by the operator invA. In the last line invA is applied to the given
right hand side f to solve the boundary integral equation (13).

We run the program of Listing 1 on a SUN Ultra-Enterprise with two Ultra-
SPARC processors and 512Mb of RAM. For several panelizations the results
are listed in Table 1. The CPU-time measured is the time to compute (assem-
bling + solving) an approximation of the density u. Because we are using a
multiprocessor machine, i.e. the task is divided between the processors, this
time exceeds the real time.

Inserting the discrete density in (12) yields an approximation ub’ of the so-
lution u"", which is known in advance, if we use harmonic functions for the
right hand side f (cf. Listing 1). Therefore, we can easily evaluate the error
in internal points of the domain. The error listed in Table 1 is the average of
relative errors in various points:

bv _ ,,bv
e::zmeph‘%| h |, with (15)

P:={02(i,j, k)" € R*: i,j k€ {1,2,3,4}}.

Instead of using the Collocation method we could discretize (13) by means
of the Galerkin method. We switch between these methods by changing the
declaration and definition of tstspc in Listing 1 to

LinearSpc tstspc = trlspc;

10



Table 2
Galerkin method, piecewise linear functions.

# of panels | # of vertices | CPU-time [s] | real time [s] e
192 98 1.1 0.7 | 4.81e-01
768 386 12.2 7.4 | 1.24e-01
3072 1538 173.6 104.5 | 3.23e-02
12288 6146 2807.5 1687.0 | 8.16e-03
Table 3
Galerkin method, piecewise constant functions.
# of panels | # of vertices | CPU-time [s] | real time [s] e
192 98 1.0 0.7 | 5.11e-01
768 386 11.9 7.1 | 1.42e-01
3072 1538 169.7 102.8 | 3.62e-02

Table 2 lists the results; whereas Table 3 refers to the case of employing
piecewise constant functions, i.e.

trlspe(pnl);
tstspc = trlspc;

ConstSpc
ConstSpc

So far, the double-layer potential is represented by a full matrix. As discussed
in Section 4 we can apply the panel clustering method to construct an ap-
proximation of the matrix with substantially reduced time and storage con-
sumptions. To employ the method in our example, we only have to replace
the MatrizOp by a PnlClstOp and provide the environment for the latter to
operate:

ClusteredSpc clsttrlspe(trlspe);

MonomialFFC  ffc(degree);

DMonomialFFC  dffc(degree);

LaplaceExp exp(degree);

PnlClstOp  K(tstspe, clsttrlspe, dlp, ffe, dffc, exp, eta, degree);

The classes MonomialFFFC, DMonomial FFC and LaplaceEzp are implementa-
tions of the abstract base class FFC and Fxpansion, respectively. No further
changes in Listing 1 are necessary. Table 4 shows the calculation for a pan-
elization that would need 4.6GB to store the full matrix. With the panel
clustering method we were able to compute the solution on our machine using
only 445MB of storage and about 3% of the computing time compared to the
standard method.

11



Table 4
Galerkin method, piecewise linear functions, panel clustering.

# of panels | # of vertices | CPU-time [s] | real time [s] e

| 49152 | 24578 1033.4 | 639.5 | 4.89¢-02 |
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