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1. Introduction

An optimal finite difference method for the numerical solution of the Cauchy problem for
a given partial differential equation is, by definition, the scheme that minimises the local
truncation error after one step. In this paper we conduct a study of certain extremal
problems that are closely related to optimal finite difference schemes for finding numer-
ical solutions of such problems. For relevant general information on difference methods
connected with the Cauchy problem cf., e.g., (Iserles and Strang, 1983).

Consider now the concrete problem of finding an optimal finite difference method for
approximating the solution of a well-posed Cauchy problem using the linear constant
coefficient differential equation

ut(x, t) = p(Dx)u(x, t), t ≥ 0,

u(x, 0) = f(x), x ∈ IR,

where p is a polynomial and Dx = ∂
∂x . It is shown in (Micchelli and Miranker, 1973a,

1973b) that the optimal method is computable in terms of the optimal finite difference
method for the advection partial differential equation

ut = ux, t ≥ 0, x ∈ IR,

whose solution is u(x, t) = f(x+ t) with the appropriate ranges of x and t. If h denotes
the mesh increment in the x-direction and λh is the mesh increment in the t direction, λ
being the Courant number, then

f(x+ λh)−
∑

j∈J

cjf(x+ jh), x ∈ IR, (1.1)

is the local truncation error after one time step corresponding to a generic finite difference
scheme that uses the pointset J at the backward level of time. This means that our goal
can be accomplished by solving a corresponding least-squares minimisation problem which
is the univariate case (n = 1) of Problem A below. In the statement of the problem, we
use the notation Et for the shift operator, i.e.

Et : f $→ f(·+ t). (1.2)

Problem A. Given f ∈ L2(IRn), a finite set J ⊂ IRn, a point λ ∈ IRn, and h > 0,
minimise the error function

‖Ehλf −
∑

j∈J

cjE
hjf‖L2(IRn) (1.3)

over all c := (cj)j∈J ∈ CJ . The optimal coefficients are denoted here and hereafter by
c(λ, h) := (cj(λ, h))j∈J .

We can therefore view the stated problem as the problem of approximating the hλ-
translate of some given function f from the finite dimensional space

SJ
h (f) := span{Ejhf | j ∈ J},
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J being a given finite subset of IRn. We think of the function f as given to us (the initial
value of the above partial differential equation); on the other hand, the choice of the set
J and the scaling parameter h are within our discretion.

Since the space SJ
h (f) is finite dimensional, it is seemingly feasible to find the exact

solution to Problem A, i.e., the least squares approximation to Ehλf from SJ
h (f). This,

however, requires the recomputation of the approximant whenever f or h are changed.
Furthermore, since the least squares solution is expressed via the basis {Ejhf | j ∈ J} of
SJ
h (f) (i.e. we compute the coefficients with respect to that basis), the deteriorating con-

dition number of that basis, as h → 0, may lead to loss of significance through numerical
instability of the process. In addition, knowing the theoretical background of such an ap-
proximation should help us in determining the size of h to be used, and the configuration
and cardinality of the set J to be chosen. A large set J will make the computation of
the least square solution computationally prohibitive, while a small set J may force us to
select a scaling parameter h that is too small.

This problem has already been dealt with in the literature if f ∈ L1(IR) ∩ L2(IR) and
for a positive α

lim
x→±∞

|f̂(x)||x|α+
1
2 = const )= 0 (1.4)

in the above-mentioned two papers by Micchelli and Miranker. Specifically, it is proved
there that, upon assuming (1.4), the optimal coefficients cj(λ, h) converge, for every j ∈ J ,
to a limit cj(λ) := limh→0 cj(λ, h); that limit is referred to as the principal part of the
intermediate coefficient cj(λ, h). This admits employing the h-independent principal parts
as a suitable alternative to the optimal coefficients in (1.1). Moreover, it is the principal
part of the optimal scheme which determines its stability.

Although then the local truncation error is not necessarily minimal, we will show that
it is “near optimal” in a certain sense, and it allows for a simpler, easier to compute
finite difference scheme. In other words, while the coefficients of the best approximation
to Ehλf from SJ

h (f) may exhibit undesired numerical behaviour as h → 0, one explicitly
identifies cases where the coefficients of the best approximation each converge to a limit
(defined as the principal part of the coefficient), and considers the approximation scheme
when the cj(λ, h) are replaced by their principal parts.

In extending these univariate results we have two approaches in this paper, one involv-
ing a multivariate generalisation of (1.4) which is also more general even in one dimension.
It leads to so-called radial basis function interpolation, and the principal parts turn out to
be Lagrange functions for this interpolation with respect to the set J . Another approach
involves multivariate polynomial interpolation on the set J .

Indeed, when we use that second ansatz, the message of this paper concerning Problem
A becomes strikingly simple, and so we are going to describe it first. The statements
below require J to be in a total degree configuration. This notion is defined near the
end of Section 2. Here, we mention that any pointset J in IR satisfies the total degree
assumption, and that, in two dimensions, 3-sets J whose points are not colinear, as well as
6-sets J whose points do not lie on a conic, are of total degree. The degree m(J) of a total
degree configuration J is also defined in Section 2. We remark here that m(J) = |J |− 1
in case J ⊂ IR, and that the degrees of the two-dimensional 3-sets and 6-sets discussed
above are 1 and 2 respectively.
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One of the main results of this paper, that invokes the polynomial interpolation ap-
proach, is as follows. In its statement, and elsewhere in the paper, we use the notation
ej, j ∈ IRn, for the exponential with frequency j,

ej : t $→ eij·t,

and
Πm

for the space of all n-variate polynomials of degree ≤ m.
Theorem 1. Let J be a total degree subset of IRn of degree m(J). Then, for every λ ∈ IRn,
there is a sequence c(λ) ∈ CJ , that depends only on λ and J , with the following properties:

1. For every α > m(J), and for every function in the Sobolev space W α
2 (IR

n), the
optimal coefficients cj(λ, h), j ∈ J , of Problem A converge each to cj(λ).

2. For every α ≤ m(J) + 1, and for every f ∈ W α
2 (IR

n), the L2(IRn)-error in the
approximation scheme

Ehλf ≈
∑

j∈J

cj(λ)E
hjf

is O(hα) as h → 0.

Furthermore, the sequence c(λ) is characterised by its polynomial accuracy: it is the unique
sequence supported on J that satisfies

p(λ) =
∑

j∈J

cj(λ)p(j), ∀p ∈ Πm(J).

The analysis that leads to Theorem 1 is given in Sections 3 and 4. We mention that
the convergence asserted in (1.) is valid for configurations J that are more general than
the “total degree” mentioned here; however, in these more general setups, either the limit
coefficients are not universal, i.e., they may depend on f , and/or the convergence is proved
for only certain, specific λ. For example, convergence to universal limits occurs if J ∪ λ
consists of the vertices of a rectangular mesh.

Thus, for a large collection of functions and for quite general configurations J , the
optimal coefficients of Problem A converge to an f -independent sequence c(λ). Further,
that sequence “works well” for other functions too (even though for these other functions
the optimal coefficients may not converge at all), in the sense that the error ‖Ehλ −∑

j∈J cj(λ)ej‖L2(IRn) decays at rates that are related to the smoothness of f . This leads us
naturally to examining also f -independent h-independent schemes of the form

Ehλ ≈
∑

j∈J

cjE
hjf.

We call schemes such as the above “near optimal” if they provide approximation rates
like those in (2.) of Theorem 1.
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The paper is laid out as follows. In Section 2, we review relevant facts concerning
the least solution of the polynomial interpolation problem (de Boor, Ron, 1990). That
least solution turns out to be the main tool in our study of Problem A for “sufficiently
smooth” functions f that is carried out in Section 4. In that section, Theorem 1 is proved,
together with some more general results. Before, in Section 3, we study the problem of
near optimal schemes. In Section 5, we consider the convergence of the optimal coefficients
in case the underlying function f is not sufficiently smooth for the application of Theorem
1. We identify situations when the Fourier transform of f is asymptotically homogeneous
at ∞ (similarly to (1.4)) and prove that the optimal coefficients converge, regardless of
the configuration of J and/or the choice of λ. As stated before, the limit coefficients are
identified as the Lagrange functions of certain interpolation problems that involve radial
basis functions (Buhmann, 1993, Dyn, 1989, Micchelli, 1986).

2. The least solution of the polynomial interpolation problem

We briefly discuss here the least solution of the polynomial interpolation problem of (de
Boor, Ron, 1990), a tool that we require in our analysis in Section 4, and to a lesser extent
in our analysis of Section 3.

Given a finite J ⊂ IRn, and a polynomial space P in n variables, we say that P is
correct for interpolation on J if every data given on J can be interpolated by a unique
p ∈ P . For each J , there are of course many polynomial spaces P that interpolate correctly
on J . In (de Boor, Ron, 1990, 1992a, 1992b) a correct polynomial space ΠJ , the least
solution, of least possible degree and various other desired properties was constructed.
That construction applies to any J , and is fit to the problem we discuss in this paper:
the limit of the optimal coefficients (the principal parts) for sufficiently smooth functions
f will be expressed in terms of this least solution. We review below some of its basic
features and refer the reader to the above-mentioned references for further discussions.

Let ExpJ be the exponential space

ExpJ := span{ej | j ∈ J}.

Since each g ∈ ExpJ is entire, it can be written uniquely as a convergent sum

g = g0 + g1 + g2 + . . . ,

with each gm being a homogeneous polynomial of degree m. One sets

g↓

(read “g least”) to be the non-zero polynomial gm of least degree in the above expansion.
The least solution of the polynomial interpolation problem is then the homogeneous
polynomial space

ΠJ := span{g↓ | g ∈ ExpJ}.
The space ΠJ is correct for interpolation on J . In fact, it is of minimal degree among all
such polynomial spaces: if there exists any polynomial space P that is correct for J and
contains the space Πα (of all polynomials of degree ≤ α), then ΠJ contains Πα, as well.
Also, ΠJ coincides with standard choices of correct spaces, in cases such choices exist, for
example when J forms a rectangular grid.
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We associate now with the set J two important parameters: its minimal degree (or
accuracy) m(J), and its maximal degree M(J); both notions are essential in our analysis
of Problem A.

Definition 1. Let J be a finite subset of IRn, ΠJ its associated least polynomial space.

1. m(J) is the maximal integer m for which Πm ⊂ ΠJ .

2. M(J) is the minimal m for which ΠJ ⊂ Πm.

Example. In one dimension, the least solution of any m-set J is the space Πm−1. Thus,
we always have m(J) = M(J) = |J | − 1. In more than one dimension, an equality
m(J) = M(J) =: m implies that ΠJ = Πm, and is possible only in case the cardinality
|J | matches the dimension of Πα for some α. However, with k := dimΠm, for some
m, the equality m(J) = M(J) = m holds for a generic k-set in IRn.

The above example motivates the following definition:

Definition 2. We say that J ⊂ IRn is

1. in general position if M(J) ≤ m(J) + 1 and

2. of total degree if m(J) = M(J).

We note that “general position” is the generic case. However, various important
configurations for J , such as the vertices of a rectangular grid, are not in general position.
“Total degree” occurs when J is in general position, and further its cardinality matches
the dimension of some Πm; for example, in two dimensions, three points that are not
colinear, and six points that do not lie on a conic are of total degree. In contrast, a set
consisting of four or five points (still in IR2) cannot be of total degree. Such a set will be
in general position, though, unless all its points lie on one line.

3. Near optimality

We say that “SJ
h () provides approximation order α to f ∈ L2(IRn)”, if dist(Ehλf, SJ

h (f)) =
O(hα), for every/some λ ∈ IRn. The range of relevant λ will be clear in each context. Of
course, the optimal coefficients of Problem A realize any approximation order that can be
provided (after all, they are the best). However, our objective in this paper is to replace
the h-dependent optimal coefficients by h-independent ones. Therefore, it seems useful to
consider the following problem:

Problem B. Assume that SJ
h () provides, for some fixed J and λ, approximation order

α > 0 to all functions in some smoothness class L. Are there h-independent sequences
c ∈ CJ that realize that order, i.e., that

‖Ehλf −
∑

j∈J

cjE
hjf‖L2(IRn) = O(hα), ∀f ∈ L ?

Schemes that use such sequences c as described above are called near optimal because
they realise the approximation rate α of best approximation, but not necessarily with the
same constant factor.
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One of the fundamental principles of Approximation Theory is the intimate relation
between the decay rate of the error in approximation schemes and the smoothness class
of the function being approximated. Roughly speaking, one expects that “functions with
only α derivatives” will be approximated at rates no better than α. This also explains
the custom of studying rates of convergence simultaneously for all functions in the same
smoothness class. For our particular problem, the close relation between the decay of the
error with h → 0 and the smoothness class of f is even more basic: the mere definition of
“smoothness” via the moduli of smoothness notion (cf., e.g., DeVore, Lorentz, 1993, p. 44)
shows that smoothness can be defined, hence interpreted, as the ability to approximate a
function well by close-by translates of it.

Theorem 1 provides simultaneous answers to both Problems A and B: it shows that
for smooth functions the optimal coefficients of Problem A converge to their universal
limits and that for functions of lesser smoothness these universal coefficients provide the
expected approximation orders. This result is stated with respect to Sobolev spaces.
However, it is still valid if we replace these spaces by the larger Besov spaces that we now
define. Let

Ωj := {t ∈ IRn | 2j−1 ≤ ‖t‖ < 2j}
and

Ω0 := {t ∈ IRn | ‖t‖ < 1},
where ‖ · ‖ denotes the Euclidean norm on IRn. For any f ∈ L2(IRn) we let aj(f) :=
‖‖ · ‖αf̂‖L2(Ωj)

. The Besov space Bα
∞(L2(IRn)) is the space that contains all f with

uniformly bounded aj(f):

‖f‖Bα
∞(L2(IRn)) := sup

j≥0
‖ ‖ · ‖αf̂‖L2(Ωj).

Theorem 2. Let J ⊂ IRn be given, let λ ∈ IRn, and c = (cj)j∈J ∈ CJ . Suppose that, with

Ec := eλ −
∑

j∈J

cjej ,

|Ec(t)| = O(‖t‖m) as ‖t‖ → 0 for some positive integer m. Then, with

Ahf :=
∑

j∈J

cjE
hjf,

1. for every f ∈ Wm
2 (IRn), and h → 0,

‖Ehλf −Ahf‖L2(IRn) = O(hm).

2. for every α < m, every f ∈ Bα
∞(L2(IRn)), and h → 0,

‖Ehλf − Ahf‖L2(IRn) = O(hα).

Proof: Measuring the error in the Fourier domain, one has

‖Ehλf − Ahf‖L2(IRn) =
1

(2π)n ‖f̂Ec(h·)‖L2(IRn) ≤
1

(2π)n ‖(h‖ · ‖)
mf̂‖L2(IRn) = ‖f‖Wm

2
(IRn)h

m,
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which proves (1.). For the proof of (2.), we assume without loss of generality that h = 2−k

for some k. We estimate ∫
|Ec(ht)|2|f̂(t)|2 dt. (3.1)

We divide the integral into its range of integration over ‖t‖ > 2k = h−1 and the remaining
part. We deal with the former part first. Here, since f ∈ Bα

∞(L2(IRn)), we may write, for
a generic positive constant C,

∫

Ωj

|f̂(t)|2 dt ≤ 2−2(j−1)α
∫

Ωj

‖t‖2α|f̂(t)|2 dt ≤ C2−2jα.

Summing over j ≥ k + 1, we obtain that
∫

‖t‖>2k
|Ec(t)|2|f̂(t)|2 dt ≤ C

∫

‖t‖>2k
|f̂(t)|2 dt ≤ C2−2kα = O(h2α).

For j ≤ k, we have
∫

Ωj

|Ec(t/2
k)|2|f̂(t)|2 dt ≤ C2−2km

∫

Ωj

‖t‖2m|f̂(t)|2 dt

≤ C2−2km22j(m−α)
∫

Ωj

‖t‖2α|f̂(t)|2 dt.

Invoking the fact that f ∈ Bα
∞(L2(IRn)), we can sum over j = 0, 1, . . . , k, to obtain the

required O(h2α) bound.

Discussion. Expressed with the least term of a smooth function (as defined in Section
2), the requirement in Theorem 2 concerning Ec is that degEc↓ ≥ m. If m ≤ m(J)+1,
with m(J) the accuracy of J , then, for each λ ∈ IRJ , this requirement can be fulfilled
by a suitable choice of c: for any J ⊂ IRn, and any polynomial p of degree at most
m(J), there exists g ∈ ExpJ whose Taylor expansion up to degree m(J) yields p. For
higher values of m, such a condition may be satisfied only for very special values of λ
that lie in the zero sets of certain polynomials. In any event, if m > M(J) + 1, then
the aforementioned condition cannot hold for any λ )∈ J .

Proposition 1. Given J ⊂ IRn, the spaces (SJ
h ())h provide approximation order

1. m(J) + 1 to the Sobolev space Wm(J)+1
2 (IRn) and

2. for α < m(J) + 1, α to the Besov space Bα
∞(L2(IRn)).

The fact that we do not get in the above proposition approximation order m(J)+1 for the
entire Besov class is expected. Indeed, the definition of Besov spaces, say in the univariate
case, in terms of divided differences (that is intimately related to the approximation prob-
lem we are considering here) involve, for an integer smoothness parameter k, a difference
operator that is supported on k + 2 points. Difference operators that involve only k + 1
points can be used, however, to define the smaller smoothness space Lipk(IR). One can
therefore expect the space Lipm(J)+1(IR) to be the saturation class for our problem (in
the univariate case).
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We show finally that a better approximation rate cannot be obtained for all functions
from our Besov space of order α. We define a specific f in that space via its Fourier
transform, namely

f̂(t) = (1− χ(t))‖t‖−α−n/2, t ∈ IRn.

Here, χ is the characteristic function of the unit ball. This is in the Besov space because
for positive j ∫

Ωj

‖t‖2α|f̂(t)|2 dt =
∫

Ωj

‖t‖−n dt = const.

Note that f is not contained in Sobolev space W α
2 .

A simple change of variables shows that α is the best order one can achieve:

dist(Ehλf, SJ
h (f)) = hn/2dist(Eλf(h·), SJ

1 (f(h·))) ≥ hαdist(Eλf, SJ
1 (f)).

Thus, the rate of approximation is α, unless Eλf happened to lie in SJ
1 (f), i.e. unless

λ ∈ J .

4. Optimal Approximation and multivariate polynomial interpolation

Given a finite J ⊂ IRn, we consider Problem A under the assumption that the underlying
function f is “sufficiently smooth”, a notion that we make precise soon. Given λ ∈ IRn,
we show that for each j ∈ J , there exists an integer kj := kj(J,λ), so that, for all
sufficiently smooth f , the sequence h−kj (cj(λ, h))h converges to a finite limit as h tends
to zero. Furthermore, under certain assumptions on J and λ, the limit is shown to be
f -independent.

Given a finite set J ⊂ IRn, we assume throughout this section (with the exception of

Theorem 4) that our function f of Problem A lies in the Sobolev space WM(J)+ε
2 (IRn), for

some ε > 0. Here, M(J) is the maximal degree of J as defined in Section 2.

Example. n = 1: If J ⊂ IR, then ΠJ = Πm−1, with m the cardinality of J . We conclude
that our smoothness class in one variable is slightly smaller than Wm−1

2 (IR).
As we will see momentarily, for a given smooth f , the convergence of the optimal coeffi-
cient cj(λ, h) depends critically on a certain connection among the three least spaces ΠJ ,
Π(J\j)∪λ and ΠJ∪λ. All these spaces are homogeneous, each one of them is a superspace
of ΠJ\j. Thus, we can think of each as constructed from ΠJ\j by appending first to that
space one (for J and (J\j) ∪ λ) or two (for J ∪ λ) homogeneous polynomials, and then
taking the span of the so-obtained polynomial set. The critical information in this regard
is the degree of the polynomials appended in such a procedure. This motivates the

Definition 3. Let K be a finite subset of IRn and k ∈ IRn\K. We denote by

d(K, k)

the degree of any homogeneous polynomial p that satisfies

ΠK∪k = span{ΠK ∪ p}.

In general, the value of d(K, k) depends on subtle relations betweenK and k. However,
the following estimates (albeit crude ones) are valid:

m(K) + 1 ≤ d(K, k) ≤ M(K) + 1.

8



Lemma 1. Let J be a finite subset of IRn, λ ∈ IRn, and f ∈ WM(J)+ε
2 (IRn), for some

ε > 0. Let (cj(λ, h))j∈J be the optimal coefficients of Problem A. Fix j ∈ J , and let kj be
the f -independent integer

kj = d(J\j,λ)− d(J\j, j).

Then the following holds:

1. If kj > 0, cj(λ, h) converges to 0.

2. If kj ≤ 0, there exists a number cj(λ), which is independent of h, such that

cj(λ, h) = hkj(cj(λ) + o(1)),

for h → 0.

Analysis. Already at this point, we can use the lemma’s statement to classify the
different cases of Problem A as follows:

1. The parameter kj in the lemma is positive. Then, the coefficient cj(λ, h) converges
to 0 for every smooth f as h tends to zero.

2. The parameter kj in the lemma is negative. Then, the coefficient cj(λ, h) becomes
unbounded for a generic smooth f and h → 0.

3. The parameter kj is 0, and the principal part cj(λ) is actually independent of f .
Then, the optimal coefficients converge to universal limits cj(λ) that depend on J ,
λ and j, but not on f .

4. The parameter kj is zero, but the principal parts depend, in general, on f . The
optimal coefficients in Problem A converge for every smooth f to the f -dependent
limit cj(λ).

In case (3.) above, a characterisation of the universal coefficients is desired.
In any event, the sign of kj is important. Therefore, it is useful to observe that the space
ΠJ∪λ is obtained from ΠJ\j by adding to the latter two homogeneous polynomials: one of
degree d(J\j, j) and one of degree d(J,λ). Thus, unless kj = 0, it must have the value

kj = d(J,λ)− d(J\j, j).

While the value of d(J\j, j) may depend on j ∈ J , we have the obvious bound d(J\j, j) ≤
M(J). Thus

kj ≥ min{0, d(J,λ)}−M(J)}. (4.1)

Proof of Lemma 1. We first state and prove another lemma. All inner products
appearing here and elsewhere in this section are standard L2-inner products.
Lemma 2. Let f ∈ L2(IRn) and (gk)k∈J be a finite collection of linearly independent
real-analytic functions. Assume that gkf̂ ∈ L2, for every k ∈ J . Then the matrix whose
entries are

〈gj f̂ , gkf̂〉, (j, k) ∈ J × J,
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is non-singular.

Proof of Lemma 2. The non-singularity of the matrix is equivalent to the linear inde-
pendence of (gkf̂)k∈J , the latter is argued as follows. If

∑

k∈J

ckgkf̂ = 0,

then gf̂ = 0, with g =
∑

k∈J ckgk. This implies that g must vanish on a non-null subset of
IRn (viz., the support of f̂). Hence g = 0 everywhere (g being real analytic). This forces
ck ≡ 0 since (gk)k are linearly independent by assumption.

We now prove Lemma 1 as follows. First, we find the coefficient sequence c(λ, h) of
the best approximation

∑
j∈J cj(λ, h)E

hjf to Ehλf by solving the normal equations. The
corresponding Gram matrix is

Dh := (〈Ehjf, Ehkf〉)j,k∈J = (2π)−n(〈ehj f̂ , ehkf̂〉), (4.2)

where the right-most equality follows Parseval’s formula. This Gram matrix is not singu-
lar, as an application of Lemma 2 with gk := ehk shows.

Now, we fix j ∈ J , and construct a basis for ΠJ as follows. First, we choose a
basis B0 = (bk)k∈(J\j) for ExpJ\j such that (a) the transformation matrix T0 that maps
(ek)k∈(J\j) to B0 is unit lower triangular, and (b) B↓ := (bk↓)k∈J\j is a basis for ΠJ\j (such
a basis always exists and can be constructed inductively; cf. (de Boor, Ron, 1992a)). Then
we extend this basis to a basis B of ExpJ by adding an additional function b, such that
b↓ completes B0↓ to a basis B↓ of ΠJ . Let T be the matrix that converts the basis (ek)k∈J
to the basis B; by normalising B if necessary, we may assume, as we do, that detT = 1.
Then, using (4.2), we obtain that

Gh := TDhT
T = (2π)−n(〈bi(h·)f̂ , bk(h·)f̂〉).

Due to our smoothness assumption on f , it is easy to prove that for small h

〈bi(h·)f̂ , bk(h·)f̂〉 = hdeg bi↓+deg bk↓(〈bi↓f̂ , bk↓f̂〉+ o(1)).

Thus,
detDh = detGh = h&(detG↓ + o(1)),

where G↓ has entries
(2π)−n〈bi↓f̂ , bk↓f̂〉, (i, k) ∈ J × J,

and where
& := 2

∑

k∈J\j

deg bk↓ + 2deg b↓.

The matrix G↓ is non-singular, as follows from Lemma 2, when choosing (gk) there to be
B↓. Thus h−& detDh = detG↓ + o(1), detG↓ )= 0.

We proceed by computing cj(λ, h) via Cramer’s rule. The denominator is detDh. The
numerator is the determinant of Dh,j which is obtained from Dh when replacing the jth
column there by

(2π)−n〈ehif̂ , ehλf̂〉, i ∈ J.
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We apply to Dh,j the same row-operations as before, i.e., multiply that matrix by T from
the left. As to column operations, we need to modify the underlying least space, since
the columns now relate to the pointset J ′ := (J\j) ∪ λ, hence to the least space ΠJ ′.
We construct a basis for ΠJ ′ by adding to the previous basis B0 of ExpJ\j an additional
function b′, such that B′ := B0 ∪ b′ is a basis for ExpJ ′, while B′

↓ is a basis for ΠJ ′ . We
let Tj be the matrix that transform (ek)k∈J ′ to B′. Then,

Gh,j := TDh,jT
T
j

has entries
(2π)−n〈bi(h·)f̂ , b′k(h·)f̂〉, (i, k) ∈ J × J ′.

As before, we thus obtain that, with

Gj↓ := (2π)−n(〈bi↓f̂ , b′k↓f̂〉),

one has for small h
h−&j detGh,j = detGj↓ + o(1),

where
&j := deg b↓ + deg b′↓ + 2

∑

k∈J\j

deg bk↓.

Collecting terms, we finally arrive at

cj(λ, h) = hdeg b′↓−deg b↓aj

(
detGj↓

detG↓
+ o(1)

)
,

with aj := 1/ detTj. Since, by the above construction details, deg b↓ = d(J\j, j) while
deg b′↓ = d(J\j,λ), and in view of the discussion in the next paragraph, we obtain the
desired result.

In one case, the above argument may fail to go through: this is the case when deg b′↓ >
M(J), a case in which inner products of the form 〈pf̂ , b′↓f̂〉, deg p = M(J), that necessarily
appear in Gj↓, may not make sense without a stronger smoothness assumption on f .
However, in such a case kj = deg b′↓ − deg b↓ ≥ deg b′↓ −M(J) > 0, and we can modify
the previous proof as follows: we extend B0 to a basis B′′ of ExpJ ′ such that, with b′′

the function added to B0, deg b′′↓ = M(J). With this degree reduction, the smoothness
assumption on f allows us to invoke the previous argument (with B′′ replacing B′). The
new kj is now deg b′′↓−deg b↓ ≥ M(J)−M(J) = 0. At the same time, B′′

↓ is now a subset
of ΠJ\j , hence is dependent, which forces the matrix Gj to be singular. Our previous
argument thus yields for that case that cj(λ, h) = o(1), and the proof is now complete.

We recall the definition of general position from Section 2, and remind the reader that
this is the generic situation: it is proved in (de Boor, Ron, 1990) that for any integer
&, the sets J ⊂ IRn with cardinality & that are in general position form an open and
dense subset (in IR&n). Also, note that the degrees m(J) and M(J) of a set J in general
position are determined by its cardinality; for example M(J) is the least integer m for
which |J | ≤ dimΠm. Though general position is the generic case, there are important
configurations for J that are not in general position: the most notable case is that of a
grid.
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Corollary 1. Let J be a finite subset of IRn in general position, λ ∈ IRn, and f ∈
WM(J)+ε

2 (IRn), ε > 0. Let (cj(λ, h))j∈J be the optimal coefficients of Problem A. Then,
for each j ∈ J , the sequence

h $→ cj(λ, h)

converges to a finite limit cj(λ).
Proof: In view of Lemma 1, it suffices to show that the integer kj there is non-

negative, for each j. Since we have the estimate (4.1), we need only to prove that d(J,λ) ≥
M(J). However, the general position assumption grants us that ΠM(J)−1 ⊂ ΠJ . Since
d(J,λ) is the degree of some homogeneous polynomial which is not in ΠJ , this degree is
trivially > M(J)− 1.

Example. Let J consist of three points in IR2 which are not colinear. Then J is in
general position, hence the corollary applies. The corollary further tells us that, for
some λ and j, the optimal coefficient cj(λ, h) tends to 0. Precisely, the penultimate
proof shows that this happens if Π(J\j)∪λ contains a quadratic polynomial (note that
ΠJ = Π1). However, the least space of a 3-set contains a quadratic if and only if the
three points are colinear. We conclude that cj(λ, h) tends to 0 if λ lies on the line that
goes through the two other points of J . This observation holds for every smooth f ;
here, “smooth” means lying in W α

2 (IR
2), for some α > 1.

Suppose now that J is not in general position. First, whether or not J is in general
position, it follows from (de Boor, Ron, 1990) that one can always find j ∈ J such that
d(J\j, j) = M(J). On the other hand, for a generic λ, the value of d(J\j,λ) will be the
smallest possible, i.e., m(J\j) + 1. For such λ and j, with kj as in Lemma 1,

kj = m(J\j) + 1−M(J) ≤ m(J) + 1−M(J).

This number is non-negative if and only if J is in general position. Thus, for J not in
general position, the optimal coefficients diverge to ∞ for almost all λ and f . However,
one should not mistakenly write off sets J that are not in general position. Such sets can
be useful for particular values of λ. Since we consider λ as given, while J is for us to
choose, we may adjust J to the value of λ. Specific examples to that extent are given in
the sequel.

We now turn our attention to the case when the optimal coefficients of Problem A
converge to limits that are f -independent. Sufficient conditions for that to happen are
given in the next two results. The condition in the first result can be seen to be necessary,
too, for the universality of the limit cj(λ). The second result is the main result of this
section. Its condition can be shown to be necessary for the existence and universality of
all coefficient limits.
Corollary 2. In Lemma 1, if, for some j ∈ J , the least space Π(J\j)∪λ equals ΠJ , then the
limit cj(λ) of the optimal coefficients cj(λ, h) exists and is independent of f . Moreover,
there exists a function F ∈ ExpJ\j such that (eλ − (cj(λ)ej + F ))↓ )∈ ΠJ .
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Proof: Set J ′ := (J\j) ∪ λ. Since we assume ΠJ = ΠJ ′, we may choose in the
proof of Lemma 1 the same homogeneous basis B↓ and B′

↓ for this space. This shows that
kj in the lemma is 0 and the two matrices G↓ and Gj↓ are identical. The lemma thus
provides the estimate for small h

cj(λ, h) = aj + o(1).

Thus the optimal coefficient converges to an f -independent limit.
We investigate the nature of that limit with the aid of the notations and details

introduced in the proof of our lemma above. We write b = r1ej + F1, and b′ = r2eλ + F2,
F1, F2 ∈ ExpJ\j , and assume b↓ = b′↓. If either F1 or F2 is not unique, we choose them to
maximise deg(b − b′)↓. We note that (b− b′)↓ )∈ ΠJ . Indeed, if g = sej + F , F ∈ ExpJ\j,
and g↓ = (b − b′)↓ then one of the following must happen: (i) s = 0. That contradicts
the maximal choice of F1, F2, since deg(b − g − b′)↓ > deg(b − b′)↓. (ii) s )= 0. Then
sb−r1g ∈ ExpJ\j, and (sb−r1g)↓ = sb↓ = sp since deg(b−b′)↓ > deg b↓. Hence b↓ ∈ ΠJ\j ,
contrary to our assumptions.

Now, for the matrices T and Tj in Lemma 1, we have that detT = r1 and detTj =
r2. Since we assume in the lemma that detT = 1, we have that r1 = 1. Thus, with
aj = (detTj)−1 = 1/r2, the function −aj(b − b′) is of the form eλ − (ajej + F3), with
F3 ∈ ExpJ\j , while (b− b′)↓ )∈ ΠJ .

Theorem 3. Let J ⊂ IRn and λ ∈ IRn be given. If M(J ∪ λ) > M(J), then

1. The optimal coefficients in Problem A (with the current J and λ) converge for every

f ∈ WM(J)+ε
2 , ε > 0, to an f -independent limit c(λ).

2. The function F :=
∑

j∈J cj(λ)ej is the only function in ExpJ that satisfies deg(eλ −
F )↓ > M(J), or equivalently, the sequence j $→ cj(λ) is the only sequence supported
on J for which

p(λ) =
∑

j∈J

cj(λ)p(j), ∀p ∈ ΠM(J).

Proof: Since M(J ∪ λ) > M(J), we must have d(J,λ) = M(J ∪ λ) > M(J).
Now, fix j ∈ J . The space ΠJ∪λ is obtained from ΠJ\j by adding two homogeneous
polynomials p, q of degrees d(J\j, j) ≤ M(J) and d(J,λ) > M(J) respectively. Since
these two polynomials were just shown to have different degrees, the space Π(J\j)∪λ is
obtained from ΠJ\j by appending to the latter either p or q (but not a linear combination
of them). We denote by J0 ⊂ J those j ∈ J for which p is the appended polynomial. If
j ∈ J0, then Π(J\j)∪λ = ΠJ (since ΠJ is also obtained from ΠJ\j by appending either p or
q; however, q is ruled out because of its higher degree). By Corollary 2, cj(λ, h) converges
for every smooth f to an f -independent limit. In the opposing case when the appended
polynomial is q, then d(J\j,λ) = d(J,λ) = deg q > M(J), and hence kj of Lemma 1 is
positive. In this case cj(λ, h) → 0.

We now prove the characterisation of the limit coefficients. Let q be as in the previous
paragraph. Let F0 ∈ ExpJ∪λ be such that F0↓ = q. F0 is unique: if F0↓ = q as well,
and F0 − F0 )= 0, then (F0 − F0)↓ is a polynomial in ΠJ∪λ of degree > deg q, which is
impossible. However, we have already proved that, for j ∈ J\J0, q ∈ Π(J\j)∪λ; hence the
uniqueness of F0 implies that F0 ∈ Exp(J\j)∪λ. Consequently, F0 ∈ ExpJ0∪λ.
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The coefficient of eλ in F0 is not zero, since otherwise F0↓ ∈ ΠJ , and ΠJ cannot contain
a polynomial whose degree exceeds its own maximal degree. Normalising if necessary, we
may assume that F0 = eλ − F , for some F ∈ ExpJ . Note that F0 as above is the unique
function in ExpJ for which F0↓ )∈ ΠJ . Indeed, if F0 = eλ − F , for some F ∈ ExpJ\{F},
then F0 − F0 = F − F ∈ ExpJ\0, and hence deg(F0 − F0)↓ ≤ M(J). This implies that
degF0↓ ≤ M(J). Since degF0↓ > M(J), we had found in ΠJ∪λ\ΠJ two homogeneous
polynomials of different degrees, and that contradicts the fact that dimΠJ∪λ = dimΠJ+1.

We write F =
∑

j∈J djej , and will show that cj(λ) = dj for every j. Since F lies in
ExpJ0, we have dj = 0, for every j ∈ J\J0. This agrees with our previous observation that
cj(λ) = 0 for each such j. In the opposite case, j ∈ J0. Corollary 2 and the uniqueness of
F (proved in the previous paragraph) show dj = cj(λ).

Proof of Theorem 1. With m := m(J) = M(J), we know that ΠJ = Πm. Since ΠJ∪λ

is a proper superspace of ΠJ , it must contain polynomials of degree > m. Theorem 3
applies to yield the first part of Theorem 1.

From the corollary we also know that, with c(λ) the limit coefficients, deg(eλ −∑
j∈J cj(λ)ej)↓ > m, and hence that |Ec(λ)(t)| = O(‖t‖m+1) near the origin. Part (2.)

follows by invoking Theorem 2.

One may try to adapt J to the given λ and f in a way that admits the use of a small
J on the one hand, as well as the relaxation of the smoothness assumption on f on the
other hand. In the statement below, the symbol Dθ stands for the directional derivative
in the θ-direction.
Theorem 4. Given θ ∈ IRn, m > 0 and f0 ∈ L2(IRn), assume that Dm

θ f0 ∈ L2(IRn).
Given any λ ∈ IRn, let J be a subset of IRn of cardinality m such that J ∪ {λ} lies on a
line in the θ direction. Then, there exists a sequence c(λ) ∈ CJ , that depends only on λ
and J , with the following properties:

1. The optimal coefficients of Problem A w.r.t. f0 converge to c(λ).

2. For every α ≤ m, and every f ∈ L2(IRn), the L2(IRn) error in

Ehλf ≈
∑

j∈J

cj(λ)E
hjf

is O(hα), with α the maximal integer for which Dα
θ f ∈ L2(IRn).

We note that (de Boor, Ron, 1990), if a set J lies entirely on a line directed in the θ
direction, then ΠJ = span{t $→ (θ · t)& | 0 ≤ & ≤ |J |− 1}. In particular, for a colinear set
J , M(J) = |J |− 1.

Proof of Theorem 4. Since we assume that J ∪ λ is colinear, so is J , and hence, by
the remark preceding this proof, M(J ∪ λ) = |J | > |J | − 1 = M(J). Part (1.) of the
theorem then follows from Theorem 3, as soon as we verify that the weaker smoothness
assumption imposed on f is suitable.

The fact that f in Corollary 1 is required to be smooth is due to the estimation in its
proof of expressions of the form

∫
(b− b↓)|f̂ |2, for certain b ∈ ExpJ∪λ. We used there the

estimate |(b− b↓)(t)| ≤ const‖t‖deg b↓+1. However, in the present case, |b− b↓| is a function
of the variable t $→ θ · t. Hence we can bound |(b− b↓)(t)| ≤ const|θ · t|deg b↓+1, and that
allows us to relax our smoothness condition on f .
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In order to prove (2.), we invoke the characterisation of the principal parts of Theorem
3: the characterisation says that, with c(λ) being the universal limits of the optimal
coefficients, we have degEc(λ)↓ = M(J) + 1 = |J |. This implies |Ec(λ)(t)| = O((θ · t)|J |).
By an argument analogous to that employed in the proof of Theorem 2, we obtain that
the approximation scheme has the properties asserted in (2.).

Example: Rectangular Grids. If J ∪ λ is the cartesian product of univariate sets
(J1, . . . , Jn) of cardinalities (k1, . . . , kn), then (de Boor, Ron, 1992a) ΠJ∪λ is spanned
by the monomials

t $→ tα, α ≤ k := (k1 − 1, . . . , kn − 1).

The same reference shows that, upon deleting the monomial t $→ tk from the above
basis, we get a basis for ΠJ ′ with J ′ obtained from J ∪ λ by the deletion of any single
point in J ∪ λ. In particular, M(J ∪ λ) > M(J). Thus, Theorem 3 applies to show
that the optimal coefficients converge here to universal limits.

We close this section with an example showing that the requirement M(J ∪ λ) > M(J)
(cf. Theorem 3) is not necessary for the universality of the limits of some of the optimal
coefficients.

Example. Assume that Ji is a finite subset of the xi axis, i = 1, 2, of IR2, J = J1 ∪ J2.
Then ΠJ is spanned by pure monomials (i.e., by functions of the form t $→ tmi ). For

λ on the x1-axis, ΠJ∪λ is obtained from ΠJ by appending t $→ t|J1|1 to ΠJ , and thus
d(J,λ) = |J1|. However, if |J2| > |J1|, then M(J) = |J2| − 1 ≥ |J1|, and hence
M(J ∪ λ) = M(J). At the same time, for each j ∈ J1, we have that Π(J\j)∪λ = ΠJ ,
hence that cj(λ, h) converges, for such j and for all smooth f , to an f -independent
limit. In summary, in this example, despite the fact that the condition required in
Theorem 3 fails to hold, Corollary 2 still applies to show that some of the coefficients
converge to universal limits.

5. Optimal approximation and radial basis functions

In the previous section, a fairly thorough analysis of the convergence of the optimal
coefficients in Problem A is provided when f is “sufficiently smooth”. In many cases, we
can easily circumvent the smoothness assumption on f by simply reducing the cardinality
of J : the smoothness assumption is relaxed as we remove points from J . However, this
clearly entails that, in such case, the optimal coefficients may converge, but at the expense
of an increase in the error of best approximation. After all, the spaces (SJ

h ())h ought to
approximate worse as J is reduced.

The purpose of this section is to give sufficient conditions for the existence of the
principal parts of the optimal coefficient sequences for functions that are not covered by
the results of the previous section.

To begin, we state a set of conditions on f , expressed in terms of its Fourier transform.
They will apply to the next theorem, and they are related to, but more general than (1.4).
To that end, we require that f : IRn → IR be absolutely integrable and square-integrable.
Its Fourier transform f̂ is therefore continuous. We require it to be slowly varying, i.e.
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there is a positive function G such that

lim
‖y‖→∞

f̂(t‖y‖)
f̂(y)

= G(t), t a.e. in IRn. (5.1)

Here “a.e.” means almost everywhere, i.e. everywhere except perhaps on a set of measure
zero.

In order that the convergence (5.1) is controlled, we require that there is a constant
K so that ∣∣∣∣

f̂(t‖y‖)
f̂(y)

∣∣∣∣ ≤ KG(t) (5.2)

for almost all t ∈ B := the unit ball. To explain the relevance of conditions (5.1)–(5.2),
note that in the univariate case, they are a natural generalisation of (1.4).

We finally have a condition that fixes certain properties of G’s behaviour at the origin
and for large argument. Its purpose is to render the limiting minimisation problem well-
defined. We state this condition by viewing G as the Fourier transform of a certain
generalised function, and it will be convenient to deal with the square of G instead of G
itself. Precisely, we require that the square of G is the distributional Fourier transform of
a function φ in P, a class with the following properties.

Every φ ∈ P must have a distributional Fourier transform which agrees with a positive
function φ̂ ∈ C(IRn \ 0) ∩ L1(IRn \ B). Further, we require that there exists a sequence
c = (cj)j∈J , so that for all λ ∈ IRn

∫

IRn
|Ec(t)|2φ̂(t) dt < ∞. (5.3)

Ec still has the same meaning as in the previous sections.

Example. An example where all these assumptions are satisfied, is when f̂ is a negative
power of the function (1 + ‖ · ‖) with a suitably large negative exponent −α − n/2
to ensure G2 = ‖ · ‖−2α−n = φ̂ ∈ L1(IRn \ B). We note, however, that (5.1) really
is an asymptotic condition and does not require f̂ to be of that form. If, as in this
example, φ̂(t) = ‖t‖−2α−n, then the aforementioned φ(t) is a constant multiple of ‖t‖2α
so long as α is not an integer, whereas in the opposing case φ(t) is a constant multiple
of ‖t‖2α log ‖t‖. Both of these φ are in the class of radial basis functions frequently
considered in the literature (Buhmann, 1993, Dyn, 1989, Micchelli, 1986). In order to
satisfy (5.3) for this example, we have to choose c such that

∑

j∈J

cjj
γ = λγ, |γ| ≤ α. (5.4)

Then the condition (5.3) is true. It is always possible to achieve the above requirement
by taking a large enough J .

The relevance of radial basis functions in general in this section will become clear in
the following theorem, where we demonstrate that under our conditions, the limiting
coefficients are Lagrange functions of certain radial basis function interpolation problems.
We point out that J is still a set of scattered points in IRn. It is a salient assumption that
the only polynomial from the kernel K of the semi inner product associated with φ̂, viz.,

〈f, g〉 =
∫

IRn
φ̂−1f̂ ¯̂g,
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that vanishes identically on J , is the zero polynomial. The above inner product is well-
defined for all f, g ∈ H, where

H :=
{
f ∈ S ′ |

∫

IRn
φ̂−1|f̂ |2 < ∞

}
.

Here, S ′ is the space of distributions dual to the Schwartz space of rapidly decreasing
smooth test functions on IRn, cf., e.g., Jones (1982).

The above assumptions on the points we make from now on. We also find it convenient
for the statement of the next theorem to define the space

J :=
{
d = (dj)j∈J ∈ IRJ |

∑

j∈J

djq(j) = 0 ∀ q ∈ K
}
.

Our last result now is as follows.

Theorem 5. Let f be such that the above conditions (5.1)–(5.2) hold for G =
√
φ̂, φ ∈ P.

Then, with (cj(λ, h))j∈J the optimal coefficients of Problem A, the following limits exist:

lim
h→0

cj(λ, h) = cj(λ), j ∈ J, λ ∈ IRn,

and (cj(λ))j∈J are the coefficients that minimise

min
(cj)j∈J

∫

IRn
|Ec(t)|2φ̂(t) dt (5.5)

over all coefficients satisfying (5.3). They are also the unique Lagrange functions in λ of
the form

cj(λ) =
∑

k∈J

djkφ(λ− k) + p(λ), λ ∈ IRn, j ∈ J,

that provide the interpolation conditions

cj(k) = δjk, j ∈ J, k ∈ J,

where p is a polynomial from K and (djk)k∈J ∈ J .

Proof: First note that, due to Parseval’s identity, the norm (1.3) that we need to
minimise equals to the square root of

1

(2π)n

∫

IRn
|Ec(th)|2|f̂(t)|2 dt, (5.6)

and hence we are entitled to minimise, in lieu of (1.3), the above expression. To this end,
we multiply (5.6) by

(2πh)n|f̂(h−11/
√
n)|−2,

where 1 = (1, 1, . . . , 1) ∈ IRn, and scale the argument in the integral to obtain

|f̂(h−11/
√
n)|−2

∫

IRn
|Ec(t)|2|f̂(h−1t)|2 dt (5.7)
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instead of (5.6); thus, we can minimise (5.7), instead of (1.3). Now, let c be the minimising
sequence of (5.5), and let c(λ, h) be the minimising sequence of (5.7), the latter being the
same as the minimising sequence of (1.3) (the uniqueness of these minimising sequences
is granted by Lemma 2). Then, with c0 any finite accumulation point of (c(λ, h))h, and
with Ck := c(λ, hk) a subsequence that converges to c0, we get from (5.1) that

|f̂(h−1
k 1/

√
n)|−2|ECk(t)|

2|f̂(h−1
k t)|2

converges pointwise to |Ec0(t)|2φ̂(t). Therefore, by Fatou’s Lemma,
∫

IRn
|Ec0(t)|2φ̂(t) dt ≤ lim inf

k→∞
|f̂(h−1

k 1/
√
n)|−2

∫

IRn
|ECk(t)|

2|f̂(h−1
k t)|2 dt. (5.8)

On the other hand, for any h > 0, since we are assuming c to satisfy (5.3), the following
bound is valid:

|f̂(h−11/
√
n)|−2|Ec(t)|2|f̂(h−1t)|2 ≤

{
|Ec(t)|2φ̂(t) + const, if ‖t‖ ≤ 1,
φ̂(t) · const, if ‖t‖ ≥ 1.

By the dominated convergence theorem, we get thus that

lim
h→0

|f̂(h−11/
√
n)|−2

∫

IRn
|Ec(t)|2|f̂(h−1t)|2 dt =

∫

IRn
|Ec(t)|2φ̂(t) dt.

Combining this with (5.8), we conclude that, in view of the optimality of c(λ, h),
∫

IRn
|Ec0(t)|2φ̂(t) dt ≤

∫

IRn
|Ec(t)|2φ̂(t) dt.

This, in turn, implies, since c is the unique solution of (5.5), that c0 = c; in other words,
the sequence (c(λ, h))h has c as its unique finite accumulation point. This leaves us with
showing just boundedness of the limiting coefficients to settle the lemma.

Indeed, in the following fashion we can bound the optimal coefficients independently
of h: Let, for the moment being, g : IRn → IR be any square-integrable function that
satisfies the following conditions for a fixed k ∈ J :

g(λ) = 0, g(j) = δjk, j ∈ J,

where we assume λ )= j for all j ∈ J (otherwise the solution of the minimisation problem
would be obvious). Such a function exists of course. Then, by Cauchy–Schwarz,

|ck(λ, h)|2 =
∣∣∣∣g(λ)−

∑

j∈J

cj(λ, h)g(j)
∣∣∣∣
2

≤
1

(2π)2n

[∫

IRn
|ĝ(t)||Ec(λ,h)(t)| dt

]2

≤
1

(2π)2n

∫

IRn

|ĝ(t)|2

|f̂(h−1t)|2
dt

∫

IRn
|Ec(λ,h)(t)|2|f̂(h−1t)|2 dt

=
1

(2π)2n

∫

IRn

|ĝ(t)|2

|f̂(h−11/
√
n)|−2|f̂(h−1t)|2

dt×

|f̂(h−11/
√
n)|−2

∫

IRn
|Ec(λ,h)(t)|2|f̂(h−1t)|2dt.
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We take g(t) = p(t)ψ(t − k), where p is a polynomial of suitable degree, p(λ) = 0,
p(j) = δjk, ψ entire and quickly decaying along IRn, so that ψ̂ is sufficiently smooth, with
ψ̂’s support in B, and ψ(0) = 1. Such a polynomial exists; we may form it, for instance,
as a suitably scaled product of terms of the form ‖t − j‖2, ‖t − λ‖2. We get, using the
properties of g and of f̂ ,

lim sup
h→0

|ck(λ, h)|2 ≤ const ·
∫

‖t‖<1
φ̂(t)−1 dt×

lim sup
h→0

|f̂(h−11/
√
n)|−2

∫

IRn
|Ec(t)|2|f̂(h−1t)|2 dt

which is uniformly finite.
Finally, we explain the representation of the principal parts as Lagrange functions.

Indeed, it is clear from (1.3) that the principal parts cj(λ) as h → 0 of the optimal
coefficients cj(λ, h) are fundamental functions with respect to λ on the set J , i.e. they
must yield the interpolation conditions

cj(k) = δjk, j ∈ J, k ∈ J.

Further, it follows from the fact that the principal parts solve (5.5) and from φ ∈ P that
they are of the form

cj(λ) =
∑

k∈J

djkφ(λ− k) + p(λ), λ ∈ IRn,

where p is an element of the kernel K of the aforementioned semi inner product 〈·, ·〉
associated with φ̂. Moreover, the djk have to satisfy the side conditions mentioned in the
statement of the theorem. This fact is a consequence of standard Hilbert space theory for
positive definite kernels on subspaces of IRJ , see (Dyn, 1989) and (Schaback, 1993), for
good summaries of this issue. The subspace here is J .

We observe immediately that the coefficients of this theorem give a scheme to which
Theorem 2 can be applied, for instance in the example given at the beginning of this
section. In that case, i.e. when φ̂(t) = ‖t‖−2α−n, K contains Π<α+n/2 which means that
all such polynomials are reproduced by the Lagrange interpolation of Theorem 5 (by
uniqueness of interpolation). Therefore, (5.4) holds even for all |γ| < α + n/2 using the
cj(λ, h). Theorem 2 is thus applicable for m ≤ 4α + n/25, the f given in the example
being in Bα

∞(L2(IRn)).
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