
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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Switzerland

1Department of Mathematics and Computer Science, University of Dundee, Dundee DD1 4HN,
Scotland, UK



M.J.D. Powell’s work in univariate and multivariate
approximation theory and his contribution to optimization

M.D. Buhmann and R. Fletcher 1

Seminar für Angewandte Mathematik
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Abstract

Since 1966, exactly 30 years ago, Mike Powell has published more than 40
papers in approximation theory, initially mostly on univariate approximations
and then, focussing especially on radial basis functions, also on multivariate
methods. A highlight of his work is certainly his book Approximation the-

ory and methods, published by CUP in 1981, that summarizes and extends
much of his work on !1, !2, !∞ theory and methods, splines, polynomial and
rational approximation etc. It is still one of the best available texts on uni-
variate approximation theory. In this short article we attempt to introduce
part of Mike’s work, with special emphasis on splines in one dimension on
the one hand and radial basis functions on the other hand. Only a selec-
tion of his papers can be considered, and we are compelled to leave out all
of his many software contributions, which for Mike are an integral part of
his research work, be it for the purpose of establishing new or better meth-
ods for approximation or for making them more accessible to the general
public through library systems. We subdivide this chapter into three parts
(!1/!∞-approximation, rational approximation; splines; multivariate (radial
basis function) approximation) although this is in variance with the spirit of
many of Mike’s articles which often establish beautiful links between different
themes (e.g. optimization and !1-approximation). As will be seen, many of
the papers contain optimal results in the sense that constants in error esti-
mates are best (or the best ones known), have also often surprising novelty
and always clearly defined goals. One further important contribution that we
cannot describe here is Mike’s guidance for the seven dissertations in approx-
imation theory that were written under his supervision.

In a second chapter, Mike’s contributions to optimization are reviewed with a
special emphasis on the historical development of the subject and the impact
of Mike’s work on it.

1Department of Mathematics and Computer Science, University of Dundee, Dundee DD1 4HN,
Scotland, UK





1. A brief review of M.J.D. Powell’s work in univariate and multivariate

approximation theory

We commence with his work on univariate approximation.

1.1 !1/!∞-approximation, rational approximation.

Mike’s work on these topics begins with contributions to best polynomial approximation
step. A particular concern of his is their efficient computation, e.g. with the Remez (or
exchange) algorithm. In his paper with Alan Curtis [13]1, the exchange algorithm for best
!∞ approximation from finite dimensional (especially polynomial) spaces is studied with
a view to its convergence properties. In particular, formulas for first and second partial
derivatives of

max
x=xi

i=0,1,...,n

|f(x)− φ(x, µ1, . . . , µn) |

are given with respect to the reference points xi, i = 0, 1, . . . , n, where f is to be approxi-
mated from {φ(x, µ1, . . . , µn)|µi ∈ lR, i = 0, 1, . . . , n}. If, for instance the first and second
derivatives are zero, the required stationary points are reached with quadratic convergence
rate when the reference prints are moved one at a time. In other words, conditions are
given in this paper under which the exchange algorithm is particularly efficient.

A year later, in the same journal, there appeared a paper [20] that considers error estimates
of polynomial approximation. Lebesgue numbers (norm of the interpolation operator
for polynomial interpolation) are used to show that the maximum error of interpolation
is always (within a factor independent of f) a multiple of the least maximum error.
Chebyshev points on an interval are demonstrated as a good choice of interpolation points.
The same analysis is also applied to best least-squares approximation. In the following
work [23], properties of optimal knot positions for the latter approximation method are
studied.

Rational, rather than polynomial, !∞ approximation is the subject of a joint paper with
Barrodale and Roberts [41] where it is shown that the ordinary differential correction
(ODC) algorithm is, surprisingly, in various senses better than the modified one that is
more often used. The ODC is employed to find a best !∞ approximation by P/Q, P ∈ lPm,
Q ∈ lPn, on the basis of points X = {x1, x2, . . . , xN}, where Q(xi) > 0 ∀i = 1, 2, . . . , N .
Although the maximum error ∆k over X may tend to ∆∗ in the course of the algorithm,
where Pk, Qk are computed from Pk−1 and Qk−1 by minimizing

max
i=1,2,...,N

|f(xi)Q(xi)− P (xi)|−∆k−1Q(xi)

Qk−1(xi)
,

the problem need not have a solution P ∗, Q∗ with the required properties for which ∆∗ is
attained. However, convergence Pk → P ∗, Qk → Q∗ is proved in [41] when N ≥ n+m+1.
The best approximation exists and satisfies the normalization condition max

i
|qi| = 1.

1Numbers in square brackets refer to the general list of M.J.D. Powell’s publications.
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Here, the qi are the coefficients of Q. Furthermore, the minimization procedure involved is
a linear programming problem, and quadratic convergence of the coefficients is established.
Incidentally, this is a beautiful link between approximation theory and an application of
an optimization (specifically, here, linear programming) method, four more of which we
will encounter below.

Often, we find surprising novelties in his papers at points where nothing new was ex-
pected. Examples will be in his work on radial basis functions outlined below, but also
the problem dealt with in the last paragraph was revisited for new results in [108]. There,
general rational approximations are considered, i.e. ones where the numerator and the
denominator need no longer be polynomial. However, it is sensible to restrict them to
finite dimensional spaces, G and H say, and the denominator should be from the set
H+ := {h ∈ H | h > 0, ‖h‖ = 1} which is assumed to be non empty, and ‖ · ‖ is a
prescribed norm.

Again, the unmodified, ordinary ODC algorithm is analyzed and superlinear convergence
is shown if the best approximation with respect to ‖ · ‖ exists and is unique and if ∆k →
∆∗. If inf Qn → 0 and no unique best approximation exists, an example of just linear
convergence is given, even if Pk and Qk tend to a unique limit for k → ∞. Thus the
former result is optimal with respect to its hypotheses. It is well-known that the best
approximation may not exist uniquely even if ∆k → ∆∗ but infQk → 0, although Pk

and Qk may have a unique limit. Another approach to solve this problem, that has been
suggested elsewhere, is to restrict Qk away from zero, Qk ≥ ε > 0, where ε is independent
of k, during the algorithm.

Another link between approximation and optimization occurs in !1 theory. In [79], a
linear programming test for !1 optimality of an approximation is given. It consists of a
finite number of linear inequalities and is therefore suitable for the application of an LP
method. These inequalities are expressed in terms of the original data, which is highly
suitable for practical computations of best !1 approximations. Those approximations have
been, incidentally, much neglected elsewhere in the literature, with the exception of A.
Pinkus’ excellent book on !1 approximations. The characterization theorem is best stated
explicitly. We let X be a discrete finite set, C(X) be the set of functions that are defined
on X,A ⊂ C(X) an n-dimensional subspace. Furthermore, we let Z = {zj}nj=1 ⊂ X be
the zero set with n elements of the function s(x) = f(x)− φ∗(x), where f ∈ C(X) is the
function to be approximated, φ∗ ∈ A. Then φ∗ is best !1 approximant to f if and only if
the following inequalities hold:

∣∣∣
∑

x∈X\Z

sign s(x) !i(x)
∣∣∣ ≤ 1 ∀i ,

where !i ∈ A satisfy !i(zj) = δij, i = 1, . . . , n. There are many advantages to using !1
approximations in practice and this paper is a concrete aid to their application.

Finally in this subsection we mention the articles [128], [129], where approximants to
discrete noisy data are constructed to obtain either piecewise monotonicity of the data
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or convexity. Precisely, if, for instance, at most k monotone sections of the data are
desired (k is prescribed) and n (univariate) data are given, the k optimal breakpoints
and the least changes to the data are computed in 0(n2 + kn logn) operations. “Least
changes” is understood in the sense of a global sum of squares of changes. The special
cases k = 1, 2 give the minimum complexity O(n). The principal advancement in this
work is the substantial reduction of the number of data that need be considered when
finding the optimal breakpoints. A recursive method is applied with respect to k, and
certain subsets of the data have to be used in the computation at each stage.

In [129], the least sum of squares of changes to the data is sought to achieve convexity.
The method uses the iterative optimization algorithm of Goldfarb and Idnani, for which
a starting value is computed in O(n) operations. Precisely, the statement of the convex-
ity constraints in terms of second divided differences of the data gives rise to a strictly
convex quadratic programming problem which is subsequently solved by the above al-
gorithm. Mike’s talk at the conference celebrating his 60th birthday this year was also
closely related to this topic. In [89], similar questions are considered with respect to the
least uniform change to the data. Algorithms are given to compute the least maximum
change to the data in order to achieve monotonicity, piecewise monotonicity, or piecewise
convex/concave data.

1.2. Splines

In this subsection, a short summary of some of Mike’s work on splines is presented.
The best source to this work is generally his book [81] where much attention is given
to polynomial splines, B-splines, spline interpolation and convergence properties, but we
extract his work here from the papers [29], [32] and [63].

Cubic splines are considered in [29] and they are employed for the purpose of providing
least squares approximations with weights. The main purpose of the article is an analysis
of the locality of the least squares approximation by splines. The (finite number of) knots
!h, ! ∈ ZZ∩[0,M ], say, of the spline are equidistant with spacing h and the weight function
is h-periodic and nonnegative. Using recurrence relations, the fundamental functions
for this spline approximation problem are computed where, for simplicity, the knots are
assumed to be all !h, ! ∈ ZZ. They decay exponentially unless the weight is concentrated
solely at the midpoints between the knots by a δ-function h · δ(x− 1

2 h) (precisely, by its

h-periodisation). The fastest decay of (2−
√
3)!, ! → ±∞, is obtained when the weight is

concentrated at the knots, by h · δ(x). A further consideration is given to the case when
the weighted !2-norm is augmented by the sum of squares of the coefficients cj where the
spline is s(x) =

∑M
j=0 cj(x − jh)3+ plus a cubic polynomial, and this augmentation may

again be weighted by a positive factor ϑ. Indeed, by employing this factor, the localisation
of the spline’s dependence on the data can be strengthened, and also the best ϑ is given for
the most unfavourable choice of the weight function in the least squares integral, namely
h · δ(x − 1

2 h), when the knots are still presumed to be integer multiples of h > 0. The
fundamental function centred at 0 for the best approximation using that weight function
and ϑ is shown to diminish as (0.3613)!, when its argument is !h, ! ∈ ZZ. This damping
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term can also give uniqueness of the best approximant, which may otherwise be lost
when the weight function is not periodic. Moreover, differences of the approximant are
considered, e.g. if the eighth derivative of the approximand is bounded, they are O(h8)
and if f ∈ lP7, the error is zero except for dependencies at the ends of the range, when
the approximand and approximant are defined on a finite interval.

In [27], the norm of the spline interpolation operator is estimated as well as the deteri-
oration of the localisation of the fundamental functions when the degree of the splines
becomes larger. In [32], least squares approximations to discrete data, and in particular
an adaptive method for computing them when the knots are allowed to move are con-
sidered and we describe the approach in some detail now. These papers reflect Mike’s
interest in smoothing techniques, just like the articles discussed at the end of the previous
subsection, which are highly relevant to many applications.

In [32], as in [29], a weighted sum of squares of the discrete error plus a smoothing term is
to be minimized by a cubic spline, whose knots are to be determined. The smoothing term
is itself a weighted sum of squares, namely of the coefficients of the truncated third powers
that appear in the spline; those coefficients reflect the contribution of the third derivative
discontinuities of the spline and their size is therefore a measure of its smoothness. Mike
makes a distinction between knots and gnots of the spline in this paper, the latter being
added whenever there is a trend found in the residual (the error function at the data
ordinates). The test for trends is applied locally between the current gnots. The former
knots are added so that the total distribution of the splines breakpoints remains balanced
in a certain sense even if gnots are accumulating. Particular attention is given to the
weights in the smoothing expression which depend on the distance of knots and gnots and
on the weighted sum of squares of the residuals. We recall from [29] that the smoothing
term can also cause the approximation to depend more locally on the data.

Another view of optimal knot positions, now for plain, unweighted least-squares approx-
imation, is presented in the theoretical work [23]. Splines of degree n with N knots are
studied and the goal is to minimize

∫ b

a
(f(x)− s(x))2 dx ,

where the function f ∈ L2[a, b] is bounded. A necessary condition for the optimality of a
knot xj is ∫ b

a
f(x) c̃(n+1)

j (x) dx = 0 ,

where c̃j is the spline of degree 2n+1 with simple knots a < x1 < x2 < . . . < xN < b and
an extra knot at xj , which satisfies the Hermite conditions

c̃(p)j (a) = c̃(p)j (b) , 0 ≤ p ≤ n ,

c̃j(x!) = 0 , 1 ≤ ! ≤ N ,

c̃′j(xj) = 1 .
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The above condition is a consequence of the orthogonality of c̃(n+1)
j to all splines with

knots x1 < x2 < . . . < xN and an explicit expression for the n-fold integral of the
approximation’s error function evaluated at xj . A suitable minimization algorithm is
available from [8] for minimizing the error functional with respect to the varying knots.
An essential tool in deriving the above condition is the application of integration by
parts in order to reformulate orthogonality relations with splines to point evaluations of
splines of higher degree. The article [23] is one of the first papers where this highly useful
technique is used.

In the 1970’s, the optimal interpolation problem was widely discussed. In particular,
much attention was paid to finding the least pointwise error bound using a multiple (that
is to be determined pointwise) of ‖f (k)‖∞, k prescribed. Here f is the function to be
approximated, of sufficient smoothness, and ‖ · ‖∞ is the uniform norm over the interval
where f is defined. Hence an approximant s and a function c are sought, where c is
smallest for every x while satisfying

|f(x)− s(x)| ≤ c(x) ‖f (k)‖∞ ,

and s should be a linear combination of the given values of f at {xi}mi=1, m ≥ k, in the
interval; the coefficients depending on x of course. It turns out that s is a spline of degree
k − 1 with m − k knots, and so is c. This is identified in [63] jointly with P. Gaffney by
solving the problem first for ‖f (k)‖∞ = M , i.e. a fixed value, by

s = sM =
1

2
(u(x,M) + !(x,M))

c = cM =
1

2M
|u(x,M)− !(x,M)| .

Here u and ! are defined by

∂k

∂xk
u = δu(x),

∂k

∂xk
! = δ!(x) ,

and δ!, δu are the piecewise constant functions with |δu| = |δ!| = ‖δu‖∞ = ‖δ!‖∞ = M
and have m− k sign changes consistent with the signs of the data. Their signs alternate,
beginning with + 1 for δu and−1 for δ!, and their discontinuity points have to be computed
by solving a certain nonlinear system of equations. The final s and c are thus obtained
by letting M → ∞.

In [68] a review of bivariate approximation tools is given, mostly tensor product methods,
according to the state-of-the-art at the time, where not just point interpolation, but
general linear operators are considered; e.g. least-squares approximation is considered.
Also irregular data receive attention; Mike especially discusses weighted local least square
approximation by piecewise linears, considers triangulations of domains in two dimensions,
etc. A new state-of-the-art conference has taken place this year (1996) in York, and Mike
spoke again on multivariate approximation. It is interesting to compare the two papers
– twenty years apart – and observe the development of the subject. Indeed, in the new
paper there is much more attention given to general multivariate tools, albeit only for
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interpolation. Most of the work reviewed concerns radial functions which we describe
in the following section. Piecewise linears and higher order polynomials are discussed in
connection with algorithms for generating Delauney triangulations. Local interpolation
schemes, such as Shepard’s method and its generalisations are mentioned too, as are
moving least squares and natural neighbourhood interpolants.

The article [69] deserves an especially prominent mentioning because the Powell–Sabin-
split is very well-known and much used in the CAGD and finite element communities.
The theme of that paper is the creation of a globally continuously differentiable piecewise
quadratic surface on a triangulation. Function values and derivatives are given at the
vertices of each triangle of a partition. In order to have the necessary number of degrees
of freedom, each triangle is subdivided into six (or twelve) subtriangles which require
additional, interior C1 conditions. In total, the number of degrees of freedom turns out to
be precisely right (nine) in the six subtriangle case; extra degrees of freedom can be taken
up by prescribing also normals on edges which may be computed by linear interpolation
in an approximation. How are the interior subtriangles selected? In the six subtriangle
case, that is the one most often referred to as the Powell–Sabin-element, one takes the
edges of the interior triangles from the midpoints of the edges of the big triangle to its
circumcentre. The triangles are required to be always acute. In other words, the midpoint
inside the big triangle is the intersection of the normals at the midpoints of the edges. This
ensures that the midpoint inside the big triangle lies in the plane spanned by the points
exactly between it and the edge’s midpoint, which is needed for the interior C1 continuity.
As indicated above, extra degrees of freedom are there when the twelve triangle split is
used and thus, e.g., the condition that all triangles of the triangulation be acute may be
dropped. This paper is just another case where Mike’s work (and, of course, that of his
co-authors, although most of his papers he has written alone) initiated a large amount of
lasting interest in research and applications. Another example displaying much foresight
is his work on radial basis functions that we will describe in the next section.

1.3. Radial basis functions

Mike Powell was and still is one of the main driving forces behind the research into
radial basis functions. It indeed turned out to be a most successful and fruitful area,
leading to many advances in theory and applications. Much of the interest within the
mathematical community was stimulated by Mike’s first review paper [107] that discusses
recent developments in this new field. It addresses the nonsingularity properties of the
interpolation matrices {φ(‖xi − xj‖2)}mi,j=1 for interpolation at distinct points xj ∈ lRn,

where φ(r) = r or φ(r) = e−r2 or φ(r) =
√
r2 + c2, c a positive parameter. Indeed, for

any n and m, those matrices are always nonsingular, admitting unique solvability of the
pointwise interpolation problem from the linear space spanned by φ(‖ · −xj‖2). Proofs
of these results are provided and examples of singularity are given for 1-norms and ∞-
norms replacing the Euclidean norm. It is incidentally indicated in that paper that Mike’s
interest in radial basis function methods was stimulated by the possibility of using them
to provide local approximations to functions required within optimization algorithms.
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Motivated by these remarkable nonsingularity results, at first two of Mike’s research
students worked in this field, their early results being summarized in [114]. Their work
concentrated initially on the question whether polynomials are contained in the linear
spaces spanned by (multi-) integer translates of the radial basis function φ(r) =

√
r2 + c2,

where the underlying space is lRn. For odd n ≥ 1, all polynomials of degree n were shown
to exist in those spaces for c = 0. For n = 1, c > 0, the same was shown for linear
polynomials. In both cases, the polynomials p are generated by quasi-interpolation

p(x) =
∑

j∈ZZn

p(j) ψ(x− j) , x ∈ lRn ,

where ψ is a finite linear combination of integer translates of those radial basis functions.
The first task is to show that ψ exist which decay sufficiently fast to render the above
infinite sum absolutely convergent when p is a polynomial. Since this means also that they
are local, convergence order results on scaled grids hZZn follow as well, albeit their proofs
made much more complicated by the lack of compact support of ψ (only algebraic decay in
comparison to the compact support of multivariate splines). This work, in turn, motivated
[122] where such ψ are used to compute fundamental Lagrange functions for interpolation
on (finite) cardinal grids. A Gauss–Seidel type algorithm is used to invert the matrix
{ψ(j − k)}, where j and k range over a finite subset of ZZn. The matrix is amenable
to this approach because the ψ decay in fact quite fast (linked to the aforementioned
polynomial recovery). Faster computation can be obtained by working out ψ as a linear
combination of translates of the multiquadric function explicitly. There is even a link
in this work with an optimization package [119] that Mike wrote, because the absolute
sum of the off-diagonal elements of the Gauss–Seidel matrix was minimized subject to
a normalization condition and the coefficient constraints that give algebraic decay. The
first step from equally-spaced centres to nonequally-spaced ones was taken again by Mike
Powell in [126], where a careful study of the univariate spaces generated by multiquadric
translates led to a creation of quasi-interpolants by such radial functions with nonequally
spaced xj in one dimension. The spaces created by the radial function’s translates and
by the ψs are quite different (both are completely described in [126]) and the latter is
shown to contain all linear polynomials. Central to this work is the description of the ψ
functions that generate the quasi-interpolants by the Peano kernel theorem, the Peano
kernel being the second derivative of the multiquadric function.

Focussing further on multiquadric interpolation, Mike studied in [130] its approximational
accuracy on the unit interval when the centres are h · j, j = 0, . . . , m, where c = h =
1/m. Accuracy for Lipschitz continuous f of O(h) is established when h → 0. A key
ingredient to his error estimate, which is valid uniformly on the whole interval, is a careful
consideration of the size of the elements of the interpolation matrix’ inverse, including
the boundary elements. If two conditions on f ′ at 0 and 1 are satisfied additionally, then
O(h2) accuracy can be shown.

The work of [126] has been carried further by Beatson and Powell [134] by studying three
different quasi-interpolants with non-equally spaced xj . The first quasi-interpolant is in
the (m + 1)-dimensional space spanned by {φ(· − xj)}mj=1 ∪ {constant functions}. The
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second is in the space spanned just by the m translates of φ. Quasi-interpolant number
three is in the same space, enlarged by linear polynomials. The orders of accuracy obtained
for the three quasi-interpolants are (1 + h−1c)ωf(h), ωf being the modulus of continuity
of f and h = max2≤j≤m(xj − xj−1), c{|f(x1) + f(xm)|}(xm − x1)−1 + (1+ h−1c)ωf(h) and

1
4 L

(
c2(1 + 2 log(1 + (xm − x1)/c)) +

1
2h

2
)
,

respectively. For the last estimate, f ′ is assumed to satisfy a Lipschitz condition with the
Lipschitz constant L.

Of course, this quasi-interpolant is the most interesting one which provides the best (i.e.
second order except for the log c term) accuracy. Still, the other quasi-interpolants deserve
attention too. The second one because as it is an approximant from the space spanned
only by translates of the multiquadric function. This can be considered a very natural
space, because one usually interpolates from just that space. Finally, the first one deserves
attention because it can be written as

s(x) = const +
m∑

j=1

λjφ(x− xj), x ∈ [x1, xm],

with an extra condition to take up the additional degree of freedom

m∑

j=1

λj = 0 .

This is the form that corresponds naturally to the variational formulation of radial basis
function approximants such as the thin plate spline approximants.

In [133], the results of [130] are extended by considering interpolation with centres and
data points as previously, using translates of the multiquadric function plus a general
linear polynomial. The multiquadric parameter c is always a positive multiple of h. In
the article, various ways to take up these extra degrees of freedom in such a way that
superlinear convergence o(h) is obtained are suggested (the authors conjecture that this
is in fact O(h2), as supported by numerical evidence and the results of the previous
paragraph). If the added linear polynomial is zero, then one cannot obtain more than
O(h) convergence for general twice-differentiable functions unless the function satisfies
boundary conditions. If a constant is added to the multiquadric approximant (and the
extra degree of freedom is taken up by requiring that the coefficients of the multiquadric
functions sum to zero), then superlinear convergence to twice continuously differentiable
f is obtained if and only if f ′(0) = f ′(1) = 0. If a linear polynomial is added and
additionally to the display above

∑m
j=1 λjxj = 0 is required, then superlinear convergence

to f ∈ C2([0, 1]) is obtained if and only if f ′(0) = f ′(1) = f(1)− f(0).

Apart from providing these necessary and sufficient conditions for superlinear convergence,
Beatson and Powell suggest several new ways to take up the extra degrees of freedom
in such a way that superlinear convergence is always obtained for twice continuously
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differentiable approximands; there is a proof that this is indeed the case for one of the
methods put forward. They include interpolating f ′ at 0 and 1, interpolating f at 1

2h and
1− 1

2h, and minimizing the sum of squares of interpolation coefficients. The latter is the
choice for which superlinear convergence is proved.

In [132], Mike’s opus magnum, he summarizes and explains many recent developments,
including nonsingularity results for interpolation, polynomial reproduction and approxi-
mation order results for quasi-interpolation and Lagrange-interpolation on cardinal grids
for classes of radial basis functions, including all of the ones mentioned above and thin
plate splines φ(r) = r2 log r, inverse (reciprocal) multiquadrics, and several others. The
localisation of Lagrange functions for cardinal interpolation is considered in great detail
and several improvements of known approximation order results are given. Much like his
earlier review papers and his book, this work also does not just summarize his and other
authors’ work, but offers simplifications, more clarity in the exposition and improvements
of results.

A further nice connection between approximation and optimization techniques can be
found in [147] where approximants s : lR2 → lR2 are considered that are componentwise
thin-plate splines. The goal is to find a mapping between two regions in lR2, where certain
control points and control curves are mapped to prescribed positions. Mapping control
points to points with the TPS method is not hard, but a curve must be discretised and
it is not clear whether the discretization is the same in the image region even though the
curve retains its shape. Because TPS yields the interpolant of minimal second derivatives
in the least-squares sense, there is already one optimizing feature in that approach. In
this article, Mike uses once more the universal algorithm [119] to determine the optimal
positions of the discrete points on the curve in the image. The idea is to minimize again
the semi-norm of the interpolant which consists of the sum of the square-integrals of
its second partial derivatives but now with respect to the positions of the points of the
discretised curve. Precisely, if fi, gi, i = 1, 2, . . . , m, are the required image values, the
semi-norm of the TPS interpolant turns out to be

(∗) 8π(fi)
T Φ(fi) + 8π(gi)

T Φ(gi) ,

where Φ = {φ(‖xj − xk‖2)}mj,k=1, φ(r) = r2 log r, and xi are the points in the original
domain in lR2.

If we only want to map points into points, i.e.

{xi}mi=1 → {(fi, gi)}mi=1 ,

then (∗) is the minimal value of the semi-norm that can be obtained. If, for simplicity,
all of the {xi}mi=1 originate from the discretization of the curve in the original domain,
(∗) can again be minimized with respect to the (fi, gi), subject to those points lying on
the given curve in the image domain. In particular, they should lie in the same order
on the curve as the {xi}mi=1 which gives linear inequality constraints to the optimization
procedure. It is useful to write the points in a parametric form for this purpose.
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In [143], the most general (with respect to the choice of the domain of convergence) results
with regard to the convergence of thin-plate splines are obtained. There are several prior
articles about convergence of thin-plate spline interpolants to scattered data on domains
in lR2, but the domains have always been required to have at least Lipschitz continuous
boundaries. Mike succeeds in proving convergence within any bounded domain. The
speed of convergence shown is within a factor of logh (h being the largest minimum
distance between interpolation points and any points in the domain), the same as the
best of earlier results. On top of this, he gets the best multiplicative constants for the
error estimates for interpolation on a line or within a square or a triangle, i.e. when
we measure the error of thin-plate interpolation between two, three or four data points,
where in the latter case, they form a square. The logh term is due to the fact that the
point x where we measure the error need not be in the convex hull of the centres (though
it does need to be in their h-neighbourhood, due to the definition of h).

At the time of writing this article, Mike’s latest work considers the efficient solution of
the thin-plate spline interpolation problem for a large volume of data. A closely related
problem is the efficient evaluation of a given linear combination s(x) of translates of
‖x‖2 log ‖x‖ many times, e.g. for the rendering on a computer screen. These two is-
sues are related because the conditional positive definiteness of the interpolation matrix
makes the CG (conjugate gradients) algorithm a suitable tool to solve the interpolation
equations. And, of course, the CG algorithm needs many function evaluations of s(x).
One approach for evaluating s(x) uses truncated Laurent expansions [136], [138] of the
thin plate splines and collecting several terms ‖x − xj‖2 log ‖x − xj‖ for ‖xj‖ >> ‖x‖
into one expression in order to minimize the number of evaluations of the logarithm, a
computationally expensive task. A principal part of the work involved with this idea is
deciding which of the ‖x− xj‖2 log ‖x−xj‖ are lumped together. When done efficiently,
however, the cost of this, plus the approximation of the lumps by single truncated Laurent
expansions, is O(log m) for m centres plus O(m logm) set-up cost, small in comparison
to at least 10m operations for direct evaluation.

Another approach for computing thin plate spline interpolants efficiently by Mike Powell
and collaborators uses local Lagrange functions, i.e. Lagrange functions Lj centred at
xj , say, that satisfy the Lagrange conditions Lj(xk) = δjk only for several xk near to
xj . The approximant is then constructed by a multigrid-type algorithm that exploits
the observation that these local Lagrange functions are good approximations to the full
Lagrange functions. This is in recognition of the fact that, at least if the data form
an infinite regular grid, the full Lagrange functions decay exponentially, i.e. are very
well localized. Therefore it is feasible to compute the interpolant by an iterative method
which at each stage makes a correction to the residual by subtracting multiples of those
local Lagrange functions. The iteration attempts to reduce the residual by subtracting
∑m

i=1(s(xi) − fi) Li(x) from s, where Li are the local Lagrange functions and s is the
previous approximation to the thin-plate spline interpolant. It turns out that the iteration
converges in many test cases, because the spectral radius of the iteration matrix associated
with this procedure is less than 1. In a later paper [148], a slightly different approach is
used where the coefficient of each ‖x− xj‖2 log ‖x− xj‖ is approximated in each step of
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the iteration by a multiple of the leading coefficient of a local Lagrange function Li(x)
(the multiplier being the residual fi − s(xi)). Therefore the correcting term to a prior
approximation is now

m∑

i=1

‖x− xi‖2 log ‖x− xi‖
∑

j∈Li

µij [s(xj)− fj ] ,

where Li ⊂ {1, 2, . . . , m} is the set of centres used for the local Lagrange function Li and
µij are its coefficients. This correction is performed iteratively until the required accuracy
is obtained. The multigrid idea comes into play in this method as an inner iteration within
each stage of the updating algorithm already described. Namely the above iterations are
expected to remove the very high frequency components from the error. Therefore, there
is now an inner iteration like a fine to coarse sweep of multigrid, where the set of centres
is thinned out consecutively, and the updates as above are performed on the thinner sets,
until just few centres are left which have not yet been considered. For those centres
the correction then consists of solving the interpolation problem exactly. A remarkable
observation is that the number of such iterations to obtain a prescribed accuracy seems
to depend only weakly on the number of data.

2. The Contributions of Mike Powell to Optimization

I first came across Mike when I was a PhD student at the University of Leeds. I had been
fortunate enough to come across a report of Bill Davidon on a variable metric method
(strange words to me in those days). Having established that it was much better than
anything currently available, I had dashed off a short paper which I was about to send
to the Computer Journal, then the prime outlet in the UK for articles on numerical
analysis. At the same time Mike was booked to give us a seminar on what was probably
his first method for unconstrained minimization. This by the way was a ingenious way of
obtaining quadratic termination in a gradient method, which however was already about
to be superseded. A week before the seminar, Mike phoned and asked if he could change
his title: he had come across a report of a much better method that he would like to talk
about. Typically Mike had extracted the essentials of the method from the mass of detail
in Davidon’s flow sheets, and had also implemented it on the IBM machine at Harwell
which was much faster than our modest Ferranti Pegasus at Leeds. When he heard of
my interest in the method, he generously offered to pool his work with mine. We added
some more things on conjugacy and such, and so was born the DFP paper [8]. Mike was
also instrumental in promulgating the good news: he stood up at a meeting in London
where speakers were elaborating on the difficulties of minimizing functions of 10 variables
and told them that he had coded a method which had solved problems in 100 variables
without difficulty. Of course this revolutionized the discipline and this type of method
(but with the BFGS formula) is still the method of choice to this day.

Since that time our paths have crossed many times, most notably when Mike recruited
me to work at Harwell from 1969 to 1973. Although this led to only one other joint
publication, I very much benefitted from discussing my work with him, and he was es-
pecially good at exposing weak arguments or suggesting useful theoretical and practical
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possibilities. (Also we made a formidable partnership at table football!) I remember an
incident when I first arrived at Harwell and was telling him of some code in which I had
used double precision accumulation of scalar products. His reply was something along
the lines of “. . .why bother with that, if an algorithm is numerically stable you should
not need to use double precision in order to get adequate accuracy. . .”. I think that this
is good advice in the sense that you learn much about an algorithm when you develop
it in single precision, which hopefully can be used to good effect in improving numerical
stability at any level of precision. Apropos of this, I hear that the recent Ariane rocket
disaster was caused by a software error arising from the use of double precision floating
point arithmetic, emphasizing how important it is to pay attention to errors arising from
finite precision.

A lot of interest, particularly in the mid Sixties, centred on methods for unconstrained
minimization without derivatives, and Mike published an important paper [9] in this area
in 1964. I recently listened to a review paper crediting Mike with discovering in this paper
how to obtain quadratic termination with line searches without evaluating derivatives. In
fact this idea dates back to a report due to Smith in 1962, which Mike used as the
basis of his paper. Mike’s contribution was to extend the algorithm by including extra
line searches which would be unnecessary in the quadratic case, but would enable the
method to work more effectively for nonquadratic functions, whilst retaining termination
for quadratics. An important feature was the manipulation of a set of “pseudo-conjugate
directions” with a criterion to prevent these directions from becoming linearly dependent.
In practice however it turned out to be very difficult to beat the DFP algorithm (and
later the BFGS algorithm) with finite difference approximations to derivatives, much
to Mike’s (and other people’s) disappointment. Recently derivative-free methods have
become fashionable again, with Mike in the forefront of this research [151]. He has again
emphasized the importance of adequately modelling the problem functions, as against
using heuristic methods like Nelder and Mead which are still well used despite their
obvious disadvantages. His ideas also include a criterion to keep interpolation points from
becoming coplanar, which harks back to his 1964 paper.

As methods developed, interest switched away from quadratic termination, towards prov-
ing global and local termination results. Here Mike’s own contribution has been immense,
and I shall say more about this in what follows. Moreover results obtained by subsequent
researchers often use techniques of proof developed by him. Nonetheless Mike also has his
feet on the ground and is aware of the importance of good performance on test problems
and in real applications. I was struck by a phrase of his from an early paper that the
performance of a method of his “. . .can best be described as lively. . .”!. Mike is also
very good at constructing examples which illustrate the deficiencies in algorithms and so
help rectify them. For example the Gauss–Newton method for nonlinear least squares
(and hence Newton’s method for equations) with an !2 line search was a popular method,
especially in the early days. A so-called convergence proof existed, and the method was
often used with the confidence of a good outcome. The small print in the proof that
the computed search direction s should be bounded was not usually given much thought,
although it was known that convergence could be slow if the Jacobian matrix was rank de-
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ficient at the solution. Mike showed that the situation was much more serious by devising
an example for which, in exact arithmetic, the algorithm converges to a non-stationary
point. This led Mike to suggest his dog-leg algorithm [34] (here his enthusiasm for golf is
seen) in which the search trajectory consists of step along the steepest descent direction,
followed by a step to the Newton point. The inclusion of the steepest descent component
readily allows convergence to a stationary point to be proved, an idea that was much
copied in subsequent research.

This leads me on to talk about trust region methods and it was interesting that there
was some discussion at the birthday conference as to the historical facts. Of course the
idea of modifying the Hessian by a multiple of a unit matrix, so as to induce a bias
towards steepest descent, appears in the much referenced papers by Levenberg and by
Marquardt. Marquardt gives the equivalence with minimizing the model on a ball, and
attributes it to Morrison in 1960. Mike’s contribution, which also first appears in [34]
and then in [37], is to use the step restriction as a primary heuristic, rather than as a
consequence of adding in a multiple of the unit matrix. Also Mike suggests the now well
accepted test for increasing and decreasing the radius of the ball, based on the ratio of
actual to predicted reduction in the objective function. Thus the framework which Mike
proposed is what is now very much thought of as the prototypical trust region method.
The term trust region was only coined some years later, possibly by John Dennis. In
passing, the paper [37] was also notable for the introduction of what came to be known as
the PSB (Powell–Symmetric–Broyden) updating formula, derived by an elegant iterative
process. The variational properties of this formula were discovered a little later (by John
Greenstadt) and subsequently lead to the important work on the sparse PSB algorithm
by Philippe Toint, who generously acknowledges Mike’s contribution.

Talking about the value of small examples reminds me of another case where Mike re-
moves the last shred of respectability from an algorithm. The idea of minimization by
searching along the coordinate directions in turn dates back who knows when, and is
known to exhibit slow convergence in practice. Mike’s example [47] showed that it could
also converge in exact arithmetic to a non-stationary point, and this removed the last
reason for anyone being tempted to use the algorithm.

Without doubt, the conjecture that attracted the most interest in the 1960’s was that of
whether the DFP algorithm could converge to a non-stationary point. Mike accepted a
bet of 1 shilling (£0.05) with Philip Wolfe that he (Mike) would solve the problem by
some date. Although the method is a descent method, the result is anything but trivial,
since the Hessian approximation may become singular or unbounded in the limit. Mike
finally produced a convergence proof for strictly convex functions and exact line searches
[38], that was a tour-de-force of analysis. I remember checking through it for him, a job
which took me several days and left me thoroughly daunted at the complexity of what had
been achieved. Mike later went on to prove [62] that the BFGS algorithm would converge
for convex functions and an inexact line search, a more elegant result that has influenced
most subsequent work on this topic. The conjecture is still open for non-convex functions,
so someone can still make a name for themselves here.
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Another issue over many years has been to discuss the relative merits of different formulae
in the Broyden family, particularly the DFP and BFGS formulae. Great excitement
was caused at a Dundee meeting in 1971 when Lawrence Dixon introduced, in a rather
peripheral way, his remarkable result for non-quadratic functions that all Broyden family
updates generate identical points if exact line searches are used. Mike could hardly believe
this and cross-examined Lawrence closely in question time. He then retired to his room
to determine whether or not the result was indeed true. Having ascertained that it was,
it is characteristic of Mike that he simplified Lawrence’s proof and subsequently gave
great credit to Lawrence for having made the discovery. One phenomenon of particular
interest is the fact that for inexact line searches, the DFP formula can be much inferior
to the BFGS formula, and various not very convincing explanations were advanced. One
of my favourite Mike papers [104] is the one in which he analyses a very simple case of
a two-variable quadratic and does a worst case analysis. The solution of the resulting
recurrence relations is very neat, and comes out with a remarkably simple result about
how the DFP formula behaves, which I think provides a very convincing explanation of
the phenomenon.

Another fundamental algorithm is the conjugate gradient method, particularly in its form
(Fletcher and Reeves) for nonquadratic optimization. Incidentally I would like to say
here that Colin Reeves was my supervisor and not, as someone once suggested, my Ph.D.
student! It was a great loss to numerical analysis when he decided to become a computer
scientist, and I had the greatest respect for his abilities. An important issue was the
relative merits of the Fletcher–Reeves and Polak–Ribière formulae. Mike showed [67]
that the PR formula was usually better in practice, but later [99] that the FR formula
allowed a global convergence result, a result later extended by Al-Baali to allow inexact
line searches. Mike also showed in [99] that the PR formula can fail to converge and
derived a remarkable counterexample with n = 3 in which the sequence {x(k)} is bounded
and has six accumulation points, none of which is stationary. However I think Mike’s
most telling result [64] is for quadratics, namely that if the method is started from an
arbitrary descent direction, then either termination occurs, or the rate of convergence is
linear, the latter possibility occurring with probability 1. This is bad news for the use
of conjugate gradient methods in situations where the sequence must be broken, such as
active set methods or limited memory methods, since it forces a restart in order to avoid
linear convergence.

Turning to constrained optimization, Mike wrote an important paper [30] in 1969 that
originated the idea of augmented Lagrangian penalty functions, at about the same time
as a related paper by Hestenes on multiplier methods. Mike introduced the idea in a
different way by making shifts θi to the constraint functions. After each minimization
of the penalty function the shifts would be adjusted so as to get closer to the solution
of the constrained problem. I seem to remember a talk in which Mike described how
he was led to the idea when acting as a gunnery officer, presumably during a period of
national service. Adjusting the θi parameters is analogous to the adjustment in elevation
of a gun based on how close the previous shell lands from the target. One can have no
doubts that Mike’s gunnery crew would be the most successful in the whole battery! This
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method was a considerable improvement on the unshifted penalty function method, and
led to considerable interest, and indeed is still used as a merit function in some nonlinear
programming codes.

Mike also played an important part in the development of sequential quadratic program-
ming (SQP) algorithms. Although the basic idea dates back to Wilson in 1963, and had
been reviewed by Beale and others, the method had not attracted a great deal of interest.
This was due to various factors, such as a reluctance to use expensive QP subproblems,
the issue of how to update an approximation to the potentially indefinite Hessian of the
Lagrangian, and what to do about infeasible QP subproblems. Mike [72] published an
idea that handled the latter difficulty and got round the indefinite Hessian problem by
ignoring it – or more accurately by suggesting a modification of the BFGS formula that
could be used to update a positive definite approximation. However I think his great-
est contribution was to popularise the method which he did at conferences in 1977 at
Dundee, Madison and Paris. His Madison paper [73] contained a justification of the idea
of keeping a positive definite Hessian approximation. The term SQP was coined I think
at the Cambridge NATO ASI in 1981 and the method has remained popular since that
time, and is now frequently used in applications. Mike also contributed to a paper [87]
on the watchdog technique, a title which I suspect is due to Mike, which popularised one
way of avoiding difficulties such as the Maratos effect which might slow down the local
convergence of SQP.

Since the early days at Harwell, Mike has diligently provided computer code so that the
fullest use can be made of his ideas (although his style of programming is not what one
might call structured!). It was natural therefore that he should write a QP code to support
his SQP work, and he became a strong advocate [102] of the ideas in the Goldfarb–Idnani
algorithm. These ideas also surfaced in his TOLMIN code for general linear constraint
programming [121], and his ideas for updating conjugate directions in the BFGS formula
[110]. The latter contains a particularly elegant idea for stacking up an ordered set of
conjugate directions in the working matrix Z as the algorithm proceeds. These ideas
may not have caught on to the same extent as other papers that he has written, perhaps
because they are not addressed towards large sparse calculations which are now attracting
most attention. Nonetheless they contain a fund of good ideas that merit study. However
Mike has made other contributions to sparse matrix algebra, including the CPR algorithm
[51] for estimating sparse Jacobian algorithms by finite differences in a very efficient way,
and an extension of the same idea [75] to sparse Hessian updates.

More recently Mike has confirmed his ability to make advances in almost all areas of
optimization. The Karmarkar interior point method for linear programming has spawned
thousands of papers, but Mike nonetheless managed to make a unique contribution by
constructing an example [125] showing that the algorithm can perform very badly as the
number of constraints increases in a simple semi-infinite programming problem. Mike also
continues to provoke the interior point community by his oft-expressed dislike for the need
to use logarithms as a means of solving linear programming problems! Despite holding
these views, Mike was nonetheless able to make an outstanding theoretical breakthrough
in the convergence analysis of the shifted log barrier method for linear programming [145].
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Much has been said about Mike as a formidable competitor in all that he he does, but I
would like to close with a little reminiscence that sheds a different light. Mike has always
been a faithful supporter of our biennial Dundee conferences, and has contributed a great
deal to the success of these meetings. At one of these meetings, my Syrian Ph.D. student
Mehi Al-Baali was scheduled to give a talk on his work. As is the way of things for a
local Ph.D. student, he had been given a very unfavourable slot late on Friday afternoon.
Mike however had to travel abroad the next day and so was planning to leave earlier in
the afternoon to make the long 8 hour or so journey by road to Cambridge, to snatch a
few hours sleep before his flight. However when he saw Mehi’s disappointment that he
would not be present at the talk, he immediately agreed to postpone his departure and
stay on a extra couple of hours or so for the talk. This is typical of the many kindnesses
that Mike has shown to others, and I shall always remember him for that gesture. Happy
birthday Mike!
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Birkhäuser Verlag (Basel), pp. 221–244 (1992).

137. “On the number of iterations of Karmarkar’s algorithm for linear programming”,
Math. Programming, Vol. 62, pp. 153–197 (1993).

138. “Truncated Laurent expansions for the fast evaluation of thin plate splines”, Nu-
merical Algorithms, Vol. 5, pp. 99–120 (1993).

139. “Log barrier methods for semi-infinite programming calculations”, in Advances on
Computer Mathematics and its Applications, editor E.A. Lipitakis, World Scientific
(Singapore), pp. 1–21 (1993).

140. “An iterative method for thin plate spline interpolation that employs approxima-
tions to Lagrange functions” (with R.K. Beatson), in Numerical Analysis, 1993,
editors D.F. Griffiths and G.A. Watson, Longman Scientific and Technical (Burnt
Mill), pp. 17–39 (1994).

141. “A direct search optimization method that models the objective and constraint func-
tions by linear interpolation”, in Advances in Optimization and Numerical Analysis,
editors S. Gomez and J-P. Hennart, Kluwer Academic (Dordrecht), pp. 51–67 (1994).

142. “Some algorithms for thin plate spline interpolation to functions of two variables”,
in Advances in Computational Mathematics: New Delhi, India, editors H.P. Dikshit
and C.A. Micchelli, World Scientific (Singapore), pp. 303–319 (1994).

143. “The uniform convergence of thin plate spline interpolation in two dimensions”,
Numerische Mathematik, Vol. 68, pp. 107–128 (1994).

144. “A ‘taut string algorithm’ for straightening a piecewise linear path in two dimen-
sions”, Report No. DAMTP 1994/NA7, University of Cambridge.

145. “Some convergence properties of the modified log barrier method for linear pro-
gramming”, SIAM J. Optimization, Vol. 5, pp. 695–739 (1995).

25



146. “An algorithm that straightens and smooths piecewise linear curves in two dimen-
sions”, in Mathematical Methods for Curves and Surfaces, editors M. Daehlen, T.
Lyche and L.L Schumaker, Vanderbilt University Press (Nashville), pp. 439–453
(1995).

147. “A thin plate spline method for mapping curves into curves in two dimensions”,
Report No. DAMTP 1995/NA2, University of Cambridge.

148. “On multigrid techniques for thin plate spline interpolation in two dimensions”
(with R.K. Beatson and G. Goodsell), Report No. DAMTP 1995/NA8, University
of Cambridge.

149. “A new iterative algorithm for thin plate spline interpolation in two dimensions”,
Report No. DAMTP 1995/NA10, University of Cambridge.

150. “A review of algorithms for thin plate spline interpolation in two dimensions”, Re-
port No. DAMTP 1996/NA4, University of Cambridge.

151. “Trust region methods that employ quadratic interpolation to the objective func-
tion”, 5th SIAM Conference on Optimization, Victoria, Canada.

26



Research Reports

No. Authors Title

96-16 M.D. Buhmann,
R. Fletcher

M.J.D. Powell’s work in univariate and mul-
tivariate approximation theory and his con-
tribution to optimization

96-15 W. Gautschi, Contour Plots of Analytic Functions
J. Waldvogel

96-14 R. Resch, F. Stenger,
J. Waldvogel

Functional Equations Related to the Iteration
of Functions

96-13 H. Forrer Second Order Accurate Boundary Treatment
for Cartesian Grid Methods

96-12 K. Gerdes, C. Schwab Hierarchic models of Helmholtz problems on
thin domains

96-11 K. Gerdes The conjugated vs. the unconjugated infinite
element method for the Helmholtz equation
in exterior domains

96-10 J. Waldvogel Symplectic Integrators for Hill’s Lunar
Problem

96-09 A.-T. Morel, M. Fey,
J. Maurer

Multidimensional High Order Method of
Transport for the Shallow Water Equations

96-08 A.-T. Morel Multidimensional Scheme for the Shallow
Water Equations

96-07 M. Feistauer, C. Schwab On coupled problems for viscous flow in ex-
terior domains

96-06 J.M. Melenk A note on robust exponential convergence
of finite element methods for problems with
boundary layers

96-05 R. Bodenmann,
H.J. Schroll

Higher order discretisation of initial-bound-
ary value problems for mixed systems

96-04 H. Forrer Boundary Treatment for a Cartesian Grid
Method

96-03 S. Hyvönen Convergence of the Arnoldi Process when
applied to the Picard-Lindelöf Iteration
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