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Abstract

Since 1966, exactly 30 years ago, Mike Powell has published more than 40
papers in approximation theory, initially mostly on univariate approximations
and then, focussing especially on radial basis functions, also on multivariate
methods. A highlight of his work is certainly his book Approzimation the-
ory and methods, published by CUP in 1981, that summarizes and extends
much of his work on £, {5, ¢~ theory and methods, splines, polynomial and
rational approximation etc. It is still one of the best available texts on uni-
variate approximation theory. In this short article we attempt to introduce
part of Mike’s work, with special emphasis on splines in one dimension on
the one hand and radial basis functions on the other hand. Only a selec-
tion of his papers can be considered, and we are compelled to leave out all
of his many software contributions, which for Mike are an integral part of
his research work, be it for the purpose of establishing new or better meth-
ods for approximation or for making them more accessible to the general
public through library systems. We subdivide this chapter into three parts
(01 /€s-approximation, rational approximation; splines; multivariate (radial
basis function) approximation) although this is in variance with the spirit of
many of Mike’s articles which often establish beautiful links between different
themes (e.g. optimization and ¢;-approximation). As will be seen, many of
the papers contain optimal results in the sense that constants in error esti-
mates are best (or the best ones known), have also often surprising novelty
and always clearly defined goals. One further important contribution that we
cannot describe here is Mike’s guidance for the seven dissertations in approx-
imation theory that were written under his supervision.

In a second chapter, Mike’s contributions to optimization are reviewed with a
special emphasis on the historical development of the subject and the impact
of Mike’s work on it.
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1. A brief review of M.J.D. Powell’s work in univariate and multivariate
approximation theory

We commence with his work on univariate approximation.

1.1 ¢, /{-approximation, rational approximation.

Mike’s work on these topics begins with contributions to best polynomial approximation
step. A particular concern of his is their efficient computation, e.g. with the Remez (or
exchange) algorithm. In his paper with Alan Curtis [13]!, the exchange algorithm for best
(~, approximation from finite dimensional (especially polynomial) spaces is studied with
a view to its convergence properties. In particular, formulas for first and second partial
derivatives of

max | f(z) — o, 1y - -, fin) |

T=x;

i=0,1,...,n
are given with respect to the reference points z;, © = 0,1, ..., n, where f is to be approxi-
mated from {¢(x, p1, ..., pwn)|ps € R, i =0,1,...,n}. If, for instance the first and second
derivatives are zero, the required stationary points are reached with quadratic convergence
rate when the reference prints are moved one at a time. In other words, conditions are
given in this paper under which the exchange algorithm is particularly efficient.

A year later, in the same journal, there appeared a paper [20] that considers error estimates
of polynomial approximation. Lebesgue numbers (norm of the interpolation operator
for polynomial interpolation) are used to show that the maximum error of interpolation
is always (within a factor independent of f) a multiple of the least maximum error.
Chebyshev points on an interval are demonstrated as a good choice of interpolation points.
The same analysis is also applied to best least-squares approximation. In the following
work [23], properties of optimal knot positions for the latter approximation method are
studied.

Rational, rather than polynomial, ¢,, approximation is the subject of a joint paper with
Barrodale and Roberts [41] where it is shown that the ordinary differential correction
(ODC) algorithm is, surprisingly, in various senses better than the modified one that is
more often used. The ODC is employed to find a best {, approximation by P/Q, P € IP,,,
Q@ € P, on the basis of points X = {z1,zy,...,2x}, where Q(x;) > 0Vi=1,2,...,N.
Although the maximum error A, over X may tend to A* in the course of the algorithm,
where P, Q). are computed from Pj,_; and Q)_; by minimizing

A |f(2:) Q) — P()| — A1 Q)

i=1,2,..,N Qr—-1(7:) ’

the problem need not have a solution P*, Q* with the required properties for which A* is

attained. However, convergence P, — P*, Q) — Q* is proved in [41] when N > n+m+1.

The best approximation exists and satisfies the normalization condition max |g;| = 1.
(2

'Numbers in square brackets refer to the general list of M.J.D. Powell’s publications.



Here, the ¢; are the coefficients of (). Furthermore, the minimization procedure involved is
a linear programming problem, and quadratic convergence of the coefficients is established.
Incidentally, this is a beautiful link between approximation theory and an application of
an optimization (specifically, here, linear programming) method, four more of which we
will encounter below.

Often, we find surprising novelties in his papers at points where nothing new was ex-
pected. Examples will be in his work on radial basis functions outlined below, but also
the problem dealt with in the last paragraph was revisited for new results in [108]. There,
general rational approximations are considered, i.e. ones where the numerator and the
denominator need no longer be polynomial. However, it is sensible to restrict them to
finite dimensional spaces, G and H say, and the denominator should be from the set
H, :=={h € H|h > 0, ||h|| = 1} which is assumed to be non empty, and || - || is a
prescribed norm.

Again, the unmodified, ordinary ODC algorithm is analyzed and superlinear convergence
is shown if the best approximation with respect to || - || exists and is unique and if Ay —
A*. If inf @, — 0 and no unique best approximation exists, an example of just linear
convergence is given, even if P, and @) tend to a unique limit for & — co. Thus the
former result is optimal with respect to its hypotheses. It is well-known that the best
approximation may not exist uniquely even if A, — A* but inf @ — 0, although Py
and @), may have a unique limit. Another approach to solve this problem, that has been
suggested elsewhere, is to restrict Q) away from zero, Q) > € > 0, where ¢ is independent
of k, during the algorithm.

Another link between approximation and optimization occurs in ¢; theory. In [79], a
linear programming test for ¢; optimality of an approximation is given. It consists of a
finite number of linear inequalities and is therefore suitable for the application of an LP
method. These inequalities are expressed in terms of the original data, which is highly
suitable for practical computations of best ¢; approximations. Those approximations have
been, incidentally, much neglected elsewhere in the literature, with the exception of A.
Pinkus’ excellent book on ¢; approximations. The characterization theorem is best stated
explicitly. We let X be a discrete finite set, C'(X) be the set of functions that are defined
on X, A C C(X) an n-dimensional subspace. Furthermore, we let Z = {z;}7_; C X be
the zero set with n elements of the function s(x) = f(z) — ¢*(z), where f € C(X) is the
function to be approximated, ¢* € A. Then ¢* is best ¢; approximant to f if and only if
the following inequalities hold:

‘ > sign s(z) Ez(sc)‘ <1 Vi,

zeX\Z

where ¢; € A satisfy ¢;(z;) = d;;, ¢ = 1,...,n. There are many advantages to using ¢;
approximations in practice and this paper is a concrete aid to their application.

Finally in this subsection we mention the articles [128], [129], where approximants to
discrete noisy data are constructed to obtain either piecewise monotonicity of the data



or convexity. Precisely, if, for instance, at most £ monotone sections of the data are
desired (k is prescribed) and n (univariate) data are given, the & optimal breakpoints
and the least changes to the data are computed in 0(n? + knlogn) operations. “Least
changes” is understood in the sense of a global sum of squares of changes. The special
cases k = 1,2 give the minimum complexity O(n). The principal advancement in this
work is the substantial reduction of the number of data that need be considered when
finding the optimal breakpoints. A recursive method is applied with respect to k, and
certain subsets of the data have to be used in the computation at each stage.

In [129], the least sum of squares of changes to the data is sought to achieve convexity.
The method uses the iterative optimization algorithm of Goldfarb and Idnani, for which
a starting value is computed in O(n) operations. Precisely, the statement of the convex-
ity constraints in terms of second divided differences of the data gives rise to a strictly
convex quadratic programming problem which is subsequently solved by the above al-
gorithm. Mike’s talk at the conference celebrating his 60'" birthday this year was also
closely related to this topic. In [89], similar questions are considered with respect to the
least uniform change to the data. Algorithms are given to compute the least maximum
change to the data in order to achieve monotonicity, piecewise monotonicity, or piecewise
convex/concave data.

1.2. Splines

In this subsection, a short summary of some of Mike’s work on splines is presented.
The best source to this work is generally his book [81] where much attention is given
to polynomial splines, B-splines, spline interpolation and convergence properties, but we
extract his work here from the papers [29], [32] and [63].

Cubic splines are considered in [29] and they are employed for the purpose of providing
least squares approximations with weights. The main purpose of the article is an analysis
of the locality of the least squares approximation by splines. The (finite number of) knots
Ch, 0 € ZZN[0, M], say, of the spline are equidistant with spacing h and the weight function
is h-periodic and nonnegative. Using recurrence relations, the fundamental functions
for this spline approximation problem are computed where, for simplicity, the knots are
assumed to be all ¢h, ¢ € Z. They decay exponentially unless the weight is concentrated
solely at the midpoints between the knots by a d-function & - 6(x — 5 h) (precisely, by its
h-periodisation). The fastest decay of (2—v/3)¢, £ — £o0, is obtained when the weight is
concentrated at the knots, by h - d(z). A further consideration is given to the case when
the weighted />-norm is augmented by the sum of squares of the coefficients ¢; where the
spline is s(z) = Y3, ¢;(x — jh)3 plus a cubic polynomial, and this augmentation may
again be weighted by a positive factor 9. Indeed, by employing this factor, the localisation
of the spline’s dependence on the data can be strengthened, and also the best 1 is given for
the most unfavourable choice of the weight function in the least squares integral, namely
h-dé(x— %h), when the knots are still presumed to be integer multiples of A > 0. The
fundamental function centred at 0 for the best approximation using that weight function
and 9 is shown to diminish as (0.3613)¢, when its argument is (h, ¢ € Z. This damping



term can also give uniqueness of the best approximant, which may otherwise be lost
when the weight function is not periodic. Moreover, differences of the approximant are
considered, e.g. if the eighth derivative of the approximand is bounded, they are O(h®)
and if f € IP;, the error is zero except for dependencies at the ends of the range, when
the approximand and approximant are defined on a finite interval.

In [27], the norm of the spline interpolation operator is estimated as well as the deteri-
oration of the localisation of the fundamental functions when the degree of the splines
becomes larger. In [32], least squares approximations to discrete data, and in particular
an adaptive method for computing them when the knots are allowed to move are con-
sidered and we describe the approach in some detail now. These papers reflect Mike’s
interest in smoothing techniques, just like the articles discussed at the end of the previous
subsection, which are highly relevant to many applications.

In [32], as in [29], a weighted sum of squares of the discrete error plus a smoothing term is
to be minimized by a cubic spline, whose knots are to be determined. The smoothing term
is itself a weighted sum of squares, namely of the coefficients of the truncated third powers
that appear in the spline; those coefficients reflect the contribution of the third derivative
discontinuities of the spline and their size is therefore a measure of its smoothness. Mike
makes a distinction between knots and gnots of the spline in this paper, the latter being
added whenever there is a trend found in the residual (the error function at the data
ordinates). The test for trends is applied locally between the current gnots. The former
knots are added so that the total distribution of the splines breakpoints remains balanced
in a certain sense even if gnots are accumulating. Particular attention is given to the
weights in the smoothing expression which depend on the distance of knots and gnots and
on the weighted sum of squares of the residuals. We recall from [29] that the smoothing
term can also cause the approximation to depend more locally on the data.

Another view of optimal knot positions, now for plain, unweighted least-squares approx-
imation, is presented in the theoretical work [23]. Splines of degree n with N knots are
studied and the goal is to minimize

[ (@) = st

where the function f € L?[a,b] is bounded. A necessary condition for the optimality of a
knot z; is

/bf<x> & (z)de =0,

where ¢; is the spline of degree 2n + 1 with simple knots a < 21 <2y < ... <zxy < band
an extra knot at z;, which satisfies the Hermite conditions

&) = &), 0<p<n,
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The above condition is a consequence of the orthogonality of E(jnﬂ) to all splines with

knots 1 < x93 < ... < xy and an explicit expression for the n-fold integral of the
approximation’s error function evaluated at x;. A suitable minimization algorithm is
available from [8] for minimizing the error functional with respect to the varying knots.
An essential tool in deriving the above condition is the application of integration by
parts in order to reformulate orthogonality relations with splines to point evaluations of
splines of higher degree. The article [23] is one of the first papers where this highly useful
technique is used.

In the 1970’s, the optimal interpolation problem was widely discussed. In particular,
much attention was paid to finding the least pointwise error bound using a multiple (that
is to be determined pointwise) of |||, k prescribed. Here f is the function to be
approximated, of sufficient smoothness; and || - ||« is the uniform norm over the interval
where f is defined. Hence an approximant s and a function ¢ are sought, where c is
smallest for every x while satisfying

|f (@) = s(@)] < e(@) 1 f Pl

and s should be a linear combination of the given values of f at {x;}*,, m > k, in the
interval; the coefficients depending on x of course. It turns out that s is a spline of degree
k — 1 with m — k knots, and so is ¢. This is identified in [63] jointly with P. Gaffney by
solving the problem first for || f®)| ., = M, i.e. a fixed value, by

Here u and ¢ are defined by

ok ok
@u:éu(aj), %fzég(x) s
and 0y, d, are the piecewise constant functions with [6,] = |d¢| = ||0ullcc = [|0¢]|cc = M

and have m — k sign changes consistent with the signs of the data. Their signs alternate,
beginning with + 1 for §,, and —1 for d,, and their discontinuity points have to be computed
by solving a certain nonlinear system of equations. The final s and ¢ are thus obtained
by letting M — oco.

In [68] a review of bivariate approximation tools is given, mostly tensor product methods,
according to the state-of-the-art at the time, where not just point interpolation, but
general linear operators are considered; e.g. least-squares approximation is considered.
Also irregular data receive attention; Mike especially discusses weighted local least square
approximation by piecewise linears, considers triangulations of domains in two dimensions,
etc. A new state-of-the-art conference has taken place this year (1996) in York, and Mike
spoke again on multivariate approximation. It is interesting to compare the two papers
— twenty years apart — and observe the development of the subject. Indeed, in the new
paper there is much more attention given to general multivariate tools, albeit only for



interpolation. Most of the work reviewed concerns radial functions which we describe
in the following section. Piecewise linears and higher order polynomials are discussed in
connection with algorithms for generating Delauney triangulations. Local interpolation
schemes, such as Shepard’s method and its generalisations are mentioned too, as are
moving least squares and natural neighbourhood interpolants.

The article [69] deserves an especially prominent mentioning because the Powell-Sabin-
split is very well-known and much used in the CAGD and finite element communities.
The theme of that paper is the creation of a globally continuously differentiable piecewise
quadratic surface on a triangulation. Function values and derivatives are given at the
vertices of each triangle of a partition. In order to have the necessary number of degrees
of freedom, each triangle is subdivided into six (or twelve) subtriangles which require
additional, interior C' conditions. In total, the number of degrees of freedom turns out to
be precisely right (nine) in the six subtriangle case; extra degrees of freedom can be taken
up by prescribing also normals on edges which may be computed by linear interpolation
in an approximation. How are the interior subtriangles selected? In the six subtriangle
case, that is the one most often referred to as the Powell-Sabin-element, one takes the
edges of the interior triangles from the midpoints of the edges of the big triangle to its
circumcentre. The triangles are required to be always acute. In other words, the midpoint
inside the big triangle is the intersection of the normals at the midpoints of the edges. This
ensures that the midpoint inside the big triangle lies in the plane spanned by the points
exactly between it and the edge’s midpoint, which is needed for the interior C* continuity.
As indicated above, extra degrees of freedom are there when the twelve triangle split is
used and thus, e.g., the condition that all triangles of the triangulation be acute may be
dropped. This paper is just another case where Mike’s work (and, of course, that of his
co-authors, although most of his papers he has written alone) initiated a large amount of
lasting interest in research and applications. Another example displaying much foresight
is his work on radial basis functions that we will describe in the next section.

1.3. Radial basis functions

Mike Powell was and still is one of the main driving forces behind the research into
radial basis functions. It indeed turned out to be a most successful and fruitful area,
leading to many advances in theory and applications. Much of the interest within the
mathematical community was stimulated by Mike’s first review paper [107] that discusses
recent developments in this new field. It addresses the nonsingularity properties of the
interpolation matrices {&(||z; — x;]|2)}7=, for interpolation at distinct points z; € R",
where ¢(r) = r or ¢(r) = e or ¢(r) = V12 + 2, ¢ a positive parameter. Indeed, for
any n and m, those matrices are always nonsingular, admitting unique solvability of the
pointwise interpolation problem from the linear space spanned by ¢(|| - —x;||2). Proofs
of these results are provided and examples of singularity are given for 1-norms and co-
norms replacing the Euclidean norm. It is incidentally indicated in that paper that Mike’s
interest in radial basis function methods was stimulated by the possibility of using them
to provide local approximations to functions required within optimization algorithms.



Motivated by these remarkable nonsingularity results, at first two of Mike’s research
students worked in this field, their early results being summarized in [114]. Their work
concentrated initially on the question whether polynomials are contained in the linear
spaces spanned by (multi-) integer translates of the radial basis function ¢(r) = v/r2 4 ¢2,
where the underlying space is IR". For odd n > 1, all polynomials of degree n were shown
to exist in those spaces for ¢ = 0. For n = 1, ¢ > 0, the same was shown for linear
polynomials. In both cases, the polynomials p are generated by quasi-interpolation

p(z) = > p(j) v(x—j), zeR",

JEZ™

where v is a finite linear combination of integer translates of those radial basis functions.
The first task is to show that 1) exist which decay sufficiently fast to render the above
infinite sum absolutely convergent when p is a polynomial. Since this means also that they
are local, convergence order results on scaled grids hZ"™ follow as well, albeit their proofs
made much more complicated by the lack of compact support of 1) (only algebraic decay in
comparison to the compact support of multivariate splines). This work, in turn, motivated
[122] where such 1) are used to compute fundamental Lagrange functions for interpolation
on (finite) cardinal grids. A Gauss—Seidel type algorithm is used to invert the matrix
{o(j — k)}, where j and k range over a finite subset of Z". The matrix is amenable
to this approach because the ¢ decay in fact quite fast (linked to the aforementioned
polynomial recovery). Faster computation can be obtained by working out v as a linear
combination of translates of the multiquadric function explicitly. There is even a link
in this work with an optimization package [119] that Mike wrote, because the absolute
sum of the off-diagonal elements of the Gauss—Seidel matrix was minimized subject to
a normalization condition and the coefficient constraints that give algebraic decay. The
first step from equally-spaced centres to nonequally-spaced ones was taken again by Mike
Powell in [126], where a careful study of the univariate spaces generated by multiquadric
translates led to a creation of quasi-interpolants by such radial functions with nonequally
spaced x; in one dimension. The spaces created by the radial function’s translates and
by the ¢s are quite different (both are completely described in [126]) and the latter is
shown to contain all linear polynomials. Central to this work is the description of the 1)
functions that generate the quasi-interpolants by the Peano kernel theorem, the Peano
kernel being the second derivative of the multiquadric function.

Focussing further on multiquadric interpolation, Mike studied in [130] its approximational
accuracy on the unit interval when the centres are h -7, 7 = 0,...,m, where ¢ = h =
1/m. Accuracy for Lipschitz continuous f of O(h) is established when h — 0. A key
ingredient to his error estimate, which is valid uniformly on the whole interval, is a careful
consideration of the size of the elements of the interpolation matrix’ inverse, including
the boundary elements. If two conditions on f’ at 0 and 1 are satisfied additionally, then
O(h?) accuracy can be shown.

The work of [126] has been carried further by Beatson and Powell [134] by studying three
different quasi-interpolants with non-equally spaced x;. The first quasi-interpolant is in
the (m + 1)-dimensional space spanned by {¢(- — z;)}72; U {constant functions}. The



second is in the space spanned just by the m translates of ¢. Quasi-interpolant number
three is in the same space, enlarged by linear polynomials. The orders of accuracy obtained
for the three quasi-interpolants are (1 4+ h~'c)w;(h), w; being the modulus of continuity
of f and h = maxy<j<m(z; — z5-1), {|f(@1) + f(@m) [} (@m — 21) 71+ (L+ A7 e)wy(h) and

LL(A(1+ 2log(1 + (2 — 21)/0)) + 357)

respectively. For the last estimate, [ is assumed to satisfy a Lipschitz condition with the
Lipschitz constant L.

Of course, this quasi-interpolant is the most interesting one which provides the best (i.e.
second order except for the log ¢ term) accuracy. Still, the other quasi-interpolants deserve
attention too. The second one because as it is an approximant from the space spanned
only by translates of the multiquadric function. This can be considered a very natural
space, because one usually interpolates from just that space. Finally, the first one deserves
attention because it can be written as

s(2) = const + Y Ndla — ), € [or,aa)
j=1

with an extra condition to take up the additional degree of freedom

Z)\JZO
j=1

This is the form that corresponds naturally to the variational formulation of radial basis
function approximants such as the thin plate spline approximants.

In [133], the results of [130] are extended by considering interpolation with centres and
data points as previously, using translates of the multiquadric function plus a general
linear polynomial. The multiquadric parameter ¢ is always a positive multiple of h. In
the article, various ways to take up these extra degrees of freedom in such a way that
superlinear convergence o(h) is obtained are suggested (the authors conjecture that this
is in fact O(h?), as supported by numerical evidence and the results of the previous
paragraph). If the added linear polynomial is zero, then one cannot obtain more than
O(h) convergence for general twice-differentiable functions unless the function satisfies
boundary conditions. If a constant is added to the multiquadric approximant (and the
extra degree of freedom is taken up by requiring that the coefficients of the multiquadric
functions sum to zero), then superlinear convergence to twice continuously differentiable
[ is obtained if and only if f/(0) = f/(1) = 0. If a linear polynomial is added and
additionally to the display above 377", Ajz; = 0 is required, then superlinear convergence
to f € C*([0,1]) is obtained if and only if f'(0) = f'(1) = f(1) — f(0).

Apart from providing these necessary and sufficient conditions for superlinear convergence,
Beatson and Powell suggest several new ways to take up the extra degrees of freedom
in such a way that superlinear convergence is always obtained for twice continuously



differentiable approximands; there is a proof that this is indeed the case for one of the
methods put forward. They include interpolating f” at 0 and 1, interpolating f at %h and
1-— %h, and minimizing the sum of squares of interpolation coefficients. The latter is the
choice for which superlinear convergence is proved.

In [132], Mike’s opus magnum, he summarizes and explains many recent developments,
including nonsingularity results for interpolation, polynomial reproduction and approxi-
mation order results for quasi-interpolation and Lagrange-interpolation on cardinal grids
for classes of radial basis functions, including all of the ones mentioned above and thin
plate splines ¢(r) = r? log r, inverse (reciprocal) multiquadrics, and several others. The
localisation of Lagrange functions for cardinal interpolation is considered in great detail
and several improvements of known approximation order results are given. Much like his
earlier review papers and his book, this work also does not just summarize his and other
authors’ work, but offers simplifications, more clarity in the exposition and improvements
of results.

A further nice connection between approximation and optimization techniques can be
found in [147] where approximants s : IR*> — IR? are considered that are componentwise
thin-plate splines. The goal is to find a mapping between two regions in IR?, where certain
control points and control curves are mapped to prescribed positions. Mapping control
points to points with the TPS method is not hard, but a curve must be discretised and
it is not clear whether the discretization is the same in the image region even though the
curve retains its shape. Because TPS yields the interpolant of minimal second derivatives
in the least-squares sense, there is already one optimizing feature in that approach. In
this article, Mike uses once more the universal algorithm [119] to determine the optimal
positions of the discrete points on the curve in the image. The idea is to minimize again
the semi-norm of the interpolant which consists of the sum of the square-integrals of
its second partial derivatives but now with respect to the positions of the points of the
discretised curve. Precisely, if f;, ¢g;, @ = 1,2,...,m, are the required image values, the
semi-norm of the TPS interpolant turns out to be

(*) 8(fi)" ®(f:) + 87 (g:)" () ,

where ® = {¢(|lz; — zxl|2)}]%—1, ¢(r) = 7> log 7, and x; are the points in the original
domain in R?.

If we only want to map points into points, i.e.

{zihils = {(fi 920

then (x) is the minimal value of the semi-norm that can be obtained. If, for simplicity,
all of the {x;}", originate from the discretization of the curve in the original domain,
(%) can again be minimized with respect to the (f;, g;), subject to those points lying on
the given curve in the image domain. In particular, they should lie in the same order
on the curve as the {z;}7, which gives linear inequality constraints to the optimization
procedure. It is useful to write the points in a parametric form for this purpose.



In [143], the most general (with respect to the choice of the domain of convergence) results
with regard to the convergence of thin-plate splines are obtained. There are several prior
articles about convergence of thin-plate spline interpolants to scattered data on domains
in IR?, but the domains have always been required to have at least Lipschitz continuous
boundaries. Mike succeeds in proving convergence within any bounded domain. The
speed of convergence shown is within a factor of logh (h being the largest minimum
distance between interpolation points and any points in the domain), the same as the
best of earlier results. On top of this, he gets the best multiplicative constants for the
error estimates for interpolation on a line or within a square or a triangle, i.e. when
we measure the error of thin-plate interpolation between two, three or four data points,
where in the latter case, they form a square. The logh term is due to the fact that the
point z where we measure the error need not be in the convex hull of the centres (though
it does need to be in their h-neighbourhood, due to the definition of h).

At the time of writing this article, Mike’s latest work considers the efficient solution of
the thin-plate spline interpolation problem for a large volume of data. A closely related
problem is the efficient evaluation of a given linear combination s(x) of translates of
|z||?* log ||z|| many times, e.g. for the rendering on a computer screen. These two is-
sues are related because the conditional positive definiteness of the interpolation matrix
makes the CG (conjugate gradients) algorithm a suitable tool to solve the interpolation
equations. And, of course, the CG algorithm needs many function evaluations of s(z).
One approach for evaluating s(x) uses truncated Laurent expansions [136], [138] of the
thin plate splines and collecting several terms ||z — z;]|? log ||z — ;|| for |lz;|] >> |z||
into one expression 