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Abstract

This is a tutorial on generating contour lines of an analytic function f(z).
The emphasis is on using mathematical software (MATLAB, to a lesser extent
MAPLE) for implementing the algorithms, and efficient programs together
with explanations are presented. Two different approaches are suggested:
(1) generating level lines as contours of, e.g., constant modulus or constant
phase of the function f(z), (2) setting up and numerically integrating an
appropriate differential equation for the contour under consideration. Both
methods are demonstrated by means of the nth partial sum f(z) = en(z) of
the exponential series. The line of constant modulus satisfying |en(z)| = 1
has a practical significance: it delineates the region of absolute stability for
an explicit Taylor integrator of order n.

1Computer Science Department, Purdue University, West Lafayette, IN 47907, USA. Supported,
in part, by the National Science Foundation under grant DMS-9305430



1. Introduction

There are two easy ways in MATLAB to construct contour plots of analytic functions, i.e.,
lines of constant modulus and constant phase. One is to use the MATLAB contour command
for functions of two variables, another to solve the differential equations satisfied by the contour
lines. This is illustrated here for the function f(z) = en(z), where

en(z) = 1 + z +
z2

2!
+ · · ·+

zn

n!
(1)

is the nth partial sum of the exponential series. The lines of constant modulus 1 of en are of
interest in the numerical solution of ordinary differential equations, where for 1 ≤ n ≤ 4 they
delineate regions of absolute stability of explicit one-step methods of order n (cf. [4, §9.3.2]).
For n ≥ 1 the 1-line of en delineates the region of absolute stability of the explicit Taylor method
of order n.

2. Contour Plots by the contour Command

Let f be analytic and f(z) = reiϕ. We may consider the modulus r as a function of two
variables x, y, where z = x + iy; similarly for the phase ϕ, −π < ϕ ≤ π. Hence, we can apply
the MATLAB command contour to r and ϕ to obtain the lines of constant modulus and phase.

In the MATLAB program below, the set of all x- and y-values is collected (in true MATLAB
spirit) in a matrix a, which is operated upon to compute the desired values of r and ϕ for f = en
as input matrices to the routine contour.

The program begins with the definitions of the mesh h and the number nmax of contour plots
to be generated. The vector bounds contains common lower and upper bounds for the x- and
y-coordinates applicable for all plots. The bounds used here have been chosen to accommodate
contour plots of the first four exponential sums. Then the contour levels vabs0 and vang0 for
the modulus and phase of f(z) are defined. The last preparatory step is generating the vectors
x and y containing the discrete x- and y-values to be used in the matrix a of grid points. In the
loop over n the values f of en on the entire grid are generated by almost the same statements
that would evaluate en at a single point, where t stands for an individual term of the series (1).
The only difference is the statement t=t.*a/n, in which the operation symbol .* invokes the
element-by-element product of the matrices t and a. The last line of the program (here turned
off by the comment sign %) generates the encapsulated postscript file fign.eps of figure(n),
ready to be printed or incorporated into a text file.

% Contour plots of the first nmax exponential sums (Figure 1)

%

h=1/64; nmax=4; bounds=[-3.25 .75 -3.375 3.375];

vabs0=[0:.1:1]; vang0=[-.875:.125:1]*pi;

x=bounds(1):h:bounds(2); y=bounds(3):h:bounds(4);

a=ones(size(y’))*x+i*y’*ones(size(x));

% Next line: a shorter way of generating a (more memory!)

% [xx,yy]=meshgrid(x,y); a=xx+i*yy;

1



t=ones(size(a)); f=t;

for n=1:nmax

if n<=2, vabs=vabs0; vang=vang0;

elseif n==3, vabs=[vabs0 .47140452]; vang=vang0;

else vabs=[vabs0 .58882534];

vang=[vang0 1.48185376 -1.48185376]; end;

t=t.*a/n; f=f+t;

figure(n); clf; hold on;

axis(bounds); axis image;

contour(x,y,abs(f),vabs);

contour(x,y,angle(f),vang);

end;

% figure(n); print -deps fign;

The results for n = 1 : 1 : 41 are shown in the plots below. Clearly visible are the n zeros
of en from which emanate the lines of constant phase. Near these zeros, the lines of constant
modulus become circle-like with radii tending to 0 as the zeros are approached. The contour
lines are for r = .1 : .1 : 1 and ϕ = −7

8π : 1
8π : π.

At points z0 where e′n(z0) = en−1(z0) = 0, n ≥ 2, two lines of constant modulus intersect
(cf. §3.1 below). The respective r-values are r = |en(z0)|, or r = |z0|n/n!, since

en(z) = en−1(z) +
zn

n!
.(2)

These critical lines are also included in the plots (see the if statement of the program).
When n = 2, they go through z0 = −1, where r = 1

2 , while for n = 3 and n = 4, one has

to 8 decimal digits: z0 = −1 ± i, r =
√
2/3 = .47140452 and z0 = −.70196418 ± 1.80733949i,

r = (1.93887332)4/24 = .58882535, respectively.
What’s good for the r-lines is good for the ϕ-lines! The singular points for them are also

the zeros z0 of e′n (cf. §3.2), to which there correspond ϕ-values defined by en(z0)/|en(z0)| =
(z0/|z0|)n = eiϕ, i.e., ϕ = n arg z0. Thus, for n = 2, we have ϕ = 0 (mod 2π), whereas for
n = 3 we get ϕ = ±π

4 corresponding to z0 = −1± i, respectively. All three of these ϕ-values are
included among the values already listed above. For n = 4, the two values of z0 shown in the
previous paragraph yield ϕ = 4arg z0 = ±1.48185376 (mod 2π). These critical ϕ-lines are also
shown in the plots in Figure 1.

The figure was generated by means of the step size h=1/64 in order to obtain a good resolu-
tion, even for the ”branch cuts“ corresponding to |angle(f)|=pi. The choice h=1/32 is a good
compromise, whereas h=1/16 is very fast while still producing satisfactory plots.

1This MATLAB notation stands for n = 1, 2, 3, 4.
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Figure 1. Contour Plots of the First 4 Exponential Sums
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3. Differential Equations

For an analytic function f , let

w = f(z), w = reiϕ, z = x+ iy.(3)

3.1. Contour lines r = const. To describe the lines r = const, it is natural to take ϕ as
independent variable. Differentiating

f(z(ϕ)) = reiϕ, r = const,(4)

with respect to ϕ then gives f ′(z) dzdϕ = ireiϕ = if(z), that is,

dz

dϕ
= i q(z) , where q(z) =

f(z)

f ′(z)
.(5)

With s the arc length, one has

ds

dϕ
=

√

(

dx

dϕ

)2

+
(

dy

dϕ

)2

=

∣

∣

∣

∣

dz

dϕ

∣

∣

∣

∣

= |q(z)|,

so that
dz

ds
=

dz

dϕ

dϕ

ds
= i

q(z)

|q(z)|
.(6)

Written as a system of differential equations, this is

dx

ds
= −Im

{

q(z)

|q(z)|

}

,

z = x+ iy.
dy

ds
= Re

{

q(z)

|q(z)|

}

,

(7)

If we are interested in a contour line crossing the real axis, we must find an initial point
x(0) = xr, y(0) = 0 for (7) with real xr such that f(xr) = r (assuming f(x) real for real x). In
the case f(x) = en(x), this is easy if r ≥ 1, since en(0) = 1 and en(x) monotonically increases
for x ≥ 0. There is thus a unique xr ≥ 0 such that en(xr) = r. If 0 < r < 1, this is still possible
when n is odd. Then, e′n(x) = en−1(x) > 0, since all zeros of em, when m is even, are known to
be complex [3] (cf. also [1]). Thus, en monotonically increases from −∞ to +∞ as x increases
from −∞ to +∞, and there is a unique xr < 0 such that en(xr) = r. When n is even, we have
en(x) > 0 for all real x, and e′n = en−1 vanishes at exactly one point x0 < 0, where en has a
minimum (cf. [2]). Owing to (2) and en−1(x0) = 0, we have en(x0) = xn0/n!, and there is a
solution xr < 0 of en(xr) = r if and only if r ≥ xn0/n!. For smaller positive values of r, one must
find a complex initial point x(0), y(0) > 0 near one of the complex zeros of en.

The point z0 where f ′(z0) = 0 is a singular point of (7), a point where two r-lines intersect at
a right angle. This requires special care to get the integration of (7) started in all four directions.
The initial point, of course, is z0, that is, x(0) = Re z0, y(0) = Im z0. What needs some analysis
is the value of the right-hand side of (7) at z0. Let h(z) = (z − z0) q(z); then h is smooth near
z0 and has the Taylor expansion

h(z) =
f0 +

1
2(z − z0)2f ′′

0 + · · ·
f ′′

0 + 1
2(z − z0)f ′′′

0 + · · ·
, h(z0) =

f0
f ′′

0
,
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where f0 = f(z0), etc. (we assume f0 &= 0 and f ′′

0 &= 0). Letting

z − z0
|z − z0|

= eiθ, −
1

2
π < θ ≤

1

2
π, h(z0)/|h(z0)| = eiω, − π < ω ≤ π,

(being mindful that to each θ there is a θ + π corresponding to the backward continuation of
the line), we then have

q(z)

|q(z)|
=

|z − z0|
z − z0

h(z)

|h(z)|
→ ei(ω−θ0) as z → z0,

where θ0 = limz→z0 θ. It remains to determine θ0.
Along an r-line through z0, we have

r2 = |f(z)|2 = |f0 + 1
2(z − z0)2f ′′

0 + · · · |2

= |f0|2 +Re[(z − z0)2f ′′

0 f0] +O(|z − z0|3).

Since |f0|2 = r2, this gives

Re

{

(

z − z0
|z − z0|

)2

f ′′

0 f0

}

= O(|z − z0|),

hence, as z → z0,
Re (e2iθ0f ′′

0 f0) = 0.

Therefore,

tan 2θ0 =
Re(f ′′

0 f0)

Im(f ′′

0 f0)
.(8)

There are exactly two solutions in −1
2π < θ0 ≤ 1

2π, which differ by 1
2π, confirming the orthogo-

nality of the two r-lines through z0.
Note that in the case f(z) = en(z), we have f ′(z) = en−1(z), so that z0 is a zero of en−1.

This is clearly visible in the plots of §2. Furthermore, f0 = en(z0), f ′′

0 = en−2(z0) if n ≥ 2, so
that (2) with z = z0, once applied as is, and once with n replaced by n − 1, gives f0 = zn0 /n!,
f ′′

0 = −zn−1
0 /(n − 1)!, and the equation for θ0 reduces to

tan 2θ0 = −
Rez0
Imz0

(f = en).

3.2. Contour lines ϕ = const. For the lines ϕ = const, we take r as the independent variable
and, by differentiating

f(z(r)) = reiϕ, ϕ = const,

with respect to r, obtain
dz

dr
=

eiϕ

f ′(z)
.

In terms of the arc length s, we now have

ds

dr
=

∣

∣

∣

∣

dz

dr

∣

∣

∣

∣

=
1

|f ′(z)|
,
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so that
dz

ds
=

dz

dr

dr

ds
= eiϕ

|f ′(z)|
f ′(z)

,

or, written as a system of differential equations,

dx

ds
= Re

{

eiϕ
|f ′(z)|
f ′(z)

}

,

z = x+ iy.
dy

ds
= Im

{

eiϕ
|f ′(z)|
f ′(z)

}

,

(9)

The singular point of (9) is again z0, a zero of f ′. At this point,

f0
|f0|

= eiϕ, − π < ϕ ≤ π,

which determines ϕ. The limit of |f ′(z)|/f ′(z) as z → z0 may be determined by a procedure
similar to the one in §3.1. Instead, we directly use the Taylor series of f in z0 in order to study
the ϕ-lines (and the r-lines as well) near z0 with f ′(z0) = 0. Let z = z0+ζ, where ζ is a complex
increment, and let

fk := f (k)(z0), k ≥ 0, f0 &= 0, f1 = 0, f2 &= 0,(10)

be the derivatives of f at z0. Then the Taylor series is

f(z0 + ζ) = f0 + f2
ζ2

2!
+ f3

ζ3

3!
+ · · · .(11)

Next, we observe that by defining w = f0 eu in (3), i.e., by putting

f(z0 + ζ) = f(z0) e
u,(12)

the r-lines through z0 are given by the values of ζ corresponding to purely imaginary values
u = it, whereas the ϕ-lines through z0 are given by u ∈ R. The point z0 itself corresponds to
ζ = u = 0. We therefore need to solve Equ. (12), with f(z0 + ζ) substituted from (11), for ζ,
which is a typical task for MAPLE.

In the program below2 the series (11) and the equation (12) are denoted by s and eq,
respectively. The solve command automatically expands eu in a Taylor series and solves the
equation by means of a series progressing in appropriate powers of u (here half-integer powers).
As expected, two solutions corresponding to the two possible values of the square root are found.
Only the first solution tt zet0[1] is processed further: first, by substituting the abbreviations fk
defined in Equ. (10), then by introducing the variable v according to

u =
v2f2
2f0

or v =
(

2uf0
f2

)
1

2

.(13)

The symbols D(f) and (D@@k)(f) stand for the derivative of f and the kth derivative of f ,
respectively. The call to the function map causes the operation defined by its first argument,
here the simplification of the radicals, to be applied to each term of the expression defined by
the second argument. Finally, the call to series causes the O-term to be simplified.

2The authors are indebted to Dominik Gruntz for this program.
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N := 5: Order := N;

s := series(f(z0+dz), dz):

s0 := subs(D(f)(z0)=0, s);

eq := s0 = f(z0)*exp(u):

zet0 := [solve(eq, dz)];

zet1 := subs(seq( (D@@k)(f)(z0) = f.k, k=0..N-1), zet0[1]):

zet2 := map(radsimp, subs(u=v^2*f2/2/f0, zet1));

zeta := series(zet2,v);

The output of this program contains the following lines:

(2) 2 (3) 3

s0 := f(z0) + 1/2 D (f)(z0) dz + 1/6 D (f)(z0) dz

(4) 4 5

+ 1/24 D (f)(z0) dz + O(dz )

2 3 2 3

f3 v (- 3 f2 f4 f0 + 9 f2 + 5 f3 f0) v 4

zeta := v - 1/6 ----- + 1/72 ------------------------------------ + O(v )

f2 2

f0 f2

The MAPLE program works for any N ≥ 3, producing N − 2 terms of the above series.
However, it is fairly slow, since no ”intelligence“, such as information on the form of the resulting
series, is built in. To be able to find this series, nevertheless, is a good accomplishment of a
general-purpose symbolic manipulator. It can be seen that ζ may be written as a formal power
series in the variable v defined in (13). If the original series (11) converges in a neighborhood of
z0, the resulting series converges in a neighborhood of v = 0.

The directions θ0 of the r-lines at z0 are now given by the values of ζ corresponding to u = it
in the limit t → 0. The above series and Equ. (13) immediately yield

θ0 = arg v =
1

2
(arg f0 − arg f2 ±

π

2
) .

Hence there are two r-lines through z0 intersecting at right angles, in perfect agreement with
Equ. (8).

The directions of the ϕ-lines through z0, on the other hand, are given by (13) for real values
of u. We obtain the two directions θ0 ± π

4 , i.e., the tangents of the two ϕ-lines through z0 are
the bisectors of the tangents of the r-lines.

4. The Contour Lines r = 1 of f = en

As indicated in §3.1, we need to solve (7) with initial values x = y = 0. Let Sn be the point
of intersection of the 1-line of en with the negative real axis. By symmetry, only the portion
of each 1-line lying in the upper half of the complex plane needs to be computed. This is not
quite easy in MATLAB, since the ode routine requires a terminal value sf of the independent
variable s and (unfortunately) does not allow termination of the integration process according
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to some condition (such as y ≥ 0) being violated. One way to deal with this problem is to select
sf as an upper bound of the arc length on the 1-line between the origin and Sn. Then, only the
points satisfying the condition y ≥ 0 need to be plotted. The point Sn can be approximated by
linear interpolation between the two points on the 1-line closest to Sn.

In the MATLAB program below this is done by using the find command with the parameter
y ≥ 0 in order to find the subset of all points satisfying the condition y ≥ 0. Their indices are
collected in the vector indices. The indices of the points used in linear interpolation are then
l=length(indices) and l1=l+1. Finally, w is the normalized row vector containing the two
interpolation weights, and the actual interpolation is carried out by the product w*z(l:l1,:).

A good upper bound sf for the arc length is obtained from the observation that the region
|en(z)| ≤ 1 approaches a semidisk of radius ρ(n) as n → ∞. An asymptotic analysis shows that

ρ(n) = exp(−1) · (n+ log
√
2πn +O(1)).

It suffices to choose O(1) = 3; then we obtain

sf ∼ (1 +
π

2
) exp(−1) · (n+ log

√
2πn + 3)(14)

as a close upper bound for the arc length up to the point Sn.

% Level curves r=1 for the first 21 exponential sums (Figure 2)

%

global n

nmin=1; nmax=21; tol=3.e-8;

axis equal; hold on; % arc=[];

for n=nmin:nmax,

sf = 0.94574*(n+.5*log(2*pi*n)+3); %% 0.94574=(1+pi/2)*exp(-1)

[s,z] = ode45(’level’,0,sf,[0;0],tol);

indices = find(z(:,2)>=0); l = length(indices); l1 = l+1;

w = [-z(l1,2),z(l,2)]; w = w/sum(w); z(l1,:) = w*z(l:l1,:);

plot(z(1:l1,1),z(1:l1,2));

% arc = [arc;w*s(l:l1),sf]; %% approximate arclengths and bounds sf

end; % arc

%

% LEVEL generates the right-hand side of the differential equ

% for the 1-lines of f(z) = 1 + z + z^2/2! + ... + z^n/n!

% Save this as the m-file level.m

%

function zdot=level(s,z)

global n

zc = z(1)+i*z(2); t = 1; f0 = 0; f = t;

for k=1:n, t = t*zc/k; f0=f; f = f+t; end;

q = f/f0; zdot = [-imag(q);real(q)]/abs(q);

end;

The MATLAB program begins with the definitions of the parameters nmin, nmax and the
error tolerance tol. The 1-lines in the range nmin ≤ n ≤ nmax are generated in the accuracy
given by tol and plotted. Rerunning the program with new values of nmin and nmax adds new
curves to the figure. The statements turned off by the comment marks % generate a table arc
containing the actual arc lengths and the upper bounds sf computed from (14).

8



The actual integration is done in the call to the integrator ode45. The input parameters of
this procedure are: the name ’level’ (in string quotes) of the m-file defining the differential
equations (7) to be integrated, the initial value 0 and the final value sf of the independent
variable, the column vector [0;0] of the inital values, and (optionally) the error tolerance tol.
The choice tol=3.0e-8 yields a high-resolution plot, whereas the default tol=1.0e-6 (when the
parameter is omitted in the call) still yields a satisfactory plot. The values of the independent and
dependent variables generated by the integrator are stored as the vectors s and z, respectively,
ready to be plotted.

The results for n = 1 : 1 : 21 are shown in Figure 2 below. The features near the imaginary
axis at the transition to the circular part seem to show a periodicity in n of a little over 5. For
example, the curves corresponding to n = 5, 10, 15, 21 all show a particularly large protrusion
into the right half-plane.

An investigation of this phenomenon is interesting, but exceeds the scope of this article. We
limit ourselves to reporting that as n → ∞, the period tends to

2π
π
2 − exp(−1)

= 5.22329130.

This result was obtained by considering the function eν(z) for real values of ν (which leads to
the incomplete gamma function) and requiring the 1-line of eν(z) to contain a saddle point with
e′ν(z) = 0.

Figure 2. Level Curves r = 1 for the First 21 Exponential Sums

!10 !8 !6 !4 !2 0
0

5

5. The Contour Lines ϕ = const of f = en

Below is a MATLAB program that implements the method of §3.2 for any fixed n > 0, where
the differential equations (9) must be implemented in the function phase and stored in the m-file
phase.m. The program begins with the definitions of n, the error tolerance tol, and the desired
arc length sf of the curve segments emanating from the zeros. Then, the vector r of the zeros
of en is computed by means of the function roots, where the coefficients of en are generated by
means of the gamma function. On the next line the subset of the zeros in the upper half-plane is
formed by means of the find command with the argument imag(r)>=0. The statement used in
the program stores all the indices defining the subset in the vector indices; then r(indices)

is the vector of the zeros of en in the upper half-plane (which is printed for convenience).

9



The input parameters in the call to the integrator ode45 are: the name ’phase’ (in string
quotes) of the differential equations to be integrated, the initial value 0 and the final value
sf of the independent variable, the column vector z0 of the inital values, and (optionally) the
error tolerance tol (default 10−6 when omitted). The values of the independent and dependent
variables generated by the integrator are stored as the vectors s and z, respectively, ready to be
plotted.

% Lines of constant phase for the 10th exponential sum (Fig 3)

%

global n phi

n = 10; tol = 1e-5; sf = 1.5;

clf; axis image; hold on;

r = roots(1./gamma(n+1:-1:1));

indices = find(imag(r)>=0); zero=r(indices)

for k=1:length(zero),

z0 = [real(zero(k));imag(zero(k))];

for phi=-7/8*pi:pi/8:pi,

[s,z] = ode45(’phase’,0,sf,z0,tol);

plot(z(:,1),z(:,2));

end;

end;

%

% Save this as the m-file phase.m

%

function zdot=phase(s,z)

global n phi

eiphi = exp(i*phi); zc = z(1)+i*z(2);

t = 1; f = t;

for k=1:n-1, t = t*zc/k; f = f+t; end;

q = eiphi*abs(f)/f; zdot = [real(q);imag(q)];

end;

The result for n = 10 is shown in Figure 33.

3We wrote and ran the script on August 1, 1996, while fireworks went off in celebration of the Swiss national
holiday.
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Figure 3. Lines of Constant Phase for the 10th Exponential Sum
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None of the complex singular points is in evidence in Figure 3 since the ϕ-values chosen do
not correspond to level lines passing through a complex singular point. The real singular point
at z0 = −3.333551485, however, is clearly visible by an abrupt right-angled turn of the line
ϕ = 0 (near the bottom of the figure). It is curious to note how the ode45 integrator was able
to integrate right through the singularity, or so it seems.
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