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Abstract

Certain systems of functional equations related to the iteration of functions

with a fixed point are considered. We construct smooth solutions in terms

of expansions about the fixed point. In a particular example taken from an

intuitive geometric situation the solution is obtained explicitly as a conver-

gent Taylor series. Particular attention is given to the question of selecting

distinguished solutions from an infinity of possible solutions. This classical

topic is presented in a transparent way by consistently using compositional

notation. The method described may be applied in similar situations, e.g. for

handling iterations arising in discrete dynamical systems.
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1. Introduction

Functional equations are relationships between values of a function at different arguments.
In general they have larger sets of solutions than differential equations, which relate
function values and derivatives at a single argument. Besides initial conditions additional
requirements such as monotonicity are needed in order to select a distinguished particular
solution.

The topic of functional equations has been active since the beginnings of calculus, e.g.
with Euler’s gamma function (see, e.g., [4]), up to the present day. A recent encyclopedia
volume by Kuczma et.al. [9] contains an extensive bibliography of more than 800 refer-
ences. The recent revival of the field is due to the connection between certain functional
equations and the modern theory of dynamical systems.

In this paper we will begin with the intuitive geometrical situation drawn in Figure 1,
below, which turns out to be intimately connected with the iteration of functions in one
variable. In Section 2 the corresponding functional equations are solved by the classical
methods of Schröder [10] and Abel [1]. Section 3 is devoted to the involutory case which
is picked up in Section 4 by means of a particular example. In fact it is this example from
three-dimensional geometry, being devised by R. Resch and publicised by F. Stenger [11]
that gave the inspiration for this paper. In Sections 4 and 5 this example will be solved
completely in terms of convergent power series.

LetA(x), B(x) be two smooth monotonic functions defined on appropriate subintervals
of lR, and consider their graphs as shown in Figure 1.

We discuss the problem of connecting the points of intersection of two polygons zigzag-
ging between A and B by a simple smooth graphG. From Figure 1 we immediately obtain
the conditions

(1) G(x) = A(y)

(2) G(y) = B(x) .
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Fig. 1: Graphs of functions A, B and G
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Clearly, the solution is far from unique unless further requirements on G are specified.
Consider, e.g., the particular example A(x) = axα, B(x) = bxβ in x ≥ 0 with a, b,α, β > 0.
Assuming G(x) = g ·xγ shows that Equs. (1) and (2) are satisfied for every x ≥ 0 and an
appropriate function y = Q(x) if we choose

(3) γ =
√

αβ , g =
(
a
√
βb

√
α
)1/(

√
α+

√
β)

.

Here, this is the simplest possible solution. However, as will be seen later, there exist
infinitely many more complicated solutions to the problem.

In this paper functions are denoted by capital characters, and composition will be
denoted by juxtaposition, e.g.

A(B(x)) = (AB)(x) .

Exponents denote functional iteration, such as An(x) = A(An−1(x)), A0(x) = x (A0 = Id,
identity), and A−1 accordingly denotes the inverse function of A.

2. Functional Equations

With the purpose of eliminating y from the system (1), (2) we solve (1) for y, assuming
that A−1 exists:

(4) y = Q(x) := A−1(G(x)) , or Q = A−1 G .

Inserting this into (2) yields

(5) GA−1G = B,

and, with the abbreviation

(6) R := A−1B ,

the simple relation Q2 = R is obtained. Hence the problem at hand amounts to taking
the “compositional square root” Q of the given function R ; then

(7) G = AQ = A(A−1B)1/2 .

This is a particular case of so-called fractional iteration of a function which has a long
history dating back at least to 1871 (E. Schröder, [11]). This early work was soon carried
on by N. H. Abel [1], G. Königs [7], and E. Kasner [5], and the field has been active up
to the present day. Besides the large bibliography in [9] a commented bibliography up to
1964 by Targonski [13] is mentioned. The question of uniqueness and regularity of growth
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of fractional iterates was discussed, among many others, by Collatz [2], Davis [3], Kuczma
[8], and Targonski [14].

We will use the methods of Schröder and Abel in order to construct particular solutions
with various properties to the above problem. Using the idea of introducing appropriate
“coordinates” [3], we introduce the formal conjugacy of the map R with the shift map
Sp(x) := x + p (p is an appropriately chosen shift), by means of an Abel function or
logarithm of iteration [1] Φ(x) for R:

(8) ΦR = SpΦ or Φ(R(x)) = p+ Φ(x) .

If both Φ and Φ−1 exist, we have R = Φ−1 SpΦ, and we immediately verify that

(9) Q = Φ−1 S p
2
Φ

is a solution of Equ. (5).

Remark. The function Φ postulated here does not always exist; its existence depends
on the behaviour of the rotation number of the map R. In the applications considered
here, however, Φ exists based on convergent expansions in a fixed point of R.

In order to find more solutions consider the circle map C with shift p, by definition a
monotonic function

(10) x "−→ C(x) := x+ P (x) ,

where P (x) = P (x+ p) is a p-periodic function. Clearly, we have

(11) C Sp = SpC .

Theorem 1. If Φ is an Abel function for R with shift p, ΦR = SpΦ, and if C is a circle

map with the same shift, the function Φ̃ = CΦ is also an Abel function for R with shift p.

Proof: ΦR = SpΦ =⇒ CΦR = C SpΦ =⇒ Φ̃R = SpΦ̃. !

Consequently, in Equ. (9) Φ(x) may be replaced by Φ̃(x) = Φ(x) +P (Φ(x)), where P
is an arbitrary p-periodic function with the only restriction that Φ̃−1 exists.

In the example of Section 1 we obtain

R(x) =
( b
a
xβ

)1/α

and, e.g.,

(12) Φ(x) = log log(µx), µ =
( b
a

)1/(β−α)
, p = log

(β
α

)
.

3



Choosing an arbitrary circle map C with shift p, Equs (4), (9) yield G = AΦ−1C−1 S p
2
CΦ

or

G(x) = a
(1
µ

exp exp
(
C−1

(1
2

log
β

α
+ C

(
log log(µx)

))))α
.

With C = Id the simple solution G(x) = g · xγ with g, γ from (3) is obtained.

3. Symmetry

We now consider the case of involutions A,B with A2 = B2 = Id. Then involutory
solutions G of (1), (2) may exist since G2 = Id is compatible with B2 = GA−1G2A−1G
= Id (see Equ. (5)). We then have from (6) R = AB, R−1 = BA.

In order to construct an involutory solution we state the following theorem that holds
without the symmetry condition on A and B. Let N(x) = −x be the ”anti-identity“; we
have SpN = NS−p.

Theorem 2. Let Φ be an Abel function for R satisfying (8) or ΦA−1 = SpΦB−1. Then

the function Φ̃ := NΦA−1 satisfies Φ̃A = Sp Φ̃B.

Proof: ΦA−1 = SpΦB−1 =⇒ NS−p ΦA−1 = N ΦB−1 =⇒ SpΦ̃ = Φ̃AB−1 =⇒ SpΦ̃B =

Φ̃A. !

Corollary. If A and B are involutions, A−1 = A, B−1 = B, and Φ satisfies ΦA = Sp ΦB,

then Φ̃ := N ΦA−1 satisfies the same equation, Φ̃A = Sp Φ̃B. !

Next, we observe that any linear combination wΦ+ w̃Φ̃ with w+ w̃ = 1 satisfies Equ.
(8). In particular, if we use w = w̃ = 1

2 to define

(13) Ψ =
1

2
(Φ+ Φ̃) or Ψ(x) =

1

2
[Φ(x)− Φ(A−1(x)]

as our standard Abel function we have

Theorem 3. The solution

(14) G = AΨ−1S p
2
Ψ

generated by the Abel function Ψ is involutory. !

Proof: We have ΨA = NΨ. Therefore

G2 = AΨ−1 S p
2
ΨAΨ−1 S p

2
Ψ = AΨ−1 S p

2
N S p

2
Ψ = AΨ−1ΨA = Id .

!
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The symmetry of the solution (14) may be displayed by writing (14) asΨA−1G = S p
2
Ψ

or as

(15) Φ(A−1(G)) + Φ(A−1(x)) = p+ Φ(G) + Φ(x) .

This is an implicit equation of the curve G(x) in the (x,G) plane. Obviously, it is invariant
if x and G are interchanged (hence involutory), and due to its construction it solves the
problem (1), (2). Φ is an arbitrary Abel function for R satisfying (8), and p is the
corresponding shift. More solutions are obtained by using CΦ instead of Φ in Equ. (15),
where C is a circle map with shift p.

To conclude this section we derive an elegant parametrization of the curve defined by
Equ. (15). With the definition

(16) D(x) :=
1

p
(Φ(A−1(x))− Φ(x))

(15) becomes D(G) +D(x) = 1. By introducing the parameter t := D(x), or x = D−1(t),
where D−1 is the inverse of D, we obtain the simple parametric form

(17) x = D−1(t), G = D−1(1− t), −∞ < t < ∞

for the curve defined by Equ. (15).

4. An Example

In the xy-plane, consider two points: A1 on the positive x-axis, and A2 on the positive
y-axis, such that the distance from A1 to A2 is always 1. Thus, if A1 = (x, 0), then
A2 = (0,

√
1− x2).

Next, consider the “rod” A1A2 of unit length moving in the first octant of xyz-space,
for 0 ≤ z ≤ 1, in such a way that A2 is always in the yz-plane (x = 0) and A1 is always in
the xz-plane (y = 0), and such that both A1 and A2 always have the same z-coordinate
(see Figure 2). Two trajectories are of particular interest:

• The case when A1 traverses the straight line trajectory x = A1(z) = 1− z, in which
case A2 traverses the circular path, y = A2(z) =

√
1− (1− z)2; and

• The case when A1 traverses the circular trajectory x = A1 =
√
1− z2, in which case

A2 traverses the straight line trajectory y = A2(z) = z.

Let us now examine the family F of paths x = G(z) of A1, described as in the above
paragraph, whose x-coordinate lies between the curves

(18) x = A(z) := 1− z and x = B(z) :=
√
1− z2, 0 ≤ z ≤ 1.
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It is clear that any such trajectory will have a y-coordinate that lies between the
trajectories y = A2(z) =

√
1− (1− z)2 and y = A2(z) = z. Upon replacing z by 1 − z

in the family of trajectories G(z), we may ask: For what trajectories G(z) do we have
G(1− z) = A2(z)? Equivalently, since A2(z) =

√
1−G2(z), for what functions G defined

on [0, 1], and such that 0 ≤ G(z) ≤ 1 do we have

(19) G(1− z) =
√
1−G2(z) ?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

G

B

x y

x

F
(x

)

Fig. 2: The rod A1A2 parallel to the xy-plane moving in such a way that the endpoints
A1 and A2 traverse congruent paths

We notice that the functions A and B are involutory, i.e. on the interval [0, 1] they
satisfy A−1(z) = A(z) and B−1(z) = B(z), and we furthermore restrict the family F of
functions G such that

(20) G−1(z) = G(z)

for all of the functions G ∈ F . We may now ask:

• What are the properties of the family F?

• In what sense is the family F described as above unique?

• If the family F consists of more than one member, what other properties reduce F
to a single member G?

• Is it possible to construct such a G ∈ F?
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We shall consider these questions in turn, in what follows.

We first observe that due to (20), i.e. G2 = Id , all the symmetries of Section 3 apply.
Furthermore, Equ. (19), which corresponds toGA−1 = BG in the compositional notation
of the previous sections, is a direct consequence of (5) and (20). Therefore the theory of

Sections 2, 3 holds. Instead of Equ. (8) we use the equivalent form

(21) Φ(1− z) = p+ Φ(
√
1− z2)

with the goal of choosing an appropriate value of p and a simple solution Φ(z), e.g. a
formal ascending series centered at z = 0. It is suggested to adopt the ascending series
solution Φ(z) to be defined below as the ”best“ solution of Equ. (21) in the sense that
it shows the most regular growth as z → 0. Other choices may be possible, though.
Due to the construction in Section 3, however, the same solution G is obtained from the
Abel function based on the most regular behaviour as z → 1. Considerations of this type
are important in identifying the gamma function as the ”best“ solution of its functional
equation (see, e.g., [4]); for other examples see Kneser [6], Szekeres [12].

In view of Equ. (12), pointing to a possibly complicated logarithmic singularity at
z = 0 we introduce

(22) Θ(z) := exp Φ(z)

satisfying the functional equation

(23) Θ(1− z) = ep ·Θ(
√
1− z2)

which determines Θ(z) at most up to an arbitrary factor. The function Θ(z) satisfies an
appropriate Schröder equation [10]. Assuming

Θ(z) = − log(cz) +O(z)

uniquely yields p = log 2, c = 1
2 . In order to avoid logarithmic terms we attempt to find

a formal solution Θ′(z) = −z−1 +O(1) of the derivative of (23),

(24) Θ′(1− z) =
2z√
1− z2

Θ′(
√
1− z2) .

The procedure described below will directly result in a convergent series solving (24).
Instead of z we will use the variable u := (1− z2)/4 ∈ [0, 14 ]; therefore

(25)
√
1− z2 = 2

√
u , z =

√
1− 4u .

The function

7



(26) ϑ(u) := −2 Θ′(2u)

then satisfies the functional equation

(27)
1√
u
ϑ(
√
u) =

1√
1− 4u

ϑ
(1−

√
1− 4u

2

)
,

for which a formal solution

(28) ϑ(u) = c0u
−1 + c1u+ c2u

3 + c3u
5 + . . . , c0 = 1

will be shown to exist.

Lemma 4. For every k ∈ lR the following expansion holds:

fk(u) :=
1√

1− 4u

(1−
√
1− 4u

2

)k
=

∞∑

j=0

( k + 2j
j

)
uj+k .

!

Proof: We only need the lemma for k = −1, 0, 1 . . . . The correctness of the expansion
is easily seen for k = −1 and k = 0. Induction with respect to k by using fk+2(u) −
fk+1(u) + u fk(u) = 0 and the basic relation between the elements of the Pascal triangle
establishes Lemma 4 for k = 1, 2, 3, . . . . !

Inserting the expansion (22) into (21) and using Lemma 4 directly yields the recurrence
relation

(29) ck =

[ k
2
]∑

j=0

( 2k − 2j − 1
k − 1

)
cj, (k = 0, 1, . . . ), c0 = 1

for the sequence ck. Its initial elements are

(30) ck = {1, 1, 4, 13, 49, 181, 685, 2605, 9988, 38479, 148879, 577930, 2249698, . . .} .

Clearly, the coefficients ck form a monotonically increasing sequence of integers, and
ck ≤ 4k may be shown. Therefore the series (28) converges for all u ∈ lC with |u| < 1

2 , and
from (26) we obtain

(31) Θ(z) = −c0 log
z

2
−

∞∑

k=1

ck
2k

(z
2

)2k
.
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5. Results

In order to evaluate Θ(z) for a given z ∈ (0, 1), we use the functional equation (23)
repeatedly before evaluating the series: Let z0 := z and iterate

(32) zj = R(zj−1) =
z2j−1

1 +
√
1− z2j−1

, j = 1, 2, . . . , m

such that Θ(zm) by the appropriately truncated series (31) has sufficient accuracy. Then
Θ(z) = 2−mΘ(zm). The graphs of the functions Φ(z), Θ(z) and exp(−Θ(z)) are shown in
Figure 3a.

0 0.5 1

!0.5

0

0.5

1

1.5

2

x

F
(x

)

!

e
!!

":=log(!)

!3 !2 !1 0 1 2 3
0

0.5

1

x

D
!

1
(x

)

Fig. 3a: The functions Θ(z), exp(−Θ(z)), and Φ(z) = log(Θ(z) for z ∈ (0, 1)
Fig. 3b: The inverse F = D−1 of D(z) = log2(Θ(1− z)/Θ(z))

In terms of the Schröder function Θ the equation (15) of the graph G(z) may be
written as

(33) Θ(1−G) ·Θ(1− z) = 2Θ(G) ·Θ(z) ,

as is seen by exponentiating Equ. (15). This is one form of the final result of the
problem of Section 1 with A and B defined by Equ. (18). In order to solve (33) numerically
for G the secant method with the initial guesses G0 = G0(z) := (1−z

√
2)1/

√
2 and a nearby

value G1 is recommended.
Another representation of this graph is the parametrization (17) where, according to

(16), the function F (z) = D−1(z) is now the inverse of

(34) D(z) = log2
Θ(1− z)

Θ(z)
,
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to be computed, e.g., by solving the equation

(35) Θ(1− F ) = 2z ·Θ(F )

for the unknown F (see Figure 3b). As a consequence of (17), the fixed point z0 = G(z0)
of the symmetric solution is now defined by z0 = D−1(1/2), which results in

(36) z0 = .60694 81374 10748 90686 44016 61391 98879 45573 42957.

It is interesting to note that the solution G̃ obtained directly from Θ by means of
Equs (7), (9), (22), i.e.

(37) G̃ = A Θ−1 exp S p
2
log Θ or G̃(z) = 1−Θ−1(

√
2Θ(z)) ,
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e
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":=log(!)

Fig. 4: Graphs of the functions A(z), B(z), G(z), G0(z) together with the four
zigzagging polygons passing through the points (12 ,

1√
2
), or (z0, z0), respectively.

passes through the fixed point z0 of G and therefore through all of its forward and
backward iterates under the map A−1B. G̃ is not quite symmetric, however; we have
|G̃(z) −G(z)| ≤ 3.9658 94143 · 10−7 and |G̃(G̃(z))− z| ≤ 7.9317 88286 · 10−7, see Figure
5 and Figure 6. Since G̃(x) deviates from G(z) only by an amount of less than 10−6, G̃ is
sufficient for graphics purposes.

!3 !2 !1 0 1 2 3
0

0.5

1

x

D
!

1
(x

)

10



Fig. 5: Graph of the difference ∆(ϕ) := G̃(ϕ)−G(ϕ), where cos(ϕ) = z. This graph is
not quite symmetric; we have |∆(ϕ)−∆(π2 − ϕ)| ≤ 1.156 · 10−12.
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Fig. 6: Graph of the function G̃(G̃(z))− z
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