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Abstract

The Helmholtz equation in a three-dimensional plate is approximated by a hierarchy of
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exponentially weighted norms are derived, and sharp, computable estimates for their effec-
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number of trigonometric director functions into the Ansatz, in order to prevent pollution
effects at high wave numbers is demonstrated both theoretically and computationally.
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Introduction

The dimensional reduction, i.e. the approximation of problems of mechanics on thin, three-

dimensional domains by simplified, two- or one-dimensional “models” is a widely used and

classical approach in computational mechanics. Recently, with the availability of accurate

Finite Element (FE) approximations of such dimensionally reduced models, there has been an

increased awareness of the so-called “modelling error” due to the dimensional reduction. As

a consequence, the classical lower-dimensional models have been embedded into a hierarchy

of higher order models and corresponding a-posteriori modelling error estimates have been

developped with the aim of enabling the automatic and adaptive selection of the model from the

hierarchy. [?, ?, ?, ?]. All these works dealt with stationary elliptic problems; few results seem

to be available for time-dependent problems or for their quasistatic approximations arising,

e.g., in the description of vibrating bodies. We mention here, however, [?] where the Helmholtz

equation was considered on an infinite domain and sharp a-priori estimates of the modelling

error were obtained.

The analysis of hierarchic, dimensionally reduced models of the Helmholtz equation in

thin, three-dimensional slabs and the derivation of a-posteriori modelling error estimates is the

purpose of the present paper. Similar to [?, ?, ?, ?], we propose a dimensional reduction of

the problem based on a semidiscretization in the transverse direction. We obtain new a-priori

and a-posteriori modelling error estimates in localized, exponentially weighted energy norms.

Our analysis shows that, unlike in the zero-wave number case [?, ?], for high wave numbers,

the dimensional reduction must be based on a proper combination of polynomial and trigono-

metric director functions in the transverse direction, rather than polynomials alone. We prove

that the inclusion of a certain number of trigonometric director functions into the dimensional

reduction process is necessary to ensure that all local (i.e. exponentially decaying) perturba-

tions such as edge-effects and point- or line singularities of the data do not pollute the lower

dimensional model. In addition, the local size of the residual is then an asymptotically exact

indicator for the modelling error – a key step in the local adaptive hierarchic modelling. The

number of trigonometric functions to be included into the models depends on wave number

× thickness. Naturally, due to the high approximation order of polynomials, the inclusion of

trigonometric functions introduces a certain redundancy and near linear dependence into the

ansatz. We propose to cope with this by monitoring the angles between the spaces spanned

by the polynomials and the trigonometric functions, respectively, with the aid of a generalized

eigenvalue problem which is numerically diagonalized. This allows a) to decouple the hierarchy

of models and b) to determine when a given trigonometric shape function is approximated to

machine accuracy by the polynomials and can hence be dropped from the semidiscretization
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process. This is also confirmed by numerical results.

The outline of the paper is as follows: After introducing some notation and formulating

the problem, we discuss the critical modes of our problem and state an existence result. We

then describe the hierarchic modelling and identify the critical frequencies for the reduced

model. We next prove a basic stability result of the bilinear form in exponentially weighted

spaces and derive computable a-posteriori modelling error estimates in these weighted norms.

We demonstrate that the estimator here obtained is asymptotically exact as the thickness of

the structure and the wave number tends to zero. We show further that the effectivity index

grows almost linearly with the wave number. We conclude with numerical experiments which

confirm our asymptotic estimates and which underline in particular the necessity for including

the trigonometric director functions.

Acknowledgement: Thanks are due to Dr. Markus Melenk for helpful discussions in connection

with the proof of Lemma 5.4.

1 Notation and problem formulation

By ω ⊂ IR2 we denote a bounded domain with a piecewise smooth Lipschitz boundary γ. With

ω and a positive thickness parameter d we associate the three-dimensional domain

Ω = ω × (−d, d)

with lateral boundary

Γ = γ × (−d, d)

and the faces

R± = {(x1, x2, y) | x = (x1, x2) ∈ ω, y = ±d} .

In Ω we consider the Helmholtz problem with prescribed Neumann data f± on the faces; i.e.

Lu = 0 in Ω,
u = 0 on Γ,

Dnu = f± on R±,
(1.1)

where the operator L is (in the sense of distributions) given by

Lu = ∆u+ k2u (1.2)

where k is the wave number, ∆ the Laplace operator and the operator Dnu is the (distribu-

tional) exterior normal derivative on R±.
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To cast (1.1) into the weak form we introduce the Sobolev space

H := {u ∈ H1(Ω) | trace u = 0 on Γ} (1.3)

and define the bilinear form Bk2(·, ·) : H ×H → IR and the functional F (·) : H → IR by

Bk2(u, v) :=

∫

Ω

(

∇u ·∇v − k2uv
)

dx dy (1.4)

and

F (v) :=

∫

ω

(

f+(x)v(x, d) + f−(x)v(x,−d)
)

dx (1.5)

respectively.

Then the weak form of (1.1) reads: Find u ∈ H such that

Bk2(u, v) = F (v) ∀ v ∈ H. (1.6)

We assume throughout that the data f±(x) satisfy

f+, f− ∈ L2(ω). (1.7)

Remark 1.1 In (1.1) we assumed u = 0 on Γ. All results obtained below hold equally

well under the more general edge condition u = 0 on ΓD ⊂ Γ, ∂u/∂n = 0 on ΓN where

ΓD = γD × (−d, d), ΓN = γN × (−d, d) are Dirichlet and Neumann parts, respectively, of the

edge. In the same way, the analysis could be performed for other boundary conditions on R±.

2 Properties of the solution

To determine the set Σ of resonance frequencies, the classical separation of variables approach

is described for the case where the bounded domain ω is a 2D Lipschitz domain with a piecewise

smooth boundary.

We wish to find the solution to (1.1) by making the Ansatz u(x, y) = h(x)g(y). Formally

substituting into (1.1) yields

−∂2g

∂y2
h− g∆xh− k2hg = 0 (2.1)

or,

−∂2g

∂y2
1

g
=

∆xh

h
+ k2 = λ2 (2.2)
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where λ2 is the separation constant. This gives the system of equations

−∂2g

∂y2
− λ2g = 0 in (−d, d), g′(±d) = 0,

∆xh+ (k2 − λ2)h = 0 in ω, h|∂ω = 0.

(2.3)

Denote by hn ∈ H1
0 (ω) the eigenfunctions of the Laplacian −∆x in ω with zero boundary

conditions on γ, i.e.

−∆xhn = ν2nhn in ω, hn = 0 on γ. (2.4)

Then we have

λ2
n = k2 − ν2n, n ≥ 1. (2.5)

The solutions in y are then given by

g(1)n (y) = cos

(

y
√

k2 − ν2n

)

, n ≥ 1,

g(2)n (y) = sin

(

y
√

k2 − ν2n

)

, n ≥ 1,

(2.6)

and the solution to problem (1.1) by

u(x, y) =
∞
∑

n=1

hn(x)
(

Ang
(1)
n (y) +Bng

(2)
n (y)

)

(2.7)

where the coefficients An, Bn have to be determined according to the given boundary condi-

tions.

We observe that the hn satisfy the Dirichlet boundary condition hn = 0 on ∂ω, and by the

density of the {hn} in L2(ω), the Neumann data on the faces R± can be expanded in a series

of the form

f±(x) =
∞
∑

n=1

f±
n hn(x). (2.8)

Then the Neumann boundary condition translates into

∂u

∂n

∣

∣

∣

∣

±d
= ±∂u

∂y

∣

∣

∣

∣

±d

= ±
∞
∑

n=1

hn(x)

(

−An sin

(

±
√

k2 − ν2n d

)

+Bn cos

(

±
√

k2 − ν2n d

))

√

k2 − ν2n

=
∞
∑

n=1

f±
n hn(x).

(2.9)
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The functions hn are L2-orthonormal, i.e.

∫

ω
hn(x)hñ(x) dx =

{

0 n 6= ñ,
1 n = ñ.

Multiplying (2.9) by hñ(x) and integrating over ω gives the following system for the coefficients

An and Bn in (2.7)

(

−An sin

(

√

k2 − ν2n d

)

+Bn cos

(

√

k2 − ν2n d

))

√

k2 − ν2n = f+
n ,

(

An sin

(

−
√

k2 − ν2n d

)

−Bn cos

(

−
√

k2 − ν2n d

))

√

k2 − ν2n = f−
n ,

(2.10)

which has solutions

An =
−(f+

n + f−
n )

2
√

k2 − ν2n sin
(

d
√

k2 − ν2n

) ,

Bn =
f+
n − f−

n

2
√

k2 − ν2n cos
(

d
√

k2 − ν2n

) .
(2.11)

From (2.11) we see that for certain values of k the solution of (1.1) will fail to exist for general

data (resonance). These critical values of k are

k =

√

l2π2

4d2
+ ν2n n ≥ 1, l ≥ 0. (2.12)

The spectrum Σ of the three dimensional operator L in (1.1) is then given by

Σ =







k : k = νn or k =

√

l2π2

4d2
+ ν2n; n, l ≥ 1







. (2.13)

We therefore have:

Proposition 2.1 Assume (1.7) and that k 6∈ Σ. Then the problem (1.6) admits a unique weak

solution u ∈ H.

3 Hierarchical modeling

We will approximate the boundary value problem (1.3)-(1.7) by a sequence of two-dimensional

problems on ω, the hierarchy of dimensionally reduced models, which we now define.

For nonnegative integers q ≥ 0 and any dense sequence

{Φj(z)}∞j=0 ⊂ H1(−1, 1) (3.1)
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of linearly independent functions we define

S(q) :=







u(x, y) : u|ω =
q
∑

j=0

Uj(x)Φj

(

y

d

)

, Uj(x) ∈ H1
0 (ω)







. (3.2)

Then S(q) ⊂ H and the (q)-reduced model is the following two-dimensional boundary value

problem: Find u(q) ∈ S(q) such that

Bk2(u(q), v) = F (v) ∀ v ∈ S(q) (3.3)

i.e., u(q) is the Galerkin projection of the weak solution u onto S(q). Hence (3.3) constitutes

an elliptic system of Helmholtz type on ω for the yet unknown coefficient functions Uj(x) in

(3.2).

The selection of the director functions Φi in (3.1) completely determines the (q)-model and

will be discussed in the following. To do so, we go back and look at the separation of variables

approach from a different point of view. Assume that

u(x, y) =
∞
∑

i=0

ai(x)Φ̃i(y/d), ai(x) =
(

u(x, ·), Φ̃i

)

L2(−d,d)
, x ∈ ω (3.4)

where Φ̃i are the eigenfunctions of

−Φ̃′′
i = α2

i Φ̃i in (−1, 1), Φ̃′
i(±1) = 0. (3.5)

This determines the Φ̃i and αi to be

αi =
iπ

2
,

Φ̃0(z) =
1√
2
,

Φ̃2i(z) = cos(α2iz),

Φ̃2i−1(z) = sin(α2i−1z).

(3.6)

We note that the {Φ̃i} are dense in L2(−1, 1) and that they are L2-orthogonal.

The error analysis in the next sections will show that for localization of the modelling error

(see also Remark 4.2 below) it is necessary and sufficient to choose

Φi(y/d) =
1√
d
Φ̃i(y/d), 0 ≤ i ≤ M. (3.7)

For the approximation of the solution we also choose

ΦM+i(y/d) = Li(y/d), 1 ≤ i ≤ N, (3.8)
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where Li are the Legendre polynomials of degree i on (−1, 1) with the normalization |Li(1)| = 1.

Next we derive explicitly the reduced 2D weak formulation to problem (1.1) by making the

Ansatz

u(x, y) = uM,N (x, y) =
N+M
∑

m=0

Φm(y/d)Um(x) (3.9)

with certain yet unknown coefficient functions Um(x). To obtain a boundary value problem in

ω for Um(x), we substitute (3.9) into the three dimensional weak formulation (1.6) and use as

test function

v(x, y) = Vm̃(x)Φm̃(y/d), 0 ≤ m̃ ≤ N +M. (3.10)

This leads to the elliptic system

∫

Ω

N+M
∑

m=0

{

(

∇xUm(x)∇xVm̃ − k2Um(x)Vm̃(x)
)

Φm(
y

d
)Φm̃(

y

d
)

+
∂Φm(y/d)

∂y

∂Φm̃(y/d)

∂y
Um(x)Vm̃(x)

}

dx dy

=

∫

ω
Vm̃(x)

(

f+(x)Φm̃(1) + f−(x)Φm̃(−1)
)

dx, 0 ≤ m̃ ≤ N +M,

(3.11)

which can be rewritten in the form

N+M
∑

m=0

∫

ω

(

∇xUm(x)∇xVm̃ − k2Um(x)Vm̃(x)
)

dx

∫ 1

−1
d Φm(z)Φm̃(z) dz

+

∫

ω
Um(x)Vm̃(x) dx

∫ 1

−1

1

d

∂Φm(z)

∂z

∂Φm̃(z)

∂z
dz

=

∫

ω
Vm̃(x)

(

f+(x)Φm̃(1) + f−(x)Φm̃(−1)
)

dx, 0 ≤ m̃ ≤ N +M.

(3.12)

We define the (N +M + 1)× (N +M + 1) matrices A and B by

A =

∫ 1

−1
Φm(z)Φm̃(z) dz (3.13)

and

B =

∫ 1

−1

∂Φm(z)

∂z

∂Φm̃(z)

∂z
dz. (3.14)

In order to obtain an equivalent, decoupled system of equations from (3.12) it is necessary to

solve the generalized eigenvalue problem

Bq = σ2Aq (3.15)

with the normalization qtAq = 1. Let Q denote the matrix whose columns are the eigenvectors

of (3.15). Then the basis transformation

Ψ = QtΦ (3.16)
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will uncouple the reduced weak form (3.12) into the sequence of scalar problems

∫

ω

(

−d2∆xUi + (σ2
i − k2d2)Ui

)

Vi dx = dFi, i = 0, · · · , N +M (3.17)

with the boundary condition

Ui = 0 on γ (3.18)

and

Fi =

∫

ω
Vi(x)

(

f+(x)Ψi(1) + f−(x)Ψi(−1)
)

dx. (3.19)

The eigenvectors of these scalar problems are the functions hn from (2.4) which yields the

eigenvalues ν2n = k2−σ2
i /d

2. The set ΣM,N of critical values (resonance) for the dimensionally

reduced problem is therefore given by

ΣM,N =







k : k =

√

ν2n +
σ2
i

d2
; n ≥ 1, 0 ≤ i ≤ N +M







. (3.20)

Proposition 3.1 Assume (1.7) and that k 6∈ ΣM,N . Then the dimensionally reduced problem

(3.3) admits a unique weak solution u(q) = uM,N (x, y) ∈ S(q).

4 Some abstract results

Let H1, H2 be two reflexive Banach spaces furnished with the norms ‖·‖1 and ‖·‖2, respectively.
Further, let B(u, v) be a bilinear form defined on H1×H2. We will call the bilinear form (C, γ̂)-

regular if there exist constants 0 < C, γ̂ < ∞ such that

|B(u, v)| ≤ C‖u‖1‖v‖2, (4.1)

inf
‖u‖1=1

sup
‖v‖2=1

|B(u, v)| ≥ γ̂ (4.2)

for any v 6= 0, v ∈ H2, sup
‖u‖1=1

|B(u, v)| > 0. (4.3)

(C, γ̂) regular bilinear forms have the following properties.

1. Let F ∈ (H2)
′ (i.e., F is a bounded, linear functional on H2); then there exists exactly

one u ∈ H1 such that

B(u, v) = F (v) ∀ v ∈ H2.
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2. If

sup
‖v‖2=1

|B(u, v)| = sup
‖v‖2=1

|F (v)| ≤ A, (4.4)

then

‖u‖1 ≤ A

γ̂
.

Let us consider now some special cases that will be important later.

Let 0 < ϕ(x) ∈ W 1,∞(ω) denote a weight function in ω. We define

HL
ϕ = {e ∈ H | e satisfies (4.6)} (4.5)

∫ d

−d
e(x, y)Φl(y/d) dy = 0, l = 0, · · · , L; a.e. x ∈ ω (4.6)

where Φl are as in (3.6) and furnish HL
ϕ with the weighted H1-norm defined by

‖e‖ϕ =

(

∫

ω
ϕ2(x)

∫ d

−d

(

|∇e|2 + |e|2
)

dy dx

)1/2

. (4.7)

Further, ‖u‖21 = B−1(u, u) with Bρ(·, ·) as in (1.4).

Theorem 4.1 Let 0 < ϕ(x) ∈ W 1,∞(ω) be a weight function and assume that

1. 0 < d < 1, 0 < ρ ≤ 1 and 0 < δ < 1 are given,

2. Q :=

∥

∥

∥

∥

∇xϕ

ϕ

∥

∥

∥

∥

L∞(ω)

satisfies Qd < 1,

3.

L+ 1 ≥ 2d

π

√

k2 +Q/d+ δ

1− δ
. (4.8)

Then the bilinear form Bk2(u, v) defined in (1.4) is (1, γ̂) regular on HL
ϕ ×HL

1/ϕ, i.e.

inf
u∈HL

ϕ

sup
v∈HL

1/ϕ

Bk2(u, v)

‖u‖ϕ‖v‖1/ϕ
≥ γ̂ > 0 (4.9)

with

γ̂ =
δ(1−Qd)

√

(1 + ρ) + 4(1 + 1/ρ)Q2
(4.10)

and

Bk2(u, v) ≤ (1 + k2)‖u‖ϕ‖v‖1/ϕ (4.11)
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Proof. Inequality (4.11) follows immediately from the Schwarz inequality. Let us now show

(4.9). For u ∈ HL
ϕ define v = ϕ2u, which implies that v ∈ HL

1/ϕ. Since the eigenfunctions Φ̃i

in (3.4)-(3.6) are dense in L2(−1, 1) we know that u can be expanded as

u(x, y) =
∞
∑

l=0

al(x)Φ̃l(y/d). (4.12)

For v we get analogously

v(x, y) =
∞
∑

l=0

bl(x)Φ̃l(y/d) =
∞
∑

l=0

ϕ2(x)al(x)Φ̃l(y/d). (4.13)

With this choice of u and v we will show

‖v‖1/ϕ ≤ c1‖u‖ϕ (4.14)

and

Bk2(u, v) ≥ c2‖u‖2ϕ (4.15)

which will then imply (4.9) with γ = c2/c1. To prove (4.14) and (4.15), we first note that

|alϕ2|2 = |al|2ϕ4,

∇x(alϕ
2) = ϕ2

∇xal + al∇xϕ
2,

|a+ b|2 ≤ (1 + ρ)|a|2 + (1 + 1/ρ)|b|2,

|al∇xϕ
2|2 = 4ϕ2|al∇xϕ|2.

Using (4.7) and (4.12) we get

‖u‖2ϕ =
∞
∑

l=0

∫

ω
ϕ2
(

|∇xal|2 + (1 + α2
l )|al|2

)

dx (4.16)

and

‖v‖21/ϕ =
∞
∑

l=0

∫

ω

1

ϕ2

(

|∇x(alϕ
2)|2 + (1 + α2

l )|alϕ2|2
)

dx

≤
∞
∑

l=0

∫

ω

1

ϕ2

(

(1 + ρ)ϕ4|∇xal|2 + (1 + 1/ρ)|al∇xϕ
2|2 + (1 + α2

l )ϕ
4|al|2

)

dx

≤ (1 + ρ)‖u‖2ϕ +
∞
∑

l=0

∫

ω
4(1 + 1/ρ)|al∇xϕ|2 dx

= (1 + ρ)‖u‖2ϕ +
∞
∑

l=0

∫

ω
4(1 + 1/ρ)ϕ2|al

∇xϕ

ϕ
|2 dx

≤ (1 + ρ)‖u‖2ϕ +
∞
∑

l=0

∫

ω
4(1 + 1/ρ)ϕ2Q2|al|2 dx

≤ (1 + ρ+ 4(1 + 1/ρ)Q2)‖u‖2ϕ
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which implies that c1 =
√

1 + ρ+ 4(1 + 1/ρ)Q2.

Next we show (4.15) and note that since u ∈ HL
ϕ and v ∈ HL

1/ϕ we have

Bk2(u, v) =
∞
∑

l=L+1

∫

ω

(

ϕ2
(

|∇xal|2 + (α2
l − k2)|al|2

)

+ al(∇xal ·∇xϕ
2)
)

dx. (4.17)

We can then estimate

Bk2(u, v) ≥
∞
∑

l=L+1

∫

ω

(

ϕ2
(

|∇xal|2 + (α2
l − k2)|al|2

))

dx−
∣

∣

∣

∣

∫

ω
al(∇xal ·∇xϕ

2) dx

∣

∣

∣

∣

≥
∞
∑

l=L+1

∫

ω
ϕ2
(

(1−Qε)|∇xal|2 + (α2
l − k2 − Q

ε
)|al|2

)

dx.

In the above estimate we have used

|(∇xal) ·∇x(ϕ
2)| = |(∇xal) · 2ϕ2∇xϕ

ϕ
| ≤ |∇xal|2ϕ2Q

which implies for any ε > 0 that
∣

∣

∣

∣

∫

ω
al(∇xal ·∇x(ϕ

2)) dx

∣

∣

∣

∣

≤ 2Q

∫

ω
ϕ2|al||∇xal| dx

≤ Q

(

1

ε

√

∫

ω
ϕ2|al|2 dx+ ε

√

∫

ω
ϕ2|∇xal|2 dx

)

.

We would like to further estimate

Bk2(u, v) ≥ c2

∞
∑

l=L+1

∫

ω
ϕ2
(

|∇xal|2 + (1 + α2
l )|al|2

)

dx = c2‖u‖2ϕ. (4.18)

In order to show (4.18) we require the following

1. 1−Qε > 0,

2. α2
l − k2 −Q/ε ≥ δ(1 + α2

l ), l = L+ 1, L+ 2, · · ·,

3. ε = d.

From (3.6) we recall that αl = lπ/(2d). Let 0 < δ < 1, then

α2
l − k2 −Q/d ≥ δ(1 + α2

l ), l = L+ 1, L+ 2, · · · ,

⇔ α2
l ≥ k2 +Q/d+ δ

1− δ
, l ≥ L+ 1.

Since the αl are monotonically increasing, it suffices to require that

α2
L+1 ≥

k2 +Q/d+ δ

1− δ
, (4.19)

which implies (4.8) and also that c2 = δ(1 −Qd). This completes the proof.
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Remark 4.2 Examples for admissible weight functions ϕ(x) are in particular exponential

functions of the form

ϕ(x) = exp(α|x− x0|), α > 0 (4.20)

for some x0 ∈ ω. In this case we have Q = α and Theorem 4.1 means that the form Bk2(·, ·)
is stable on exponentially decaying (off x0) functions times exponentially increasing test func-

tions. This could also be interpreted as a Saint-Venant Principle for the Helmholtz equation

in thin domains.

Our next goal is to show that the modelling error eM,N = u − uM,N belongs to HL
ϕ , where

u is the solution to the full 3D problem and uM,N is the exact solution to the dimensionally

reduced 2D problem. From (3.4)-(3.9) we know that u as well as uM,N can be expanded in

terms of the director functions Φi defined in (3.7) and (3.8), that is

u(x, y) =
∞
∑

i=0

Ui(x)Φi(y/d),

uM,N (x, y) =
N+M
∑

i=0

U r
i (x)Φi(y/d)

and the U r
i (x) are exact solutions to the reduced problem (3.12). We know that the Φi, 0 ≤

i ≤ M , are eigenfunctions by construction, see (3.7). By partial integration and (3.5) we obtain

∫ 1

−1
Φ′
i(z)Φ

′
j(z) dz = −

∫ 1

−1
Φ′′
i (z)Φj(z) dz + Φ′

i(z)Φj(z)
∣

∣

1
−1

= −
∫ 1

−1

(

−α2
iΦi(z)Φj(z)

)

dz

= α2
i δij , 0 ≤ i, j ≤ M.

This implies that the eigenvalue α2
i of (3.5) is also an eigenvalue of (3.15). On the interval

(−d, d) this gives

α2
i =

σ2
i

d2
, 0 ≤ i ≤ M. (4.21)

Returning to the separation of variables approach, we see that

0 = −∆u− k2u = −∆xu− ∂2u

∂y2
− k2u

yields for u(x, y) = Ui(x)Φi(y) (compare (2.3) and (3.5))

−∆xUi(x) = (k2 − α2)Ui(x). (4.22)
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The same separation Ansatz was used to derive the reduced weak form and the sequence of

decoupled weak forms (3.17). From (3.17) we get the eigenvalue problem in x

−∆xUi(x) =

(

k2 − σ2
i

d2

)

Ui(x) in ω, Ui|∂ω = 0. (4.23)

Inserting (4.21) into (4.23) yields for 0 ≤ i ≤ M

−∆xUi(x) =
(

k2 − α2
i

)

Ui(x) in ω, Ui|∂ω = 0, (4.24)

which admits a nonzero solution if k ∈ ΣM,N . Then, Ui(x)Φi(y/d), 0 ≤ i ≤ M , is an

eigenfunction of the 3D problem which is exactly reproduced by the reduced 2D formulation

corresponding to the same first M + 1 eigenvalues α2
i , i = 0, · · · ,M . We have proved the

following

Lemma 4.3 Let k 6∈ Σ ∪ΣM,N and let u be the solution to (1.1) and uM,N be the solution to

(3.12) and let 0 ≤ L ≤ M . Then

eM,N (x, y) := u(x, y)− uM,N (x, y) ∈ HL
ϕ (4.25)

for any weight function ϕ(x) satisfying the assumptions of Theorem 4.1.

Remark 4.4 If we choose in (4.20) the parameter α = αd−1, −1 < α < 0 independent of

d, Theorem 4.1 states that Bk2(·, ·) is stable on HL
ϕ × HL

1/ϕ provided the condition (4.8) is

satisfied, i. e. provided

L+ 1 ≥ 2d

π

√

k2 + α+ δ

1− δ
. (4.26)

Selecting δ close to zero, (4.26) gives immediately a lower bound for L, or, by Lemma 4.3, the

minimal number M +1 of director functions Φ̃i(z) in (3.6) to be included into the Ansatz (3.9)

to ensure control of the modelling error in the exponentially weighted norm ‖ · ‖ϕ. We will

later see that this amounts to the absence of pollution.

Inspecting the proof of Theorem 4.1, i.e. selecting ε < d/α, we see that for L larger than the

minimal value in (4.26) we can in fact choose α in (4.26) larger, i.e. we have a corresponding

stronger localization of the weights ϕ(x) in (4.20). Precisely, we can choose α such that

α2 ≤ π2

4
(1− δ)(L+ 1)2 − (k2 + δ)d2. (4.27)

This will also be confirmed by the numerical experiments in Section 7 ahead.
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5 A posteriori modelling error estimation

In this section we assume that q = N + M and that the exact solution u(q) = uM,N(x, y) is

known. We will be interested in computable estimators for ‖eM,N‖ϕ, the modelling error in

the weighted norm. It is convenient to write u = u1 + u2, where

u1(x, y) = −u1(x,−y), u2(x, y) = u2(x,−y) (5.1)

and the ui satisfy ui ∈ Hi such that

Bk2(ui, v) = Fi(v) ∀ v ∈ Hi, i = 1, 2 (5.2)

where

F1(v) =

∫

ω
f1(x) (v(x, d)− v(x,−d)) dx,

F2(v) =

∫

ω
f2(x) (v(x, d) + v(x,−d)) dx

and

f1(x) =
1

2
(f+ − f−)(x), f2(x) =

1

2
(f+ + f−)(x),

and Hi = {u ∈ H | u is antisymmetric (symmetric) in y for i = 1 (i = 2)}. Obviously, the

spaces H1 and H2 are orthogonal, i.e.

Bk2(u, v) = 0 ∀ u ∈ H1, ∀ v ∈ H2, (5.3)

and u(q) = u1(q) + u2(q), each of which can be obtained by projection of ui onto

Si(q) := S(q) ∩Hi, i = 1, 2. (5.4)

Further, from (5.3) we also get

‖e(q)‖2ϕ = ‖e1(q)‖2ϕ + ‖e2(q)‖2ϕ (5.5)

where ei(q) = ui − ui(q), i = 1, 2.

Let us introduce some terminology for the analysis of the modelling error estimator. Our

a posteriori estimator E for the modelling error (5.5) is of the form

E(ui(q)) =
√

∫

ω
|ηi(x)|2 dx, i = 1, 2. (5.6)

Here ηi(x) is called an indicator function.
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Let ‖ · ‖ be any norm on H, and let E in (5.6) be an a posteriori error estimator for ‖e(q)‖.
Then we define the effectivity index Θ corresponding to E and ‖ · ‖ by

Θ :=
E(u(q))
‖e(q)‖ . (5.7)

We say that E is a guaranteed upper estimator, if Θ ≥ 1 for all u. The estimator E is called

(κ1, κ2)-proper with respect to a class T of data, if

0 < κ1 ≤ Θ ≤ κ2 < ∞ ∀ f ∈ T. (5.8)

Further, E is asymptotically exact on T if

Θ → 1 as d → 0+ ∀ f ∈ T. (5.9)

Finally, E is locally asymptotically exact on T , if (5.9) holds with the norm ‖ · ‖ϕ defined in

(4.7), where the weight function ϕ(x) is given by (4.20) and α = αd−1, α > 0.

We perform the analysis of the estimator E for the weighted norm ‖ · ‖ϕ. Due to (5.5) we

can derive the indicator functions ηi, i = 1, 2 separately. We begin by observing that, due to

Lemma 4.3, the errors ei(q) ∈ HL
ϕ , i = 1, 2 defined in (5.5) satisfy

Bk2(ei(q), v) = Ri(v) ∀ v ∈ H (5.10)

and

Bk2(ei(q), v) = 0 ∀ v ∈ Si(q) (5.11)

where

Ri(v) =

∫

ω
ri(x) (v(x, d)± v(x,−d)) dx

+

∫

Ω
v(x, y)

(

∆ui(q) + k2ui(q)
)

dxdy, i = 1, 2,
(5.12)

and the signs −,+ correspond to i = 1, 2, respectively. Here the computable residuals are

ri(x) = fi(x)−
∂ui(q)

∂n
(x, d), i = 1, 2. (5.13)

Based on (5.11) we calculate an explicit expression for Ri(v), which we will use in the derivation

of our modelling error estimator.

Lemma 5.1 Let i = 1, q = 2m + 1 or i = 2, q = 2m, m = 0, 1, 2, · · ·, and k 6∈ Σ ∪ Σ0,q and

that the functions Φi are only the Legendre polynomials. Then

Ri(v) =

∫

ω
ri(x)

(

v(x, d)± v(x,−d)−
∫ d

−d
v(x, y)

∂

∂y
(Lq+1(y/d)) dy

)

dx. (5.14)
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Proof. Since k 6∈ Σ0,q, ui(q) exists and hence ri(x) is well defined. Let i = 1, q = 2m + 1.

Then, since k 6∈ Σ, by assumption,

∆u1(q) + k2u1(q) =
2m+1
∑

j=0

Ai
j(x)Lj(y/d) (5.15)

for some Ai
j ∈ H−1(ω). To determine Ai

j, we use (5.11), i.e.

R1(v) = 0 ∀ v ∈ S1(q) ∪H2.

We select in (5.12) the functions v = V (x)L2l(y/d) ∈ H2 with arbitrary V ∈ H1
0 (ω) and get

A1
j = 0 for even j. For j = 2l + 1, 0 ≤ l ≤ m, we find

0 =

∫

ω
V (x)

(

2r1 +A1
2l+1d

∫ 1

−1
L2
2l+1(z) dz

)

dx.

Since V ∈ H1
0 (ω) is arbitrary, we get

A1
2l+1 = −1

d
(2(2l + 1) + 1)r1, l = 0, · · · ,m.

Hence

∆u1(q) + k2u1(q) = −1

d
r1(x)

m
∑

l=0

(4l + 3)L2l+1(y/d)

= −r1(x)
∂

∂y
(L2m+2(y/d)) .

Inserting into (5.12) proves (5.14) for i = 1. For i = 2 and q = 2m, one proceeds analogously.

In the general case, when span{Φi} contains both polynomials and trigonometric functions,

we have

Lemma 5.2 Let i = 1, q = 2m + 1 or i = 2, q = 2m, k 6∈ Σ ∪ ΣM,N , q = M + N , and

functions Φi be defined by (3.7) and (3.8). Further, let Ψj be defined by (3.15) and (3.16), i.e.

Ψj(z) =
∑q

i=0 QijΦi(z) and σ̃j =
∫ 1
−1Ψ

2
j dz. Then,

Ri(v) =

∫

ω
ri(x)



v(x, d) ± v(x,−d) +

∫ d

−d
v(x, y)

q
∑

j=0

2Ψj(1)

σ̃jd
δi(j)Ψj(y/d) dy



 dx (5.16)

where

δ1(j) =

{

0 j even
1 j odd

, δ2(j) =

{

0 j odd
1 j even

.
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Proof. Since k 6∈ ΣM,N , ui(q) exists and hence ri(x) is well defined. Next, we note that the

matrix Q in (3.16) has block structure, Ψj is an even (odd) function for j even (odd). Let

i = 1, q = 2m+ 1. Then, since k 6∈ Σ,

∆u1(q) + k2u1(q) =
2m+1
∑

j=0

Ai
j(x)Ψj(y/d) (5.17)

for some Ai
j ∈ H−1(ω). To determine Ai

j, we use

R1(v) = 0 ∀ v ∈ S1(q) ∪H2.

We select v = V (x)Ψ2l(y/d) ∈ H2 with arbitrary V ∈ H1
0 (ω) and get A1

j = 0 for even j. For

j = 2l + 1, 0 ≤ l ≤ m, we find

0 =

∫

ω
V (x)

(

2Ψ2l+1(1)r1 +A1
2l+1d

∫ 1

−1
Ψ2

2l+1(z) dz

)

dx.

Since V ∈ H1
0 (ω) is arbitrary, we get

2Ψ2l+1(1)r1 +A1
2l+1σ̃2l+1d = 0

which yields

A1
2l+1 = −2Ψ2l+1(1)

σ̃2l+1d
r1.

For i = 2 and q = 2m, one proceeds analogously.

Next we derive the estimator E in the two cases of Lemma 5.1 and 5.2, with M = 0, M > 0,

respectively. We start with the case M = 0, i.e. that no cosines are necessary in span{Φl}.

Theorem 5.3 Assume that fi in (5.2) is square integrable over ω, k 6∈ Σ ∪ Σ0,N , q = N , d

small enough so that L = 0 is admissible in (4.8) and that ‖ · ‖ϕ is as in (4.7). Then the error

‖ei(q)‖ϕ = ‖e0,Ni ‖ϕ for the hierarchical model of uniform order q (i.e. odd q ≥ 1 for i = 1,

even q for i = 2) can be estimated by

γ2‖ei(q)‖2ϕ ≤ 2d

2q + 3

∫

ω
ϕ2r2i dx, (5.18)

where

ri(x) = fi(x)−
∂ui(q)

∂y
(x, d), i = 1, 2.

Proof: We note that ui and ui(q) exist since k 6∈ Σ ∪Σ0,N . Further, with γ as in Theorem 4.1

and (5.10) we have

γ‖ui − ui(q)‖ϕ ≤ sup
06=‖v‖1/ϕ

|Bk2(ui − ui(q), v)|
‖v‖1/ϕ

, i = 1, 2, (5.19)
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and

γ2‖ei(q)‖2ϕ ≤ sup
06=‖v‖1/ϕ

|Ri(v)|2
‖v‖21/ϕ

. (5.20)

The goal is now to estimate (5.20), that is to obtain an estimate of the form

|Ri(v)|2 ≤ c‖v‖21/ϕ, (5.21)

i.e. to determine the constant in (5.21). Integration by parts with respect to y in (5.14) shows

that

Ri(v) =

∫

ω
ri(x)Υi[v](x) dx,

where

Υi[v](x) :=

∫ d

−d

∂v

∂y
(x, y)Lq+1(y/d) dy. (5.22)

By the Schwarz inequality we have

|Υi[v](x)|2 ≤
2d

2q + 3

∫ d

−d

(

∂v

∂y
(x, y)

)2

dy.

Hence,

|Ri(v)|2 ≤
(∫

ω
|ri(x)||Υi[v](x)| dx

)2

≤ ‖ϕri‖2L2(ω)

∫

ω
ϕ−2(x)|Υi[v](x)|2 dx

≤ 2d

2q + 3
‖ϕri‖2L2(ω)

∫

ω
ϕ−2(x)

∫ d

−d

(

∂v

∂y

)2

dy dx

≤ 2d

2q + 3
‖ϕri‖2L2(ω)‖v‖21/ϕ.

(5.23)

Referring to (5.20) completes the proof.

In the general case of Lemma 5.2, i.e. for L > 0 in (4.8), we need the following estimate

Lemma 5.4 Let u ∈ H̃1(−d, d), where H̃1(−d, d) = {u ∈ H1(−d, d) :
∫ d
−d u(y) dy = 0}, and

let c0 =
√

2/3. Then we have the embedding

‖u‖L∞(−d,d) ≤ c0
√
d ‖u′‖L2(−d,d) (5.24)

Proof. The proof of Lemma 5.4 can be found in the Appendix.

Using Lemma 5.4 we can prove

Theorem 5.5 Assume that fi in (5.2) is square integrable over ω, k 6∈ Σ∪ΣM,N , q = N +M

and that ϕ(x) is any admissible weight function in Theorem 4.1. Then the error ‖ei(q)‖ϕ =
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‖eM,N
i ‖ϕ for the hierarchical model of order q (i.e. odd q ≥ 1 for i = 1, q even for i = 2) can

be estimated by

γ2‖ei(q)‖2ϕ ≤ d





16

3
+

32

π

q
∑

j=0

Ψ2
j(1)δi(j)





∫

ω
ϕ2r2i dx, (5.25)

where

ri(x) = fi(x)−
∂ui(q)

∂y
(x, d), i = 1, 2.

Proof: We can estimate with the representation (5.16) and Lemma 5.4

|Ri(v)|2 ≤
∫

ω
|riϕ|2 dx

∫

ω

(

4

∣

∣

∣

∣

v(x, d)

ϕ

∣

∣

∣

∣

2

+ 4

∣

∣

∣

∣

v(x,−d)

ϕ

∣

∣

∣

∣

2

+4

∫ d

−d

∣

∣

∣

∣

v(x, y)

ϕ

∣

∣

∣

∣

2

dy

∫ d

−d

∣

∣

∣

∣

∣

∣

q
∑

j=0

2Ψj(1)

dσ̃j
δi(j)Ψj(y/d)

∣

∣

∣

∣

∣

∣

2

dy






dx

≤ ‖riϕ‖2L2(ω)

(

∫

ω

d

ϕ2

16

3

∥

∥

∥

∥

∂v(x, y)

∂y

∥

∥

∥

∥

2

L2(−d,d)

dx

+

∫

ω

8

πϕ2
d2
∫ d

−d

∣

∣

∣

∣

∂v(x, y)

∂y

∣

∣

∣

∣

2

dy

∣

∣

∣

∣

∣

∣

q
∑

j=0

1

d
(2Ψj(1))

2δi(j)

∣

∣

∣

∣

∣

∣

dx





≤ ‖riϕ‖2L2(ω)



d
16

3
‖v‖21/ϕ +

8

π
d‖v‖21/ϕ4

q
∑

j=0

δi(j)Ψ
2
j (1)





= ‖riϕ‖2L2(ω)‖v‖21/ϕd




16

3
+

32

π

q
∑

j=0

δi(j)Ψ
2
j (1)



 .

Applying Theorem 4.1, similarly to (5.20), immediately yields (5.25).

Based on (5.18) and (5.25) we note that the indicator functions

ηiq(x) =

√

2d

2q + 3
ϕ(x)ri(x), i = 1, 2, (5.26)

and

ηiq(x) =
√
d





16

3
+

32

π

q
∑

j=0

Ψ2
j(1)δi(j)





1/2

ϕ(x)ri(x), i = 1, 2, (5.27)

respectively, and the estimator E(ui(q)) defined in (5.6) are, according to (5.18) and (5.25),

respectively, guaranteed upper estimators for ‖ei(q)‖ϕ. We also see that with Theorem 4.1 we

have accomplished that κ2 ≤ 1/γ̂. The value of κ1 will be estimated in the next section.
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6 Equivalence of the error estimator

In this section we will give an expression for the constant κ1 in (5.8), which can be determined

using the computed solution u(q) = uM,N (x, y). We note that κ2 was already given in the

previous section. In addition, we will demonstrate that the estimator E is equivalent to ‖e‖ϕ
under stricter assumptions. First, we introduce some notation. Throughout, ϕ will denote the

exponential weight function (4.20). Further,

|||r|||2l,ϕ :=

∫

ω
|∇l

xr|2ϕ2 dx, l = 0, 1. (6.1)

Finally, we introduce the class of data

Tβ :=
{

f | either ri(f) = 0 or |||ri|||21,ϕ/|||ri|||20,ϕ ≤ β < ∞
}

. (6.2)

Because ri was computed and used in the estimator, the value of β can be easily computed to

determine in what class the solution belongs. The main result of this section is Theorem 6.1.

But at first we note how the eigenvalues αi in (3.6) behave with respect to the plate thickness

parameter d. Since αi = iπ/(2d) we see that α0 = 0 and that for all other αi, i = 1, · · · ,∞ we

have asymptotically

lim
d→0+

αi = ∞, i = 1, · · · ,∞. (6.3)

This means that for any fixed k, asymptotically αi > k as d → 0 for i ≥ 1. We also note

that the eigenfunction Φ0 corresponding to α0 can be represented by the Legendre polynomial

L0. In order to prove Theorem 4.1, i.e. the a-priori error estimates in exponentially weighted

norms, we had to exclude the eigenfunctions Φi corresponding to eigenvalues αi ≤ k from the

space HL
ϕ . From (6.3) we see that asymptotically, as d → 0+, we do not have to consider the

case in which eigenfunctions Φi, defined in (3.6) and (3.7), are excluded. This means that for

the analysis of the asymptotic exactness as d → 0+, we can assume that we deal with the case

where all functions Φi are defined by Legendre polynomials (3.8). In particular, for sufficiently

small d, we also have Lemma 5.1.

Theorem 6.1 Let Θi, i = 1, 2 denote the effectivity indices (5.7) with respect to the weighted

energy norm (4.7). Assume further that P = {ω}, i.e. the model order is uniform. Then for

i = 1, 2 the following holds:

1. If fi ∈ L2(ω) we have that Θi ≥ κi1 where

(κi1)
2 := δ2(1−Qd)2/

(

(1 + ρ) + 4(1 + 1/ρ)Q2
)

(6.4)

and where ρ, δ, and Q are as in Theorem 4.1.
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2. If fi ∈ Tβ, then Θi ≤ κi2 where

(κi2)
2 := (1 + k2)

(

1 + 3d2Dq

(

Q2 + β2
))

(6.5)

and

Dq =
4

(2q + 3)2 − 4
. (6.6)

Proof.

1. The lower bound (6.4) follows immediately from Theorem 4.1 and Lemma 5.1.

2. To show the upper bound (6.5), we define

S := L2(ω,H1(−d, d)) ∩
{

v

∣

∣

∣

∣

∣

∫ d

−d
v dy = 0 a.e. x ∈ ω

}

. (6.7)

We note that, since the functional Υi in (5.22) is strictly concave and upper semicon-

tinuous on S, there exists a (unique) maximizing element v∗i ∈ S, which satisfies the

Euler-Lagrange equation

∂2v∗i
∂y2

=
∂

∂y
(Lq+1(y/d)) in (−d, d) (6.8)

with
∂v∗i
∂y

∣

∣

∣

∣

±d

=

{

1 if i = 1,
±1 if i = 2.

Hence, we find that v∗i is independent of x and is given by

v∗i = d
Lq+2(y/d)− Lq(y/d)

2q + 3
, q ≥ 0, (6.9)

and

(Υi[v
∗
i ])

2 =
2d

2q + 3
=: dCq. (6.10)

Next, we select in (5.10)

v = v̄ϕ2 = v∗i (y)ri(x)ϕ
2

with v∗i as in (6.9) and get with (6.10) that

Ri(v) = dCq

∫

ω
r2i ϕ

2
i dx = Bk2(ei(q), v) ≤ (1 + k2)‖ei‖ϕ‖v‖1/ϕ. (6.11)

Since

|∇xv|2 ≤ ϕ2
(

3ϕ2|∇xv̄|2 + 6|v̄|2|∇xϕ|2
)
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we find

‖v‖21/ϕ =

∫

Ω
ϕ−2

(

|∇xv|2 +
(

∂v

∂y

)2
)

dx dy

≤
∫

Ω

(

3ϕ2|∇xv̄|2 + 6|v̄|2|∇xϕ|2 + ϕ2
(

∂v̄

∂y

)2
)

dx dy

=

∫

Ω

(

|v∗i |2
(

3ϕ2|∇xri|2 + 6|ri|2 |∇xϕ|2
)

+ ϕ2|ri|2
(

∂v∗i
∂y

)2
)

dx dy.

Since
∫ d

−d

(

∂v∗i
∂y

)2

dy = dCq

with Cq as in (6.10) and
∫ d

−d
(v∗i )

2 dy = d3CqDq,

where Dq is as in (6.6), we get with |∇xϕ|2 ≤ Q2ϕ2,

‖v‖21/ϕ ≤ dCq|||ri|||20,ϕ + 3d3CqDq

(

|||ri|||21,ϕ +Q2|||ri|||20,ϕ
)

. (6.12)

For every ε > 0 we have from (6.11)

2dCq|||ri|||20,ϕ ≤ (1 + k2)
(

ε‖ei‖2ϕ + ε−1‖v‖21/ϕ
)

.

If we select ε0 > 0 so that

(1 + k2)ε−1
0 ‖v‖21/ϕ ≤ dCq|||ri|||20,ϕ = (E(ui))2, (6.13)

we arrive at the desired (lower) bound

(E(ui(q)))2 ≤ (1 + k2)ε0‖ei(q)‖2ϕ, i = 1, 2.

We estimate ε0 by using (6.12) and (6.13).

ε0 =
(1 + k2)‖v‖21/ϕ
dCq|||ri|||20,ϕ

≤ (1 + k2)

(

1 + 3d2Dq

(

Q2 +
|||ri|||21,ϕ
|||ri|||20,ϕ

))

.

Using that fi ∈ Tβ gives (6.5).

Remark 6.2 From Theorem 6.1 we see that the a-posteriori error estimator (5.6) is asymp-

totically exact for d → 0+ if k = 0, Q = 0 (ϕ(x) = 1) and δ → 1−. In the case of δ → 1− we

see from Theorem 4.1 that δ has to be coupled to d to obtain the stability estimate for γ with

a finite L. For example δ = 1− d. Further, we see that we also get a similar result for d being

finite but q → ∞ in Theorem 6.1.
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7 Computational Aspects and Experiments

We derived in the previous sections computable a-posteriori modelling error estimates for

dimensional reductions of the Helmholtz equation on thin domains. The main results, Theorem

5.3, 5.5 and 6.1, state that the residuals ri(x) in (5.13) are accurate indicators for the local

contributions to the modelling error in a vicinity of x0 ∈ ω, if the exponential weight functions

(4.20) are used. In order to do so, however, the modelling error e must belong to HL
ϕ which,

by Theorem 4.1, requires that (4.6) holds, i.e. that the director functions Φl(y/d) in (3.7)

are included into the Ansatz (3.9). If, however, the number N of polynomials in (3.9) is

sufficiently large, the trigonometric director functions (3.7) will be very well approximated by

these polynomials and become numerically linearly dependent (although strictly speaking they

are always linearly independent of the polynomials). A quantitative measure of the amount of

numerical linear dependence (and hence a criterion for when certain of the trigonometric basis

functions can be dropped from (3.9) in a computation) is the angle between span{Li(z)}Ni=1

and span{Φj(z)}Mj=0 in (3.7).

7.1 Angle between Legendre polynomials and trigonometric functions

Due to the orthogonality (5.3) we can analyze the modelling error separately for the symmetric

and antisymmetric part of the solution. Therefore, we assume for simplicity that the Neumann

data in (1.1) are symmetric, i.e. f+ = f−, which means that the solution will be symmetric in

y. All considerations that follow apply with the obvious changes for the antisymmetric case.

Further, we choose k such that we have to include the first two even trigonometric functions

Φi(z) into the Ansatz, i.e. from Theorem 4.1 we have for Q = 0, δ = 0

L+ 1 ≥ k
2d

π
. (7.1)

This yields for L = 2 the following interval for k such that L = 1 does not satisfy (7.1)

3π

2d
≥ k ≥ 2π

2d
(7.2)

For the thickness of the plate d = 0.2, we see that k can be as large as 7.5π but should be at

least 2.5π. The director functions for the hierarchical model are then given by

Φ0(z) =
1√
2d

,

Φ1(z) =
1√
d
cos(πz),

Φ2(z) = L2(z),
...

ΦN+1(z) = L2N (z),

(7.3)
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depending on the model order N + 2. Therefore, we are interested in determining the angle

between the Legendre polynomials and the function cos(πz). In particular, we are looking at

the finite dimensional space

V = span{L2(z), · · · , L2N (z), cos(πz); z = y/d; −d ≤ y ≤ d} (7.4)

and the subspaces

F = span{L2(z), · · · , L2N (z); z = y/d; −d ≤ y ≤ d}, (7.5)

G1 = span{cos(πz); z = y/d; −d ≤ y ≤ d} (7.6)

to determine

θ = θ(1, N) = 6 (F,G1). (7.7)

The computation of the angle θ boils down to a generalized eigenvalue problem and follows

[?], section 12.4.3. The space V is a Hilbert space with the inner product

(u, v)L2(−d,d) =

∫ d

−d
u(y)v(y) dy (7.8)

and the norm

‖u‖2L2(−d,d) = (u, u)L2(−d,d). (7.9)

Since the Legendre Polynomials are L2-orthogonal, we can easily construct an orthonormal

basis {vi}i=1,···,N+1 for V by using

vi(z) =

√

4i+ 1

2
L2i(z), 1 ≤ i ≤ N, (7.10)

and

vN+1(z) =
ṽN+1(z)

‖ṽN+1(z)‖L2(−1,1)
(7.11)

where

ṽN+1(z) = cos(πz)−
N
∑

i=1

(

cos(πz),
√
2i+ 0.5 L2i(z)

)

L2(−1,1)

√
2i+ 0.5 L2i(z). (7.12)

This allows to construct a (N + 1) ×N matrix QF and a (N + 1) × 1 matrix QG, where the

columns represent elements of V and a basis for F and G, respectively. Thus,

QF =













1 0 0

0
. . . 0

0 0 1
0 · · · 0













, QG =

















(

cos(πz),
√
2.5 L2(z)

)

L2(−1,1)
...

(

cos(πz),
√
2N + 0.5 L2N (z)

)

L2(−1,1)

‖ṽN+1‖L2(−1,1)

















. (7.13)
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The angle θ between the subspaces F and G1 is then defined via the singular value of Qt
FQG,

that is

cos(θ) = singular value of Qt
FQG. (7.14)

Obviously,

Qt
FQG =













(

cos(πz),
√
2.5 L2(z)

)

L2(−1,1)
...

(

cos(πz),
√
2N + 0.5 L2N (z)

)

L2(−1,1)













. (7.15)

From [?], section 8.3, we also know that

cos2(θ) = (Qt
FQG)

t Qt
FQG =

N
∑

i=1

(2i+ 0.5) (cos(πz), L2i(z))
2
L2(−1,1) . (7.16)

We note that, due to using the orthonormal basis in (7.10) and (7.11),

0 ≤
N
∑

i=1

(2i + 0.5) (cos(πz), L2i(z))
2
L2(−1,1) ≤ 1, (7.17)

and therefore cos2(θ) is well defined and the angle θ is given by

θ = arccos





√

√

√

√

N
∑

i=1

(2i + 0.5) (cos(πz), L2i(z))
2
L2(−1,1)



 . (7.18)

Similarly, we can compute the angle θ(j,N) between F and Gj = span{cos(jπz)}. The values

for θ(j,N) in radians have been computed with the symbolic programming system Maple

(Digits = 60) and are tabulated in Table ?? for 1 ≤ N ≤ 15 and 1 ≤ j ≤ 4. We observe that

θ(j,N) → 0 as N → ∞ extremely fast. In fact, we have

θ(j,N) ≤ c(j)

N !
, (7.19)

since

inf
p∈ΠN

‖Φj − p‖L∞(−1,1) ≤
c(j)

N !
. (7.20)

Practically, i.e. in finite precision arithmetic, we cannot increase the model order N ar-

bitrarily without dropping certain trigonometric basis functions, since the director functions

exhibit numerical linear dependence as we can see from Table ??. We propose to drop the

trigonometric functions Φ̃j(z) whenever the angle θ(j,N) becomes smaller than a prespecified

multiple of the machine epsilon.

We finally remark that so far, we considered only the angle between the subspaces spanned

by the director functions. In computational practice, however, the two dimensional problem

will be further discretized by Finite Elements, for example. A small angle θ(j,N) in Table ??,

however, will entail in any case a corresponding ill-conditioning of the stiffness matrix.
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