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Abstract

This work is devoted to a convergence study of infinite element (IE) dis-
cretizations for the Helmholtz equation in exterior domains. The different
behavior of the conjugated and the unconjugated IE formulation is analyzed
in context of

1.) a formulation following a mathematical existence theory by Leis,

2.) a formulation not based on an available existence theory following
Burnett.

Four variational formulations are presented and the differences in implement-
ing them are discussed. The effect of using or not using the complex conjugate

in the weak formulation is carefully studied. The numerical and theoretical
results clearly indicate which of the four presented formulations is the most
efficient that can still give reliable results.



1 Introduction

This paper is motivated by the new concept on various infinite elements by Burnett

[3], Astley et al. [1], Babuska and Shirron [2] and our earlier work on infinite elements

[7, 5, 8].

The central problem deals with the scattering of acoustic waves on elastic or rigid

(the simplified case) objects. The mathematical formulation consists of the Helmholtz

equation in the exterior domain accompanied by the Sommerfeld radiation condition

and Neumann boundary condition on the boundary of the scatterer (rigid scattering).
In the elastic scattering case the Helmholtz equation is coupled to equations describing

the behavior of the structure (elasto- or viscoelasto-dynamics).

One popular method to solve the scattering problem is to replace the Helmholtz

equation and the Sommerfeld radiation condition with an equivalent boundary integral

equation, giving rise later on to an appropriate variational formulation and a Boundary

Element (BE) approximation. The boundary equation can be formulated directly on

the surface of the scatterer or some auxiliary smooth surface surrounding the object. In
the latter case the BE approximation on the truncating surface has to be coupled with

a Finite Element (FE) approximation for the interior domain - in between the scatterer

and the surface.

This approach, although more expensive, avoids problems with the integration of

singular kernels arising from BE approximations on non-smooth boundaries (corners,

edges) or degeneration of the formulation in the case of non-convex scatterers (screen-

like problems). Implementations can be highly specialized for a fixed class of smooth
truncating boundaries.

In both cases mentioned above, whether the BEM is applied to the surface of the
scatterer or an auxiliary surface, the application of the BE approach turns out expensive

for large wave numbers. Numerical examples for the rigid scattering with k = 20 using

the BEM on a parallel machine were described in [6]. The rigid scattering problem on

a unit sphere with k = 20 was solved in [7] using the IEM. In spite of the important

differences among the BEM and the IEM –the first works for arbitrary geometries, while

the latter, semi-analytic, is specialized for spherical domains– a comparison is useful to
illustrate the issue of cost and explains why we have been motivated to further study

the subject.

The specific IE approach presented in [3] is not based on a mathematical theory,

but Burnett’s numerical results indicate that the method works well. The key to the
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success in his method is, that the weak formulation is symmetric (in the real sense) and
that he does not use the complex conjugate over the second argument in the bilinear

form. Babuska and Shirron [2] have shown that the method converges with this setting

near the surface of the scatterer, but that the far field solution diverges. Therefore, the

far field solution has to be computed with the Helmholtz integral formula, whereas the

conjugated IEM delivers a reliable solution in the whole computational domain.

The differences that have been reported about the various IEM have motivated the

present study. The goal is to compare the different formulations on the same benchmark

problem, the scattering of a plane wave on the surface of the unit sphere. Further, we will
analyze the convergence properties of the IEM and compare them with existing results.

The main merrit of this paper will be to give an overview of the convergence properties

of the existing IEM and to state which of the formulations is based on a mathematical

theory. The analysis presented here will allow the scientist to choose the optimal IEM

for a given application.

The content of this paper is outlined as follows. In section 2 the rigid scattering

problem and the various IE formulations are introduced and numerical results for the
rigid scattering on a unit sphere are presented. Section 3 presents an analysis of the

stability of the methods, followed by an analysis of the convergence properties in sections

4 and 5, and the conclusions in section 6.

2 IEM for the Helmholtz Equation in the Exterior
Spherical Domain

We begin with a discussion of the exterior boundary-value problem for the Helmholtz

equation. In particular, we present the four possible variational formulations mentioned

above, and discuss the corresponding modifications in the element computations.

2.1 Classical Formulation of the Problem

Given domain Ωe ⊂ IR3, exterior to the unit sphere, we wish to find a function u = u(x)

satisfying:

• the Helmholtz equation in the exterior domain

−∆u − k2u = 0 in Ωe, (2.1)
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where k is the wave number,

• a Neumann boundary condition on the sphere

∇n u = g for |x| = 1, (2.2)

• and the Sommerfeld radiation condition at infinity
∣

∣

∣

∣

∣

∂u

∂n
− iku

∣

∣

∣

∣

∣

= O
(

1

r2

)

. (2.3)

2.2 Existence Theory and Variational Formulations

The first step is to introduce a truncated exterior domain Ωe
γ

Ωe
γ = Ωe ∩

{

x ∈ IR3 : |x| < γ
}

.

For the exterior spherical domain Ωe
γ reduces simply to the annulus

Ωe
γ =

{

x ∈ IR3 : 1 < |x| < γ
}

.

Next, we multiply the Helmholtz equation by a test function in the unconjugated version

or by the complex conjugate of a test function v in the conjugated version, integrate it

over the truncated domain Ωe
γ , and integrate by parts. Using the Neumann boundary

condition on ∂Ωe
γ yields the formulations

∫

Ωe
γ

∇u ·∇v dΩe
γ − k2

∫

Ωe
γ

u v dΩe
γ −

∫

Sγ

∂u

∂n
v dSγ =

∫

∂Ωe
g v dS, (2.4)

∫

Ωe
γ

∇u ·∇v dΩe
γ − k2

∫

Ωe
γ

u v dΩe
γ −

∫

Sγ

∂u

∂n
v dSγ =

∫

∂Ωe
g v dS, (2.5)

respectively, where Sγ is the truncated sphere with radius r = γ. The Sommerfeld

radiation condition (2.3) can now be rewritten in the form

∂u

∂r
= iku+ ϕ(x), (2.6)

where ϕ(x) = O (r−2) is an unknown function. Next, we build it into the variational

formulations (2.4) and (2.5) by substituting formula (2.6) for ∂u/∂n = ∂u/∂r, in the

corresponding boundary term,
∫

Ωe
γ

∇u ·∇v dΩe
γ − k2

∫

Ωe
γ

u v dΩe
γ − ik

∫

Sγ

uv dSγ =
∫

∂Ωe
g v dS +

∫

Sγ

ϕv dSγ, (2.7)
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∫

Ωe
γ

∇u ·∇v dΩe
γ − k2

∫

Ωe
γ

u v dΩe
γ − ik

∫

Sγ

uv dSγ =
∫

∂Ωe
g v dS +

∫

Sγ

ϕv dSγ, (2.8)

respectively. We emphasize that function ϕ in formulations (2.7) and (2.8) is unknown.

The next step is to consider the limiting process as γ being extended to infinity.

In the limit, the boundary term involving function ϕ should be eliminated and all the

improper integrals should make sense. It is also important to remember that the leading
term in the solution u is of the form

exp(ikr)

r
.

Consequently, both u and its gradient∇u are not L2-integrable over the exterior domain.

A remedy to this problem is to employ different test functions of order O (r−3). This
allows the integrals to be interpreted in the usual Lebesgue sense. The problem is,

however, that not only the integral on Sγ involving the function ϕ disappears in the

limit, but the one involving function u as well. In other words, this particular choice of

the test function does not allow the retention of the Sommerfeld radiation condition into

the weak formulation. A solution proposed by Leis [10] is to include the Sommerfeld

condition directly in the definition of the spaces. This leads to the definition of the
following weighted Sobolev space

H+
1,w(Ω

e) =
{

u : ‖u‖+1,w < ∞
}

(2.9)

with the norm ‖u‖+1,w corresponding to the inner product

(u, v)+1,w =
∫

Ωe
w u v + w∇u ·∇v dΩe +

∫

Ωe

(

∂u

∂r
− iku

)(

∂v

∂r
− ikv

)

dΩe. (2.10)

Two particular weights are of interest, w = 1
r2

and a “dual” weight w∗ = r2. The

unconjugated and conjugated Leis variational formulations read now as follows














Find u ∈ H+
1,w(Ω

e) such that
∫

Ωe
∇u ·∇v dΩe − k2

∫

Ωe
u v dΩe =

∫

∂Ωe
g v dS ∀ v ∈ H+

1,w∗(Ωe),
(2.11)















Find u ∈ H+
1,w(Ω

e) such that
∫

Ωe
∇u ·∇v dΩe − k2

∫

Ωe
u v dΩe =

∫

∂Ωe
g v dS ∀ v ∈ H+

1,w∗(Ωe).
(2.12)
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An alternative procedure has been proposed by Burnett in [3], for which we have to
represent both solution u and test function v in the form

u(r, θ,φ) =
exp(ikr)

r
u0(θ,φ) + U(r, θ,φ),

v(r, θ,φ) =
exp(ikr)

r
v0(θ,φ) + V (r, θ,φ),

(2.13)

where functions u0(θ,φ) and v0(θ,φ) are frequently known as the “radiation patterns”,

and functions U(r, θ,φ), V (r, θ,φ) are from H1(Ωe), i.e. both U , V and their gradients

∇U , ∇V are square-integrable. Function u of this form satisfies automatically the

Sommerfeld radiation condition.

Surprisingly, upon substituting formulas (2.13) into (2.4) and (2.5) and cancelling
out terms involving the radiation patterns, one can pass to the limit with γ → ∞. In this

case, the unconjugated and conjugated variational formulations following the Burnett

approach read as































Find u ∈ H+
1,w(Ω

e) such that
∫

Ωe
∇u ·∇v dΩe − k2

∫

Ωe
u v dΩe − ik lim

γ→∞

∫

Sγ

uv dSγ

=
∫

∂Ωe
g v dS ∀ v ∈ H+

1,w(Ω
e),

(2.14)































Find u ∈ H+
1,w(Ω

e) such that
∫

Ωe
∇u ·∇v dΩe − k2

∫

Ωe
u v dΩe − ik lim

γ→∞

∫

Sγ

uv dSγ

=
∫

∂Ωe
g v dS ∀ v ∈ H+

1,w(Ω
e),

(2.15)

respectively.

The integrands in formulations (2.14) and (2.15) are understood in the Cauchy Prin-

ciple Value sense discussed above.

2.3 Separation of Variables

The resulting equations in θ and φ are exactly the same as for the Laplace equation, com-

pare [7, 8]. The only difference occurs in the radial direction, where the corresponding
equation is now the Bessel equation (see also [11])

1

r2
∂

∂r

(

r2
∂f(r)

∂r

)

+

(

k2 −
λ2

r2

)

f(r) = 0. (2.16)
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Solutions to (2.16) are the spherical Hankel functions of the first and second kind h(1)
n (kr),

h(2)
n (kr) (see, e.g. [11] for a definition). The Sommerfeld radiation boundary condition

eliminates the spherical Hankel functions of the second kind, so that the final solution

to the Helmholtz equation can be represented in the form

u(r, θ,φ) =
∞
∑

n=0

n
∑

m=0

hn(kr)P
m
n (cos θ) (Anm cos(mφ) + Bnm sin(mφ)), (2.17)

where Pm
n (cos θ) are the Legendre functions, compare [11].

Assuming that the Neumann boundary condition (2.2) is given by

g(θ,φ) =
∞
∑

n=0

n
∑

m=0

Pm
n (cos θ)

(

Ãnm cos(mφ) + B̃nm sin(mφ)
)

, (2.18)

then the orthogonality properties of Pm
n (cos θ), sin and cos functions result in the fol-

lowing relationship between the coefficients in the solution and the coefficients in the

boundary condition (for details compare [7, 8])

Anm = −
Ãnm

∂hn(kr)
∂r

∣

∣

∣

r=1

, Bnm = −
B̃nm

∂hn(kr)
∂r

∣

∣

∣

r=1

. (2.19)

The spherical Hankel functions of the first kind hn(kr) have the following representation

[11]

hn(kr) =
n
∑

m=0

exp (ikr)

rm+1

exp (−iπ2 (n+ 1))

k(2k)m
im

(

n +
1

2
, m

)

(2.20)

with
(

n +
1

2
, m

)

=











1 m = 0
m
∏

k=1

(n + k) ·
m
∏

k=1

(n−m+ k)

k
m ≥ 1.

2.4 Definition of the hp-infinite element

The infinite elements for the unconjugated formulations are constructed and defined in

a manner similar to the infinite elements for the conjugated formulations. The only

differences result from the use of the complex conjugate and different powers in the

denominator of the radial shape functions.

The trial functions for approximating the solution u are now

ψj(r) =
exp (ikr)

rj
, j ≥ 1, (2.21)
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and, for the test functions in the Leis formulation,

ψ̃j(r) =
exp (ikr)

rj+2
, j ≥ 1, (2.22)

and, for the test functions in the Burnett formulation,

ψ̃j(r) =
exp (ikr)

rj
, j ≥ 1. (2.23)

Note the different powers in r for the trial and test functions in the Leis formulation.

The complex conjugate has to be used over the test functions in the conjugated IE

formulations.

The use of the sesquilinear formulation eliminates the need of integration of the

oscillatory components exp(ikr). Indeed, the complex conjugate of the test function is

ψj(r) =
exp(−ikr)

rj+2
, j ≥ 1,

and, upon introducing into the variational formulation, the exponential term cancels

out. In the bilinear (unconjugated) formulations this is not the case and the exponential

integral has to be evaluated (see [9]).

2.5 Difference (formal) between the Conjugated and Unconju-
gated Versions of the IEM

The formulations following Leis, introduced in (2.11) and (2.12) are based on a different

space setting. The difference between the conjugated and the unconjugated versions has

recently been studied for a 2D model problem in [2]. Here we point out a few formal
differences between the conjugated and unconjugated versions. We start our analysis

in the context of the Burnett variational formulations. In particular, two issues are of

interest:

• Lebesgue integrability

• elimination of the additional surface integral resulting from the Sommerfeld radi-

ation condition

7



The analysis starts again from the weak formulation on the truncated domain. Taking
(formally) the limit on both sides of the variational equation (2.8), we get

lim
γ→∞

(

∫

Ωγ

∇u∇v dΩγ − k2
∫

Ωγ

uv dΩγ − ik
∫

Sγ

uv dSγ

)

=
∫

S
gv dS + lim

γ→∞

∫

Sγ

ϕv dSγ.
(2.24)

In the case of the unconjugated version, the complex conjugate over function v has to

be dropped. The following analysis shows that, in either case, only the not integrable

terms, i.e. the terms that are not well defined, cancel each other out. In particular,

the additional surface integral needs to cancel out in the weak form without the com-

plex conjugate, but it does not need to cancel out in the weak form with the complex
conjugate.

Functions u and v are of the form

u = u(r, θ,φ) =
N
∑

n=1

exp(ikr)

rn
fn(θ,φ), (2.25)

where fn(θ,φ) are some functions of the angular variables that need not be specified for

this analysis.

Using the summation convention, we simplify the notation to

u =
exp(ikr)

rn
fn(θ,φ) =

exp(ikr)

rn
fn,

v =
exp(ikr)

rm
fm(θ,φ) =

exp(ikr)

rm
fm.

(2.26)

Case 1: Sesquilinear form formulation

Substituting (2.26) into (2.24) and using the definition of ∇ in spherical coordinates

gives

lim
γ→∞

∫

Ωγ

∂

∂r

(

exp(ikr)

rn

)

∂

∂r

(

exp(−ikr)

rm

)

fnfm

+
1

r2
1

rn+m

(

∂fn
∂θ

∂fm

∂θ
+

∂fn
∂φ

∂fm

∂φ

)

− k2 1

rn+m
fnfm dΩγ

− ik lim
γ→∞

∫

Sγ

1

γn+m
fnfm dSγ

=
∫

S
gv dS + lim

γ→∞

∫

Sγ

ϕv dSγ.
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In the following, the right hand side and the terms involving the angular derivatives are
neglected, since these terms are obviously Lebesgue integrable for all n,m ≥ 1.

Substituting spherical coordinates for Ωγ and Sγ (the jacobian for Sγ is γ2) yields

lim
γ→∞

∫ γ

1

k2

rn+m−2
+

ik(n−m)

rn+m−1
+

nm

rn+m
dr

∫

S
fnfm dS

− lim
γ→∞

k2
∫ γ

1

1

rn+m−2
dr

∫

S
fnfm dS − ik lim

γ→∞

∫

S

1

γn+m−2
fnfm dS.

It can be seen that for n = m = 1 the integrand ik(n − m)/rn+m−1 is zero, and that

this term is integrable for all n,m with n +m > 2. Interpreting the integrals in r in a

Cauchy Principal Value (CPV) sense, we notice that the two not-integrable integrands

k2/rn+m−2 cancel each other out, i.e.

lim
γ→∞

(

∫ γ

1

k2

rn+m−2
dr

∫

S
fnfm dS −

∫ γ

1

k2

rn+m−2
dr

∫

S
fnfm dS

)

= 0 ∀ n,m.

The additional surface integral yields

−ik lim
γ→∞

∫

S

1

γn+m−2
fnfm dS =







0 n +m > 2

−ik
∫

S
f1f1 dS n +m = 2.

Here one could think that this term would cancel out with the term

lim
γ→∞

∫ γ

1

ik(n−m)

rn+m−1
dr

∫

S
fnfm dS,

for n = 2 and m = 1. But this would require that f2 = f1 and that is, in general, not
the case. This does not cause any problems since all remaining terms, including the

additional surface integral, are well defined and Lebesgue integrable.

Case 2: Bilinear form formulation

Substituting in exactly the same way as before we obtain

lim
γ→∞

∫

Ωγ

∂

∂r

(

exp(ikr)

rn

)

∂

∂r

(

exp(ikr)

rm

)

fnfm

+
1

r2
exp(i2kr)

rn+m

(

∂fn
∂θ

∂fm
∂θ

+
∂fm
∂φ

∂fm
∂φ

)

− k2 exp(i2kr)

rn+m
fnfm dΩγ

− ik lim
γ→∞

∫

Sγ

exp(i2kγ)
1

γn+m
fnfm dSγ

=
∫

S
gv dS + lim

γ→∞

∫

Sγ

ϕv dSγ .
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Again, as before, the right hand side and the terms involving the angular derivatives are
neglected, due to their Lebesgue integrability ∀ n,m ≥ 1.

Carrying on the differentiation on the left-hand side, we get

lim
γ→∞

∫ γ

1
exp(i2kr)

(

−k2

rn+m−2
−

ik(n +m)

rn+m−1
+

nm

rn+m

)

dr
∫

S
fnfm dS

− lim
γ→∞

k2
∫ γ

1

exp(i2kr)

rn+m−2
dr

∫

S
fnfm dS − ik lim

γ→∞

∫

S

exp(i2kγ)

γn+m−2
fnfm dS.

This time the not integrable terms in the body integral do not cancel each other out.

Only the additional surface integral will make them vanish. Interpreting the r integrals

again in a CPV sense we obtain

lim
γ→∞

∫ γ

1
exp(i2kr)

−2k2

rn+m−2
dr

∫

S
fnfm dS

+ lim
γ→∞

∫ γ

1
exp(i2kr)

(

−ik(n +m)

rn+m−1
+

nm

rn+m

)

dr
∫

S
fnfm dS

− ik lim
γ→∞

exp(i2kγ)

γn+m−2

∫

S
fnfm dS.

The second integral term can now be integrated ∀ n,m ≥ 1 using the sine and cosine

integrals [9]. Similarly, the first integral can be evaluated provided that n+m > 2. The
additional surface integral is zero ∀ n,m with n+m > 2.

The only term that has to be taken care of, is the first and the third integral for
n = m = 1, i.e.

lim
γ→∞

∫ γ

1
exp(i2kr)

−2k2

r1+1−2
dr

∫

S
f1f1 dS − ik lim

γ→∞

exp(i2kγ)

γ1+1−2

∫

S
f1f1 dS

= lim
γ→∞

(
∫ γ

1
−2k2 exp(i2kr) dr − ik exp(i2kγ)

)
∫

S
f1f1 dS

= lim
γ→∞

(

−2k2 1

i2k
exp(i2kr)

∣

∣

∣

∣

γ

1
− ik exp(i2kγ)

)
∫

S
f1f1 dS

= lim
γ→∞

(

−
k

i
exp(i2kγ) +

k

i
exp(i2k)− ik exp(i2kγ)

)

∫

S
f1f1 dS

= lim
γ→∞

k

i
exp(i2k)

∫

S
f1f1 dS

=
k

i
exp(i2k)

∫

S
f1f1 dS.

In the last steps, only the fact that −1/i = i is used. Again, as before, all integrals

or limits can be defined in a CPV sense, i.e. all not integrable terms and the additional
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surface integral have vanished. In this case, the additional surface integral coming from
the Sommerfeld radiation condition is not well defined in the limit, but combined with

the corresponding singular body integrals cancels out, and makes the total sum well

defined as well.

It should be noted that the original variational formulation (2.24) is the same in

both cases, except for the complex conjugate. The difference introduced by the complex

conjugate being present or not translates into the surface integral being well defined

or not, which makes only a small difference in the actual implementation of the weak

formulation.

The above analysis can also be applied to the conjugated and unconjugated Leis weak
formulation (2.11) and (2.12), but since in this approach all integrals are well defined due

to the different weighted Sobolev space setting, it does not make any formal difference

whether one does or does not use the complex conjugate, except in the presence of the

complex conjugate sign over the second argument.

2.6 Implementation Details for the Helmholtz Equation

The implementation of the IEM is analogous to a 2D FE implementation. The integra-

tion of the shape functions in the radial direction involves the following integrals in the

conjugated formulation

∫ ∞

1

exp (ikr) exp (−ikr)

rj
dr =

1

j − 1
, j ≥ 2, (2.27)

and in the unconjugated version terms of the form

∫ ∞

1

exp (ikr) exp (ikr)

rj
dr =

∫ ∞

1

exp (2ikr)

rj
dr, (2.28)

which can be evaluated using the exponential integral [9] by using the representation

∫ ∞

1

exp (2ikr)

rn
dr =

n−1
∑

l=1

−(−i2k)l−1 exp (2ik)
∏l

l̂=1
−n + l̂

+
(−i2k)n−1

∏n−1
l̂=1

−n + l̂

∫ ∞

1

exp (2ikr)

r
dr, (2.29)

where n ≥ 1,
∑0

l=1 := 0 and
∏0

l̂=1
:= 1. The representation (2.29) can be easily verified

by induction.

11



2.7 Scattering of a Plane Wave by a Rigid Sphere

The three-dimensional incident plane wave can be decomposed into the spherical har-

monics as follows (see [7, 8])

pinc(r, θ) = Pinc exp ikx = Pinc

∞
∑

n=0

(2n+ 1)inPn(cos θ)jn(kr), (2.30)

where x = r sin θ cosφ, Pinc is the amplitude of the incident wave, Pn(cos θ) denotes the
Legendre polynomial of degree n and jn(kr) is the n-th spherical Bessel function of the

first kind.

The incident wave is scattered by the rigid unit sphere and the goal is to find the

scattered wave ps. The condition that relates the incident and the scattered wave for

the rigid obstacle is

∇n

(

pinc + ps
)

= 0 on the surface of the scatterer. (2.31)

Then the scattered wave is given by (for details see [7, 8])

ps =
∞
∑

n=0

hn(kr)P
m
n (cos θ)An, (2.32)

with

An =
−Pinc(2n+ 1)in ∂jn(kr)

∂r

∣

∣

∣

r=1
∂hn(kr)

∂r

∣

∣

∣

r=1

∀ n ≥ 1. (2.33)

2.8 Error Calculations

In the previous work on infinite elements [7, 8] we have used the weighted H1-norm

‖u− uh‖
2
1 =

∫

Ω

1

r2
|u− uh|

2 dΩ+
∫

Ω

1

r2
|∇(u− uh)|

2 dΩ (2.34)

to measure the error between the exact solution u and the numerical solution uh. This

norm (2.34) is consistent with the mathematical theory by Leis [10] for the Helmholtz

equation and gave satisfactory results because the conjugated IEM converged in the

whole exterior domain. From the stability and convergence analysis presented in this

work and the analysis presented in [2] we know that the unconjugated IEM will fail in the
far field. Therefore it will not make any sense to use the weighted H1-norm to measure
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conjugated Leis IEM conjugated Burnett IEM
p N = 1 N = 3 N = 6 N = 1 N = 3 N = 6
2 100 100 89.15 100 100 100
3 100 100 95.94 100 100 98.85
4 100 87.64 27.43 100 100 31.96
5 100 84.00 9.20 100 100 14.71
6 100 88.89 4.00 100 100 8.85
7 100 89.25 3.04 100 100 7.68
8 100 89.31 2.96 100 100 7.59

Table 1: Rigid scattering of a plane wave with k = 10. ‖u − uh‖∞ in percent for the
conjugated IEM with N = 1, 3, 6 radial shape functions.

the error for the unconjugated IEM. We are interested in comparing the performance of

the conjugated and unconjugated IEM in the near field. Therefore, consistent with [2],

we will use the L∞-norm on the surface of the unit sphere to measure the error, i.e.

‖u− uh‖∞ = sup
x∈S

|u(x)− uh(x)|. (2.35)

We will compute (2.35) by replacing supx∈S with the maximum over all Gausspoints for

each element in S.

2.9 Convergence Rates

In the following, convergence rates are presented for the rigid scattering of a plane wave

on the unit sphere. The corresponding exact solution is given by (2.32). The question is

how does the number of shape functions in the radial direction affect the approximation

of the exact solution. The p-convergence rates are studied in terms of the L∞-error norm

as a function of the order of approximation in the radial direction. In all examples the

wave number k is set to 10. Tables 1, 2 show the error ‖u − uh‖∞ for the conjugated
and unconjugated IEM for p varying from 2 to 8 and for the number of radial shape

functions N = 1, 3, 6. The corresponding convergence rates are presented in Figure 1.

From Tables 1 and 2 we clearly see that the conjugated IEM will only give reliable

results, if up to six radial shape functions are used. The unconjugated Burnett IEM can

also provide good results if only three radial shape functions are used.

On the other hand, from [7, 8] we know that the conjugated IEM will provide a reli-

able solution in the whole exterior domain, provided N large enough. The unconjugated

13



unconjugated Leis IEM unconjugated Burnett IEM
p N = 1 N = 3 N = 6 N = 1 N = 3 N = 6
2 100 100 88.99 100 100 100
3 100 100 100 100 100 100
4 61.30 67.82 26.86 80.26 33.23 29.08
5 52.63 53.31 8.37 58.63 14.04 9.07
6 54.60 39.75 3.25 59.31 8.74 3.40
7 54.87 42.73 1.85 59.63 7.35 2.31
8 55.25 41.37 1.79 60.24 7.20 2.20

Table 2: Rigid scattering of a plane wave with k = 10. ‖u − uh‖∞ in percent for the
unconjugated IEM with N = 1, 3, 6 radial shape functions.

con. Leis, N=6   

con. Burnett, N=6

unc. Leis, N=3   

unc. Leis, N=6   

unc. Burnett, N=3

unc. Burnett, N=6

10
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10
1

10
2

10
3

Polynomial degree in angular direction

R
e
la

tiv
e
 L

o
o
!

e
rr

o
r

Convergence rate of IEM

Figure 1: Convergence Rates for the IEM with N = 3, 6 and p = 2, · · · , 8.
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Burnett IEM will provide with less cost an accurate solution on the surface of the unit
sphere, but the Helmholtz integral formula [2] has to be employed in order to compute

the far field solution.

From the numerical experiments presented here and those in [7, 8] we clearly see that

the conjugated Leis IEM should be used if the near and far field solution is of interest.

The unconjugated Burnett IEM is most efficient if only the near field solution and the

far field solution at a few points is of interest. We also note that the unconjugated Leis

IEM does not yield equally good results with only three radial shape functions as the

unconjugated Burnett IEM. The reason for this is that the unconjugated Leis IEM is
not symmetric in the real sense, whereas the unconjugated Burnett IEM is symmetric.

3 A Stability Analysis for the Helmholtz Equation
in the Exterior Spherical Domain

This section addresses the stability of the proposed IEM. The continuous stability con-

stant is computed for axisymmetric solutions to the scattering problem for both the

unconjugated Leis and Burnett IE formulations. The stability constants are then com-

pared to the stability constants for the conjugated IEM described in [7, 8].

3.1 Continuous LBB Constant for the unconjugated Leis IE
Formulation

Given weighted Sobolev spaces Vρ and Vρ∗ , with weights ρ = 1/r2 and ρ∗ = ρ−1 = r2,

consider an abstract variational problem of the form
{

Find u ∈ Vρ such that
b(u, v) = l(v) ∀ v ∈ Vρ∗ ,

(3.1)

where b(u, v) is a continuous bilinear form on Vρ × Vρ∗ and l(v) is a continuous linear

form on Vρ∗ .

The bilinear form b defines a linear operator B prescribed on Vρ with values in the

topological dual V ′
ρ∗

B : Vρ → V ′
ρ∗ < Bu, v >= b(u, v) ∀ u ∈ Vρ, v ∈ Vρ∗ , (3.2)

by which (3.1) can be rewritten in the operator form

u ∈ Vρ, Bu = l. (3.3)
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Consistently with the classical theory of linear operators in Banach spaces, operator B
is postulated to be bounded below

‖Bu‖V ′

ρ∗
≥ γ‖u‖Vρ , (3.4)

where ‖ · ‖Vρ is the norm in the weighted Sobolev space Vρ and ‖ · ‖V ′

ρ∗
is the norm in

the weighted dual Sobolev space V ′
ρ∗ . The optimal (largest) constant γ is known as the

LBB (Ladyzenskaya-Babuska-Brezzi) constant

γ = inf
u '=0

‖Bu‖V ′

ρ∗

‖u‖Vρ

. (3.5)

Introducing the Riesz operator

R : Vρ∗ → V ′
ρ∗ < Ru, v >= (u, v)ρ∗ ∀ u, v ∈ Vρ∗ , (3.6)

where (·, ·)ρ∗ denotes the inner product in the space Vρ∗ , allows to eliminate the dual

norm in (3.5)

γ2 = inf
u '=0

‖Bu‖2V ′

ρ∗

‖u‖2Vρ

= inf
u '=0

‖R−1Bu‖2Vρ∗

‖u‖2Vρ

= inf
‖u‖2

Vρ
=1

‖R−1Bu‖2Vρ∗

= inf
(u,u)ρ=1

(

R−1Bu,R−1Bu
)

ρ∗
.

(3.7)

Next, the application of the standard Lagrange multiplier technique, leads to the

eigenvalue problem














Find u ∈ Vρ, γ2 ∈ IR such that

2,
(

R−1Bu,R−1Bδu
)

ρ∗
= γ22,(u, δu)ρ ∀ δu ∈ Vρ

(u, u)ρ = 1.

(3.8)

Finally, it is convenient to rewrite (3.8) as a system of two equations. Introducing an

auxiliary variable

Vρ∗ - ua = R−1Bu (3.9)

yields










,
(

R−1Bu, δua
)

ρ∗
= ,

(

ua, δua
)

ρ∗
∀ δua ∈ Vρ∗

,
(

ua, R−1Bδu
)

ρ∗
= γ2,

(

u, δu
)

ρ
∀ δu ∈ Vρ.

(3.10)
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Now, recalling the definitions of operators B and R yields










, b
(

u, δua
)

= ,
(

ua, δua
)

ρ∗
∀ δua ∈ Vρ∗

, b
(

δu, ua
)

= γ2,
(

u, δu
)

ρ
∀ δu ∈ Vρ,

(3.11)

where

(u, v)ρ =
∫

S

∫ ∞

1

1

r2
(uv +∇u∇v) r2 drdS

=
∫

S

∫ ∞

1
(uv +∇u∇v) drdS,

(u, v)ρ∗ =
∫

S

∫ ∞

1
r2 (uv +∇u∇v) r2 drdS

=
∫

S

∫ ∞

1
r4 (uv +∇u∇v) drdS,

b(u, v) =
∫

S

∫ ∞

1

(

∇u∇v − k2uv
)

r2 drdS.

(3.12)

In what follows, we restrict the analysis to the axisymmetric case only (no dependence

upon φ), and use the following representations

u =
∞
∑

n=0

un =
∞
∑

n=0

hn(kr)Pn(cos θ)An,

δu =
∞
∑

n=0

δun =
∞
∑

n=0

hn(kr)Pn(cos θ)Ãn,

ua =
∞
∑

n=0

ua
n =

∞
∑

n=0

1

r2
hn(kr)Pn(cos θ)A

a
n,

δua =
∞
∑

n=0

δua
n =

∞
∑

n=0

1

r2
hn(kr)Pn(cos θ)Ã

a
n.

(3.13)

The computations for determining the stability constant γ are very similar to those

presented in [7] and result in the final modal system of equations
[

a −b
−γ2

nc d

] [

An

Aa
n

]

=

[

0
0

]

(3.14)

where a = ,b(un, δua
n), b = ,(ua

n, δu
a
n)ρ∗ , c = ,(un, δun)ρ and d = ,b(δun, ua

n).

The sufficient and necessary condition for a nontrivial solution to exist is

det

[

a −b
−γ2

nc d

]

= ad− γ2
ncb = 0. (3.15)

Solving for γ2
n yields

γ2
n =

ad

cb
. (3.16)
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The global LBB constant is now equal to the infimum of the modal constants γn

γ2 = inf
n=0,1,...

γ2
n. (3.17)

For the first ten modes and wave number k less than 20 the modal LBB constants are

displayed in Fig. 2, where the “x-axis” shows the wave number and the “y-axis” shows

the value of the modal LBB constant.

Remark: The dependence of the stability constant γ upon the wave number k is

clearly of order γ = O (1/k2).

3.2 Continuous LBB Constant for the unconjugated Burnett
IE Formulation

The LBB constant for the unconjugated Burnett formulation is derived in the same

fashion as the unconjugated Leis LBB constant. The only differences occur due to the

fact that now the space Vρ∗ is equal to the space Vρ, and that the integrals in the

bilinear form of the Burnett formulation have to be interpreted in a Cauchy Principal

Value sense.

The equations for the modal LBB constant γn are similar to (3.15). For the first

ten modes and wave number k less than 20 the modal LBB constants are displayed in

Figure 3.

Remark: The dependence of the stability constant γ upon the wave number k is
clearly of order γ = O (1/k2).

3.3 Comparison of the LBB Constants for the conjugated and
conjugated IEM

The LBB constant for the conjugated Leis and Burnett IEM had been computed in [7, 8].

The result was that in the conjugated cases the LBB constants behave like γ = O (1/k).

The above analysis shows that the LBB constants in the unconjugated cases behave like

γ = O(1/k2). Therefore, the conjugated IE versions are one order more stable in k than

the unconjugated IEM.
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Figure 2: Modal LBB-constants for the unconjugated Leis IE formulation for the first
ten modes. The pointwise infimum corresponds to the global LBB constant.
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Figure 3: Modal LBB-constants for the unconjugated Burnett IE formulation for the
first ten modes. The pointwise infimum corresponds to the global LBB constant.
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4 Convergence of the Unconjugated Leis Infinite El-
ement

In this section, we consider convergence of the unconjugated Leis IEM for the Helmholtz

equation. The analysis is similar to the convergence study of the conjugated IEM. The

reader is referred to [5, 8] for more details.

In particular, we look for the solution u = u(x, r) of problem (2.1) in the standard

form
u(x, r) = Y (x)R(r) x ∈ S, r > 1, (4.1)

where S = {x ∈ IR3, |x| = 1}.

Separation of variables for the Helmholtz equation leads now to

(r2R′)′

R
+ k2r2 = −

∆SY

Y
= c, (4.2)

and, consequently, to the eigenvalue problem for the Laplace-Beltrami operator ∆S

∆SY + cY = 0, (4.3)

leading to the sequence of eigenvalues

c = cn = n(n + 1), n = 0, 1, 2, . . . , (4.4)

and the corresponding eigenspaces spanned by the spherical harmonics Ynm, m = 0, . . . ,

2n, n = 0, 1, 2, . . . . Note that, except for n = 0, all eigenvalues are multiple eigenvalues

with multiplicity 2n+ 1.

The corresponding equation in the r-direction reduces now to the Bessel equation

(r2R′)′ +
(

k2r2 − n(n+ 1)
)

R = 0, (4.5)

with the solution represented in terms of the spherical Hankel functions

R(r) = Rn(r) = Anh
1
n(kr) + Bnh

2
n(kr). (4.6)

As before, the Sommerfeld radiation condition eliminates the Hankel functions of the

second kind and, by superposition, the final form of the solution is

u(x, r) =
∞
∑

n=1

(

2n
∑

m=0

UnmYnm(x)

)

h1
n(kr), (4.7)
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where the Hankel functions have been normalized to satisfy the Neumann boundary
condition

−
∂

∂r

(

h1
n(kr)

)

(1) = 1. (4.8)

Recalling that the spherical harmonics Ynm constitute an orthonormal basis in L2(S)

and assuming g ∈ L2(S), one can calculate the coefficients Unm from

Unm = (g, Ynm)L2(S) . (4.9)

In what follows, the normalized Hankel functions of the first kind will be denoted by

Xn(r), Xn(r) = h1
n(kr).

The analysis proceeds as follows. First, an approximate solution uN for the exact

solution u (compare (4.7)) is sought in the form

uN(x, r) =
N
∑

n=0

Xn(r) un(x). (4.10)

The test functions are approximated now using different functions in the r-direction

vN(x, r) =
N
∑

n=0

X̂n(r) vn(x) =
N
∑

n=0

Xn(r)

r2
vn(x), (4.11)

with X̂n(r) = Xn(r)/r2 to guarantee the Lebesgue integrability of the involved integrals
(compare Section 2.4).

Substituting now (4.10) and (4.11) into the unconjugated Leis formulation (2.11)

yields the approximate problem














































Find (u1, . . . , uN) ∈ H
1(S) such that

N
∑

n=0

∫ ∞

1

1

r2
XnXm dr

∫

S
∇S un∇S v dS

+

(

∫ ∞

1
X ′

n

(

Xm

r2

)′

r2 dr − k2
∫ ∞

1
XnXm dr

)

∫

S
unv dS

= Xm(1)
∫

S
gv dS ∀ v ∈ H1(S), m = 0, . . . , N,

(4.12)

where H1(S) = H1(S)× · · ·×H1(S) (N -times) with H1(S) denoting the Sobolev space

of order unity on the sphere S.

System (4.12) is next discretized using a FE approximation, resulting in a fully

discrete solution uN
h , where the error can be estimated using the triangle inequality

‖uN
h − u‖ ≤ ‖uN

h − uN‖+ ‖uN − u‖. (4.13)
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4.1 Convergence of uN to u

A relevant observation concerning the effect of the multiple eigenvalues has to be made.
Decomposing the solution u, for a fixed r, into a sum of eigenvectors of the Laplace-

Beltrami operator

u(x, r) =
∞
∑

l=0

ul(r)Yl(x) , −∆SYl = l(l + 1)Yl, (4.14)

and doing the same with data g,

g =
∞
∑

l=0

gl, (4.15)

one can reduce the considered boundary-value problem into a sequence of problems

corresponding to each of the eigenspaces. Next, one can select a L2(S)-orthogonal basis

within each of the l-th eigenspace with gl as one of the vectors. This further reduces
the problem to 2l+1 independent scalar problems, with the spectral components of the

solution corresponding to other than gl vectors, simply vanishing. This suggests starting

with the representation

u(x, r) =
∞
∑

l=0

ul(r)Yl(x) (4.16)

where Yl(x) = gl/‖gl‖L2(S). Selecting next for the test function

v(x, r) = v(r)Yj(x) (4.17)

and using the L2(S)-orthogonality of functions Yl(x), we obtain a sequence of decoupled

equations for each spectral component ul(r)































ul ∈ H1(1,∞)

∫ ∞

1

∂uj

∂r

∂v

∂r
r2 dr + j(j + 1)

∫ ∞

1
uj v dr − k2

∫ ∞

1
uj vr2 dr

= v(1)‖gj‖L2(S) ∀ v ∈ H1
4 (1,∞),

(4.18)

where H1(1,∞) is the regular Sobolev space of order 1 and H1
4(1,∞) is the weighted

Sobolev space with the norm

‖v‖21,4 =
∫ ∞

1
r4

(

|v|2 + |v′|2
)

dr. (4.19)
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Notice that the choice of the “one-dimensional” spaces is consistent with the choice of
weighted spaces in (2.9). Similarly, assuming in (4.10)

un(x) =
∞
∑

l=0

ul
nYl(x), ul

n ∈ IC, (4.20)

and selecting v = Yj(x) in (4.12), we obtain

N
∑

n=0

{

j(j + 1)
∫ ∞

1

1

r2
XnXm dr +

∫ ∞

1
X ′

n

(

Xm

r2

)′

r2 dr − k2
∫ ∞

1
XnXm dr

}

uj
n

= Xm(1)‖g
j‖L2(S), m = 0, . . . , N.

(4.21)

The main observation is now that equations (4.21) correspond to the Petrov-Galerkin

approximation of (4.18) using the “spectral” approximation

uj(r) ≈ uj
N(x) =

N
∑

n=0

uj
nXn(r),

v(r) ≈
N
∑

m=0

vjm
Xm(r)

r2
.

(4.22)

The represention of the H1
w-norm in terms of the spectral components yields

‖u− uN‖
2
1,w

=
∞
∑

j=1

∫ ∞

1
|(uj − uj

N)
′|2 dr + j(j + 1)

∫ ∞

1

1

r2
|uj − uj

N |
2 dr

+
∫ ∞

1
|uj − uj

N |
2 dr.

(4.23)

This suggests introducing the component energy norm

‖u‖2j,E =
∫ ∞

1
|u′|2 dr + j(j + 1)

∫ ∞

1

1

r2
|u|2 dr +

∫ ∞

1
|u|2 dr (4.24)

and results in the final formula for the error in the form

‖u− uN‖
2
1,w =

∞
∑

j=N+1

‖Xj −Xj
N‖

2
j,E ‖gj‖

2
L2(S), (4.25)

where Xj
N is the solution of system (4.21) with ‖gj‖L2(S) = 1.

It should be emphasized that, even though the problem is three-dimensional, the error

analysis is reduced to the investigation of a 1D problem and approximation properties
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of functions Xj , where the Xj are the spherical Hankel functions of the first kind. Thus,
the three-dimensional context does not add to the complexity of the problem.

Remark: As each of the spherical Hankel functions h1
n(kr) can be represented as a

linear combination of functions exp(ikr)/rj, j = 1, . . . , n+1, the Hankel functions used

in approximation (4.10) can be replaced with function exp(ikr)/rj × exp(−ik)/(j − ik).

The choice of the “shape functions” affects the matrices in the approximate problem

(4.21) but it will not change the solutions Xj
N . Consequently the entire analysis remains

the same.

4.2 Convergence of uN
h to uN

Problem (4.12) is defined on the sphere, i.e. on the H
1(S) space. The corresponding

sesquilinear form can be split into a positive definite part and a compact perturbation.

Consequently, the standard convergence analysis (see e.g. [4]) applies.

5 Convergence of the Unconjugated Burnett Infinite
Element

The convergence of the unconjugated Burnett IEM is analyzed similarly to the previous

section. Approximation (4.10) is now used for both solution u and test function v

uN(x, r) =
N
∑

n=0

Xn(r) un(x),

vN(x, r) =
N
∑

n=0

Xn(r) vn(x).

(5.1)

Selecting v = Xm(r)v(x) and substituting (5.1) into (2.7), then the approximate problem

is obtained in the form

N
∑

n=0

lim
γ→∞

∫ γ

1
XnXm dr

∫

S
∇Sun∇Sv dS

+ lim
γ→∞

(
∫ γ

1

(

X ′
nX

′
m − k2XnXm

)

r2 dr − ikγ2Xn(γ)Xm(γ)
)
∫

S
unv dS

= Xm(1)
∫

S
gv dS ∀ v ∈ H1(S), m = 0, . . . , N.

(5.2)

The first limit is finite, since both Xn and Xm are of order O(1/r). If one breaks the

integral under the second limit into two parts and attempts to pass with γ → ∞, then
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both limits will yield ∞. However, if one first recalls the equation for Xn and integrates
by parts, then simply,

∫ γ

1

(

X ′
nX

′
m − k2XnXm

)

r2 dr − ikγ2Xn(γ)Xm(γ)

=
∫ γ

1
−

(

r2X ′
n

)′
Xm dr −X ′

n(1)Xm(1)− k2
∫ γ

1
XnXmr

2 dr

+γ2 (X ′
n(γ)− ikXn(γ))Xm(γ)

= −n(n + 1)
∫ γ

1
XnXm dr −X ′

n(1)Xm(1) + γ2 (X ′
n(γ)− ikXn(γ))Xm(γ).

(5.3)

Consequently, passing with γ → ∞ yields

N
∑

n=0

∫ ∞

1
XnXm dr

∫

S
∇Sun∇Sv dS

+
(

−n(n + 1)
∫ ∞

1
XnXm dr +Xm(1)

)
∫

S
unv dS

= Xm(1)
∫

S
gv dS ∀ v ∈ H1(S), m = 0, . . . , N.

(5.4)

5.1 Convergence of uN to u

We continue to apply the same spectral analysis as before, i.e. assuming Yl(x) =

gl/‖gl‖L2(S), start with the spectral representation for the exact solution

u(x, r) =
∞
∑

j=0

uj(r)Yj(x) (5.5)

and then select the test function v as

v(x, r) = v(r)Yl(x). (5.6)

This results in the equation for ul(r) of the form

lim
γ→∞

{

∫ γ

1

∂ul

∂r

∂v

∂r
r2 dr + l(l + 1)

∫ γ

1
ul v dr − ikγ2ul(γ) v(γ)

−k2
∫ γ

1
ul v r2 dr

}

= v(1)‖gl‖L2(S)

(5.7)

and the same appropriate space setting for ul and v which will make the problem well

defined. The functional setting is important from the point of view of the convergence

analysis, not the solution itself. The solution is known and is simply X l(r)‖gl‖L2(S).
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Similarly assuming,

un(x) =
∞
∑

j=1

uj
nYl(x), uj

n ∈ IC, (5.8)

and setting v = Yl(x) in (5.4)

N
∑

n=0

{

(l(l + 1)− n(n + 1))
∫ ∞

1
XnXm dr +Xm(1)

}

ul
n

= Xm(1)‖g
l‖L2(S) m = 0, . . . , N.

(5.9)

As before, the approximate solutions X l
N are introduced and the representation of the

error in form (4.25) is obtained. The only difference between the methods is in the ways
in which the approximations X l

N are calculated.

5.2 Comparison of the Infinite Element Concepts

The weighted Sobolev space norm (2.10) has been suggested by the existence theory, as

seen in [10]. Once there is an agreement upon the use of the norm, it becomes clear

that the quality of the particular infinite element approximation is controlled by the
“spectral” errors ‖X l − X l

N‖
2
l,E. It should be emphasized that in (4.25) one has an

equality sign. Thus, in order to compare the discussed concepts of the unconjugated

and conjugated infinite elements one can simply calculate the errors with X l
N obtained

by solving systems (4.21) or (5.9). The calculations are done for four different values

of frequency k = 1, 5, 10, 50 and summarized in Figures 3 to 10. The same calculations

were already done for the conjugated formulations in [5, 8].
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Figures 3-6: Unconjugated Leis formulation. Approximation error ‖Xj−Xj
N‖j,E, j, N ≤

9 for k = 1, 5, 10, 50.
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Figures 7-10: Unconjugated Burnett formulation. Approximation error ‖Xj −Xj
N‖j,E,

j, N ≤ 9 for k = 1, 5, 10, 50.
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Figures 11-14: Best Approximation Error Ej
N , j, N ≤ 9 for k = 1, 5, 10, 50.

The question of the possible existence of a better, “ideal” formulation yielding smaller

errors can easily be answered by comparing the presented errors with the best approxi-

mation spectral errors

El
N = inf

v∈span{X1,...,XN}
‖X l − v‖l,E.

Figures 11-14 show the best approximation error for the same values of k, compare

[5]. In [5] we found out that the approximation errors of the conjugated Leis and

the conjugated Burnett IEM are practically of the same order of magnitude as the
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best approximation error. From Figures 3-14 we see that the approximation errors
for the unconjugated IEM do not behave that well anymore. For the given examples,

k = 1, 5, 10, 50, the approximation error is well above the best approximation error. This

indicates immediately that the unconjugated versions will not give reliable results, if the

error is measured in the whole exterior domain. All these remarks, of course, are relative

to the particular choice of the norm, in our case - the weighted Sobolev norm. The fact

that the unconjugated IEM do not give an accurate approximation in the far field had
also been reported in [2].

5.3 A Final Error Estimate for ‖u− uN‖

We postulate the following conjecture (compare [5, 8])

∃ c > 0 : ‖X l −X l
N‖k,E ≤ c ∀ l, N. (5.10)

Making use of the spectral characterization of functions g ∈ Hr(S) in terms of the
spherical harmonics

‖g‖2Hr(S) ∼
∞
∑

n=0

n2rg2n, (5.11)

where gn denote the spectral components of function g, we obtain the final estimate in
the form

‖u− uN‖H1
w(Ω) ≤

c

(N + 1)r
‖g‖Hr(S). (5.12)

6 Conclusions

This work has investigated the effect of the complex conjugate on the quality of the
approximation of the IEM. It has shown that the numerical solution obtained by the

two unconjugated versions of the IEM converge in the near field. The analysis in [7] has

shown that the two conjugated IEM do converge in the entire exterior domain. From the

present analysis we see that the unconjugated IEM does converge pointwise and more

rapidly than the conjugated IEM at the boundary of the scatterer and in the near field,

provided that the unconjugated formulation is symmetric. This result is consistent with
the results in [2]. It is evident that the conjugated Leis IEM is efficient if the solution to

the rigid scattering problem is needed in the whole exterior domain. If only the near field

solution is needed than the unconjugated Burnett IEM provides the near field solution

much faster than the conjugated IEM.
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Based on the analysis presented here we conclude that the conjugated Leis and
unconjugated Burnett IEM should be used for the solution of exterior problems. Which

of these formulations is more adequate for a given application depends on where in the

exterior domain the solution is needed.
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