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Switzerland

1Charles University Prague, Faculty of Mathematics and Physics, Malostranské n. 25, 11800
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0 Introduction

Many problems of fluid mechanics, continuum mechanics, heat conduction or electro-
magnetic fields are naturally posed in unbounded domains. Unfortunately, these
formulations are not quite practical and convenient from the point of view of numer-
ical simulation. Therefore, the unbounded domain is usually replaced by a smaller
bounded computational region with an artificial boundary Γ. There is a need
to prescribe suitable boundary conditions on Γ representing the interaction of the
system under consideration inside Γ with the system in the exterior of Γ. For ex-
ample, this problem is very topical in fluid dynamics in the investigation of exterior
flow past bodies or obstacles. A similar problem appears in the case of flow trough
ducts or pipes with artificial boundaries representing their inlets and outlets. We
mention, e.g. the papers [1], [3], [14], [22], [23], [28], where a number of conditions
on artificial boundaries was proposed and investigated.

Another possibility is to simulate the process in the exterior of Γ with the aid
of a suitable (preferably linear) approximation of the equations describing the pro-
cess under consideration. This approach often represents the basis for the use of a
combined finite element-boundary element method (FEM-BEM) for the numerical
simulation of exterior problems. In the interior of an artificial interface Γ, the
FEM is used for the solution of the (in general nonlinear) system describing the
flow of interest whereas, provided the linear approximation in the exterior region
possesses a fundamental solution, the exterior problem can be reformulated with
the aid of boundary integral equations on Γ (and solved numerically by BEM). The
interior and exterior problems are coupled with the aid of suitable transmission

conditions on the interface Γ.

This method has been applied by a number of authors to the modeling of various
problems in unbounded domains. Let us mention, e.g. [2], [4], [7], [11], [26] which
contain theory of the combined BEM and FEM, as well as applications to inviscid
compressible subsonic or transonic fluid flow and elasticity or heat conductivity
problems in unbounded domains.

The subject of particular interest is the simulation of viscous incompressible
exterior flow described by the continuity equation and Navier-Stokes equations.
In this case, the nonlinear Navier-Stokes system is used in the interior domain lying
inside Γ. There are several conceivable approximations for the flow outside Γ:

- Stokes equations,

- Oseen equations,

- inviscid Euler (or linearized Euler) equations,

- inviscid potential equation.
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The crucial problem associated with the coupled problem describing exterior
viscous flow is the choice of the transmission conditions. They should be reasonable
from the physical point of view and, on the other hand, there is the need to be able
to prove the solvability of the coupled problem. For example, in [13] the existence
of a solution to a coupled “interior Navier-Stokes - exterior Stokes” problem is
guaranteed by the a priori assumption that the normal component of the velocity
vanishes on the whole interface Γ, which is not quite reasonable from the physical
point of view.

In [24], the coupled “Stokes-Stokes” problem was treated together with the conti-
nuity of the velocity as well as normal stress on Γ. The same transmission conditions
were used in [15], [16] for the coupling “interior Navier-Stokes - exterior Stokes” and
“interior Navier-Stokes - exterior Oseen”. However, the mentioned transmission
conditions allow to prove the existence of the solution only for small data (small
Reynolds number and/or small outer volume force). Moreover, the results formu-
lated in [15], [16] are true only for zero farfield velocity, as can be found by careful
reading. In addition, the analysis carried out in [15], [16] is restricted to small data
because of missing coercivity (a similar difficulty appears in [14] for the pipe or duct
flow with a “natural” outlet condition).

The mathematical analysis of the coupling of the interior Navier-Stokes problem
with the exterior Stokes problem or exterior potential problem is the purpose of the
present paper. In both cases we propose new transmission conditions on the artifi-
cial interface. Under these conditions we obtain in each case a coercive, nonlinear
coupled problem and prove its solvability for arbitrarily large data. In the case of
potential flow, however, we exhibit some pathological examples which indicate that
this model is overly simplicistic and its inherent modelling error is too large. If
the Poincaré-Steklov operator corresponding to the linear, exterior problem is real-
ized by boundary integral operators, the results of the paper represent a theoretical
basis for the numerical solution of the exterior coupled problem with the aid of the
combined FEM and BEM.

1 Formulation of the problem

Let Ω′ ⊂ lR3 be an unbounded domain whose complement Ω = lR3−Ω
′
(M denotes

the closure of a set M ⊂ lR3) consists of a finite number of bounded domains Ωi,
i = 1, . . . , k, with mutually disjoint and sufficiently smooth boundaries ∂Ωi. Then
Γ0 := ∂Ω′ =

⋃k
i=1 ∂Ωi.

We consider incompressible flow in the exterior domain Ω′ past impermeable
bodies or obstacles Ω1, . . . ,Ωk. Assuming that the flow is homogeneous far away
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from the bodies, we can introduce the following classical formulation of the flow
problem:

Find u = (u1, u2, u3): Ω′ → lR3 and p: Ω
′
→ lR such that

ui ∈ C2(Ω
′
), i = 1, 2, 3, p ∈ C1(Ω

′
) , (1.1a)

−ν∆u + (u ·∇) u+∇p = f in Ω′ , (1.1b)

div u = 0 in Ω′ , (1.1c)

u |Γ0
= 0 , (1.1d)

lim
|x|→∞

u(x) = u∞ . (1.1e)

We use the standard notation: x = (x1, x2, x3) ∈ lR3 denotes a point of the
3-dimensional Euclidean space with Cartesian coordinates xi (i = 1, 2, 3), u =
(u1, u2, u3) is the velocity vector with components ui in the directions xi, f the den-
sity of outer volume force, ν > 0 the kinematic viscosity, p the kinematic static pres-
sure, u∞ = (u∞1, u∞2, u∞3) the velocity of the farfield, ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3),
(1.1b) and (1.1c) are the Navier-Stokes equations and the continuity equation, re-
spectively, and ν, u∞ &= 0, f are given data. Let us assume that f has compact
support, i.e. supp f ⊂ Ω′ ∪ Γ0. Then it is classical (see [10], Chapter IX and the
references there) that (1.1b - 1.1e) admits at least one solution u with finite Dirichlet
integral, i.e. ∫

Ω′

∇u : ∇u dx ≤ M .

Moreover, this solution satisfies ([10], Remark IX.8.1)

u(x)− u∞ = O(|x|−1) |x| → ∞ . (1.2)

Since the above formulation in the unbounded domain Ω′ is not convenient for
numerical discretization, as was stated in Introduction, we introduce an artificial
interface Γ ⊂ Ω′, dividing Ω′ into two subdomains: a bounded interior domain Ω−

with ∂Ω− = Γ0 ∪ Γ, in which we consider the Navier-Stokes system (1.1b) - (1.1c),

and an unbounded domain Ω+ lying outside Γ, with ∂Ω+ = Γ and Ω
+
= Ω+ ∪ Γ,

see Figure 1.
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Ω1

Ω2

Γ0 = ∂Ω1 ∪ ∂Ω2

Γ

n

Navier-Stokes region Ω−

Stokes (or potential) region Ω+

u∞

Fig. 1

Let supp f ⊂ Ω− ∪Γ0 and let ∂Ω− be sufficiently regular. In what follows it will
be enough to suppose that ∂Ω− = Γ0∪Γ is strongly local Lipschitz-continuous
(cf. [17] or [6], Par. 1.2.27). In Ω+ we use some of the flow approximations mentioned
in the Introduction. Here we will be mainly concerned with Stokes flow in Ω+ but in
Section 6 we discuss briefly the coupled “Navier-Stokes-inviscid potential” problem.

An important question is the choice of coupling transmission conditions on
Γ. In [24] the coupling “Stokes-Stokes” was treated via the transmission conditions
requiring the continuity of the velocity and normal stress across Γ. According to
[1], the dynamic pressure p + |u|2/2 plays the same role for the Navier-Stokes
equations as the kinematic static pressure p for the Stokes problem. This is the
motivation for our choice of the transmission conditions in the following classical
formulation of the coupled problem:

Find u± = (u±
1 , u

±
2 , u

±
3 ): Ω

±
→ lR3, p±: Ω

±
→ lR such that
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u±
i ∈ C2(Ω

±
), i = 1, 2, 3, p± ∈ C1(Ω

±
) , (1.3a)

−ν∆u− + (u− ·∇) u− +∇p− = f in Ω− , (1.3b)

div u− = 0 in Ω− , (1.3c)

u−|Γ0
= 0 , (1.3d)

−ν∆u+ +∇p+ = 0 in Ω+ , (1.3e)

div u+ = 0 in Ω+ , (1.3f)

lim
|x|→∞

u+(x) = u∞ , (1.3g)

u− = u+ on Γ , (1.3h)

−(p− +
1

2
|u−|2)n+ 2ν lD(u−)n = −λ(u+, p+) on Γ . (1.3i)

Remark 1.1. The selection of (1.3e - 1.3g) in Ω+ is motivated by the fact that
the velocity field u+ has, as solution of a Stokes problem in Ω+, also the velocity
asymptotics (1.2) in the farfield, provided, however, Γ is sufficiently smooth (cf. [10],
Theorem V.3.2), and under the provision that a solution of the coupled problem
(1.3) exists, of course. This also indicates that increasing the size of Ω− resp. Γ
will reduce the modeling error introduced by adopting (1.3e - 1.3g) in Ω+. Note
also that (1.3) cannot represent in Ω+ the parabolic wake trailing Ω. In order to do
this, one should use Oseen flow in Ω+. For these issues as well as for modeling error
estimates, we refer to [8].

The functions u−, p− and u+, p+ satisfying (1.3) are called a classical solution
of the coupled problem. Here n denotes the unit outer normal to ∂Ω− (i.e. n points
from Ω− into Ω+ on Γ, see Figure 1) and lD(u) is the velocity deformation tensor:

lD(u) = (Dij(u))
3
i,j=1, Dij(u) =

1

2

(∂ui

∂xj
+

∂uj

∂xi

)
. (1.4)

Further, we set

σij(u, p) = −p δij + 2νDij(u) ,

σn(u, p) =
( 3∑

j=1

σij(u, p)nj

)3

i=1
= −pn + 2ν lD(u)n ,

(1.5)
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i.e. σij(u, p) and σn(u, p) are the components of the stress tensor and the projection
of the stress tensor into the direction n, respectively. By λ(u+, p+) in (1.3i) we denote
a suitable boundary operator with values in lR3. With respect to (1.5), condition
(1.3i) can be written as

σn(u
−, p−)−

1

2
|u−|2 n = −λ(u+, p+) . (1.2i∗)

It represents a general transmission condition suitable for coupled problems modeling
viscous flow. The operator λ(u+, p+) must be specified according to the character
of the flow model in Ω+. Its choice is governed by the following requirements:

1) It is possible to prove the existence of a (weak) solution to the coupled problem
under conditions similar to those ensuring the existence of a solution to the
original, nonlinear problem on the unbounded domain.

2) The operator λ is compatible with the exterior ansatz. As we shall see in
Section 5, in the case of the exterior Stokes flow, it is suitable to set λ(u+, p+) =
−σn(u+, p+) on Γ (in the distributional sense).

Let us finally note that if u = (u1, u2, u3), ui ∈ C2(Ω±), i = 1, 2, 3, div u = 0 in
Ω±, then

ν∆ui = 2ν
3∑

j=1

∂Dij(u)

∂xj
in Ω± . (1.6)

2 Function spaces

In order to reformulate the problem (1.3) in a weak sense, we introduce some function

spaces (for details see, e.g. [17]). The symbols C∞(Ω−) and C∞(Ω
−
) denote the

spaces of infinitely differentiable functions in Ω− and Ω
−
, respectively. Further, we

set C∞
0 (Ω−) = {v ∈ C∞(Ω

−
); supp v ⊂ Ω−} and C∞

0 (Ω− ∪ Γ) = {v ∈ C∞(Ω
−
);

supp v ⊂ Ω− ∪Γ} (supp v denotes the support of v). Similarly we define the spaces

C∞(Ω+), C∞(Ω
+
) and set C∞

0 (Ω+) = {v ∈ C∞(Ω
+
); supp v ⊂ Ω+ is bounded}.

By L2(Ω±) we denote the Lebesgue space of square integrable functions over Ω±.
The norm in L2(Ω±) will be denoted by ‖ ·‖0,Ω±. Similarly we define the space L2(Γ)
and denote its norm by ‖ · ‖0,Γ.

By H1(Ω−) we denote the Sobolev space W 1,2(Ω−) equipped with the norm

‖u‖1,Ω− =
( ∫

Ω−

(|u|2 + |∇u|2)dx
)1/2

, u ∈ H1(Ω−) . (2.1)

The trace of a function u ∈ H1(Ω−) on Γ will be denoted by γ0u. Hence, γ0 :
H1(Ω−) → L2(Γ). We put H1

0 (Ω
−) = closure of C∞

0 (Ω−) in H1(Ω−) = {v ∈

6



H1(Ω−); v|∂Ω− = 0}. Further, we will work with the Sobolev-Slobodetskii space
H1/2(Γ) = W 1/2,2(Γ) (cf. [17], Par. 6.8), which can be characterized as

H1/2(Γ) = {γ0 u; u ∈ H1(Ω−)} . (2.2)

The norm in H1/2(Γ) will be denoted by ‖ · ‖1/2,Γ. The symbol H−1/2(Γ) will denote
the dual of H1/2(Γ). In H−1/2(Γ) we define the norm by

‖ϕ‖−1/2,Γ = sup
0%=v∈H1/2(Γ)

〈ϕ, v〉

‖v‖1/2,Γ
, ϕ ∈ H−1/2(Γ) , (2.3)

where 〈·, ·〉 is the duality pairing between H−1/2(Γ) and H1/2(Γ) induced by the
L2(Γ)-scalar product. This means that 〈ϕ, v〉 is the value of the functional ϕ ∈
H−1/2(Γ) at the point v ∈ H1/2(Γ) and

〈ϕ, v〉 =

∫

Γ

ϕv dS for ϕ ∈ L2(Γ), v ∈ H1/2(Γ) .

H1/2(Γ) is a reflexive, separable Banach space.

In order to analyze the problem in Ω+, we define the weighted Sobolev space

W 1(Ω+) =
{
u; (1 + |x|2)−1/2 u ∈ L2(Ω+),

∂u

∂xi
∈ L2(Ω+), i = 1, 2, 3

}
, (2.4)

equipped with the norm

‖u‖1,Ω+ =
{∫

Ω+

(1 + |x|2)−1 |u(x)|2dx+ |u|21,Ω+

}1/2
, (2.5)

where the seminorm | · |1,Ω+ reads

|u|1,Ω+ =
( ∫

Ω+

|∇u|2dx
)1/2

. (2.6)

By [5], Theorem 1, page 118, | · |1,Ω+ is a norm on W 1(Ω+) equivalent to the norm
‖ · ‖1,Ω+ .

The space H1/2(Γ) can be interpreted as the space of traces of all u ∈ W 1(Ω+).
The trace of u ∈ W 1(Ω+) on Γ will be again denoted by γ0 u. In what follows, it
will be convenient to use in H1/2(Γ) the norm

‖u0‖1/2,Γ = inf
u∈W 1(Ω+)
γ0 u=u0

‖u‖1,Ω+, u0 ∈ H1/2(Γ) , (2.7)
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equivalent to the Sobolev-Slobodetskii norm defined in H1/2(Γ) (cf. [17], Theorems
6.8.13, 6.9.2).

Further, we put

W 1
0 (Ω

+) = closure of C∞
0 (Ω+) in W 1(Ω+) . (2.8)

With the aid of the partition of unity and regularization we can show that

W 1
0 (Ω

+) = {v ∈ W 1(Ω+); γ0 v = 0 on Γ} . (2.9)

In the sequel we will work with 3-dimensional vector valued functions. To this
end, for a Banach space X with a norm ‖ · ‖ we define the space X = X3 =
X ×X ×X = {u = (u1, u2, u3); ui ∈ X , i = 1, 2, 3} equipped with the norm

‖u‖ =
( 3∑

i=1

‖ui‖
2
)1/2

, u = (u1, u2, u3) ∈ X . (2.10)

In this way we introduce the spaces L2(Ω±), L2(Γ), H1(Ω−), W 1(Ω+), H1/2(Γ) etc.,
equipped with norms defined by (2.10) and denoted by ‖ · ‖0,Ω±, ‖ · ‖0,Γ, ‖ · ‖1,Ω−,
‖ · ‖1,Ω+ , ‖ · ‖1/2,Γ etc. The scalar product in L2(Ω−) is defined as

(u, v)0,Ω− =

∫

Ω−

3∑

i=1

ui vi dx ,

u = (u1, u2, u3), v = (v1, v2, v3) ∈ L2(Ω−)

(2.11)

(similarly for L2(Ω+) and L2(Γ)).

Now let us define subspaces of H1(Ω−) and W 1(Ω+) associated with the analysis
of viscous flow in Ω− and Ω+:

V(Ω−) = {v ∈ C∞
0 (Ω− ∪ Γ) : div v = 0 in Ω−} , (2.12)

V (Ω−) = closure of V(Ω−) in H1(Ω−) , (2.13)

V 1(Ω
−) = {v ∈ H1(Ω−) : v|Γ0

= 0, div v = 0 in Ω−} . (2.14)

Let us notice that ∫

Γ

v · n dS = 0 ∀v ∈ V 1(Ω
−) . (2.15)

Lemma 2.1. We have V 1(Ω−) = V (Ω−).
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Proof:

a) Obviously, V := V (Ω−) ⊂ V 1 := V 1(Ω−).

b) Let us prove that V 1 ⊂ V . Pick v ∈ V 1. Then g := γ0 v = v|Γ ∈ H1/2(Γ) and, by
(2.15), ∫

Γ

g · n dS = 0 .

Consider a bounded domain Ω∗ ⊂ Ω+ with ∂Ω∗ = Γ ∪ Γ∗, where Γ∗ is a sufficiently
large sphere and Γ lies in the interior of Γ∗. Let us set g|Γ∗ = 0. Then, by [12],

Lemma 2.2, page 24, there exists v∗ ∈ H1(Ω∗) such that v∗|∂Ω∗ = g and div v∗ = 0
in Ω∗. Hence, γ0 v∗ = γ0 v on Γ.

For the bounded domain Ω̃ = Ω− ∪ Ω∗ ∪ Γ we define

V(Ω̃) = {v ∈ C∞
0 (Ω̃); div v = 0 in Ω̃} ,

V 1(Ω̃) = {v ∈ H1
0(Ω̃); div v = 0 in Ω̃} .

By [12], Corollary 2.5, page 26, the space V(Ω̃) is dense in V 1(Ω̃).

If we define w : Ω̃ → lR3 so that

w|Ω− = v, w|Ω∗ = v∗ ,

then w ∈ V 1(Ω̃). By the density of V(Ω̃) in V 1(Ω̃), there exists a sequence wn ∈ V(Ω̃)
such that

‖wn − w‖1,Ω̃ → 0 as n → ∞ . (2.16)

Now we put vn = wn|Ω− ∈ V(Ω−). Then (2.16) implies that

‖vn − v‖1,Ω− → 0 as n → ∞ ,

which means v ∈ V . Hence V 1 ⊂ V . !

With respect to (2.15), we set

H1/2
0 (Γ) =

{
v ∈ H1/2(Γ);

∫

Γ

v · n dS = 0
}
, (2.17)

which is a closed subspace of H1/2(Γ).

In analogy to (2.12) - (2.14) we introduce the following spaces:

W (Ω+) = {v ∈ W 1(Ω+); div v = 0 in Ω+} ,

V0(Ω+) = {v ∈ C∞
0 (Ω+); div v = 0 in Ω+} ,

V 0(Ω+) = closure of V0(Ω+) in W 1(Ω+) ,

V 01(Ω+) = W (Ω+) ∩W 1
0(Ω

+) .

(2.18)
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It is possible to show that γ0 v = 0 on Γ for v ∈ V 01(Ω+) or v ∈ V 0(Ω+).

Comparing our definitions with [10], Volume I, Par. II.5 (Theorem 5.1) and Par.
III.5, we find that the spaces W 1(Ω+), W 1

0(Ω
+), V 01(Ω+) and V 0(Ω+) can be iden-

tified with Galdi’s spaces D1,2(Ω+), D1,2
0 (Ω+), D̂1,2

0 (Ω+) and D1,2
0 (Ω+), respectively.

Then, by [10], Volume I, Par. III.5, page 160, we have

Lemma 2.2. It holds
V 01(Ω

+) = V 0(Ω
+) .

!

Lemma 2.3. For any u0 ∈ H1/2
0 (Γ) there exists an extension Ru0 ∈ W (Ω+) such

that γ0(Ru0) = u0. Moreover, there exists c1 > 0 such that

inf
v∈V0(Ω+)

‖Ru0 + v‖1,Ω+ ≤ c1 ‖u0‖1/2,Γ ∀u0 ∈ H1/2
0 (Γ) . (2.19)

Proof: Let Ω∗ be defined in the same way as in the proof of Lemma 2.1. Then
∂Ω∗ = Γ ∪ Γ∗, Γ∗ ⊂ Ω+. We define g : ∂Ω∗ → lR3 so that

g|Γ = u0 ∈ H1/2
0 (Γ), g|Γ∗ = 0 .

In virtue of [12], Lemma 2.2, page 24, there exists R∗u0 ∈ H1(Ω∗) such that
R∗u0|∂Ω∗ = g, div(R∗u0) = 0 in Ω∗ and

inf{‖R∗u0 + v∗‖1,Ω∗ ; v∗ ∈ H1
0(Ω

∗), div v∗ = 0 in Ω∗} ≤ c1‖u0‖1/2,Γ

with c1 independent of u0. Denoting by Ru0 and v the extension of R∗u0 and v∗

by zero outside Γ∗, we see that Ru0 ∈ W (Ω+) is the sought function, and that
v ∈ V 0(Ω+) and

inf
v∈V0(Ω+)

‖Ru0 + v‖1,Ω+ ≤

≤ inf {‖Ru0 + v‖1,Ω+ ; v ∈ V 0(Ω+), v = 0 outside Γ∗}

= inf {‖R∗u0 + v∗ ‖1,Ω∗ ; v∗ ∈ H1
0(Ω

∗), div v∗ = 0 in Ω∗}

≤ c1 ‖u0‖1/2,Γ .
!

3 Weak formulation

Let (u−, p−) and (u+, p+) satisfy (1.3a - i). Multiplying (1.3b) rewritten with the aid
of (1.6) by an arbitrary v ∈ V(Ω−), integrating over Ω−, applying Green’s theorem
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and using (1.3i) and the relations div v = 0 in Ω− and v|Γ0
= 0, we obtain the

identity

2ν

∫

Ω−

3∑

i,j=1

Dij(u
−)Dij(v)dx+

∫

Ω−

3∑

i,j=1

u−
j

∂u−
i

∂xj
vidx

−
1

2

∫

Γ

|u−|2v · n dS +

∫

Γ

λ(u+, p+) · v dS

=

∫

Ω−

f · vdx ,

(3.1)

which can be written in the abstract form

a(u−, v) + 〈λ(u+, p+), γ0v〉 = (f, v)0,Ω− , v ∈ V(Ω−) , (3.2)

where

a(u, v) = a0(u, v) + a1(u, u, v) + a2(u, u, v) ,

a0(u, v) = 2ν

∫

Ω−

3∑

i,j=1

Dij(u)Dij(v)dx ,

a1(u, w, v) =

∫

Ω−

3∑

i,j=1

uj
∂wi

∂xj
vidx ,

a2(u, w, v) = −
1

2

∫

Γ

(u · w)(v · n)dS ,

u = (u1, u2, u3) , v = (v1, v2, v3) , w = (w1, w2, w3) ∈ C1(Ω̄−)

(3.3)

(here n denotes the outer unit normal to ∂Ω− on Γ). These forms have the following
properties:

Lemma 3.1. The forms a0, a1, a2 are defined for all u, v, w ∈ H1(Ω−). The form
a0 is a continuous bilinear form on H1(Ω−) × H1(Ω−) and a1, a2 are continuous
trilinear forms on H1(Ω−) ×H1(Ω−)× H1(Ω−). If f ∈ L2(Ω−), then the mapping
“v ∈ H1(Ω−) → (f, v)0,Ω− ∈ lR” is a continuous linear functional on H1(Ω−).
Provided λ(u+, p+) ∈ H−1/2(Γ), the mapping “v ∈ H1(Ω−) → 〈λ(u+, p+), γ0v〉 ∈
lR” is a continuous linear functional on H1(Ω−).

Proof: The properties of a0, a1 and (f, v)0,Ω− are well-known (see, e.g., [6], [12],
[25]). The properties of a2 follow from the continuous imbedding of H1(Ω−) into
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L3(Γ) (cf. [17], Par. 6.5). This and the Hölder inequality imply that for u, v, w ∈
H1(Ω−),

|a2(u, v, w)| ≤
1

2

(∫

Γ

|γ0u|
3dS

)1/3(∫

Γ

|γ0v|
3dS

)1/3(∫

Γ

|γ0w|
3dS

)1/3

≤ c‖u‖1,Ω−‖v‖1,Ω−‖w‖1,Ω−

with a constant c independent of u, v, w. The linearity of a2 with respect to u, v, w
is clear. The assertion on 〈λ(u+, p+), γ0v〉 is an immediate consequence of the trace
theorem for functions from H1(Ω−). !

In what follows, we denote by 〈·, ·〉Ω− the duality pairing between V (Ω−) and
the dual V (Ω−)∗ of V (Ω−). We will assume that f ∈ V (Ω−)∗.

The above considerations lead us to the formulation of a generalized problem

in Ω−:

Given f ∈ V (Ω−)∗, λ(u+, p+) ∈ H−1/2(Γ), find u− : Ω− → lR3 satisfying the
conditions

u− ∈ V (Ω−) , (3.4a)

a(u−, v) + 〈λ(u+, p+), γ0v〉 = 〈f, v〉Ω− ∀v ∈ V (Ω−) . (3.4b)

Remark 3.2. In virtue of [12], Chap. I, Theorem 2.3, to the solution u− of problem
(3.4) there exists a function p− ∈ L2(Ω−), unique up to an additive constant, such
that u−, p− satisfy (1.3b) in the sense of distributions in Ω−. !

We proceed similarly in Ω+. Let us assume for now that u0 = u−|Γ is known and

u0 ∈ H1/2
0 (Γ). The constant function Ω+ 1 x 2−→ u∞, is a solution of the Stokes

system (1.3e - f) with zero pressure and satisfies condition (1.3g). Hence, for u+, p+

from (1.3), the couple (u+ − u∞, p+) is also a solution of (1.3e - f):

−ν∆(u+ − u∞) +∇p+ = 0 in Ω+ , (3.5a)

div (u+ − u∞) = 0 in Ω+ . (3.5b)

Moreover, ∫

Γ

u∞ · ndS = 0

and, thus, u0 − u∞ ∈ H1/2
0 (Γ). In virtue of Lemma 2.3, there exists a function

R(u0 − u∞) ∈ W (Ω+) with γ0R(u0 − u∞) = (u0 − u∞).

12



Multiplying (3.5a) by any v ∈ V0(Ω+), integrating over Ω+, using Green’s theo-
rem and the fact that div v = 0 and supp v ⊂ Ω+ is compact, we find that

∫

Ω+

3∑

i,j=1

∂(u+
i − u∞i)

∂xj

∂vi
∂xj

dx = 0 , v = (v1, v2, v3) ∈ V0(Ω
+).

This leads to the weak formulation of the exterior problem in Ω+: Given
u0 ∈ H1/2

0 (Γ), find u+ : Ω+ → lR3 such that

(u+ − u∞)− R(u0 − u∞) ∈ V 0(Ω
+) , (3.6a)

a+(u+ − u∞, v) = 0 ∀v ∈ V 0(Ω
+) (3.6b)

where

a+(z, v) = ν

∫

Ω+

3∑

i,j=1

∂zi
∂xj

∂vi
∂xj

dx , z , v ∈ W 1(Ω+) . (3.7)

Notice that (3.6a) implies that u+ − u∞ ∈ W (Ω+) and u+ ∈ H1(Ω̃) for any
bounded domain Ω̃ ⊂ Ω+. Hence, γ0u+ is well defined and γ0u+ = γ0(u+ − u∞) +
u∞ = u0.

We can immediately formulate the following result:

Lemma 3.3. a+ is a continuous, W 1(Ω+)−elliptic bilinear form.

By [5], Proposition 3, page 155 and [10], Volume I, Section V, Lemma 1.1, it
holds:

Lemma 3.4. If u+ is a solution of Problem 3.6, then there exists a uniquely deter-
mined pressure p+ ∈ L2(Ω+) such that

a+(u+ − u∞, v)−

∫

Ω+

p+ div v dx = 0 ∀v ∈ W 1
0(Ω

+) . (3.8)

Moreover, there exists a constant c2 > 0 independent of u+ such that

‖p+‖0,Ω+ ≤ c2‖u
+ − u∞‖1,Ω+ . (3.9)

!

Now we introduce the following concept:

Definition 3.5. We define a weak solution of problem (1.3) as a couple of
functions u− : Ω− → lR3 and u+ : Ω+ → lR3 satisfying conditions (3.4), (3.6) and

u0 = γ0u
− . (3.10)
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In what follows we will be concerned with the existence of a weak solution de-
fined in 3.5. Simultaneously we will solve the problem how to specify the operator
λ(u+, p+) in the transmission condition (1.3i). Assuming for now that u− is known,
we solve problem (3.6) with the boundary condition on Γ given by (3.10). Let us
suppose that the solution u+ of (3.6) and the pressure p+ associated with u+ by
Lemma 3.4 allow us to express λ(u+, p+). Then, as we see, λ(u+, p+) is a function
of u0 = γ0u−:

λ(u+, p+) = Λ(γ0u
−) . (3.11)

The continuous, linear mapping Λ acting fromH1/2
0 (Γ) intoH−1/2(Γ) via the solution

of the exterior Stokes problem (3.6) is called the Steklov-Poincaré operator.

With the aid of the Steklov-Poincaré operator Λ, problem 3.5 is reformulated in
the following way:

Abstract generalized problem. Given Λ : H1/2
0 (Γ) → H−1/2(Γ) and f ∈

V (Ω−)∗, find u− : Ω− → lR3 such that

u− ∈ V (Ω−) , (3.12a)

a(u−, v) + 〈Λ(γ0u
−), γ0v〉 = 〈f, v〉Ω− ∀v ∈ V (Ω−). (3.12b)

The form a is defined by (3.3).

Remark 3.6. The choice of the operator Λ is governed by the same criteria as the
choice of the mapping λ (see Section 1). We require that

1) problem (3.12) has at least one solution,

2) operator Λ is compatible with the exterior problem (3.6).

Of course, the choice of Λ (and λ) should also be reasonable from the physical point
of view.

In order to satisfy the first requirement, we discuss next the solvability of the
abstract problem (3.12).

4 Existence of a solution of the abstract problem

First we establish some important properties of the forms a1 and a2 from (3.3).

Lemma 4.1. For all u, v ∈ V (Ω−) we have

a1(u, v, v) = −a2(v, v, u). (4.1)
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Proof: Since a1, a2 are continuous trilinear forms on V (Ω−)× V (Ω−)× V (Ω−) and
V(Ω−) is dense in V (Ω−) (cf. (2.13) and Lemma 3.1), it is sufficient to prove (4.1)
for u, v ∈ V(Ω−). For such functions Green’s theorem implies that

a1(u, v, v) =

∫

Ω−

3∑

i,j=1

uj
∂vi
∂xj

vidx =
1

2

∫

Ω−

3∑

i,j=1

uj
∂v2i
∂xj

dx

=
1

2

∫

Γ

3∑

i,j=1

v2i ujnjdS −
1

2

∫

Ω−

3∑

i=1

v2i

3∑

j=1

∂uj

∂xj
dx

= −a2(v, v, u) ,

since v|Γ0
= 0 and div u = 0 in Ω−. !

Corollary 4.2. For u, v, w ∈ V (Ω−) we have

a1(u, v, w) = −a1(u, w, v)− a2(v + w, v + w, u) + a2(v, v, u) + a2(w,w, u) . (4.2)

Proof: From the trilinearity of a1 it follows that a1(u, v + w, v +w) = a1(u, v, v) +
a1(u, v, w) + a1(u, w, v) + a1(u, w, w). Now, (4.1) immediately yields (4.2). !

Lemma 4.3. Let us define the form

b(u, v, w) = a1(u, v, w) + a2(u, v, w) , u, v, w ∈ H1(Ω−) . (4.3)

Then it holds: If u, v, un ∈ V (Ω−) , n = 1, 2, . . . , un → u weakly in V (Ω−) as
n → ∞, then

b(un, un, v) → b(u, u, v) as n → ∞ . (4.4)

Proof: The proof is a consequence of the compact imbeddingsH1(Ω−) ↪→↪→ L2(Ω−)
and H1(Ω−) ↪→↪→ L3(Γ) (cf. [17], Par. 5.8.1, 6.10.5]). Hence,

un → u strongly in L2(Ω−) as n → ∞ (4.5)

and
γ0u

n → γ0u strongly in L3(Γ) as n → ∞ . (4.6)

In virtue of (4.2) and (4.3),

b(un, un, v) = − a1(un, v, un)−

− a2(un + v, un + v, un) + a2(un, un, un)+

+ a2(v, v, un) + a2(un, un, v) .

(4.7)
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The convergence

a1(u
n, v, un) → a1(u, v, u) as n → ∞ (4.8)

can be proved in a standard way as, e.g., in [12], page 286 or [6], Lemma 8.4.16: If
v ∈ V(Ω−), then

|a1(un, v, un)− a1(u, v, u)| =
∣∣∣
∫

Ω−

3∑

i,j=1

(un
j u

n
i − ujui)

∂vi
∂xj

dx
∣∣∣ ≤

≤ c(v)

∫

Ω−

3∑

i,j=1

|(un
j u

n
i − ujui)|dx → 0

due to (4.5). Then (4.8) holds for any v ∈ V (Ω−) as follows from the density of
V(Ω−) in V (Ω−), continuity of a1 and boundedness of the sequence {un}.

Furthermore, as a consequence of (4.6) we find that

a2(un + v, un + v, un) → a2(u+ v, u+ v, u) ,

a2(un, un, un) → a2(u, u, u) ,

a2(v, v, un) → a2(v, v, u) ,

a2(un, un, v) → a2(u, u, v) .

(4.9)

Let us establish, e.g., the last limit in (4.9). Using (3.3) and the Hölder inequality,
we find that

|a2(un, un, v)− a2(u, u, v)|

≤ |a2(un, un, v)− a2(un, u, v)|+ |a2(un, u, v)− a2(u, u, v)|

=
1

2

∣∣∣
∫

Γ

[un · (un − u)](v · n)dS
∣∣∣+ 1

2

∣∣∣
∫

Γ

[(un − u) · u](v · n)dS
∣∣∣

≤
1

2

(∫

Γ

(|un|3 + |u|3)dS
)1/3(∫

Γ

|un − u|3 dS
)1/3( ∫

Γ

|v|3 dS
)1/3

→ 0

for n → ∞, as follows from (4.6) and the boundedness of the sequence {γ0un} in
L3(Γ). The other limits in (4.9) can be proved in a similar way. Now (4.7) - (4.9)
imply (4.4). !

Now we are in position to prove the following existence result for the abstract,
generalized problem (3.12).
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Theorem 4.4. Let ν > 0 and f ∈ V (Ω−)∗ be given and let Λ : H1/2
0 (Γ) → H−1/2(Γ)

be a weakly sequentially continuous and weakly noncoercive mapping, i.e.,

zn, z ∈ H1/2
0 (Γ), zn → z weakly in H1/2(Γ) as n → ∞

⇒ 〈Λ(zn), w〉 → 〈Λ(z), w〉 ∀w ∈ H1/2 as n → ∞ ,
(4.10)

and there exist constants c3 ∈ lR and c4 ≥ 0 such that

〈Λ(z), z〉 ≥ c3 − c4‖z‖1/2,Γ ∀z ∈ H1/2
0 (Γ) , (4.11)

respectively. Then Problem (3.12) has at least one solution u− ∈ V (Ω−) .

Proof: We proceed analogously as in [12], Theorem 1.2, page 280 or [6], Par. 8.4.20.

There exists a sequence {wi}∞i=1 ⊂ V(Ω−) of linearly independent elements such
that

V (Ω−) = closure of
∞⋃

k=1

Xk in H1(Ω−) , (4.12)

where
Xk = [w1, . . . , wk] (4.13)

is the linear space spanned by the set {w1, . . . , wk}. Xk can be considered as a
finite-dimensional Hilbert space equipped with the scalar product

(
(u, v)

)
=

∫

Ω−

3∑

i,j=1

∂ui

∂xj

∂vi
∂xj

dx (4.14)

defined in V (Ω−).

For any k = 1, 2, . . . , let uk ∈ Xk satisfy

a(uk, wi) + 〈Λ(γ0u
k), γ0w

i〉 = 〈f, wi〉Ω− , i = 1, . . . , k. (4.15)

Since

uk =
k∑

j=1

ξkjw
j , ξkj ∈ lR , (4.16)

conditions (4.15) represent a system of k nonlinear algebraic equations with respect
to the unknowns ξk1 , . . . , ξ

k
k . First, let us prove the existence of the solution uk of

(4.15).
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By Lemma 3.4 and the trace theorem, for any fixed u ∈ Xk, the mapping
“v ∈ Xk → a(u, v) + 〈Λ(γ0u), γ0v〉 − 〈f, v〉Ω− ∈ lR” is a continuous linear functional
on Xk. By the Riesz representation theorem, there exists P k(u) ∈ Xk such that

(
(PP k(u), v)

)
= a(u, v) + 〈Λ(γ0u), γ0v〉 − 〈f, v〉Ω− , u, v ∈ Xk . (4.17)

Hence, P k : Xk → Xk. From the properties of the form a and operator Λ it follows
that P k is continuous in Xk. Further, by (3.3), Lemma 4.1 and (4.11), we have

(
(P k(u), u)

)
= a0(u, u) + a1(u, u, u) + a2(u, u, u)

+ 〈Λ(γ0u), γ0u〉 − 〈f, u〉Ω−

≥ 2ν

∫

Ω−

3∑

i,j=1

|Dij(u)|
2dx+ c3 − c4‖γ0u‖1/2,Γ

− ‖f‖V (Ω−)∗‖u‖1,Ω− .

(4.18)

By the trace theorem, there exists c5 > 0 such that

‖γ0u‖1/2,Γ ≤ c5‖u‖1,Ω− , ∀u ∈ H1(Ω−). (4.19)

In virtue of Korn’s inequality ([19], Par. 6.5, Theorem 3.1 and Par. 7.2.2, Lemma
2.1), there exists c6 > 0 such that

∫

Ω−

3∑

i,j=1

|Dij(u)|
2dx ≥ c6ν‖u‖

2
1,Ω− ,

u ∈ {v ∈ H1(Ω−); u|Γ0
= 0} ⊃ V (Ω−) .

(4.20)

From (4.18) - (4.20) we see that

(
(P k(u), u)

)
≥ 2ν c6ν‖u‖

2
1,Ω− − c‖u‖1,Ω− + c3 , u ∈ Xk ,

with some constant c ≥ 0. Hence, there exists K > 0 such that
(
(P k(u), u)

)
≥ 0 for

all u ∈ Xk with ‖u‖1,Ω− = K.

Now [6], Lemma 4.1.53 or [18], Chap. I, Par. 4.3, Lemma 4.3 imply that for
each k = 1, 2, . . . there exists at least one solution uk ∈ Xk with ‖uk‖1,Ω− ≤ K of
the equation P k(uk) = 0, equivalent to (4.15).

Hence, we get a sequence {uk}∞k=1 of solutions of (4.15), bounded in V (Ω−).
Since the space V (Ω−) is reflexive, there exists a subsequence (for simplicity again
denoted by {uk}∞k=1) and u ∈ V (Ω−) such that
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uk → u weakly in V (Ω−) ,

γ0uk → γ0u weakly in H1/2(Γ) ,

as k → ∞ .

(4.21)

Lemmas 3.1 and 4.3, assumption (4.10) and identity (4.15) imply that

a(u, wi) + 〈Λ(γ0u), γ0w
i〉 = 〈f, wi〉Ω− , i = 1, . . . , k , k = 1, 2, . . . .

In view of (4.12), we immediately get (3.12 b), which we wanted to prove. !

5 On the exterior Stokes problem and the associ-

ated Steklov-Poincaré operator

We start with the solvability of problem (3.6).

Theorem 5.1. There exists exactly one solution u+ of problem (3.6). This solution
is independent of the choice of the function R(u0 − u∞) satisfying the conditions

R(u0 − u∞) ∈ W (Ω+) , γ0R(u0 − u∞) = u0 − u∞ on Γ. (5.1)

There exists a constant c7 > 0 independent of u0 and u∞ such that

‖u+ − u∞‖1,Ω+ ≤ c7‖u0 − u∞‖1/2,Γ . (5.2)

Proof:

a) The solution of interest can be written in the form

u+ = z+ +R(u0 − u∞) + u∞ with z+ ∈ V 0(Ω
+) (5.3)

and problem (3.6) is equivalent to finding z ∈ V 0(Ω+) satisfying the identity

a+(z+, v) = −a+(R(u0 − u∞), v) ∀v ∈ V 0(Ω
+) . (5.4)

The Lax-Milgram lemma immediately yields the existence and uniqueness of such a
z+.

b) Let us show that u+ defined by (5.3) and (5.4) is independent of the choice of
R(u0−u∞) satisfying (5.1). Suppose we have Ri = Ri(u0−u∞) , i = 1, 2, satisfying
(5.1) and denote by u+

i the associated solutions of (3.6). Since γ0(R1−R2) = 0 on Γ,
we have R1 − R2 ∈ V 0(Ω+). Moreover, taking into account that u+

i satisfy (3.6 a),
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we see that u+
1 −u+

2 ∈ V 0(Ω+). Subtracting (3.6 b) for u+
i , i = 1, 2, and substituting

v := u+
1 − u+

2 , we obtain

|u+
1 − u+

2 |
2
1,Ω+ = a+(u+

1 − u+
2 , u

+
1 − u+

2 ) = 0 ,

which implies that u+
1 = u+

2 .

c) Finally we prove (5.2). By (5.4) with v := z+,

|z+|21,Ω+ = −a+(R(u0 − u∞), z+) ≤ |R(u0 − u∞)|1,Ω+ |z+|1,Ω+ .

Hence,
|z+|1,Ω+ ≤ |R(u0 − u∞)|1,Ω+ .

This, (5.3) and the equivalence of the norms | · |1,Ω+ and ‖ · ‖1,Ω+ on V 0(Ω+) imply
that there exists a constant c > 0 independent of u∞, u0 such that

‖u+ − u∞‖1,Ω+ ≤ ‖z+‖1,Ω+ + ‖R(u0 − u∞)‖1,Ω+ ≤ c‖R(u0 − u∞)‖1,Ω+ . (5.5)

If w ∈ V 0(Ω+), then R(u0 − u∞) + w satisfies (5.1). Replacing R(u0 − u∞) by
R(u0 − u∞) + w in (3.6), we obtain the same solution u+ of (3.6), as follows from
part b) of this proof. Hence, by (5.5), we have

‖u+ − u∞‖1,Ω+ ≤ c‖R(u0 − u∞) + w‖1,Ω+ ∀w ∈ V 0(Ω
+) ,

which means that

‖u+ − u∞‖1,Ω+ ≤ c inf
w∈V 0(Ω+)

‖R(u0 − u∞) + w‖1,Ω+ . (5.6)

Now, from (5.6) and Lemma 2.3 we immediately obtain (5.2) with c7 := cc1. !

Corollary 5.2. Inequality (5.2) implies that

‖u+ − u∞‖1,Ω+ ≤ c7
(
‖u0‖1/2,Γ + ‖u∞‖1/2,Γ

)
= c7

(
‖u0‖1/2,Γ + |u∞||Γ|1/2

)
, (5.7)

where |Γ| is the surface measure of Γ.

Lemma 5.3. Let u ∈ H1
loc(Ω

+) (i.e., u ∈ H1(Ω∗) for any bounded domain Ω∗ ⊂ Ω+)
and div u = 0 in Ω+. Then for i = 1, 2, 3

3∑

j=1

∂

∂xj

(∂ui

∂xj
+

∂uj

∂xi

)
= ∆ui in Ω+ (5.8)

in the sense of distributions. This means that

∫

Ω+

3∑

j=1

(∂ui

∂xj
+

∂uj

∂xi

) ∂v

∂xj
dx =

∫

Ω+

3∑

j=1

∂ui

∂xj

∂v

∂xj
dx ∀v ∈ C∞

0 (Ω+) . (5.9)
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Proof: Since u ∈ H1
loc(Ω

+), the definition of distribution derivatives implies that

∂

∂xj

(∂ui

∂xj

)
=

∂2ui

∂x2
j

,
∂

∂xj

(∂uj

∂xi

)
=

∂2uj

∂xi∂xj
=

∂2uj

∂xj∂xi
=

∂

∂xi

(∂uj

∂xj

)
.

Thus, since div u = 0, we immediately obtain (5.8), which is equivalent to (5.9). !

Corollary 5.4. Let u ∈ W (Ω+). Then,

2

∫

Ω+

3∑

i,j=1

Dij(u)Dij(v)dx =

∫

Ω+

3∑

i,j=1

∂ui

∂xj

∂vi
∂xj

dx ∀v ∈ W 1
0(Ω

+) . (5.10)

Proof: Since both sides of (5.9) considered as functions of v represent continuous
linear functionals on W 1

0 (Ω
+) and C∞

0 (Ω+) is dense in W 1
0 (Ω

+), (5.9) holds for all
v ∈ W 1

0 (Ω
+). If v = (v1, v2, v3) ∈ W 1

0(Ω
+), then substitution of v := vi in (5.9),

summation over i = 1, 2, 3 and a simple calculation yield (5.10). !

Further, let us give an extension of the expression σn(u+, p+) (defined in (1.5) for
smooth u+ and p+) to the solution u+ of problem (3.6) and the associated pressure
p+ (see Lemma 3.4). For simplicity we write u, p instead of u+ and p+.

Theorem 5.5. Let u ∈ H1
loc(Ω

+) , ∂ui
∂xj

, p ∈ L2(Ω+) (i, j = 1, 2, 3) and let the
distributions

2ν
3∑

j=1

∂

∂xj
Dij(u)−

∂p

∂xi
, i = 1, 2, 3 , (5.11)

satisfy the condition

(1 + |x|2)1/2
(
2ν

3∑

j=1

∂

∂xj
Dij(u)−

∂p

∂xi

)
∈ L2(Ω+) . (5.12)

Then the formula

〈σn(u, p), w〉 = − 2ν

∫

Ω+

3∑

i,j=1

Dij(u)Dij(v)dx+

∫

Ω+

p div vdx−

−

∫

Ω+

3∑

i=1

(
2ν

3∑

j=1

∂

∂xj
Dij(u)−

∂p

∂xi

)
vidx

(5.13)

for all w ∈ H1/2(Γ) and v ∈ W 1(Ω+) such that γ0v = w on Γ determines an element
from H−1/2(Γ) denoted by σn(u, p).
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Proof:

1) Let us consider the right-hand side of (5.13) as a function of v and denote it by
σ(v). In view of the assumptions of the theorem, for v ∈ W 1(Ω+), we find that

|σ(v)| ≤
∣∣∣2ν

∫

Ω+

3∑

i,j=1

Dij(u)Dij(v)dx
∣∣∣ +

∣∣∣
∫

Ω+

p div vdx|

+
∣∣∣
∫

Ω+

[
(1 + |x|2)1/2

3∑

i=1

(
2ν

3∑

j=1

∂

∂xj
Dij(u)−

∂p

∂xi

)]
·

· [(1 + |x|2)−1/2vi]dx
∣∣∣ ≤

≤ c|u|1,Ω+ |v|1,Ω+ + c‖p‖0,Ω+|v|1,Ω+

+
{ 3∑

i=1

‖
(
2ν

3∑

j=1

∂

∂xj
Dij(u)−

∂p

∂xi

)(
1 + |x|2

)1/2
‖20,Ω+

}1/2
·

·
{ 3∑

i=1

∫

Ω+

|vi(x)|2

1 + |x|2
dx

}1/2
≤ c̃‖v‖1,Ω+ .

(5.14)

We see that σ is a continuous linear functional on W 1(Ω+).

2) For a given w ∈ H1/2(Γ), σ(v) is independent of the choice of v ∈ W 1(Ω+) such
that γ0v = w on Γ. Actually, if v∗ , v∗∗ ∈ W 1(Ω+) and γ0v∗ = γ0v∗∗ = w, then
v∗ − v∗∗ ∈ W 1

0(Ω
+). By the definition of the distributions (5.11), σ(v) = 0 for all

v ∈ C∞
0 (Ω+). Since C∞

0 (Ω+) is dense in W 1
0(Ω

+), σ(v) = 0 for all v ∈ W 1
0(Ω

+) and,
thus, σ(v∗) = σ(v∗∗).

3) The above results imply that the conditions

φ(w) = σ(v) , w ∈ H1/2(Γ) , v ∈ W 1(Ω+) , γ0v = w (5.15)

properly define a linear functional φ : H1/2(Γ) → lR. To show that φ is continuous,
observe that by (5.14), (5.15) and (2.7),

|φ(w)| = inf
v∈W 1(Ω+)
γ0v=w

|σ(v)| ≤ c̃ inf
v∈W 1(Ω+)
γ0v=w

‖v‖1,Ω+ = c̃‖w‖1/2,Γ . (5.16)

This means that φ ∈ H−1/2(Γ). We shall denote it by σn(u, p) and, hence,
〈σn(u, p), w〉 = φ(w) for all w ∈ H1/2(Γ). !
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Remark 5.6. If u ∈ C2(Ω̄+)∩W 1(Ω+) and p ∈ C1(Ω̄+)∩L2(Ω+), then the functional
σn(u, p) from Theorem 5.5 coincides with σn(u, p) defined by (1.5) and

〈σn(u, p), w〉 =

∫

Γ

σn(u, p)wdS , w ∈ H1/2(Γ) . (5.17)

!

The above considerations lead us to the natural choice of the mapping Λ :
H1/2

0 (Γ) → H−1/2(Γ) in the abstract problem (3.12). For any given u0 ∈ H1/2
0 (Γ) we

construct the (unique) solution u+ of problem (3.6) and the pressure p+ uniquely
associated with u+ according to Lemma 3.4. Then, in view of (3.8) and the inclusion
C∞

0 (Ω+) ⊂ W 1
0(Ω

+),

2ν
3∑

j=1

∂Dij(u+)

∂xj
−

∂p+

∂xi
= 0 in Ω+ for i = 1, 2, 3 , (5.18)

in the sense of distributions. By Theorem 5.5, we define σn(u+, p+), which is the
distributional normal component of the stress tensor (1.5). Let us now set

Λ(u0) = λ(u+, p+) := −σn(u
+, p+) ∈ H−1/2(Γ) . (5.19)

With this choice of the operator Λ we get a ”weak form” of the transmission condition
(1.3i) on Γ corresponding in a natural way to the Stokes problem as an ansatz for
the flow outside Γ.

Definition 5.7. We call the mapping Λ defined by (5.13) and (5.19) the Steklov-

Poincaré operator associated with the exterior Stokes problem (3.6).
!

Now we establish basic properties of the Steklov-Poincaré operator Λ for the
exterior Stokes problem.

Theorem 5.8.

a) There exist constants c3 ∈ lR and c4 ≥ 0 such that

〈Λ(u0), u0〉 ≥ c3 − c4‖u0‖1/2,Γ ∀u0 ∈ H1/2
0 (Γ) . (5.20)

b) If zn, z ∈ H1/2
0 (Γ) , zn → z weakly in H1/2(Γ) as n → ∞, then

〈Λ(zn), w〉 → 〈Λ(z), w〉 as n → ∞ ∀w ∈ H1/2(Γ) .

Proof:

a) For u0 ∈ H1/2
0 (Γ) we denote by u+ and p+ the solution of problem (3.6) and the

pressure associated with u+ according to Lemma 3.4. In view of (3.6) and (5.18), the
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assumptions of Theorem 5.5 are satisfied for u := u+ and p := p+. Substituting in
(5.13) v := u+−u∞ ∈ W 1(Ω+) and using the relations div v = 0 in Ω+, γ0v = u0−u∞

on Γ, Dij(v) = Dij(u+), we find that

〈Λ(u0), u0 − u∞〉 = 2ν

∫

Ω+

3∑

i,j=1

|Dij(u
+)|2dx ≥ 0

and
〈Λ(u0), u0〉 ≥ 〈Λ(u0), u∞〉 . (5.21)

Since u∞ ∈ H1/2
0 (Γ), by Lemma 2.3 there exists Ru∞ ∈ W (Ω+) such that u∞ =

γ0Ru∞ on Γ and

inf
z∈V 0(Ω+)

‖Ru∞ + z‖1,Ω+ ≤ c1‖u∞‖1/2,Γ = c1|u∞||Γ|1/2 . (5.22)

With z ∈ V 0(Ω+) and v := Ru∞ + z, we get from (5.13) and the Cauchy inequality

〈Λ(u0), u∞〉 = 2ν

∫

Ω+

3∑

i,j=1

Dij(u
+ − u∞)Dij(Ru∞ + z)dx

≥ −2ν‖u+ − u∞‖1,Ω+‖Ru∞ + z‖1,Ω+ .

This, (5.22) and (5.7) imply that

〈Λ(u0), u∞〉 ≥ −2ν‖u+ − u∞‖1,Ω+ infz∈V 0(Ω+) ‖Ru∞ + z‖1,Ω+

≥ −2νc1c7
(
‖u0‖1/2,Γ + |u∞||Γ|1/2

)
|u∞||Γ|1/2 .

From here and (5.21) we immediately get (5.20).

b) Let Λ̂ be the Steklov-Poincaré operator associated with the exterior Stokes prob-

lem (3.6), where u∞ = 0. Then Λ̂ is a continuous linear operator on H1/2
0 (Γ). To

prove this, we consider ui
0 ∈ H1/2

0 (Γ) , i = 1, 2, and by ui+, pi+ we denote the solu-
tion of (3.6) with u∞ := 0 and u0 := ui

0 and the associated pressures (cf. Lemma
3.4). Then, for αi ∈ lR , i = 1, 2, the function ũ+ = α1u1+ + α2u2+ is the solution
of (3.6), where u∞ := 0 and u0 := α1u1

0 + α2u2
0. Moreover, p̃+ := α1p1+ + α2p2+ is

the pressure associated with ũ+. From the definition of Λ̂ (cf. (5.13) and (5.19)) we
see that

Λ̂(α1u
1+
0 + α2u

2+
0 ) = α1Λ̂(u

1+
0 ) + α2Λ̂(u

2+
0 ) ,

which means that Λ̂ is linear.

Further, we show that

‖Λ̂(u0)‖−1/2,Γ := sup
0%=w∈H1/2

(Γ)

〈Λ̂(u0), w〉

‖w‖1/2,Γ
≤ c8‖u0‖1/2,Γ ∀u0 ∈ H1/2

0 (Γ) (5.23)
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with a constant c8 ≥ 0 independent of u0. Let u+ be the solution of problem (3.6)

with u0 ∈ H1/2
0 (Γ), u∞ = 0 and let p+ be the pressure associated with u+ according

to Lemma 3.4. Using (5.18), (5.19) and (2.7), similarly as in the proof of Theorem
5.5 (where we set u := u+, p := p+), for any w ∈ H1/2(Γ) we get

〈Λ̂(u0), w〉 ≤ c(‖u+‖1,Ω+ + ‖p+‖0,Ω+) inf
v∈W1(Ω+)
γ0v=w

‖v‖1,Ω+ =

= c(‖u+‖1,Ω+ + ‖p+‖0,Ω+)‖w‖1/2,Γ .

(5.24)

For u∞ = 0 from (5.24), (5.2) and (3.9) we obtain (5.23).

Now let us consider an arbitrary u∞ ∈ lR3 and ui
0 ∈ H1/2

0 (Γ) , i = 1, 2. By ui+

we denote the solution of (3.6) and pi+ the pressure associated with ui+ according
to Lemma 3.4. Then u1+−u2+ is a solution of (3.6) with u∞ := 0 and u0 := u1

0−u2
0;

p1+ − p2+ is the corresponding pressure. From this, (5.13) and (5.19) we can see
that

Λ(u1
0)− Λ(u2

0) = Λ̂(u1
0 − u2

0) . (5.25)

Let w ∈ H1/2(Γ) , zn , z ∈ H1/2
0 (Γ) and zn → z weakly in H1/2(Γ) as n → ∞.

Denoting by Λ̂∗ the adjoint operator to Λ̂ and using (5.25), we have Λ̂∗w ∈ H−1/2(Γ)
(cf., e.g., [27], Chap VII, Theorem I) and

〈Λ(zn)− Λ(z), w〉 = 〈Λ̂(zn − z), w〉 = 〈Λ̂∗w, zn − z〉 → 0 as n → ∞ ,

which we wanted to prove. !

Summarizing the results in Theorems 4.4 and 5.8, we immediately get the exis-
tence of a weak solution of the coupled problem (1.3).

Theorem 5.9. Let ν > 0 , f ∈ V (Ω−)∗ and u∞ ∈ lR3 be given. If we define λ(u+, p+)
from the transmission condition (1.3i) by (5.19), then the coupled problem (1.3) has
at least one weak solution u−, u+, in the sense of Definition 3.5. !

Remark 5.10. As follows from the above considerations, we have constructed the
transmission operator Λ so that the requirements from Remark 3.6 are satisfied.
The numerical realization of Λ can be done, for example, with the representation
of the nonlocal boundary operator Λ with the aid of boundary integral equations
and the fast numerical realization by means of multiscale or multipole algorithms.
This will allow the numerical solution of problem (1.3) by the coupling of the
finite element method in Ω+ with the boundary element method on Γ,
successfully applied to a number of exterior problems (see, e.g., [2], [4], [7], [11],
[24], [26]).
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6 Remarks on coupling of the Navier-Stokes prob-

lem with an exterior potential flow

Experimental experience indicates that viscous effects are concentrated in many
cases in the so-called boundary layer, i.e., in the vicinity of walls which form the
boundary of the region occupied by the fluid, whereas outside the boundary layer
the flow field has an inviscid (and even irrotational) character. This was observed
already by L. Prandtl who proposed in [20] to investigate the flow of a real viscous
fluid with small viscosity via the use of an inviscid solution combined with the
solution of the viscous flow in the boundary layer. This suggests the idea to describe
the flow in the exterior domain Ω′ with the aid of the coupling of viscous flow in the
interior domain Ω− (containing the boundary layer) with inviscid flow in Ω+. This
approach was used e.g. in [21], where a simplified model problem of the coupling
of a linear viscous Stokes problem in Ω− with a linear inviscid Stokes problem in
Ω+ is investigated. As we shall show now, however, the coupling of Navier-Stokes
and potential flow is mathematically well-posed, but can lead nevertheless to some
paradoxical situations, from the physical point of view.

We are concerned with the complete Navier-Stokes system in Ω− coupled

with inviscid irrotational flow in the exterior domain Ω+. Since Ω+ is simply
connected in the sense of [6], Definition 2.1.18, for any velocity field u+ ∈ C1(Ω+)
satisfying the condition rot u+ = 0 in Ω+, there exists the velocity potential Φ ∈
C2(Ω+) (see [6], Theorem 2.1.34):

∇Φ = u+ in Ω+ . (6.1)
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Then the continuity equation is equivalent to the potential equation

∆Φ = 0 in Ω+ . (6.2)

The pressure p+ is determined by u+ with the aid of Bernoulli’s equation

p+ +
1

2
|u+|2 = c := p∞ +

1

2
|u∞|2 in Ω+ , (6.3)

where p∞ and u∞ are the pressure and velocity of the homogeneous flow at ∞.

So, in Ω− we consider the viscous system (1.3b - c) with the boundary condi-
tion (1.3d) and in Ω+ we use equation (6.2). We must specify the condition at ∞
(analogous to (1.3g)) and the transmission conditions on Γ (analogous to (1.3h - i)).

For a prescribed velocity u∞ at ∞ we define the corresponding velocity potential

Φ∞(x) = u∞ · x , x ∈ lR3 (6.4)

and the condition at ∞ will be written as

lim
|x|→∞

(
Φ(x)− Φ∞(x)

)
= 0 . (6.5)

In view of (6.1), condition (1.3h) reads u− = ∇Φ on Γ. However, this overdeter-
mines equation (6.2) and must be relaxed. Therefore, instead of (1.3h) we use the
transmission condition

u− · n = u+ · n =
∂Φ

∂n
on Γ . (6.6)

(∂/∂n is the derivative in the direction of the unit normal n to Γ pointing from Ω−

into Ω+.)

In order to modify condition (1.3i), we take into account that the viscous part
of the stress tensor vanishes for inviscid flow in Ω+. Further, system (6.1) - (6.3)
is equivalent to the inviscid system consisting of the Euler equations, continuity
equation and the condition rot u+ = 0 of irrotational flow. The dynamic pressure
p + 1/2|u|2 plays the same role for the Euler equations as for the Navier-Stokes
equations. This leads us to the transmission condition:

−(p− +
1

2
|u−|2)n+ 2νlD(u)nn = −(p+ +

1

2
|u+|2)n on Γ .

Using here Bernoulli’s equation (6.3), we obtain

−
(
p− +

1

2
|u−|2

)
n+ 2νlD(u)n+ cn = 0 on Γ . (6.7)
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On the basis of the above consideration, we arrive at the following classical for-
mulation of the viscous-inviscid coupled problem: Given ν > 0 , f , u∞ , p∞,
find u− ∈ C2(Ω̄−) , p− ∈ C1(Ω̄−) and Φ ∈ C2(Ω̄+) satisfying (1.3b - d), (6.2), (6.5),
(6.6), (6.7), with Φ∞ defined by (6.4) and c from (6.3).

As we see, the problem for u− and p− can be considered independently of the
problem for Φ. Having obtained u− , p− as a solution of (1.3b - d) and (6.7), we
solve the problem (6.2), (6.5), (6.6) for Φ. The weak formulation of the interior
problem (1.3b - d) can be written in the form of the abstract problem (3.12), where

Λ(u0) = cn for all u0 ∈ H1/2
0 (Γ). If Γ is Lipschitz-continuous, then cn ∈ L∞(Γ) ⊂

H−1/2(Γ). In virtue of Theorem 4.4, the viscous interior problem has at least one
weak solution u− ∈ V (Ω−).

The weak formulation of the exterior problem (6.2), (6.5), (6.6) reads:
Find Φ : Ω+ → lR satisfying the conditions

Φ− Φ∞ ∈ W 1(Ω+) , (6.8a)

∫

Ω+

∇(Φ− Φ∞) ·∇vdx =

∫

Γ

(u− − u∞) · nvdS ∀v ∈ W 1(Ω+) . (6.8b)

With the aid of the Lax-Milgram lemma follows the existence and uniqueness of
the solution of problem (6.8).

In summary, the nonlinear coupled problem (1.3b - 1.3d), (6.7) and (6.2), (6.5),
(6.6) admits at least one weak solution and is therefore well-posed from a mathe-
matical point of view. However, essential physical features may have been lost by
adopting exterior potential flow in the far field. More precisely, (6.7) implies that
Λ(γ0u−) in (3.12b) is given by

Λ = cn, c = p∞ +
1

2
|u∞|2

and hence that for all v ∈ V (Ω−)

〈Λ(γ0u
−), γ0v〉 = 〈cn, γ0v〉 = c(∇ · v, 1)Ω− = 0 .

Therefore we deduce that u− satisfies (1.3b - 1.3d) and the homogeneous Neumann
boundary condition

σn(u
−, p−)−

1

2
|u−|2 n = 0 on Γ ,

and, in particular, that u− is independent of u∞, p∞. If, moreover, f = 0 in
(1.3b), we get u− = 0 and the exterior problem becomes potential flow around
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the artificial, impermeable (since 0 = u− · n = ∂Φ
∂n on Γ) obstacle Γ. Therefore the

coupling of Navier-Stokes with exterior potential flow is pathological from a physical
point of view and should not be used, even though it gives rise to a mathematically
well-posed coupled problem.

7 Conclusion

Our above considerations clear up in some sense the problem of the choice of suit-
able boundary conditions on the artificial boundary Γ, when we decide to truncate
problem (1.1) to a bounded domain Ω−. As we see, the general form of a suitable
artificial boundary condition prescribed on Γ for the interior problem in Ω− reads

−
(
p− +

1

2
|u−|2

)
n+ 2νlD(u−)n+ Λ(u−) = 0 on Γ . (7.1)

The operator Λ is defined according to the approximation of the flow outside Γ.

As we have shown in the case of exterior potential flow, care must be taken in
the selection of the flow model in Ω+, since not every mathematically well-posed
model gives rise to physically meaningful results.

A similar approach can also be used in the case of a channel flow when the
problem in an infinite channel is truncated to one in a bounded channel separated
from the unbounded parts by surfaces Γ. Then condition (7.1) can again be used. It
involves various artificial boundary conditions proposed, e.g., in [3], [14]. According
to Remark 3.6, the choice of Λ should guarantee the existence of a solution of the
interior problem in Ω− with the artificial boundary condition (7.1). In this paper
we have proposed and analyzed two possibilities of the construction of the operator
Λ satisfying this requirement.
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[23] R.L. Sani, P.M. Gresho: Résumé and remarks on the open boundary condition
minisymposium. Int. J. Numer. Meth. Fluids, 18, (1994), 983-1008.

[24] A. Sequeira: The coupling of boundary integral and finite element methods for
the bidimensional exterior steady problems. Math. Meth. in the Appl. Sci., 5,
(1983), 356-375.

[25] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-
Oxford, (1977).

31



[26] W.L. Wendland: On asymptotic error estimates for the combined BEM and
FEM. In: Finite Element and Boundary Element Techniques from Mathemat-
ical and Engineering Point of View (E. Stein and W.L. Wendland, eds.), CISM
Lecture Notes 30, Springer-Verlag, Wien-New York, (1988), 273-333 .

[27] K. Yosida: Functional Analysis. Springer-Verlag, New York, (1974).

[28] A. Zaretti: Soluzioni stazionarie di un problema non lineare per le equazioni
di Navier-Stokes. Instituto Lombardo, Accademia di Scienze e Lettere, Estratto
dai Rendiconti, Classe di Scienze (A), 106, (1972), 354-464.

32



Research Reports

No. Authors Title

96-07 M. Feistauer, C. Schwab On coupled problems for viscous flow in ex-
terior domains

96-06 J.M. Melenk A note on robust exponential convergence
of finite element methods for problems with
boundary layers

96-05 R. Bodenmann,
H.J. Schroll

Higher order discretisation of initial-bound-
ary value problems for mixed systems

96-04 H. Forrer Boundary Treatment for a Cartesian Grid
Method

96-03 S. Hyvönen Convergence of the Arnoldi Process when
applied to the Picard-Lindelöf Iteration
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