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Abstract

We are interested in a numerical solution to the Euler Equations in com-

plicated 2-dimensional geometries using a Cartesian grid method. To avoid

stability problems or loss of accuracy along the boundary, this requires a spe-

cial treatment of the irregular cells along the boundary.

In this paper we present a new technique for the boundary treatment. The

technique is built upon a high resolution finite volume method with dimen-

sional splitting. To avoid stability problems for small boundary cells due to

instable fluxes, we use an enlargement of the domain of dependence. The

enlarged domains may lie beyond the boundary. By a local mirroring at the

boundary we determine values of the flow variables also for these regions. This

enables us to calculate stable fluxes for the small boundary cells. These fluxes

are formally of second order accuracy.

Among other examples we calculate a Prandtl-Meyer expansion, a double

Mach reflection and a shock diffraction by a pair of cylinders. The latter ex-

ample points to a major advantage of Cartesian grid methods, the ability to

cope with complicated geometries.



1 Introduction

Consider the Euler Equations in two space dimensions, a system of hyperbolic partial
differential equations:

Ut + Fx +Gy = 0, (1)

U =











ρ
ρu
ρv
ρe











, F =











ρu
ρu2 + p
ρuv

u(ρe+ p)











, G =











ρv
ρuv

ρv2 + p
v(ρe+ p)











,

p = (γ − 1)(ρe−
1

2
ρ(u2 + v2)).

Where ρ is the mass density, (u, v)T the velocity vector, e the energy density, p the
pressure and γ = 1.4. These equations (1) describe inviscid compressible flows. We
are interested in such a flow field about some arbitrary body. Therefore we need a
discretization of the space. The method should be built upon existing finite volume
methods. For the discretization we use a Cartesian grid. To do this, let h be a grid
parameter and set the points (xi, yj) as xi = x0 + h · i, yj = y0 + h · j, i, j ∈ ZZ.
The regular grid cell Cij is then given by:

Cij = [xi, xi+1]× [yj, yj+1] .

A given body cuts some cells out of the grid completely or partially. We assume
that h is so small that the boundary of the body intersects with the boundary of
each cell only in at most two points. We modify such a cell with two intersection
points by connecting these two points by a straight line (cf. Figure 1).

By this discretization close to the body triangles, quadrangles and pentagons
arise, denoted with Cij as well, having areas |Cij|, which can get very small.

Let the vector Un
ij be a weighted mean over the cell Cij of the exact solution

U = (ρ, ρu, ρv, ρe)T of the differential equation (1) at time tn:

Un
ij ≈

1

|Cij|

∫

Cij

U(x, y, tn)dx dy. (2)

An advantage of Cartesian grid methods is that one can use existing fast high
resolution methods, e.g. the ones used in CLAWPACK of LeVeque ∗, with an
extension of a special treatment for the boundary cells Cij. It is the aim of this
paper to present a second order treatment of these boundary cells.

An other advantage is that flows about very complicated geometries can by cal-
culated without to much cost in the grid generation. But it is still an open question,

∗available by anonymous ftp from amath.washington.edu in the directory
pub/leveque/programs/clawpack
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x

y

Figure 1: Discretization of the space around some body.

whether one should prefer body-fitted grids or Cartesian grids for a calculation of
the full Navier-Stokes Equations.

Now we describe the main ideas of two different boundary treatments. Berger
and LeVeque [1] use the following standard conservative finite volume method:

Un+1
ij = Un

ij +
∆t

h
(F n

ij − F n
i+1,j +Gn

ij −Gn
i,j+1). (3)

The fluxes F n
ij are obtained by solving a Riemann problem:

F n
ij = F (U∗(Un

i−1,j, U
n
ij)), (4)

where U∗ is the solution of the Riemann problem for the equation Ut + Fx = 0
with initial values Un

i−1,j and Un
ij at the location

x
t
= 0. Gn

ij is obtained analogously.
Second order is achieved by adding a correction term to the fluxes, which needs
limited gradients.

For the boundary cells they generalize the method as follows:

Un+1
ij = Un

ij +
∆t

|Cij|
(F n

ij lyij − F n
i+1,j lyi+1,j +Gn

ij lxij −Gn
i,j+1 lxi,j+1 +Hn

ij lij). (5)

Here Hn
ij denotes the flux along the boundary of the body. In (5) lxij , lyij and lij are

the lengths of the straight lines around the boundary cell. For the boundary cell Cij

in Figure 2, we have: lxij = |Γ1|, lyij = |Γ5|, lxi,j+1 = |Γ4|, lyi+1,j = |Γ3|, lij = |Γ2|.
The fluxes F n

ij, G
n
ij and Hn

ij are now determined such that the method stays
stable with a time step ∆t which satisfies the CFL-condition for the regular cells.

2
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Γ3

Γ4

h

h

b

a

xi

yj
Γ1

Γ2

Γ5

x

Cij

Figure 2: Boundary cell near the body.

c)

b)
h

h

h

h

a)

Figure 3: Auxiliary cells for the initial values of the rotated Riemann problems.

The flux Hn
ij is obtained by solving a rotated Riemann problem for the equation

Ut +
∂

∂n
($n · (F,G)) = 0 (6)

at the location of the cell interface to the body. ∂
∂n

is the normal derivative in the
direction of $n, the normal vector on the body boundary into the domain. Initial
values of the Riemann problem are

Ub and Rij(Ub). (7)

The state Ub is obtained by a weighted mean over the auxiliary cell on Figure 3a).
The operator Rij(.) is defined by a change of sign of the normal component

of the velocity and by an identity in the tangential component, the density and

3



the energy. So the state Rij(U) is obtained by mirroring the state Ub at the body
boundary segment of the cell Cij . With the solution of the rotated Riemann problem
U∗(Rij(Ub), Ub) at the location of the interface of the cell and the body, Hn

ij is
obtained by:

Hn
ij = $n · (F (U∗), G(U∗)). (8)

To calculate the fluxes F n
ij , G

n
ij near the boundary, they solve two rotated Rie-

mann problems orthogonally and tangentially to the wall with initial values as the
weighted means over the auxiliary cells in Figure 3b/c. In case of an auxiliary cell
standing into the body (e.g. on Figure 3c), the value R(Ub) of the calculation of an
H-flux is needed there for the weighted mean. By solving the two rotated Riemann
problems, they get numerical values for the tangential and the orthogonal fluxes F n

‖

and F n
⊥, by which F n

ij and Gn
ij can be obtained.

This procedure of calculating the two orthogonal fluxes F n
‖ and F n

⊥ was intro-
duced to guarantee cancellation of fluxes for very small boundary cells and so the
method stays stable. The method is conservative as the flux Hn

ij is zero in the den-
sity, the tangential momentum and the energy component. In [2] they achieved no
second order along the boundary. The method is known as h-box method.

An other Cartesian grid method is described by Pember et al. in [3]. There for
the regular cells, the method looks formally the same as in (3). But the fluxes F n

ij

and Gn
ij are calculated differently. First for every cell limited gradients are defined,

which are used to calculate time centered states UE
ij , U

W
ij , U

S
ij and UN

ij in the middle
of the cell interfaces. The flux F n

ij is then obtained by solving a Riemann problem
analogously to (4):

F n
ij = F (U∗(UE

i−1,j, U
W
ij )). (9)

The boundary treatment works in two steps:

1. For the grid cells close to the boundary on both sides of the boundary, weighted
mean states Uext

ij are calculated before every step (3):

Uext
ij =

∑i+1,j+1
k,l=i−1,j−1 |Ckl|Ukl
∑i+1,j+1

k,l=i−1,j−1 |Ckl|
(10)

By this calculation we get weighted mean values for all cells near the boundary,
and we can proceed as in step (3). The new states are denoted with Un,ref

ij

near the boundary. This step is non conservative but stable.

2. To get from Un,ref
ij to a conservative Un+1

ij for the cells along the boundary, a
stable correction term is calculated by the construction of a flux Hn

ij (similarly
as in (8) ).

Because of its simplicity, this method was also used for calculations in three space
dimensions.
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A further Cartesian grid method is from Quirk [4], where boundary cells Cij with
areas |Cij| <

1
2
h2 are joined to suitable neighbor cells. This procedure leads to a

loss in accuracy along the boundary.
These three methods are not of second order accuracy along the boundary. All

of them were combined with the adaptive mesh refinement code (AMR) of Berger
and Colella [5].

2 A new treatment for the small boundary cells

The various Cartesian grid methods often rely on dimensional splitting. Dimensional
splitting is a special case of the Strang splitting [6]. Using dimensional splitting for
the equation ut + Aux + Buy = 0, u ∈ IRn, A, B ∈ IRn×n combines second order
methods for the equations ut + Aux = 0 and ut + Buy = 0 and yields a second
order method for the whole equation as described below. These methods have the
advantage of being economical in storage space and of being stable with a time
step with CFL number 1.0. Thus dimensional splitting methods are efficient with
respect to CPU time. As a disadvantage, one can object that the directions of
the splitting along the two coordinate axes are not selected by the flow field. A
standard dimensional splitting method can be built using the CLAWPACK package
(cf. previous section), where for solving the one dimensional equation ut+F (u)x = 0,
a Roe solver [7] is applied with an extension for sonic rarefaction waves (entropy fix
[8] pp. 151-153). We used this method to test our new boundary treatment, which
is similar to the h-box method of Berger and LeVeque [1] described in the previous
section.

Using a dimensional splitting for the regular cells, we propagate the solution Un
ij

at time tn into the solution Un+1
ij at time tn +∆t by the following three steps:

U
n+ 1

4

ij = Un
ij +

∆t
2h
(F n

ij − F n
i+1,j)

U
n+ 3

4

ij = U
n+ 1

4

ij + ∆t
h
(G

n+ 1

4

ij −G
n+ 1

4

i,j+1)

Un+1
ij = U

n+ 3

4

ij + ∆t
2h
(F

n+ 3

4

ij − F
n+ 3

4

i+1,j).

(11)

F n
ij (U

n
i−1,j, U

n
ij) and F

n+ 3

4

ij (U
n+ 3

4

i−1,j, U
n+ 3

4

ij ) are obtained as in (4) by solving a one di-

mensional Riemann problem. G
n+ 1

4

ij is defined analogously by:

G
n+ 1

4

ij = G (U∗(U
n+ 1

4

i,j−1, U
n+ 1

4

ij )), (12)

where U∗(., .) is the solution of a Riemann problem for the equation Ut+G(U)y = 0
at the location y

t
= 0. The method (11) is stable with a time step

∆t ·max(|$u|+ c) < h , c =

√

γ
p

ρ
is the speed of sound. (13)
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If the single steps in (11) are of second order accuracy, the total step Un
ij %→ Un+1

ij

is of second order accuracy. For a longer calculation, the integration by half a time
step in (11) has only to be done at the beginning and at the end of the calculation
because else they can be combined to an integration by full time step within second
order accuracy.

For a boundary treatment based on dimensional splitting, one has to define
numerical fluxes F (Γ), G(Γ) along all the boundary segments Γ of a boundary cell
such that the method stays stable and formally of second order.

Without loss of generality, the new method of the boundary treatment will be
described only for a generalization of the step

U
n+ 1

2

ij = Un
ij +

∆t

h
(F n

ij − F n
i+1,j) (14)

for the boundary cells. Thus we are looking for a method to integrate the equation

Ut + F (U)x = 0 (15)

for the boundary cells by a time step ∆t.
Consider again the boundary cell Cij on Figure 2. The cell is confined by the

boundary segments Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5. An integration of equation (15) over the
cell Cij yields:

∂t
∫

Cij

U dxdy +
∫

Γ2

F dy +
∫

Γ3

F dy +
∫

Γ5

F dy = 0. (16)

With equation (16) one obtains a method to integrate equation (15) for the
boundary cell Cij, which corresponds to the step (14):

U
n+ 1

2

ij = Un
ij +

∆t

|Cij|
(F n(Γ5) · h− F n(Γ2) · a− F n(Γ3) · (h− a)). (17)

F n(Γj), j = 2, 3, 5 are suitable fluxes F along the boundary segments Γj , j = 2, 3, 5
to be defined by solving a Riemann problem for equation (15) with initial values

UL(Γj), UR(Γj), j = 2, 3, 5. (18)

The exact solution of a Riemann problem for equation (15) consists of shocks,
rarefaction waves and contact discontinuities, which travel along the x-axes. To
avoid stability problems for the small boundary cells LeVeque has made two sug-
gestions: an enlargement of the domain of dependence [1] and an enlargement of
the domain of influence [9]. By enlarging the domain of influence, the impact of a
discontinuity originating from a cell interface gets followed by reflecting the wave at
the body boundary (cf. Figure 4).

Our new method to define the fluxes near the boundary (e.g. F n(Γj), j = 2, 3, 5
in Figure 2) is a

6



Γ

reflected discontinuity
originating from Γ

Figure 4: Reflection of a wave at the body boundary.

combination of [1] und [9]. As discontinuities originating from the solution of
a Riemann problem of equation (15) travel along the x-axes, it makes sense to
construct axiliary cells CL and CR with a horizontal expansion h for the calculation
of the initial values UL and UR of the Riemann problems near the boundary (cf.
CL(Γj), CR(Γj), j = 2, 3, 5 in Figure 5). The inital values UX , X ∈ {L,R} are
calculated by weighted means with the auxiliary cells CX , X ∈ {L,R}. Two cases
are distinguished. In the first case, the auxiliary cell CX lies totally outside of the
body. Then the weighted mean is obtained as follows:

UX =

∑Nx−1,Ny−1

i,j=0 Uij · |CX ∩ Cij |

|CX |
. (19)

CX ∩ Cij is the sectional plane of CX and Cij. In the other case the auxiliary cell
CX stands into the body across the boundary segment of the boundary cell Ckl (In
Figure 5 CR(Γ2) and CR(Γ5) stand into the body across the boundary segment of
the cell Cij and CR(Γ3) across the boundary segment of the cell Ci+1,j). This cell
CX gets replaced by two other auxiliary cells C1

X and C2
X . The cell C

1
X is the part of

the cell CX which lies outside of the body. The cell C2
X is obtained by mirroring the

part of the cell CX which lies inside the body at the boundary segment over which
it stands into the body (cf. Figure 6). Thus the cells C1

X and C2
X lie totally outside

of the body and it is:
|CX | = |C1

X |+ |C2
X|. (20)

The weighted mean for such an auxiliary cell, which stands into the body across
the boundary segment of cell Ckl, is then obtained using the operator Rkl(.) (cf.
equation (7)):

UX =
(
∑Nx−1,Ny−1

i,j=0 Uij · |C1
X ∩ Cij|+

∑Nx−1,Ny−1

i,j=0 Rkl(Uij) · |C2
X ∩ Cij|)

|CX |
. (21)
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Γ5

CR

CR

CR

CL

CL

CL Γ3

Cij

Cij

Cij

Γ2

Figure 5: Auxiliary cells for the definition of UL(Γj), UR(Γj), j = 2, 3, 5

By this procedure, we get initial values UL, UR for every boundary segment Γ to
solve a Riemann problem for the equation (15). Solving this Riemann problem, we
get a state U∗ at the interface Γ and thus a numerical flux F n(Γ) = F (U∗).

3 The Roe solver, second order accuracy and a
limiter for the boundary gradients

For a description of the second order accuracy along the boundary, we first describe
how to get second order for the regular cells by means of the Roe solver. As already
mentioned, to get second order accuracy for a dimensional splitting method, only
the fractional steps in (11) have to be of second order. I.e. we are searching for a
second order one dimensional method for the step (14).

First we show how to get a second order flux for the cell interface between two
regular cells Ci−1,j and Cij following [8]. We solve a Riemann problem with initial
values UL = Ui−1,j and UR = Uij. To do this approximately by the Roe solver,
equation (15) is linearized to [7]:

Ut + A(UL, UR)Ux = 0, A ∈ IR4×4, (22)

where of course A(U, U) = ∂F
∂U

. To get an upwind method the difference UR − UL is
decomposed into three vectors, which are eigenvectors of the Roe matrix A(UL, UR):

UR − UL =
3

∑

p=1

∆Up, where A(UL, UR) ·∆Up = λp ·∆Up, p = 1, 2, 3. (23)

8



%−→

Γ3

Γ3

Γ3

C2
R

C1
R

CR

Figure 6: Construction of C1
R(Γ3) and C2

R(Γ3) from CR(Γ3).

∆U1 and ∆U3 correspond to shocks and rarefaction waves with characteristic speeds
λ1 = (u − c)(UL, UR) and λ3 = (u + c)(UL, UR) respectively. ∆U2 corresponds to
a contact discontinuity with characteristic speed λ2 = u(UL, UR). The upwind flux
F 1(UL, UR) ( in the following, we have suppressed the upper index n for the time
step and the lower indices ij for the interface) is then obtained by:

F 1(UL, UR) = F (UL) +
∑

λp<0

λp ·∆Up. (24)

To fulfil the entropy condition, sonic rarefaction waves get a special treatment
(entropy-fix [8] pp. 151-153). E.g. if

(u− c)(UL) < 0 < (u− c)(UL +∆U1), (25)

then the upwind flux F 1(UL, UR) is obtained by

F 1(UL, UR) = F (UL) +
(u− c)(UL) · λ1

(u− c)(UL +∆U1)− (u− c)(UL)
∆U1. (26)

The flux F 1(UL, UR) can be extended to second order by a correction term:

F 2(UL, UR) = F 1(UL, UR) +
1

2

3
∑

p=1

|λp|(1−
∆t

h
|λp|)∆Up. (27)

In order to avoid oscillations around shocks, one can limit the components of the
jumps∆Up in the correction term (second part on the right in (27)). Possible limiters

9



are the minmod, the van Leer or the superbee limiter. The superbee limiter lies on
the edge of the stability region. The component-wise limitation is done by a limiter
factor.

(∆Up)
limit
k = lpk · (∆Up)k, p = 1, 2, 3; k = 1, ..., 4 (k indexes U) (28)

The calculation of the limiter factor lpk needs the jumps of the neighboring cell
interfaces ∆U left

p and ∆U right
p (known by the calculation of F 1

i−1,j and F 1
i+1,j) and is

done by a limiter function l(., .):

lpk =

{

l((∆Up)k, (∆Up)
left
k ) : λp > 0

l((∆Up)k, (∆Up)
right
k ) : λp < 0

, (29)

where of the following limiter functions l(., .) can be used:

l(a, b) =











max(0,min(1, b
a
)) : minmod limiter

( b
a
+ | b

a
|)/(1 + | b

a
|) : van Leer limiter

max(max(0,min(1, 2b
a
)),min(2, b

a
)) : superbee limiter

(30)

We mainly use the van Leer limiter.
In case of a flow calculation where no shocks or contact discontinuities appear,

there is no limitation of the jump-components of ∆Up necessary in the second order
correction term (e.g. the Prandtl-Meyer expansion in the next section).

The method should also be able to calculate transonic and supersonic flows,
where discontinuities in the solution can appear. In order to use the correction term
of second order (second term of equation (27)) for such flows, the jumps ∆Up must
be limited also near the boundary. But the jumps ∆U left

p and ∆U right
p , which are

needed for the limitation, are not available yet for some fluxes near the boundary
after the calculation of the first order flux F 1(UL, UR) (unlike for the interior fluxes
where by means of the calculation of F 1

i−1,j and F 1
i+1,j the jumps ∆U left

p and ∆U right
p

are known). Thus to limit the jumps ∆Up close to the boundary with ∆U left
p and

∆U right
p , we have to solve some additional Riemann problems along line segments

Γleft and Γright (cf. Figure 7 for the fluxes F n(Γj), j = 2, 3, 5 of the boundary cell
Cij of figure 2).

To solve a Riemann problem along such a line segment Γ, which can also be
lying beyond the boundary of the body, we construct again auxiliary cells CL(Γ)
and CR(Γ) like in the previous section. To get the initial states of the Riemann
problem UL(Γ) and UR(Γ), we calculate again weighted means. If an auxiliary cell
lies partly or totally beyond the boundary, again a mirroring procedure is necessary
at the boundary segment, over which the cell stands horizontally into the body (cf.
previous section).

The method is formally of second order accuracy. But as long as piecewise
constant reconstructions are used for the calculations of the weighted means over
the auxiliary cells, it is not sure if the actual value for the order will reach a value
of 2.0. But certainly it will be higher than 1.0.

10



Γ5
Γ3

Γ2

CijCij

Cij

Γleft

Γright

Figure 7: Γleft and Γright, along which the jumps ∆Up are needed for the limiting.

4 Numerical results

For the Prandtl-Meyer expansion of a 1.2 Mach flow over a 300 bend, the exact
solution is smooth (cf. numerical solution with a grid parameter h = 1

80
in Figure

8).

0.00 0.50 1.00 1.50

0.00

0.50

1.00

Figure 8: 300 Prandtl-Meyer expansion of a Mach 1.2 flow (density contours and
stream lines).

Therefore the calcultation can be done without limiting the jumps in (27), pro-

11



h entropy stagnation enthalpy

errortotal order errortotal order
1

160
0.0000680 - 0.001138 -

1

320
0.0000184 1.89 0.000637 1.11

1
340

0.0000164 1.90 0.000597 1.07

errorboundary errorboundary
1

160
0.001114 - 0.0172 -

1

320
0.000441 1.34 0.0122 0.50

1

340
0.000405 1.40 0.0118 0.55

Table 1: Convergence history for the Prandtl-Meyer expansion.

vided that the initial flow field is sufficiently close to the exact solution. Such an
initial flow can be obtained by sending a shock over the bend with the limiter turned
on whose left hand side is a Mach 1.2 flow and whose right hand side is a flow at
rest. For the exact solution, entropy and stagnation enthalpy are constant thus are
known. Therefore we can easily do an error analysis (cf. [1] [3]). Comparing entropy
and stagnation enthalpy of the numerical solution for a grid parameter h with the
corresponding value of the exact solution, we can calculate the error in the L1-norm
in the whole flow area or only along the boundary of the body:

errortotal =

∑1 |uij − uc
ij|

∑1 |Cij|
, (31)

errorboundary =

∑2 |uij − uc
ij|

∑2 |Cij|
, (32)

where uc
ij is the exact solution (here entropy or stagnation enthalpy), uij is the

numerical solution,
∑1 is a summation over all the grid cells, and

∑2 is a summation
over the boundary cells only.

Under the assumption that the error can be expressed as error = C · hp, we can
calculate the order p of the method in the whole area or only along the boundary
(cf. Table 1).

As in [3], the results for entropy suggest that the method is of second order
accuracy in the whole area. But the value of p = 1.4 for the order in entropy along
the boundary is an improvement comparing with other Cartesian grid methods. The
results for stagnation enthalpy are less satisfying, as in [3] as well.

The double Mach reflection [10] is an attractive numerical experiment for a super-
sonic flow, especially for a test of the boundary treatment. The flow phenomenona
of a double Mach reflection arise by reflecting a shock which is strong enough at a
ramp (cf. Figure 9).

12



0.25 0.50 0.75 1.00 1.25 0.25 0.50 0.75 1.00 1.25

0.25 0.50 0.75 1.00 1.25 0.25 0.50 0.75 1.00 1.25

h= 1

320
, Mach=10.0, t=0.105

density pressure

entropy velocity

Figure 9: Double Mach reflection, calculated with a 400x320 grid.

At the origin of the ramp a self similar structure arises with two Mach stems.
The contact discontinuity of the second stem is very weak. Also the reflected shock
of the second stem is very weak and disappears where it encounters the contact
discontinuity of the first stem. There the fluid gets dense, so that a jet forms which
moves towards the reflected shock of the first stem. The width of this jet is sensitive
to the boundary treatment.

The orientation of the grid was chosen such that the orthogonal axes is aligned
with the moving shock. The angle of the ramp and the moving shock was 600.
The ramp and the lower edge are solid wall boundaries. For the outflow boundaries
on the right hand side and the upper edge, we have chosen a supersonic outflow
boundary condition.

In a comparison of the boundary treatment with or without the second order
correction term (27) in the fluxes along the boundary (cf. Figure 10),

the smearing of the reflected shock of the first stem along the boundary could
almost be avoided with the second order accurate boundary treatment. The jet in
the direction of the main reflected shock along the boundary is narrower with the
second order boundary treatment.
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The double Mach reflection is an unsteady problem. As an other steady problem,
we have chosen a transonic flow past a bump [11]. A subsonic Mach 0.85 gas flows
past a bump whose width is 5% of its length. In this case we have to impose
subsonic boundary conditions on the inflow, the outflow and the upper edge. Along
the lower edge, we have a wall boundary. For the subsonic boundary condition, we
have chosen an algorithm found in [12]. I.e. the initial values UL for the Riemann
problems along the interfaces on the left domain boundary are obtained by imposing
stagnation enthalpy and entropy and by the fact that one wave leaves the domain
leftwards. The initial values UR for the Riemann problems along the interfaces on
the right domain boundary are obtained by imposing free pressure and by the fact
that two waves leave the domain rightwards. On the upper domain boundary, the
sign of the orthogonal velocity component determines, if we have to impose an inflow
or an outflow boundary condition.

The exact solution of a flow over the bump is subsonic, symmetric and isentropic
for Mach numbers <∼ 0.75. For an inflow Mach number of 0.85 (cf. Figure 11),

the flow on the back of the bump exceeds the speed of sound and gets subsonic
again by a steady shock wave.

On Figure 12 we plotted the entropy along the back of the bump for a calculation
with a first and a second order boundary treatment. The entropy production is
physical only at the location of the shock. The comparision shows that the numerical
entropy production at the beginning and the end of the bump is less and sharper
with the second order boundary treatment.

As one of the main advantages of the use of a Cartesian Grid method, one can
calculate flows around complicated geometries without too much effort in the grid
generation. In addition the simple data structure makes it possible to write fast
computer codes.

Already a flow past two cylinders would be rather complicated with body fitted
or adaptive grids. To illustrate this, we calculate the reflection phenomena of a shock
with relative Mach number 2.31 passing two cylinders which are shifted with respect
to each other. This example was also calculated in [1]. For the calculation we used
a 400x400. The second dimension seems to be rather big, but so we could minimize
spurious reflections of the shocks at the upper and the lower domain boundary.

Figure 13 shows a contour plot of the solution at a time t=0.22. The initial
shock location at t=0.0 is just in front of the lower cylinder. We can see the rise
of an interesting structure with two shocks hitting the lower cylinder. The pressure
plot on Figure 14 shows the two shocks incident on the lower cylinder, just above
the pressure peak at the leading edge. Due to the second order boundary treatment,
they are well resolved.
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5 Conclusions

A new method was presented for the treatment of the small boundary grid cells,
which arise along a body using a Cartesian grid. We used a dimensional splitted
finite volume method to simulate the unsteady, inviscid, compressible flow around an
arbitrary body in two space dimensions. The method was built upon a dimensional
splitted standard method because of simpler coding but also because of simpler data
structure which results in a high speed executable program. In a first step, we have
constructed a stable method which was of first order accuracy along the boundary
of some body. This method was extended to second order accuracy also along the
body boundary, which made it necessary to build a limiter of the gradients for the
boundary cells. By means of a smooth steady flow, we measured the order of the
algorithm in the whole domain and along the boundary. Along the boundary we got
an order of 1.4 which is an improvement comparing with other boundary treatments.
We also calculated the unsteady double Mach reflection, where we showed that a
second order boundary treatment is necessary to avoid smearing of unsteady shocks
wandering along the boundary. Also the numerical entropy production along the
boundary cells is lower for a boundary treatment of second order.

In a next step we have made the method conservation preserving. To do this, we
summed up for one time step in each boundary cell the errors the method makes in
mass and energy conservation and in momentum transfer from the body not coming
from pressure. Then we distribute these errors as a correction term among the
neighboring cells without disturbing the order of the method. This additional step
is similar as the second step of the method [3] described in the introduction. The
results in order as well as accuracy did not change noticeably.

An important feature of the method is its simplicity. This fact be useful for an
extension of the method to calculate flows in three space dimensions, which is a
possible continuation of this work. An other possible direction to go would be to
generalize the new boundary treatment to other non dimensional splitted methods,
e.g. the method of transport [13].

References

[1] R.J. LeVeque M.J. Berger. A Rotated Difference Scheme for Cartesian Grids
in Complex Geometries. AIAA Paper CP-91-1602, 1991.

[2] R.J. LeVeque M.J. Berger. Stable Boundary Conditions for Cartesian Grid
Calculations. ICASE Report No. 90-37, May, 1990.

15



[3] P. Colella W.Y. Crutchfield M.L. Welcome R.B. Pember, J.B. Bell. An Adaptive
Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions.
Journal of Comp. Phys., 120, pp 278-304, 1995.

[4] J.J Quirk. An alternative to unstructered grids for computing gas dynamic flows
around arbitrarily complex two-dimensional bodies. Computers Fluids, Vol. 23
No. 1, pp 125-142, 1994.

[5] P. Colella M.J. Berger. Local Adaptive Mesh Refinement for Shock Hydrody-
namics. J. Comp. Phys. , Vol. 85, 1989.

[6] G. Strang. On the construction and comparison of difference schemes. SIAM
J. Num. Anal., 5, pp. 506-517, 1968.

[7] P.L. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes. J. Speed Computing, Vol.4. No.1, 1992.

[8] R.J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser Verlag,
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Figure 10: Density contours for the double Mach reflection (detail of a 300x250
grid). Comparision of a first and second oder boundary treatment.
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Figure 11: Mach 0.85 flow past a 5% bump for a grid parameter h = 0.01.
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Figure 12: Flow past a circular bump. Comparison of a calculation with first and
second order boundary treatment.
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Figure 13: Reflection of a shock traveling at Mach 2.31 off two cylinders with a grid
parameter h = 0.0025.
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